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Bayesian Analysis of Curves Shape Variation
through Registration and Regression.

Donatello Telesca
Department of Biostatistics, University of California Los Angeles

April 4, 2015

Abstract
This manuscript reviews the use of Bayesian hierarchical curve registration
in Biostatistics and Bioinformatics. Several models allowing for unit-specific
random time scales are discussed and applied to longitudinal data arising
in biomedicine, pharmacokinetics and time-course genomics. We consider
representations of random functionals based on P-spline priors. Under this
framework, straightforward posterior simulation strategies are outlined for
inference. Beyond curve registration, we discuss joint regression modeling
of both random effects and population level functional quantities. Finally,
the use of mixture priors is discussed in the setting of differential expression
analysis.
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1 Introduction
Longitudinal studies in Biostatistics often aim to characterize time-dependent
dynamics associated with the evolution of specific biological or bio-behavioral
processes. Several examples are reported, for example, in Pinheiro and Bates
(2000). A more comprehensive treatment of statistical analysis strategies for
longitudinal designs has been discussed by Wakefield (2012).

In cases where observed outcomes arise as the realization of non-linear
stochastic processes, some care is needed in the characterization of its vari-
ability. In particular, it is reasonable to expect that outcomes will be ob-
served over unit-specific random time scales, resulting in phase-varying ran-
dom curves. Ignoring phase variability, may lead to inconsistent estimates of
time-dependent quantities (Kneip and Gasser 1992; Kneip and Gasser 1988),
as well as hard to interpret inferential summaries.

We illustrate this point by describing two simple studies and aiming to
provide a simple point estimate of the mean over time. Figure 1 (a), reports
the growth velocity, intended as the yearly change in height, for a sample of
39 boys and 54 girls from the Berkeley growth study (Tuddenham and Sny-
der 1954). We observe an overall deceleration trend in growth from infancy
to adulthood, with acceleration-deceleration pulses in velocity. In particular,
the most prominent velocity pulse corresponds to the pubertal spurt. Even
though children experience a similar sequence of hormonal events affecting
growth, such events do not occur at the same rate/time in all children. Ig-
noring the individual timing of growth pulses, a naïve point estimate of the
average growth profile is the cross-sectional mean. Clearly, this estimate ap-
pears immediately inadequate, as it misrepresents the amplitude and length
of typical pubertal growth spurts.

Figure 1 (b), shows the blood concentration trajectories of the drug
Remifentanil for 65 post-surgical patients receiving i.v. infusion of the drug
for up to 20 minutes until reaching a target sedation level. As the drug is
infused for a length of time which varies across patients, we observe pharma-
cokinetic (PK) profiles over subject-specific time scales. This case study il-
lustrates even more transparently the inadequacy of the cross-sectional mean
as an estimate of average PK dynamics. In particular, timing artifacts in the
study design seem to induce a two-phase excretion rate in the mean, which
is not justified from a physiological perspective and clearly atypical when
compared to subject-level PK profiles.

These illustrative examples highlight how different experimental and ob-
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Figure 1: Phase variability of non-linear profiles. (a) Berkeley growth
study: growth velocity for 93 subjects, defined as yearly changes in the
subjects height. The cross-sectional mean growth velocity is superimposed.
(b) Pharmacokinetics of Remifentanil: normalized drug blood concentra-
tion (ng/ml) monitored over phases of infusion and absorption. The cross-
sectional mean PK curve is superimposed.

servational settings may define a differential genesis of phase variation in the
observed outcome. In cases where variability in timing is related to the mea-
surement process or the design of the study itself, technical or experimental
information may be useful in devising pre-processing techniques aimed at re-
moving timing artifacts. However, most commonly, variability in the timing
of subject-level functional features relates to the very nature of the observed
process and a rigorous approach to alignment strategies is needed to provide
valid inference.

The structure of this manuscript is as follows. We introduce the problem
of curve registration in Section 2 and review Bayesian hierarchical curve
registration in Section 3. In relation to this model, we introduce a simplified
regression strategy in Section 4. More involved regression approaches, based
on varying-coefficient models are introduced in Section 5. Finally, in Section
6 we introduce and discuss applications of curve registration models to the
analysis of time-course genomic data.
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2 Phase variability and curve registration
The case studies summarized in Figure 1 illustrate how naïve estimation of
a functional mean may result in inadequate inferential summaries. In order
to formalize these concepts, let us define a notation for observations yi(t), as
the observed outcome for subject i, (i = 1, 2, . . . , n) at time t ∈ T . Typically
one only observes yi = (yi(ti1), . . . , yi(timi

))′ over a discrete sampling grid.
However, for ease of notation, we entertain the possibility of observing y
continuously. A standard working assumption sees observations arising as a
realization of the following compound stochastic process:

yi(t) = fi(t) + εi(t) = µ{ui(t)}+ εi(t), (1)

where µ(·) is some shape function, ui(·) is a random, unit-specific time trans-
formation function and εi(·) a mean-zero, stationary stochastic process. An
illustration of how random time scales ui(t) act on µ(t) is reported in Figure
2.

We are interested in estimating µ(·) as a function quantifying a repre-
sentative shape. In this setting, it may be tempting to estimate this quan-
tity using the cross-sectional mean ȳ(t) = 1

n

∑
i yi(t). However, in general,

E{yi(t)} 6= µ(t), therefore ȳ(t) is not a consistent estimator of µ(t). Simi-
lar considerations extend to estimators associated with more ambitious sta-
tistical analyses, including functional PCA (Rice and Silverman 1991) and
functional regression (Guo 2002; Yao et al. 2005).

This simple observation, is perhaps a reflection of the deeper tension be-
tween marginal and conditional models in longitudinal data analysis. When
interest centers on non-linear dynamics, inference naturally focuses on quanti-
ties summarizing typical time-dependent evolutions (Wakefield 2012). There-
fore, explicit modeling of all random components of variation is needed for
meaningful inference.

There are number of proposal that deal with the problem of phase vari-
ability. A common methodological thread aims to estimate the processes
ui(t) and then compute aligned profiles y∗i (t) = yi

{
u

(−1)
i (t)

}
. The shape

function µ(t) is then estimated by the structural mean µ̂(t) = ȳ∗(t).
This procedure goes under the name of curve registration, also known

as curve alignment in biology, or time warping in the engineering literature.
Several time warping methods have been devised to date. In the engineer-
ing literature, Sakoe and Chiba (1978) pioneered a registration technique
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Figure 2: Time transformation. (a) Time transformation functions for
three random profiles. In solid grey, we report the identity transform. (b) A
function of time evaluated over the random time scales in (a).

called dynamic time warping for pairwise alignment. Wang and Gasser
(1997) introduced the technique to the statistical literature and provided
large sample properties of the time transformation estimators (Wang and
Gasser 1999). Gasser and Kneip (1995) proposed the landmark registration
method, which consists of identifying the timing of certain features (land-
marks) in the curves. Profiles are then aligned so that they occur at the
same transformed times. More recently, alignment models have focused on
representing time transformation functions as continuous monotone trans-
formations (Ramsay and Li 1998; Kneip et al. 2000). Improved estimation
has been reported in Gervini and Gasser (2004); Brumback and Lindstrom
(2004) as well as Liu and Müller (2004).

Bayesian approaches to the area of curve registration are more recent.
Telesca and Inoue (2008) introduced a hierarchical representation of curve
registration. A more recent perspective, focusing on invariance, was intro-
duced by Cheng et al. (2013).
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3 Bayesian hierarchical curve registration
The problem of curve registration admits a natural probabilistic representa-
tion in terms of hierarchical models (Telesca and Inoue 2008). A Bayesian
approach to the problem confers extended flexibility in modeling both the
shape µ(t) and time-transformation functions ui(t). This modeling frame-
work is well adapted to both intensive and sparse sampling time grids as
information across curves is shared via partial exchangeability assumptions.
As usual, extended flexibility and a formal inferential structure come at the
cost of having to specify a full probability model. If the focus of analysis is
more exploratory several alternatives are available as reviewed in Section 2.

3.1 Hierarchical model
Let yi(t) denote the observed level of the ith curve at time t, with i =
1, 2, . . . , n and t ∈ T = [t0, tm] ⊂ R. In order to allow for linear shifts
in the timing of functional features, we define an extended evaluation time
window T ⊂ R, compact, with T ⊂ T . The data generating mechanism in
(1) is naturally represented via the following three–stage hierarchical model.

Stage One. Let µ(t) be a real valued function, s.t. µ(t) : T → R; let
ci ∈ R and ai > 0, be two scalars. Furthermore, let ui(t) be a monotone
smooth function, s.t. ui(t) : T → T . The observed value of each curve i at
time t is modeled as:

yi(t) = ci + ai µ(t) ◦ ui(t) + εi(t) = ci + ai µ{ui(t)}+ εi(t); (2)

where, for any t ∈ T , εi(t) ∼ N (0, σ2
ε ). In practice we only observe yi(t) over

a discrete sampling time grid, which translates into standard assumptions
of iid Normal random errors. In (2), µ(t) denotes a common shape func-
tion generating the individual curves and ui(t) denotes a curve-specific time
transformation function. Unit-specific variability in the level and amplitude
of individual profiles are modeled through ci and ai respectively.

Upon registration of the curves, we identify the ith aligned curve at time
t as

y∗i (t) = yi(t) ◦ u−1
i (t). (3)

All functional quantities are easily represented in finite dimensional form
using linear combinations of appropriate basis functions. Additional consid-
erations about specific modeling choices are deferred to Section 3.2.
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Stage Two: Given a common shape function µ(t), individual curves may
exhibit different scales and levels of response. Assuming ci ∼ N (0;σ2

c ) and
ai ∼ N (1;σ2

a)I{ai > 0}, defines a straightforward mechanism for curve-
specific random affine transformations. For interpretation and identifiability
purposes, it is often useful to assume ∑i ci = 0 and ∑i ai = n. Normality
assumptions enable conjugacy with the likelihood. Moreover, the assumption
of strictly positive amplitudes can be relaxed. For example, Telesca et al.
(2009) consider a mixture prior in an application to time course expression
data.

Curve–specific random time transformation functions ui(t) are assumed to
be smooth realizations of a functional stochastic process, monotone increas-
ing with probability one. Additional image and identifiability constraints are
usually needed for implementation. In particular, defining 0 < δ < (tm −
t0)/2, it is appropriate to require ui(t0) ∈ [−δ, δ] and ui(tm) ∈ [tm−δ, tm+δ].

Stage Three. The hierarchical model is completed with priors over popu-
lation level parameters. Common assumptions exploit conditional conjugacy
to define Gamma priors 1 over precision parameters:

1/σ2
a ∼ Ga(aa; ba), 1/σ2

c ∼ Ga(ac; bc), 1/σ2
ε ∼ Ga(aε; bε).

Additional priors are needed in the definition of random functional quantities.
Specific choices are discussed in Section 3.2.

3.2 Penalized regression splines representation of ran-
dom functionals

The shape function µ(t) is the principal object of inference in curve registra-
tion exercises. Specific parametric or semi-parametric forms may indeed be
suggested by the application at hand. A general non-parametric approach is
based on representing µ(t) as a random smooth function using linear combi-
nations of B-spline basis functions (De Boor 1978).

Specifically, representation of the common shape function µ(t) may pro-
ceed selecting a set of knots (κ1, κ2, . . . , κp) partitioning the extended evalua-
tion interval T into p+1 subintervals. Using piecewise polynomials of degree
r and given the set of interior knots, we define Sµ(t) as a K−dimensional
design vector of B–spline basis evaluated at time t, with K = p + r + 1. In

1In our development, X ∼ Ga(a; b) is parametrized so that E[X] = a/b.
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this framework, letting β be a K−dimensional vector of basis coefficients,
we represent the shape function as the following linear combination

µ(t) = µ(t;β) = S ′µ(t)β.

Similarly, given a set of interior knots (ω1, ω2, . . . , ωh), partitioning the sam-
pling interval T into h+1 subintervals, we may represent the individual time
transformation functions ui(t) following the same strategy. In particular, let
Su(t) be a Q−dimensional vector of B-spline bases of degree r evaluated
at time t, with Q = h + 1 + r. Defining φi as a Q-dimensional vector of
spline coefficients, curve-specific time transformation functions may then be
represented according to the following linear combination

ui(t) = ui(t; φi) = S ′u(t)φi.

Monotonicity and boundary conditions are insured by the following con-
straints on φi:

(t1 − δ) ≤ φi1 < · · · < φiq < φi(q+1) < · · · < φiQ ≤ (tm + δ). (4)

Similar strategies may be adopted to impose structural constraints on the
form of the shape function µ(t;β). For an example requiring unimodality of
the common shape see (Telesca et al. 2012).

The representation of functional quantities via spline bases requires choosing
the degree of local spline polynomials, the number of interior knots as well
as the location of the knots for both the common shape function µ(t;β) and
the individual time transformation functions ui(t;φi). This model selection
problem is often addressed with the minimization of measures of prediction
error (Hastie et al. 2001) and cross–validation procedures (Gervini and Gasser
2004).

An alternative modeling strategy relies on penalized regression splines
(Eilers and Marx 1996; Ruppert and Carroll 2003). Specifically, a relatively
large number of equidistant knots is selected in order to purposely over-
parametrize the model. A penalty, dependent on a smoothing parameter λ,
is then placed on coefficients of adjacent B–splines. In a frequentist frame-
work the choice of λ is usually made in the model selection stage and is based
on cross–validation analysis. From a Bayesian perspective this strategy is
equivalent to the definition of appropriate dependent priors for functional
coefficients β and φi.
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In particular, following Lang and Brezger (2004), one may consider a
second–order random walk shrinkage prior on the shape coefficients β, so
that, for k = 1, . . . , K:

βk = 2βk−1 − βk−2 + ek, ek ∼ N (0;λβ). (5)

Assuming β−1 = β0 = 0, conditional on λβ, β has a multivariate Normal dis-
tribution with null mean vector and precision matrix Ω/λβ. Under the above
second–order random walk, Ω is a banded precision penalization matrix

Ω =



6 −4 1 0
−4 6 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 5 −2
0 1 −2 1


. (6)

Note that the random walk variance λβ can be interpreted as the smoothing
parameter. In particular, small values of λβ shrink the shape function µ(t,β)
towards a linear function of time. Following Lang and Brezger (2004) we
place a relatively diffuse conjugate inverse gamma hyperprior on the variance,
so that λβ ∼ IG(aλ1; bλ1).

A similar approach may be adopted to model time transformation func-
tions ui(t;φi). Defining identity transform coefficients Υ′ = (Υ1, . . . ,ΥQ),
s.t. ui(t,Υ) = t; for all i = 1, 2, . . . , n, q = 1, . . . , Q:

(φiq −Υq) = (φi(q−1) −Υq−1) + ηq, ηq ∼ N (0;λφ). (7)

Assuming that (φi0 − Υ0) = 0, it can be shown that φi ∼ N (Υ;P /λφ),
where P is a banded precision matrix and λφ is the smoothing parameter
associated with the transformation functions ui(t;φi). Small values of λφ
shrink ui(t;φi) towards the identity transformation. The model is completed
with a prior for λφ, s.t. λφ ∼ IG(aλ2; bλ2).

3.3 Inference for hierarchical curve registration mod-
els

In applications we observe functional data over a finite sampling grid t′i =
(ti1, . . . , tij, . . . , timi

). Let yi(ti)′ = (yi(ti1), . . . , yi(timi
)) be anmi−dimensional
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vector, representing the observed trajectory for unit i, (i = 1, . . . , n), over
time. Using B-spline representations, the functional model in (2) simplifies
into a standard hierarchical model involving random quantities of finite di-
mensional form. In particular, let Sµ(ti) : mi ×K and Su(ti) : mi × Q, be
the shape and time transformation spline design matrices respectively. The
sampling model can be expressed as

yi(ti) = ci 1mi
+ ai Sµ(ti)β ◦ Su(ti)φi + εi(ti); (8)

with εi(ti) ∼ Nmi
(0, σ2

ε Imi
).

Given priors on population level quantities β and σ2
ε , and unit-specific

parameters ci, ai and φi, (i = 1, 2, . . . , n); inference about all functionals of
interest is directly available from their posterior distribution. In particular,
MCMC simulation from the posterior is relatively straightforward. Given
φi, for all i, simulation from all remaining parameters is easily implemented
following any sampling strategy applicable to hierarchical linear models (Gel-
man et al. 2013). Some care is needed in the sampling of φi as the support of
these parameters is defined over random cuts insuring monotonicity of time
transformation functions. However, for these quantities, relatively simple
Metropolis Hastings transitions tend to work well in practice. Telesca and
Inoue (2008) discuss implementation of these strategies in detail.

Let a(j)
i , c(j)

i , φ(j)
i and β(j), (j = 1, . . . ,M), denote M draws from the

marginal posterior distributions of respective parameters. To register the
observed curves one may use the posterior expectation E{ui(t) | y} as a
point estimate of the stochastic time scale for unit i. That is, given posterior
samples from time transformation parameters φ(j)

i , (j = 1, . . . ,M), posterior
samples for the functional quantity ui(t) are easily calculated as

u
(j)
i (t) = ui(t;φ(j)

i ) = Su(t)′φ(j)
i . (9)

Similarly, draws from the marginal posterior distribution of the shape func-
tion µ(t;β), for any time t ∈ T , are given by:

µ(j)(t;β) = Sµ(t)′ β(j). (10)

Clearly, inference about several functional summaries, including extrema,
differentials, etc., are obtained in the same straightforward fashion.

Simultaneous credible bands for any function of interest, say f(.), are
easily approximated using a fine grid of evaluation time points t1 < . . . < t`
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Figure 3: Berkeley Growth Study. (a) Posterior expectation of time
transformation functions ui(t). (b) Aligned growth velocity profiles, with
superimposed posterior expectation of µ(t) (solid line). The cross sectional
mean for misaligned profiles is reported as the (dashed line). In both panels
grey profiles identify girls, while black profiles identify boys.

(Baladandayuthapani et al. 2005). Let Γα denote the 100(1 − α)% sample
quantile of

max
1≤i≤`

|[f(ti)− E{f(ti) | y}]/SD{f(ti) | y}| ;

a simultaneous 100(1− α)% credible band for f(t) is estimated as

I(t) = E{f(t) | y} ± Γα SD{f(t) | y}.

3.4 Case studies in Bayesian curve registration
We illustrate the application of Bayesian hierarchical registration techniques
to the analysis of the two illustrative case studies reported in Figure 1. In
particular, Figure 3 reports estimates for the posterior expected time trans-
formation functions ui(t) (a) and aligned growth velocity profiles (b). In the
same figure we report the posterior expectation for the structural average
curve µ(t) (solid line). When compared to the naïve cross-sectional estimate,
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Figure 4: Pharmacokinetincs of Remifentanil. (a) Posterior expecta-
tion of time transfomation functions ui(t). (b) Aligned drug concentration
trajectories with superimposed posterior expectation of µ(t) (solid line) and
cross sectional mean of misaligned concentration dynamics (dashed line).

the structural average appears clearly as a better representation of typical
growth velocity patterns.

Similarly Fig. 4, reports a hierarchical registration analysis of drug con-
centration dynamics associated with the drug Remifentanil. In panel (a)
we plot posterior expected time transformation functions. As information
about differing functional features becomes more sparse in later sampling
time points, the estimated warping functions exhibit higher variance near
the end of the sampling time domain. Panel (b) reports aligned drug con-
centration trajectories and superimposed posterior expected structural mean
(solid line). As for the growth study, alignment removes artifacts in the cross
sectional average and produces estimates of average concentration kinetics,
which are more representative of typical individual profiles. The application
of this technique to pharmacokinetic data is indeed non-standard as one often
seeks to learn about compartment model parameters in a system of differ-
ential equations. Nevertheless, we find this analysis useful and essentially
informative as a primitive exploration of drug concentration dynamics.
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4 Regression models for timing and ampli-
tude of functional features

Consider the growth study in Fig. 3. A more in depth look at Individual
profiles is indeed made easier after removing phase variability. We code indi-
vidual curves in grey-levels to reflect the subject sex. Black profiles indicate
boys and grey profiles indicate girls. An explorative examination of the esti-
mated time transformation functions (a) reveals that the time scale for girls
tends to lie above the identity transform, whereas boys tend to lie below it.
This observation indicates that girls tend to experience pubertal growth at
earlier ages, when compared to boys. Beyond variation in timing, a visual
examination of the aligned profiles in (b), allows for a clearer distinctions of
sex-related amplitude variation patterns. In particular, pubertal spurts for
girls tend to be attenuated when compared to pubertal spurts in boys.

These observations motivate a natural extension of curve registration
models as formal tools to relate individual covariate information to simple
and interpretable components of variation in functional data. Specifically,
following Brumback and Lindstrom (2004) and Telesca et al. (2012) we de-
velop a class of models aimed at explaining amplitude and phase variability
in a sample of curves using individual-level predictors.

4.1 Generalized curve registration models
The hierarchical model in (2) need not be restricted to assumptions of Gaus-
sian sampling. In fact this assumption may be relaxed to accommodate a
wider range of sampling scenarios, usually encountered in biostatistical appli-
cation. In particular, we consider Hidden Gaussian Random Fields (HGRF)
models, as a suitable family amenable to straightforward adaptations of the
formulation introduced in Section 3.

In HGRF observations yi(tij) are equipped with mirroring latent Gaus-
sian quantities, say zi(tij). A sampling model for yi(tij) | zi(tij),ψi ∼
F (zi(tij); ψi), is fully defined conditionally on zi(tij) and a possible set of
parameters ψi. Registration is then achieved at the latent Gaussian level.
More precisely, by assuming the stochastic dynamic generating zi(tij) is cen-
tered around a compound process, defined as an affine transformation of a
population mean trajectory µ(t), evaluated over subject-specific random time
schedules ui(t), with random scales ci and amplitudes ai, (i = 1, 2, . . . , n) as

13



in (2).
For example, longitudinal counts arise naturally in many applications,

like immunology, bioinformatics and behavioral studies. In this case one
may follow the approach outlined in Telesca et al. (2012) and model

yi(tij) | zi(tij) ∼ Poisson[exp{zi(tij)}],

with zi(tij) ∼ N (gi(tij), σ2
ε ) and gi(tij) = ci + ai µ(tij) ◦ ui(tij).

Similarly Erosheva et al. (2014) apply this representation to model cen-
sored Gaussian observations. In particular, given a left censoring point η0
and right censoring η1, common for all subjects, zi(tij) is defined as an un-
censored latent variable. The outcome at time tij, for individual i is then
modeled as

yi(tij) = min
[

max{η0, zi(tij)}, η1
]
,

with zi(tj) ∼ N (gi(tij), σ2
ε ). Other common applications of the latent Gaus-

sian Field framework include models for binary and ordinal data (Albert and
Chib 1993).

4.2 Amplitude and phase regression
Let Xi be a p−dimensional vector of subject specific covariate information.
The assessment of how amplitude and phase variability are explained by
predictors is naturally achieved at the second stage of the hierarchical model,
through covariate-dependent priors for amplitude parameters ai and time
transformation coefficients φi.

Amplitude regression. Let ba be a p−dimensional vector of amplitude re-
gression coefficients, we explain amplitude variability by defining the hidden
linear model:

ai ∼ N(1 +X ′iba, σ2
a)I(ai > 0). (11)

In the foregoing formula, regression coefficients are offset by a factor of 1,
to define coefficients with respect to a reference amplitude. The coefficients
ba are interpreted as in common linear regression models. Additionally, it is
customary to assume ∑i ai = n, for amplitude identifiability.

Phase regression. Let bφ be a p−dimensional vector of phase regression
coefficients, we explain phase variability by defining the hidden autoregressive

14



linear model:

γiq = Υq +X ′ibφ, (12)
φiq − γiq = φi(q−1) − γi(q−1) + ηiq; (13)

with ηiq ∼ N (0, σ2
φ)I(M) andM = {φiq : φi(q+1) > φiq, φi1 ≥ (t1−δ), φiQ ≤

(tm+δ), q = 1, 2, . . . , Q}. As for the case of amplitude, regression coefficients
are offset by the identity transform coefficients Υ, in order to fix a reference
time scale. Regression coefficients bφ are then interpreted as changes in the
average time scale associated with changes in predictor values.

Random scales ci are most commonly treated as nuisance parameters and
simply modeled as ci ∼ N (0, σ2

c ), with
∑
i ci = 0 for scale identifiability.

In the setting of HGRF models, prior distributions for regression coeffi-
cients may still exploit conditional conjugacy. For example, if we denote the
covariates matrix with X : n× p, standard Zellner priors may be considered
for amplitude and phase regression as follows:

ba | σ2
a ∼ N

(
0, nσ2

a(X ′X)−1
)
, (14)

bφ | σ2
φ ∼ N

(
0, nσ2

φ(X ′X)−1
)
. (15)

Variance components σ2
a and σ2

φ are commonly assigned conditionally conju-
gate Inverse Gamma priors.

4.3 Growth velocities and drug concentrations revis-
ited

We apply the model introduced in Section 4.2 two our two case study data-
sets. Regression results are reported in Table 1.

For the Berekely growth study, we consider sex as a predictor of amplitude
and phase variation in growth velocity. Our intuition being the plot in Fig.
3 is confirmed, in that girls tend to experience both attenuated amplitude
(-0.031) and accelerated timing (-0.39), when compared to boys. Our for-
mal analysis, however, highlights that there is too much uncertainty around
amplitude and phase variation in growth, therefore no significant group dif-
ferences are detected.

A similar question may be asked of the PK dynamics of Remifentanil,
that is, are drug concentration amplitude and phase variability explained

15



Table 1: Amplitude and phase regression.

Berkeley Growth Study
Amplitude Phase (years)

Predictor E(ba | y) 95% CI E(bφ | y) 95% CI

Baseline
Male 0.019 [-0.027, 0.064] 0.44 [-0.65, 1.49]

Main Effects
Female -0.031 [-0.093, 0.031] -0.39 [-1.76, 1.06]

Pharmacokinetics of Remifentanil
Amplitude Phase (years)

Predictor E(ba | y) 95% CI E(bφ | y) 95% CI

Baseline
Female -0.03 [-0.19, 0.13] -0.67 [-13.23, 12.27]

Main Effects
Male 0.05 [-0.19, 0.282] -0.77 [19.22, -18.22]
Age 0.01 [-0.01, 0.022] 0.02 [-0.33, 0.36]
Weight -0.01 [-0.02,-0.001]* -0.03 [-0.63, 0.59]
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by sex, when adjusting for potential confouding factors? In this case we
perform a regression analysis involving patients sex, body weight and age.
This analysis reveals that weight plays a possible role in the concentration
dynamic of Remifentanil, with heavier patients experiencing lower (-0.01)
concentration amplitude per Kg.

For these analyses to produce conclusive evidence, we often require large
amounts of data (large n), as high variability often characterizes estimates
of individual level amplitude and phase. At the same time, these results
warn against the meaningfulness of step-wise regression approaches, where
asymptotic validity may not result in acceptable finite-sample conclusions.

5 Joint functional regression and registration
From a statistical perspective our goal is to develop models that: (1) deal
with registration by aligning response trajectories, so that they are defined
over a standardized time scale and (2) allow for the estimation of covariate
effects on a functional response, that are representative of typical response
patterns. Some progress can be made using the approach outlined in Section
4. However, regression coefficients obtained using this technique, average
across the entire function evaluation domain and are likely to miss more nu-
anced, time-dependent effects. As an example, consider the growth data in
Fig. 3. Timing differences between girls and boys are most evident between
the ages of 10 and 15. However, the regression analysis reported in Table 1
averages across periods of homogenous timing, revealing no conclusive differ-
ence between sexes.

A more nuanced approach to joint regression and registration finds mo-
tivation in the original generative model in (1). In particular, one often
assumes that individual trajectories are centered around common structural
mean function µ(t) evaluated over unit-specific time scales ui(t). When pre-
dictors Xi are available in the form of a p-dimensional vector of subject-level
covariates, the assumption of a common mean, may be relaxed and a new
generative model for a sample of random trajectories is more realistically
represented as:

yi(t) = µ(t,Xi) ◦ ui(t), (16)
where the form of µ(t,Xi) is made dependent on the vector or predictors Xi.

In the following we review common approaches to the estimation of func-
tional regression coefficients (Hastie and Tibshirani 1993; Guo 2002; Morris

17



and Carroll 2006). Finally we discuss a natural extension of Bayesian hier-
archical curve registraton (Telesca and Inoue 2008) to a unified framework
for functional mixed effects modeling and curve registration. We name this
class of models Functional Mixed Registration Models (FMRM).

5.1 Functional regression and mixed models
Approaches extending linear models to the functional context often build
on the idea of varying-coefficients (Hastie and Tibshirani 1993). Varying-
coefficient models are linear in the regressors, but their coefficient are allowed
to vary smoothly with the value of other variables, known as effect–modifiers.
Given a set of p predictors x1, . . . , xp and p effect modifiers r1, . . . , rp, varying
coefficient models consider a general link function as η = s0 +∑p

j=1 xj Sj(rj).
Hastie and Tibshirani (1993) showed that additive and generalized additive
models represent a special case of varying–coefficient models. Several authors
have extended these modeling approaches to incorporate intra-curve depen-
dence (Hart and Wehrly 1986 Wypij et al. 1993; Zeger and Diggle 1994; Wang
and Gasser 1999; Verbyla et al. 1999; Silverman 1995).

From a mixed effects perspective, Functional Mixed Models (FMM), as
proposed by Shi et al. (1996), extend the work of Laird and Ware (1982)
to functional data by leaving the forms of the fixed and random effect func-
tions unspecified. These models inherit the flexibility of mixed effects models
in handling complex designs and correlation structures. We review a gen-
eral and flexible view of the problem as discussed by Guo (2002) who used
smoothing splines to model both fixed and random effects.

Let yi(t) denote the value of curve i (i = 1, ..., n), at time t ∈ T compact.
Following Guo (2002) we define:

yi(t) = X′iB(t) + Z′iUi(t) + εi(t) , (17)

where, for any time t ∈ T , B(t) = (β1(t), . . . , βp(t))′ is a p–dimensional vector
of fixed effect functions with corresponding design vector Xi = (Xi1, ..., Xip)′
and Ui(t) = (Ui1(t), . . . , Uim(t))′ is anm–dimensional vector of random effect
functions with corresponding design vector Zi = (Zi1, ..., Zim)′. Finally, εi(t)
represents the residual error process for curve i at time t.

Guo (2002) discussed FMM in the context of smoothing splines propos-
ing two estimation approaches based on restricted maximum likelihood and
Kalman filters. Morris and Carroll (2006) discussed wavelet-based FMM in
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a Bayesian framework proposing inferences based on posterior samples of the
functions of interest. FMM include several other models like linear mixed
effect models, functional regression and functional ANOVA, as special cases.

While the FMM approach is flexible enough to account for curve–specific
variability, it fails to discriminate between the different sources of variation in
functional data, namely, amplitude and phase variability. If phase variability
is ignored, FMM tend to provide an estimate of the covariate effect which
oversmoothes with respect to curve-specific functional features occurring on
a stochastic time scale.

5.2 Functional mixed registration
We introduce our Functional Mixed Registration Models (FMRM) as a natu-
ral extension of the Bayesian hierarchical curve registration framework (Telesca
and Inoue 2008).

Following the notation introduced in Section 5.1, we model a sample of
curves yi(t) (i = 1, . . . , n, t ∈ T ) as:

yi(t) = {X′iB(t) + Z′iUi(t) } ◦ ui(t) + εi(t) , (18)

so that,
yi(t) = X′iB{ui(t)}+ Z′iUi{ui(t)}+ εi(t) , (19)

where ui(t) is a smooth monotone time transformation function as defined
in Section 3.

The FMRM framework includes naturally several existing modeling strate-
gies. In fact, given specific configurations of the time transformation func-
tions or the covariate set, we may obtain the following models as special
cases:

a. Functional Mixed Effect Models. By setting the time transformation
functions µi to the identity transformation so that µi(t) = t, for any
t ∈ T , our FMRM reduces to the Functional Mixed Model.

b. Hierarchical Curve Registration Models. By setting the random effect
functions Ui(t) = ci + ai B(t), with Xi = 1 and Zi = 1 (i = 1, ..., N),
t ∈ T , our FMRM reduces to:

yi(t) = {B(t) + (ci + ai B(t) } ◦ ui(t) + εi(t), (20)
= (ci + (1 + ai)B(t)) ◦ ui(t) + εi(t), (21)
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which is equivalent to (2).

The FMRM in equation (19) is, however, not identifiable. Given any fixed
effect function B(t), a number of combinations of random effects Ui(t) and
time transformation functions ui(t) may, in fact, lead to the same likelihood
or posterior density. The identifiability issue is mainly due to the arbitrary
flexibility with the random effects functions. Choosing a reference curve or
considering constrained formulations may help with the identification prob-
lem. However, this is not usually a straightforward task. Here we choose
to focus on random effects which are assumed to have a strictly paramet-
ric form. In particular, we will only allow for individual random scale or
amplitude transformations, so that model (19) can be rewritten as:

yi(t) = ci + ai X′iB(t) ◦ ui(t), i = 1, ..., N ; (22)

where ci is a curve–specific scale parameter and ai is a curve–specific ampli-
tude parameter.

The finite dimensional representation of functional quantities in (22), may
follow the penalized B-spline formulation introduced in Section 3.2. More
precisely, given a K–dimensional set of kernels Sβ(t), evaluated at time t ∈
T , and a p × K matrix of regression coefficients β, one may represent the
fixed effect functions B(t) as B(t) = βSβ(t).

More generally, of course, specific choices for the kernels Sβ(t) may de-
pend on the study and should reflect reasonable assumptions about the func-
tional form of B(t). For example, in the analysis of the Berkeley growth
study, it is reasonable to consider functions that are smooth and continu-
ous. Thus, one may choose Sβ(t) to belong to the spline family. On the
other hand, if the outcome consists of a set of long time series, characterized
by highly localized features, such as in mass spectrometry data, then Sβ(t)
could be represented by wavelet basis functions (Morris and Carroll 2006).

Given the representation in (22), prior settings and MCMC simulation
strategies may follow the same approach outlined in Section 3.

5.3 Functional mixed registration of drug concentra-
tions

We apply the FMRM approach to the pharmacokinetics of Remifentanil. Our
analysis replicates the regression exercise attempted in Section 4.3. The goal
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Figure 5: FMRM analysis of drug concentration. (a) Unadjusted mean
posterior drug concentrations for males (blue) and females (magenta). (b)
Posterior mean drug concentration trajectories for males (blue) and females
(magenta), adjusted for age and body weight. (c) Time varying effect of body
weight. (d) Time varying effect of age. In all panels we report simultaneous
95% credible bands.
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of our analysis is to assess differences in the pharmacokinetics of Remifentanil
between males and females adjusting for age and body weight.

Figure 5, panels (a) through (d), shows the results from our analysis. All
figures are plotted over a transformed time scale (log t)2 in order to better
display differences between curves. Panel (a) shows the unadjusted posterior
common scaled shape functions for the blood concentration trajectories of
male (blue) and female (magenta) patients. Without adjusting for other
predictors it appears that females have a faster metabolism and excretion of
the drug. Panel (b) shows the mean posterior pharmacokinetic profile for
males (blue) and (females) adjusted by age (years) and body weight (Kg).
Panel (c) shows the time varying effect of body weight and panel (d) shows
the time varying effect of age. We highlight in green areas where the effect of
the predictors are significantly different from 0. We note that the differences
in the metabolism of Remifentanil between males and females are now fully
accounted for by differences in body weight. As one may reasonably expect,
we no longer see significant sex-related effects on the pharmacokinetics of the
drug.

6 Differential expression and gene profile sim-
ilarities

In this Section we discuss the application of registration models in Bioin-
formatics. Specifically, time course genomics data, consist of measurements
from a common set of genes collected at different time points and provide
new opportunities into the understanding of gene regulation.

In particular, clues about the temporal structure of expression may be in-
formative about co-regulation and gene-gene relationships (Qian et al. 2001;
Leng and Müller 2006). In this section we discuss the approach of Telesca
et al. (2009), who introduced a model-based selection of differentially ex-
pressed genes, and a probabilistic framework for the investigation of regula-
tory relationships between genes.
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6.1 A functional mixture model for differential expres-
sion

Following the formulation of Section 3, we let yi(t) denote the observed ex-
pression level of gene i at time t where i = 1, 2, . . . , n and t ∈ T . We assume
that gene-specific expression profiles arise following the same stochastic gen-
erative mechanism in (2). Given a common shape function µ(t), individual
curves may exhibit different levels and amplitudes of response and different
timing schedules associated with time-dependent expression features.

In this setting, the parameters ai describes the amplitude of the mRNA
signal for gene i. A formalization of our statistical definition of differentially
expressed genes may be achieved via a mixture approach. This idea follows
naturally from similar formalizations introduced by Parmigiani et al. (2002)
and extended by Telesca et al. (2012).

For each gene (i = 1, 2, . . . , n), we specify the following prior for the
amplitude of the expression signal,

ai = π−N(a−0 , σ2
a−)I(ai < 0) + π+N(a+

0 , σ
2
a+)I(ai > 0) + π0N(0, σ2

a0); (23)

with (π− + π0 + π+) = 1. Here π0 identifies the overall proportion of genes
in their normal range of variation, while (π− + π+) identifies the proportion
of overly active genes. The mixture characterization with two truncated
normals (that is, N−(·, ·)I(ai < 0) and N+(·, ·)I(ai > 0)) allows us to account
for genes with a synchronous expression signal of opposite sign (negative
dependence).

From an inferential perspective, a decision to flag specific genes as being
differentially expressed corresponds to testing the following set of hypotheses
for all i = 1, 2, . . . , n:

H0i : ai ∼ N(0, σ2
a0)

H1i : ai ∼ N(a+
0 , σ

2
a+) or ai ∼ N(a−0 , σ2

a−).
(24)

Give posterior samples from ai | y, decision rules controlling for pre-defined
error rates, like the False Discovery Rate (FDR) of Benjamini and Hochberg
1995, are easily derived, for example, following the approach described by
Müller et al. (2006).
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6.2 Posterior measures of profile similarities
The underlying idea for the investigation of gene networks using time course
microarray data is that genes that share similar expression profiles may share
similar biological functions and thus, could be related. Posterior inference
about gene-specific time transformation functions may be used to derive mea-
sures of gene-gene relationships which are based on functional similarities.

In the context of the model described in Section 6.1, for differentially ex-
pressed profiles, local measures of profile similarity may be derived as follows:

Local warping distance. Let τ ⊂ T , we define a local distance dik(τ) between
genes i and k (i 6= k) as

dik(τ) =
∫
τ
| ui(t)− uk(t) | dt, (25)

that is, as the absolute distance between the time transformation functions
of genes i and k along time points t ∈ τ . This measure may be interpreted
as the average difference in the timing of expression features between the
expression of two genes over a period of time τ . From a global perspective
one may of course consider a warping distance integrating over the entire
sampling window T .

Relevant summaries from the marginal posterior distribution of time
transformation functions may be extracted to draw inference about gene-
gene relationships. In particular, one may formalize inference about profile
similarities as the series of hypotheses:

H0ik : dik(τ) ≥ γ, vs. H1ik : dik(τ) < γ; for all i 6= k.

For this series of decisions, optimal rules controlling for error rates are derived
as discussed in Section 6.1.

While recognizing the importance of the timing characteristics of gene
expression, the selection of an appropriate timing envelope γ must, however,
be aided by biological knowledge about the timing of gene–gene regulation
in the specific process under investigation. For example, in cell cycle exper-
iments, regulatory envelopes of interest may span only a few minutes, while
in the study of androgen refractory tumors the timing of interest is of the
order of days (Pound et al. 1999).
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Figure 6: Time-course gene expression. (a) Time course gene-expression
profiles. (b) Individual model fit for a representative set of genes. (c) Volcano
plot of posterior expected amplitude vs. posterior probability of no time-
dependent expression. (d) Posterior expected FDR vs. gene index.
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6.3 A case study of time-course gene expression anal-
ysis

Here we illustrate the application of registration models with mixture priors,
to the analysis of time-course expression data. In particular, we consider
data on 100 gene reporters of 13 time-points mouse Affimetrix microarray
gene expression from a study on primary mouse keratinocytes, with induced
activation of the TRP63 transcription factor (Della Gatta et al. 2008).

The data has been processed using rma (affy) and the profiles are centred
(zero-mean) across the time points. As the original data is composed of direct
targets of TRP63, we expect all genes to be differentially expressed over time.
For illustrative purposes, in order to test the performance of registration
models for differential expression analysis, we augment the original data-set
with 900 pseudo-genes of constant average expression.

Results are summarized in figure 6. In particular, panel (a) highlights
a random sample of profiles, and panel (b) shows model fits and associated
posterior predictive bands for a representative set of profiles. Even though
a registration model of time-dependent expression makes what seem like re-
strictive assumptions bout possible gene-specific time-dependent dynamics,
this figure illustrates the actual flexibility of the model in its ability to recover
heterogenous time-course profiles. Our analysis of differential expression is
reported in panels (c) and (d), where we show the model selection, aimed at
controlling the posterior expected FDR at 10%. The model selects 96 genes
as differentially expressed, all of which are in the original TRP63 target set.

A full analysis of profile similarities is beyond the scope of this manuscript.
For more examples we refer the reader to Telesca et al. (2009).

7 Concluding Remarks
We have reviewed the application of curve registration techniques to the
analysis of functional data arising in Biostatistics and Bioinformatics. Our
review is by no means exhaustive and is clearly biased towards the author’s
expertise.

Modeling frameworks using the idea of stochastic time scales have a strong
tradition in several fields and are indeed the subject of active research efforts
(Zhang and Telesca 2014; Cheng et al. 2013)

Our discussion is focused on Bayesian inference with smoothing priors. In
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the setting of kernel-based regression the selection of diffuse priors remains
controversial and default choices are based on purely intuitive arguments.
Attempts at formalization do exist, for example, Wakefield (2012), Chapter
11, discusses approaches based on effective degrees of freedom.

Finally, wile inference based on posterior simulation is straightforward,
the application of standard MCMC techniques may be unrealistic for cases
where the analysis involves a large number of subjects. Similarly, compu-
tational feasibility is often in question for studies where technology allows
for highly intensive sampling of individual profiles. In these situation, one
must consider careful computational nuances and the potential development
of efficient approximation techniques.
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