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Abstract—We present LOOPINVGEN, a tool for generating
loop invariants that can provably guarantee correctness of a
program with respect to a given specification. We extend the
data-driven approach to inferring sufficient loop invariants from
a collection of program states. In contrast to existing data-driven
techniques, LOOPINVGEN is not restricted to a fixed set of
features – atomic predicates that are composed together to build
complex loop invariants. Instead, we start with no initial features,
and use program synthesis techniques to grow the set on demand.

We compare with existing static and dynamic tools for loop
invariant inference, and show that LOOPINVGEN enables a less
onerous and more expressive form of inference.

I. INTRODUCTION

Formally proving the correctness of a program with respect
to a given specification, can be largely automated when the
appropriate program invariants are available. Yet, the problem
of learning the adequate invariants in the first place, remains
quite challenging. Traditional white-box or static inference
approaches that reason over the program structure to deduce
sufficient invariants, are often inapplicable to real-life cases
simply because the program logic is far too complex to be
analyzable. However, it is often the case that many complex
real-life programs have relatively simple invariants that certify
their correctness relative to properties of practical interest.
In such cases, black-box or data-driven inference techniques
seem to perform well. These techniques learn a candidate
invariant by examining program behavior (as opposed to
structure), and then refine it till it is sufficiently strong.

We extend the data-driven paradigm for inferring sufficient
loop invariants. Given some sets of “good” and “bad” program
states, data-driven approaches learn a candidate invariant as
a boolean combination of atomic predicates (called features)
defined on states, such that it is satisfied by the good states and
falsified by the bad ones. Prior techniques were restricted to
using a fixed set, or a fixed template for features. For instance,
a state-of-the-art technique, ICE-DT [1] requires the shape of
constraints (such as octagonal) to be fixed apriori1. A fixed set
of features not only limits the expressiveness, but predicting
such a set, which would be adequate for learning a sufficiently
strong invariant is also quite challenging [2].

We present LOOPINVGEN, a data-driven tool for inferring
sufficient loop invariants, which starts with no initial features,
and automatically grows the feature set as necessary using

1 ICE-DT also requires specialized learners for boolean formulas, which can
utilize the implication counterexamples.
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Fig. 1: The key components in LOOPINVGEN, and their interdependence.

program synthesis techniques. LOOPINVGEN is an optimized
implementation of the general inference technique proposed in
our recent work on data-driven precondition inference [2]. It
reduces the problem of loop invariant inference to a series
of precondition inference problems, and alternates between
two phases to converge to a sufficient invariant: (1) learning
a candidate invariant by solving the appropriate precondition
inference problem, and (2) checking if the learned candidate is
sufficient for proving correctness. If a candidate is insufficient,
a counterexample is extracted from the checker, and is used
to guide the learning phase towards the desired invariants.

Our technique is modular, and makes no assumptions on the
specific program synthesizer used for feature synthesis, except
that the language of the synthesizer must be compatible with
the theorem prover employed for checking. The synthesizer
utilized by LOOPINVGEN is currently restricted to expressions
over the theory of linear integer arithmetic (LIA), which is the
sole focus of the INV track of SyGuS-COMP 2017.

II. OVERVIEW

Figure 1 displays a high-level schematic of LOOPINVGEN,
as proposed in our prior work [2]. It consists of two major
components: (1) RECORD, which collects the data required
to drive the inference, and (2) INFER, which uses the PIE
and CHECK subcomponents to learn candidate invariants, and
verify that they satisfy the desired properties.

In the following subsections, we briefly describe each of
these subcomponents, and illustrate them with the help of a
running example. We consider a program, listed in Fig. 2, in
which x is iteratively doubled starting from 1 till (x > y), and
y may be arbitrarily updated at each iteration. The goal is to
verify that (x > 1) always holds after the loop. The SyGuS-
INV format [3] used in Fig. 2, allows encoding the semantics
of the program along with a desired functional specification.
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1 (set-logic LIA)

3 (synth-inv inv-f ((x Int) (y Int)))

5 (declare-primed-var x Int)
6 (declare-primed-var y Int)

8 (define-fun pre-f ((x Int) (y Int)) Bool (= x 1))

10 (define-fun trans-f ((x Int) (y Int)
11 (x! Int) (y! Int)) Bool
12 (and (< x y) (= x! (+ x x))))

14 (define-fun post-f ((x Int) (y Int)) Bool
15 (or (not (>= x y)) (>= x 1)))

17 (inv-constraint inv-f pre-f trans-f post-f)

19 (check-synth)

Fig. 2: The treax1.sl benchmark from SyGuS-COMP 2016 (INV track).

A. RECORD: Collecting Program States
This component collects a sample of the program states

reachable at the two locations where a loop invariant must
hold – (1) the beginning of each loop iteration, and (2) just
after exiting the loop. To collect these states for programs
encoded in the SyGuS-INV format [3], we use a constraint
solver as an execution engine2. We present an outline of the
RECORD algorithm in Fig. 3, which invokes a constraint solver
within the GETMODEL procedure. The algorithm accepts the
specified precondition P , the transition function T , the desired
number n of program states, and returns the set Z of states.

In line 3, we start with an unseen model of the precondition,
which is a state of the program at beginning of the first
iteration. For instance, (x 7→ 1) is one such model for
our running example from Fig. 2. The GETMODEL function
accepts a predicate, a list of variables, and returns a satis-
fying assignment for them. Note that this is not a complete
state of the program since the variable y is unbound. In
such cases, GETMODEL employs a pseudo-random number
generator to extend the model to a complete program state,
assigning arbitrary values to unconstrained variables. For our
running example, such program states could, for instance, be
(x 7→ 1 ∧ y 7→ −3), or (x = 1 ∧ y = 7) etc.

In lines 5 – 8, we execute several iterations of the loop body,
and collect the program states at the loop head each time. In
the SyGuS-INV encoding, executing a single iteration of the
loop is equivalent to making a transition from the current state.
In line 6, we solve for the next program state resulting from
such a transition, and save it to Z in line 7. For our running
example, the state (x 7→ 1∧y 7→ 7) will transition to (x 7→ 2),
that could be extended to (x 7→ 2 ∧ y 7→ −2), for example.
Note that no further transitions are possible from this state,
since 2 6< −2 (implicit loop guard in the transition function).

If we reach such a state from which no transitions are
possible, and the set Z of collected program states contains
less than the desired number n of states then, in line 3, we
start with an unseen state (which is not already in the set Z).
2 Our original technique [2] instrumented C/C++ programs to collect these

program states during execution.

func RECORD(P : Pred〈State〉, T : Pred〈State× State〉, n : Int)
Result: A collection of program states Z : State[ ].
1 Z ← {}
2 while |Z| < n do
I Start with a new model of the precondition.
3 x← GETMODEL(P (x) ∧ (

∧
s∈Z x 6= s), x)

4 if x = None then break else Z ← Z ∪ {x}
5 repeat
I Make a transition, i.e. execute a single iteration of the loop.
6 x← GETMODEL(T (x, x′), x′)
7 if x = None then break else Z ← Z ∪ {x}
8 until |Z| < n

9 return Z

func INFER(P : Pred〈State〉, T : Pred〈State× State〉,
Q : Pred〈State〉, Z : State[ ])

Result: A sufficient loop invariant I : Pred〈State〉.
I Start with the weakest invariant that satisfies ∀s : I(s) ⇒ Q(s).
1 I ← Q

I Iteratively strengthen the invariant till it is inductive.
2 while CHECK(∀p, q : I(p) ∧ T (p, q)⇒ I(q)) 6= None do
3 B ← {}
4 repeat
5 ∆← PIE(Z, B)
6 c← CHECK(∀p, q : ∆(p) ⇒ I(p) ∧ T (p, q)⇒I(q))
7 B ← B ∪ {c}
8 until c = None
9 I ← I ∧∆

I Weaken the invariant using counterexamples, if it is stronger than P .
10 C ← CHECK(∀s : P (s)⇒ I(s))
11 if C 6= None then
12 S ← RECORDSTATESFROM(C, k)
13 return INFER(P,Q, T,Z ∪ S)

14 return I

Fig. 3: An outline of the algorithms employed by the two key components of
LOOPINVGEN – RECORD and INFER.

B. INFER: Inference of Sufficient Invariants
This component uses program states collected by RECORD

to infer a sufficient loop invariant for proving correctness of a
given program with respect to a given specification. We outline
our INFER algorithm in Fig. 3, which accepts a program and
its specification provided as a SyGuS-INV encoding (which is
currently restricted to single-loop programs) – a precondition
P , a transition function T , a postcondition Q, a set Z of states,
and returns a provably sufficient loop invariant I.

A sufficient loop invariant I must satisfy three conditions:
• Weaker than precondition: ∀s : P (s)⇒ I(s)
• Inductive over loop body: ∀p, q : I(p)∧ T (p, q)⇒ I(q)
• Stronger than postcondition: ∀s : I(s)⇒ Q(s)

As shown in Fig. 1, INFER relies on an off-the-shelf theorem
prover CHECK for verifying these conditions, and employs
PIE [2] to refine candidate invariants. In line 1, it starts with
the weakest possible candidate3, I = Q, and iteratively refines
I till all of the above properties are satisfied. For instance,
on our running example from Fig. 2, we would start with
I = ((x < y) ∨ (x > 1)).
3 Our original technique [2] used PIE to learn the initial candidate invariant
I as a precondition for Q. We found this initial candidate to be too strong
sometimes, requiring additional counterexamples to weaken it.



However, this candidate invariant is not inductive. The state
(x 7→ 0 ∧ y 7→ 1) satisfies I, but it may transition to state
(x 7→ 0 ∧ y 7→ 0), which violates I. In lines 2 – 9, INFER
employs a strengthening loop (inspired by HOLA [4]), to
ensure inductiveness of the candidate. In each iteration, it
learns a precondition ∆ under which the candidate invariant
would be preserved after transitions. For our running example,
∆ = (x > 1), for instance, would ensure inductiveness of our
candidate invariant I = ((x < y)∨ (x > 1)) over all possible
transitions. In line 9, we strengthen the candidate invariant by
conjoining it with the learned precondition. For our running
example, the new candidate I = (x > 1) is indeed inductive.

The reduction to a precondition inference problem allows
us to leverage our prior work, PIE, on learning preconditions
with automatic synthesis of appropriate features4. In line 5,
PIE accepts a set Z of states which lead to satisfaction of a
desired property, a set B of states which do not, and learns
a likely precondition ∆ for the desired property. Since the
precondition is only a likely one, in line 6, INFER checks
the likely precondition using CHECK for sufficiency, and
provides counterexamples to PIE iteratively, in lines 4 – 8, till
a provably sufficient precondition is learned.

Once we have an inductive candidate invariant that is
stronger than the postcondition, the final property we need to
ensure is its weakness relative to the precondition. In line 10,
we use CHECK to verify this, and look for a counterexample
C. A counterexample in this case would indicate a state that is
allowed by the precondition, but not covered by the candidate
invariant. This could happen due to inadequate exploration
of program states during the RECORD phase, due to non-
determinism within the program, for instance. On finding such
a program state, we collect a few more (k) states starting with
C, in line 12, to account for the unexplored program behavior.
Finally, in line 13, we restart with the new set of available
program states. Note that if no counterexample C is found, as
is the case with the candidate I = (x > 1) for our running
example, our candidate invariant is provably sufficient.

III. IMPLEMENTATION

Our implementation of LOOPINVGEN is open source, and is
available at https://github.com/SaswatPadhi/LoopInvGen.
For the various components, LOOPINVGEN uses the following
off-the-shelf algorithms or implementations:
• Both GETMODEL and CHECK are implemented using the

Z3 [5] theorem prover. Our prior work used CVC4 [6]
for reasoning over the theory of strings, which is beyond
the scope of SyGuS-COMP 2017.

• PIE uses the ESCHER [7] program synthesizer as its
SYNTH component. The language for synthesis has been
shrunk to only allow expressions over LIA theory.

• The BFL component in PIE uses a standard probably
approximately correct (PAC) algorithm that can learn
arbitrary conjunctive normal form (CNF) formula, and
is biased towards small formula [8].

4 PIE uses two off-the-shelf components: (1) a program synthesizer SYNTH
to generate new features, and (2) a boolean function learner BFL to learn a
composition of these features. The details are presented in our full paper [2].

Our SyGuS-COMP 2017 submission is able to achieve a
significantly better performance than our original tool [2], due
to the following major optimizations:
• RECORD Coverage – The RECORD component has been

significantly improved to better explore program states for
non-deterministic programs. Along with a better selection
of initial candidate invariant, this allowed us to start with
only 512 program states instead of 6400.

• Parallel RECORD – Multiple (by default, 2) instances
of RECORD with different seeds for PRNGs are run in
parallel, and the program states are then merged.

• Z3 Scopes – LOOPINVGEN creates a single subprocess
for Z3, and relies heavily on scopes to cache context
information and minimize the size of queries.

• Unsolvability Detection – LOOPINVGEN immediately
terminates if ∃s : P (s) 6⇒ Q(s), i.e. the precondition does
not imply the postcondition. It also keeps track of known
program states, and terminates as soon as a state appears
to be a negative example (w.r.t. the given specification).

Finally, LOOPINVGEN uses a conflict group size [2] of 64
with PIE, overriding the default size of 16.

IV. CONCLUSION

We have described LOOPINVGEN, which uses a data-
driven approach to generate loop invariants that provably
guarantee the correctness of an implementation with respect
to a given specification. In contrast to existing techniques,
LOOPINVGEN (1) is not restricted to any specific logical
theory, and (2) starts with no initial features and learns them
automatically on demand. In essence, LOOPINVGEN reduces
loop invariant inference problem to a series of precondition
inference problems, and solves them using PIE which uses a
form of program synthesis for synthesizing new features in a
targeted manner, as necessary.
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