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ABSTRACT OF THE DISSERTATION

Design of Intuitive and Risk-Perception-Aware Robotic Navigation Algorithms

by

Aamodh Suresh

Doctor of Philosophy in Engineering Sciences
(Mechanical Engineering)

University of California San Diego, 2022

Professor Sonia Martínez, Chair

As robots become more integrated into society, their reasoning and actions will

invariably be evaluated by human decision makers. Thus, robots need to perceive, act,

and reason like humans to maintain clarity, trust, and safety. In this thesis, we consider

navigation problems, which consist of designing global planning and reactive control

modules for single and multiple robots. While most current navigation strategies are

robot-centric, here we take a human-centric approach and design navigation algorithms

that are intuitive, risk-perception-aware, and possibly non-rational (as humans often are

in risky situations).
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First, we focus on intuition and consider a formation control problem for a dis-

tributed robotic swarm. We develop a novel Human-Swarm Interaction (HSI) frame-

work using the notion of an interpreter, enabling the user to control a robotic swarm’s

shape and formation with intuitive hand gestures. The interpreter acts an intermedi-

ary, translating a high-level shape inputs to swarm specifications and vice versa. These

specifications are then translated into commands, which are calculated and executed in

a decentralized manner to depict the intended shape.

Next, we focus on a single robot deployed in environments that contain generic

moving sources of risk (for example, human-like obstacles requiring certain social dis-

tancing). We develop planning (via RRT*) and control (via CBFs) algorithms, that

take human-like non-rational risk perception of the environment into account. We use

Cumulative Prospect Theory (CPT), a non-rational model from Behavioral Economics,

to construct perceived risks in the environment, capable of depicting a wide spectra of

risk profiles. We introduce three new metrics: “Expressiveness”, “Inclusiveness,” and

“Versatility” to characterize the richness of a risk model. We prove that CPT is superior

in all these categories when compared to other popular models such as Conditional Value

at Risk (CVaR) and Expected Risk (ER).

This is further confirmed via simulations, which show that our approach can

capture a richer set of meaningful paths, representative of different risk perceptions in

an environment. We also observe that a learning algorithm using CPT can approximate

the risk profile of arbitrary paths in an environment better than CVaR and ER. From a

controls perspective, we prove that our CBF based approach result into larger feasible

control set for a robot when using CPT.

Finally, we propose a novel user study design to understand human path planning

in everyday risky and uncertain environments. Considering a COVID-19 pandemic gro-

cery shopping scenario, we ask participants to choose paths with varying risks (proximity

xvi



to sick people) and time-urgency (path length). We reveal that participants in general

are willing to take more risks and time-urgent paths, contrary to the popular assumption

that humans are in general risk averse. Data analysis further shows that human decision

making is better captured by CPT, as compared to CVaR and ER, thus validating our

CPT approach to model non-rational risk perception in navigation problems.

xvii



Chapter 1

Introduction

Autonomous robots are increasingly being deployed in human occupied spaces

(HOS) and/or communicate and exucute tasks given by humans. There is a need for

them to reason and act as humans do. While robots are designed to operate with de-

tailed specifications and instructions, humans naturally communicate using abstractions.

As a consequence of bounded rationality, humans can get overloaded with feedback in-

formation provided by the robot.

Also, these HOS and other general environments where robots are deployed, of-

ten are risky and uncertain. Often, the activities of robots are evaluated and monitored

by human decision makers (DMs). Interestingly, Phychophysics and Behavioral Eco-

nomics researchers have independently studied the human perception of various modal-

ities from physical sensing to monetary risks. Their conclusion is surprisingly similar:

humans have a fundamental non-linear perception, leading to possibly non-rational deci-

sion making [Ste70, TK92]. So DMs could be non-rational while making decisions under

risk and uncertainty, leading to alternative plans and action.

In this thesis, we develop robotic navigation algorithms keeping in mind the above

concerns and situations. We consider both single robots and robotic swarms, for which

we design risk-perception-aware and intuitive navigation algorithms (for a single robot)

and intuitive Human-Swarm Interaction framework (for robotic swarms).
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We will briefly introduce and motivate the contents of this thesis in the following

sections.

1.1 Human Swarm Interaction

Recent technological advancements have propelled swarm robotics in academic as

well as industrial settings. Previous work has mostly focused on developing autonomous

coordination of multiple robots [OSFM06, JLM03, BCM09], while the interaction of

humans and swarms has been less studied [KPC+16]. Thus, according to the latest

Robotics Roadmap1, a top priority in swarm robotics is the development of unifying

HSI frameworks, the elucidation of rich set of HSI examples, and their comparison. In

particular, there is a need to develop novel interfaces for users to communicate their

intentions and make swarms easier to interpret. Simultaneously, a swarm may require

high dimensional and complex control inputs which cannot be easily handled by a hu-

man [GF07]. Additionally, individual agents in swarms are often computationally and

informationally constrained. Hence, they can benefit from the use of distributed control

algorithms, also available for general large-scale systems in diverse areas such as power

networks [SCGG17, CCM18], traffic control [PC19, GM18], robotics [FM04, CYZ+16]

and epidemics control [RLM17].

Human

User
Interpreter Swarm

Figure 1.1. Interpreter as intermediary between user and swarm

Motivated by these aspects, we propose to build a novel supervisory interpreter

(Figure 1.1) to bridge the human and the swarm, which is essential to ensure the
1Christensen, H. I., et al. ”A roadmap for US robotics: from internet to robotics.” (2016). http:

//jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf

2

http://jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf
http://jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf


effectiveness of a HSI system. We consider the popular problem of formation con-

trol [CE15, OPA15, MMS10, KM16], where the human can draw shapes to depict desired

swarm formations, instead of specifying the whole configuration. The interpreter also

plans a set of sub-goal configurations in this abstract shape space, while considering

the convergence properties of the swarm and translating them to swarm parameters. In

this way, the user receives feedback in the abstract shape space, while the decentralized

swarm need not spend precious computational resources to decode the human inten-

tion. The swarm then employs an effective distributed controller to reach the sub-goal

configurations sequentially, eventually reaching the desired goal configuration.

1.2 Risk-Perception Aware Path Planning

Path planning is one of the most fundamental tasks an autonomous mobile

robot needs to perform. These robots ranging from industrial manipulators to robotic

swarms [CHL+05, WBM18, SM20], are becoming less isolated and increasingly more

interactive.

Arguably, most environments where these robots operate, have an associated

spatial cost, which can lead to a robot’s loss or damage. For example, an oily surface

can cause a robot to slip and collide with a nearby obstacle, resulting in a crash. In more

complex scenarios, a decision maker (DM) may be directly involved with the motion of

an autonomous system, such as in robotic surgery, search and rescue operations, or

autonomous car driving. Typically path planning treats obstacles as risk, which are

perceived in an expected manner. However, in many such scenarios risk could arise

from different sources and the risk perceived from these costs or losses could vary among

different DMs. This motivates the consideration of richer models that are inclusive of

non-rational perception of spatial costs in motion planning. With this goal, we aim

to study how Cumulative Prospect Theory (CPT) [TK92] can be included into path
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planning, and compare its paths with those obtained from other risk perception models

like Conditional Value at Risk (CVaR) and Expected Risk (ER). Fig. 1.2 shows a preview

(a) Motion plan with expected risk (b) Motion plan with CPT risks

Figure 1.2. Environment perception and sampling-based motion planning using a) Rational environment
perception using expected risk, b) DM’s Risk-Averse environment perception with the chosen path in
white.

of how a nonlinear DM’s perception of the environment influences the path produced

to reach a goal. While Fig. 1.2a shows a rational perception of the environment using

expected risk, Fig. 1.2b illustrates a non-linearly deformed and scaled surface that reflects

the perception of a certain DM using CPT.

1.3 Risk-Perception-Aware Safety Critical Control Design

Safety is a desirable and necessary design constraint for any control system; spe-

cially when operated in a shared environment with a Decision Maker (DM). Arguably,

most environments have associated spatial risks, whose source can vary from hard con-

straints (e.g. moving obstacles) to softer constraints (e.g. wind conditions). Different

DMs can perceive risks differently, leading to notions of perceived risks and perceived

safety from these risks.
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Agent
State

Environment
state

State
Estimation

Uncertain
Cost

Perceived
Risk

Perceived Risk
Calculation

RPA
Controller

Stable Controller

x

k(x)

R

x,y
c

u

Figure 1.3. Proposed control framework. First, the agent localizes itself as x and estimates the current
environment conditions y. From x,y, uncertain costmap c is determined and used to generate a perceived
risk R. The risk-perception-aware (RPA) controller takes in the nominal stable state feedback control
k(x) and the perceived risk map R to generate safe and stable control u.

For example, this is evident from the Covid-19 era [WATD20] where people were

given a risk threshold (social distancing guidelines) from dynamic risks (other moving hu-

mans) and they displayed a variety of behavior (trajectories) from being risk-insensitive

to risk-averse. In such cases, existing methods assuming perfect knowledge or ratio-

nal and coherent treatment (as in Expected Risk (ER) and Conditional Value at Risk

(CVaR)) of risks may not suffice, which can lead to loss of trust or discomfort among

DMs.

This motivates the need of richer and more inclusive modeling of risk perception to

capture a variety of DMs and use them for safe control design. This work aims to bridge

the gap between behavioral decision making and safety by using Cumulative Prospect

Theory (CPT) as a Risk Perception Model (RPM), and Control Barrier Functions (CBFs)

for safe control design. Our proposed framework and setting is visualized in Figure 1.3
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1.4 Explainable AI user study design

We are increasingly seeing more robots being deployed in everyday HOS such as

in shopping malls, museums, streets (as autonomous cars), etc. These environments are

often crowded, and contain risk and uncertainty in terms of dynamic and chaotic human

motion, noisy sensor measurements, and those from camera ego-motion. As robots

become more integrated into such environments, they need to appropriately reason with

these challenges and navigate in a safe and socially-acceptable manner.

One way of developing systems that navigate safely in HOS is by using models

of human perception of risk. There are several models of risk perception, some of which

have been introduced in Chapter 2. These models vary based on the degree of rationality

assumptions made on the human decision maker (DM) subjected to risky choices. These

assumptions treat human behavior ranging from completely rational and possibly risk

averse (models like Expected Risk (ER), Conditional Value at Risk (CVaR), etc. [RU00])

to non-rational and possibly risk insensitive behavior (models like Cumulative Prospect

Theory (CPT) [TK92]).

However, we know little about how these models compare to human perceptions

of risk in a navigation setting. We are particularly interested in exploring methods

to enable robots to reason with humans and explain their behaviors and actions, also

known as Explainable Artificial Intelligence (AI) [XUD+19]. In other words, the AI has

to “explain” itself, by opening up its reasoning to human scrutiny, resulting in better,

faster, more accurate and more consistent decisions. This work will empower people

to take corrective actions, if needed, based on the explanations machines give them.

Furthermore, our work will enable robots and humans to develop mechanisms to adapt

to each other, thereby improving interactions between them and increase robot safety.
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1.5 Organization of thesis

In Chapter 2, we introduce notation used throughout the thesis and preliminary

concepts that provide a broader fundamental understanding of the concepts used. In

Chapter 3, we design an intuitive HSI framework for solving the formation control prob-

lem. In Chapter 4, we first introduce the notion of risk perception and develop path

planning algorithms to plan paths in risky and uncertain environments. Next, in Chap-

ter 5, we develop reactive control algorithms to avoid risky areas while trying to follow

a nominal desired path. In Chapter 6, we describe a user study to understand human

risk and time-urgency perception in everyday scenarios. Finally, we conclude the thesis

in Chapter 7 and provide avenues for future work.
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Chapter 2

Preliminaries

Here, we describe some basic notations used in the paper along with a concise

description of Cumulative Prospect Theory. More details about CPT can be found

in [Dha16].

2.1 Notation

We let R denote the space of real numbers, Z≥0 the space of positive integers and

R≥0 the space of non negative real numbers. Also, Rn and RM×n denote the n-dimensional

real vector space and M×n real matrices, respectively. We use P to denote the set of n

dimensional polygonal shapes. We have P⊂ RV×n, where V is any arbitrary number of

vertices in a polygon. More formally, we consider the space of polygons P ⊂ ⋃V
i=3Ri×2,

denoting the space of all possible polygons starting with triangles to some polygons with

an arbitrarily high number of vertices V . Then we can define a shape S ∈ P which takes

the coordinates of the vertices of a polygon.

In what follows, 1M ∈ RM are column vector of ones, I ∈ RM×M is the identity

matrix, and O ∈RM×n denotes a matrix of zeros. Also, ∥.∥ denotes the Euclidean norm.

Given a matrix A ∈ RM×M, its eigenvalues are denoted by {λ A
1 , . . . ,λ

A
M}, enumerated by

their increasing real parts. The ith row of a matrix A is denoted by Ai.

We have Rn and C ⊂ Rn denote the n-dimensional real vector space and the
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configuration space used for planning. We use ◦ for the composition of two functions f

and g, that is f (g(x)) = f ◦g(x). We model a tree by an directed graph G = (V,E), where

V = {1, . . . ,T} denotes the set of sampled points (vertices of the graph), and E ⊂V ×V ,

denotes the set of edges of the graph.

2.2 Graph Theory

Here, we introduce some basic Graph Theory notions which will be used in this

thesis. Readers can refer [BCM09, GR01] for more details on Graph Theory. Consider

a swarm of M agents in Rn. Let pi(t),vi(t) ∈Rn denote the position and velocity respec-

tively of the ith agent at time t. We use p(t) ∈ RM×n as the position of the whole swarm

defined by p(t) = [p1(t)⊤, . . . , pM(t)⊤]⊤. We model the communication among agents by

means of an undirected ν-disk graph Gν = (V,Eν(p)), where V = {1, . . . ,M} denotes the

set of agents (vertices of the graph), and Eν(p) ⊂ V ×V , denotes the set of edges. In

particular, (i, j) ∈ Eν(p) if and only if ∥pi− p j∥ ≤ ν . The entries ai j of the associated

adjacency matrix A(p) ∈ RM×M become 1 if ∥pi− p j∥ ≤ ν and 0 otherwise. That is,

ai j =

1, if ∥pi− p j∥ ≤ ν ,

0, otherwise.

The neighbor set Ni for the ith agent is given by Ni := { j | ai j = 1}. Associated with

Gν , we consider a weight-balanced weighting W (t)∈RM×M, where W (t) is the metropolis

weight matrix corresponding to the communication graph Gν ; see [XB04].

wi j =


1/(1+max{di,d j}), if (i, j) ∈ Eν(t),

1−∑k∈Ni(1/(1+max{di,d j})), if i = j,

0, otherwise.

(2.1)

Since we consider an undirected graph the matrix, W is symmetric and doubly

stochastic. The graph Gw is balanced as 1MW = W1⊤M = 1M. We denote by D ∈ RM×M
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the diagonal degree matrix of G with di, the degree of node i, being the ith diagonal

entry of D. The Laplacian matrix L ∈ RM×M of the graph Gν is given by L = D−A,

and the normalized laplacian matrix is given by LN = D
−1
2 LD

−1
2 . Similarly the weighted

Laplacian matrix is given by LW = I−W . The connectivity properties of a graph are

captured by the second smallest eigenvalue λ2 of the Laplacian matrix L. We can also

express connectivity in terms of λW
2 and λ N

2 . We can say that the respective graph is

connected if λW
2 ,λ N

2 > 0, and connectivity increases with increase in λW
2 ,λ N

2 .

2.3 Cumulative Prospect Theory

Cumulative Prospect theory (CPT) [TK92] is a Nobel prize winning theory,

which tries to model human decision making under risk and uncertainty. CPT is a

non-rational decision making model which incorporates non-linear perception of uncer-

tain costs. Traditionally it has been used in scenarios of monetary outcomes such as

lotteries [TK92] and the stock market [Dha16]. Let us suppose a DM is presented with a

set of prospects {ρ1, . . . ,ρk, . . . ,ρK}, representing potential outcomes and their probabili-

ties, ρk = {(ρk
i , pk

i )}M
i=1. More precisely, there are M possible outcomes associated with a

prospect k, given by ρk
i ∈R≥0, for i∈ {1, . . . ,M}, which can happen with a probability pk

i .

The outcomes are arranged in a decreasing order denoted by ρk
M < ρk

M−1 < ... < ρk
1 with

their corresponding probabilities, which satisfy ∑M
i=1 pk

i = 1. The outcomes of prospect

k may be interpreted as the random cost1 of choosing prospect k. We define a utility

function, v : R≥0 → R≥0 modeling a DM’s perceived cost and w : [0,1]→ [0,1] as the

probability weighting function which represents the DM’s perceived uncertainty. While

previous literature have used various forms for these functions, here we will focus on
1CPT has an alternate perception model for random rewards [Dha16], which is not used here since

we are interested in cost perception.

10



(a) Change in risk aversion λ with γ = 0.88 (b) Change in risk sensitivity γ with λ = 2.25

(c) Change in α with β = 1 (d) Change in β with α = 0.74

Figure 2.1. Variation of risk aversion, risk sensitivity and uncertainty perception using CPT. (a)-(b)
show risk perception with x-axis indicating the associated risk, ρ, and the y-axis showing the perceived
risk, v. The dotted line indicates the line v = ρ. (c)-(d) show uncertainty perception with x-axis
indicating probabilities p and y-axis showing their perception w, with the dotted line depicting w = p

CPT utility function v taking the form:

v(ρ) = λ ·ργ , (2.2)

where 0 < γ < 1 and λ > 1. Tversky and Kahneman [TK92] suggest the use of γ = 0.88

and λ = 2.25 to parametrize an average human in the scenario of monetary lotteries,

however this may not hold for our application scenario. The parameter λ represents

the coefficient of cost aversion with greater values implying stronger aversion indicative

of higher perceived costs, as indicated in Figure 2.1a. The parameter γ represents the

coefficient of cost sensitivity with lower values implying greater indifference towards cost

ρ which is indicated in Figure 2.1b.

We will be using the popular Prelec’s probability weighting function [Dha16,
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D.P98] indicative of perceived uncertainty, which takes the form:

w(p) = e−β (− log p)α
,α > 0,β > 0,w(0) = 0. (2.3)

Figures 2.1c and 2.1d show changing uncertainty perception resulting from varying α

and β respectively. By choosing low α and β values, one can get “uncertainty averse”

behavior with w(p) > p, implying that unlikely outcomes are perceived to be more

certain, as seen on Figures 2.1c and 2.1d. When w(p) < p, “uncertainty insensitive”

behavior is obtained implying that the DM only considers more certain outcomes, which

can be observed with high α and β values. These perceived probabilities are further

considered in a cumulative manner. Cumulative functions Π := {π1, ...,πM} is used to

non-rationally modify the perception of the probabilities pi(x) in a cumulative fashion.

Defining a partial sum function S j(p1, . . . , pM)≜ ∑M
i= j p j we have

π j = w◦S j(p1, . . . , pM)−w◦S j+1(p1, . . . , pM), (2.4)

where we employ the weighting function w from (2.3).

These concepts illustrate the nonlinear perception of cost and uncertainty, a DM

under consideration can be categorized by the parameters Θ = {α,β ,γ,λ}. Using the

non-linear parametric perception functions v and w, CPT calculates a value function

Rc(ρ), indicating the perceived risk value of the prospect ρ . The value function is given

by:

Rc(x)≜
M

∑
j=1

(v◦ρ j(x))(π j ◦ p(x)) (2.5)

This value Rc(ρ) signifies the perceived risk by a DM characterized by the parameters

Θ, when faced with an uncertain cost ρ .
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2.4 Sampling based path planning with Rapidly Exploring
Random Tree* (RRT*)

Algorithm 1: RRT*
1 Input: T,xs,xg ; Output : G(V,E),P
2 V ← xs, E← ϕ , Jc

cum(xs)← 0;
3 for i ∈ {1, . . . ,T} do
4 G← (V,E) ; xrand← Sample();
5 xnearest← Nearest(G,xrand) ; xnew← Steer(xnearest,xrand);
6 if ObstacleFree(xnew,xnearest) then
7 V ←V ∪ xnew ; xmin← xnearest;
8 Xnear← Near(G,xnew,γRRT*,d) ; cmin← Jc

cum(xnearest)+ Jc(xnearest,xnew) ;
9 for xnear ∈ Xnear do
10 c′← Jc

cum(xnear)+ Jc(xnear,xnew);
11 if c′ < cmin then
12 xmin← xnear ; cmin← c′ ;
13 end
14 end
15 Jc

cum(xnew)← cmin ; E← E
⋃
({xnear,xnew});

16 for xnear ∈ Xnear do
17 c′← Jc

cum(xnew)+ Jc(xnew,xnear);
18 if c′ < Jc

cum(xnear) then
19 xpar← Parent(xnear,G) ; E← (E \ ({xpar,xnear}))

⋃
({xnew,xnear}) ;

20 Xchld←Children(xnear,G);
21 for xchld ∈ Xchld do
22 Jc

cum(xchld)← Jc
cum(xchld)− Jc

cum(xnear)+ c′

23 end
24 Jc

cum(xnear)← c′

25 end
26 end
27 end
28 end
29 P← Path(G,xs,xg) ;

Consider a configuration space C ⊂ Rn, where the robot can move around. Let

there be obstacles present in the configuration space occupying the region O ⊂ C ,

through which the robot cannot travel. Then the free configuration C F is given by

C \O. A path η from a start point x ∈ C to a goal point y ∈ C is defined as η : [0,1]→

C η(0) = x, η(1) = y. A path η is feasible to take if it entirely lies in the free config-
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uration space C F Every path η also has an associated cost (usually distance metric)

Jcum(η) ∈ R≥0.

The common task of path planning is to produce a feasible path η∗ from a given

start point xs to goal point xg, such that the cost c(η) is minimized. RRT* [KF11] is

a sampling based planning technique which produces a tree of feasible paths rooted at

the start point xs. So given a number of iterations T and a start point xs ∈ C , RRT*

produces a graph G(V,E), which represents a tree rooted at xs whose nodes V are sample

points in the configuration space and the edges E represent the path between the nodes

in V . Let Jc
cum : C → R≥0 be a function that maps x ∈ C to the cumulative cost to

reach a point x from the root xs of the tree G(V,E). This function is used to keep track

of reaching each node in the tree G. RRT* is also asymptotically optimal, that is, if

T →∞, then the output path η→ η∗. The algorithm is summarized in Algorithm 1 and

explained below.

• Sample(): Returns a pseudo-random sample x ∈ C drawn from a uniform distribu-

tion across C .

• Nearest(G,x): Returns the nearest node according to the Euclidean distance metric

from x in tree G.

• Steer(x1,x2) returns 
x2, if ∥x2− x1∥ ≤ d

x1 +d x2−x1
∥x2−x1∥ , otherwise.

• ObstacleFree(x,y) : returns whether the line between x,y, entirely lies in the free

configuration space C F

• Near(G,x,γRRT ∗ ,d): returns a set of nodes X ∈ V around x, which are within a

radius as given in [KF11].
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• Parent(x,G): Returns the parent node of x in the tree G.

• Children(x,G): Returns the list of children of x in G.

• Path(G,xs,xg): Returns the path from the nearest node to xg in G to xs.

2.5 Safety critical control with Control Barrier Functions
(CBF)

Control barrier functions (CBF) apply set invariance principles to guarantee

safety of an agent x(t) ∈X , assumed to be moving with control affine dynamics:

ẋ(t) = f (x)+
m

∑
i=1

gi(x)ui = f (x)+Gu, u ∈ Rm, G ∈ Rn×m (2.6)

where f : X →X is the drift associated with the agent and ui ∈ R is the ith control

input and there are m control inputs.

Let us consider a function h : X → R to encode safety. We define safe sets

considering super level sets of the function h in our environment X as follows:

Xsafe ={x ∈X |h(x)≥ 0}, (2.7a)

∂Xsafe ={x ∈X |h(x) = 0}, (2.7b)

X ◦
safe ={x ∈X |h(x)> 0}. (2.7c)

Now let us consider the set of control inputs Kcbf(x) defined by:

Kcbf(x) = {u ∈U : L f h(x)+Lgh(x)u≥−α(h(x))}, (2.8)

where α is an extended class K∞ function. Now we can formally define CBF as follows:
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Definition 1. (CBF) Let the sets Xsafe and Kcbf be defined according to (2.7) and (2.8)

respectively. Then h is a CBF if there exists an extended class K∞ function α such that

the set Kcbf(x) is non-empty for all x ∈Xsafe.

With the above definition we can state the following lemma:

Lemma 1. [ACE+19] Given the sets Xsafe and Kcbf defined according to (2.7) and (2.8)

respectively, let h be a CBF defined according to Definition 1 with ∂h
∂x (x) ̸= 0 for all

x ∈ ∂Xsafe. Then any control signal u(x) ∈ Kcbf(x) for the system (2.6) ensures safety of

the system.

So if we can find a CBF h satisfying (2.7) with the assumptions in Lemma 1, we

can guarantee that the system will be safe.

16



Chapter 3

Human-Swarm Interactions for Formation
Control using Interpreters

In this chapter, we develop a novel Human-Swarm Interaction (HSI) framework

for formation control using the notion of an interpreter, enabling the user to control a

robotic swarm’s shape and formation using abstraction. The user conveys their intended

commands by drawing shapes through arm gestures and motions which are recorded by

an off-the-shelf wearable device. We propose a novel interpreter system, which acts as

an intermediary between the user and the swarm to simplify the roles of both. The

interpreter takes in high level input in the form of shapes drawn by the user, and trans-

lates it into swarm control commands by planning in the shape space using novel shape

morphing dynamics (SMD), which is also used for user feedback. The proposed inter-

preter employs machine learning, estimation and optimal control techniques to translate

the users intention into swarm control parameters. The dynamics of the swarm are

realized by means of a novel decentralized formation controller based on distributed

linear iterations and dynamic average consensus. Theoretical guarantees of convergence

along with convergence rate of the proposed swarm controller are given. The resulting

shape morphing dynamics are illustrated and discussed through simulations. The entire

framework is demonstrated theoretically as well as experimentally in a 2D environment,

with a human controlling a swarm of simulated robots in real time with the help of a
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Graphical User Environment (GUI).

3.1 Literature Review

According to recent surveys on HSI [KPC+16] and human multi agent systems

[Fra17], humans either take a supervisory [SF12], direct [SFKE15], shared [FSR+12], or

environmental [WS16] control role in an HSI framework. Most of the HSI frameworks

design have been user-centric and focused on direct control of swarms, either through

teleoperation or proximal interaction; see e.g. [JGGD14, SFKE15]. Due to complicated

swarm dynamics, the human will likely be quickly overwhelmed and would not make the

best decisions [Sur16, SS16]. Previously authors have considered automated sequencing

of swarm behaviors [NCS17]. However, this general formulation with a discrete search

space and combinatorial algorithm can just deal with a few discrete behaviors at a time.

Previous work on using gestures for multi-robot control have focused on external

sensors like cameras [MWVM13] and infrared sensors [POND14], which require setup

time as well as good environment conditions. Some other works like [HOGD18] have tried

to find the most separable gestures which can be used to control a robotic system. Re-

garding internal sensors for swarm control, smart watches [VSSF17] for dynamic gestures

and the MYO armband [NCLS17] for static gestures have been used. Notably, [NCLS17]

use the inbuilt static gestures which are inaccurate and non-intuitive for swarm spe-

cific interactions, whereas we use custom static and dynamic gestures employing just

a single device. More recently, gesture based techniques along with speech, vision and

motion have been used together to interact with small teams of robots in [AMLL+15]

and [GGD16]. These works rely on proximal multi-modal interaction schemes which

require complex hardware setup to interpret the human intention, which is not practical

for large scale swarms.

With respect to formation control for large swarms, [RCN14] and [AMBR+12]
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have only used predefined shapes and images as inputs for the swarm, which facilitates

only supervisory control for a HSI system. However, these works lack of an interpreter,

and the main focus is on display development to showcase known distributed algorithms.

3.2 Contributions

We propose a novel HSI framework in which we consider both a user and a de-

centralized swarm, with an interpreter acting as a bridge between the two. By means

of it, the user can communicate their intentions naturally by drawing shapes, without

having an in depth understanding of the swarm dynamics. At the same time, the swarm

receives suboptimal control subgoals in their domain and need not spend resources and

time to decode the user’s intention. The paper presents contributions in the following

aspects: (i) We present a novel planner embodied in the interpreter to devise control

subgoals in the abstract shape domain that are efficient for a swarm. (ii) Through the

principles of optimal switching control, we present a procedure to simulatenously plan in

the continuous shape space and discrete parameter space (swarm communication range)

to generate swarm subgoals, which to the best of our knowledge has not been done

before. (iii) We present a novel discrete second-order distributed formation controller

for the swarm that uses notions from the Jacobi Overrelaxation Algorithm and dynamic

average consensus to guarantee the convergence of a (second-order integrator) swarm to

a desired shape, scaling, rotation and displacement. Our controller relies only on posi-

tion information of each agent and communication with their neighbors using variable

communication radii, which provides a practical setting. (iv) On the human-interpreter

interaction side, we formulate a novel intention decoder using Kalman Filtering and

Hidden Markov Model (HMM) for simultaneous dynamic and static gesture decoding

utilizing signals from Inertial Measurement Unit (IMU) and Electromyographic (EMG)

sensors, respectively. (v) A final contribution is provided by the system integration of
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diverse tools that serve to articulate our HSI framework.

We wish to clarify that, our proposed interface is motivated by a future applica-

tion scenario in which a computer mouse cannot be used effectively, such as in Virtual

Reality (VR) and Augmented Reality (AR) environments. However, the development of

this AR/VR environment system and the use of our interface in it is currently beyond

the scope of this paper. Similarly, a thorough human study of the interface and its

comparison with other platforms is also out of the scope of this work. Here, we mainly

focus on the development of improved signal processing algorithms that can set the ini-

tial stage for future work. Also, this manuscript significantly extends our preliminary

version in [SM19] by including an extended literature review, discussion on gesture de-

coding, full analytical proofs of the swarm controller, a new discussion section on the

shape morphing dynamics, additional details on our GUI and planner, and additional

results for accuracy testing of intention decoder and the proposed planner.

Human

User

Wearable

Device

Intention

Decoder

Planner

Decentralized

Swarm

Controller

Robot

Swarm

Interpreter

vh o

v̂

vs

y

p0

vi

xi

Figure 3.1. Proposed HSI framework. The user communicates their intent vh through the Myo armband
which produces observations o. The decoder estimates the user intent v̂ from o. The planner using v̂,
plans a set of intermediate goals vs. The decentralized controller in agent i reaches vs

i by computing the
velocities vi. The interpreter uses the swarm state p(t) to give feedback y(t) to the human.
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3.3 Proposed Framework and Problem Formulation

Here, we first introduce the various timescales involved in the interactions, and

propose a new HSI framework, while providing a description of its components. Later,

we identify the various problems to be solved to implement this framework.

Timescales Involved. We assume that the interactions between the human, inter-

preter and the swarm, and the dynamic update of the swarm, may occur at time scales

that go from coarser to finer resolution. In our framework we allow the human user to op-

erate at the slowest timescale keeping in mind of their cognitive complexity, whereas the

swarm operates at the fastest time scale keeping in mind of stability. The interpreter op-

erates at an intermediate time scale communicating with both the human and the swarm.

More formally, human and interpreter may interact at discrete times that are a multiple

of τh, the interpreter and the swarm interact at multiples of τint < τh, while the swarm

operates at τs < τint. In what follows, we identify T ≡ T τh≥ 0 (resp. l ≡ lτint, and t ≡ tτs)

and we distinguish these integers as belonging to T ∈ Zh
≥0 ≡ Z≥0 (resp. l ∈ Zint

≥0 ≡ Z≥0,

and t ∈ Zs
≥0 ≡ Z≥0.) We use the time variable t for the wearable device as it operates at

a fast rate, similar to the swarm. Proposed Framework. The user intentions are trans-

lated by the interpreter and in turn communicated to the swarm. The user’s intention

is captured by a wearable device called the MYO armband1. By means of it, the user

specifies a desired formation shape S ∈ P, centroid c ∈R2, orientation θ ∈R, and scaling

s∈R for the swarm. These parameters make up the desired human intention v which the

interpreter decodes as v̂, where v, v̂ : Zint
≥0 → P × R2× R × R. The wearable receives

the human intention v(T ) as Electromyography (EMG) signals oemg(τ) and Inertial Mea-

surement Unit (IMU) signals oimu(τ), where τ ∈ [(T − 1)τh,T τh]. The interpreter first

uses a decoder (Section 3.4.1) to translate human intentions v(T ) into v̂(T ). Then it

translates the shape S(T ) to desired relative agent positions zd(T ) ∈ RM×n which best
1https://www.myo.com/
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depicts the swarm shape. The swarm also has an operation mode µ(t) ∈ {1, . . . ,m} cor-

responding to m different communication ranges for each agent of the swarm. We have

the notion of swarm operating cost involving µ(t) as a trade-off between network con-

nectivity and network maintenance costs. We also introduce shape morphing Dynamics

(SMD), which represents easily understandable swarm dynamics by the Human.

Figure 3.2. User intention decoder system. i) The user conveys their intention v(t). ii) and iii) The
wearable captures EMG oemg(t) and IMU oimu(t) signals, which are sent to gesture decoder and Kalman
filter respectively. iv) The decoder provides gestures which are mapped to mouse clicks and scrolls.v)
The Kalman filter is used to assign mouse position. vi) Mouse updates are sent to the GUI.

Now, Given a desired formation zd(T ) and the current state p(0), the inter-

preter then determines the set of switching intermediate goals V s = {vs(1), ...,vs(N)}

with vs(l) = {z(l),s(l),c(l),θ(l),µ(l)}, l ∈ {1, . . . ,N} and N being the time horizon for

switching. These intermediate goals V s follow the SMD and are optimal with respect to

the swarm operating costs. These parameters constitute the high-level commands that

the swarm receives and executes via a distributed algorithm. Figure 3.1 illustrates the

work-flow of our proposed framework. Thus, we need to solve the following problems to

complete our framework:

Problem 1. (Human Intention Decoder). Given the observations oimu(t) and oemg(t) from

the Myo armband, design a decoder to get the desired human intention v̂(T ).

Problem 2. (Behavior Specifier). Given the desired human intention v̂, design an algo-

rithm to produce the goal behavior V s which can be understood by the swarm.

Problem 3. (Planning Algorithm). Given the goal behavior V s(T ), generate the set of

optimal intermediate behavior subgoals {vs(l)} with l ∈ {1, . . . ,N}∩Zint
≥0, and N denoting
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the time horizon, and Nτint≤ T τh which follow Shape-Morphing Dynamics and minimize

swarm operating costs.

Problem 4. (Distributed Swarm Controller). Given the command vs(l), for some l ∈Zint
≥0,

design a distributed algorithm to drive the swarm to the intermediate shape z(l) with

scaling s(l), rotation θ(l) and centroid c(l) using operation mode µ(l) from some initial

position p(l−1).

Problem 5. (User Interface Design and Feedback). Develop a Graphical user interface

(GUI) for the human to communicate their intention v to the interpreter and receive

feedback about the decoded intention v̂ and the state of the swarm.

3.4 Technical Approach

The following subsections describe the proposed solutions to the problems of

Section 3.3

3.4.1 Intention Decoding

The user conveys their intention v through gestures and arm movement which

are recorded by the Myo armband as EMG signals. There are 8 spatial EMG sensors on

the Myo armband which generate EMG signals oemg(t) ∈ R8 at every time t. We only

consider the planar angular velocity and orientation signals oimu(t) ∈ R4 at time t from

the 9DOF IMU. The intention decoder deciphers discrete gestures ogs(t) ∈ {0,1,2,3,4}

from EMG signals oemg(t) and state of the arm arm(t) ∈ R4 consisting of planar arm

position armp(t) ∈ R2 and planar arm velocity armv(t) ∈ R2 from IMU signals oimu(t).

The gestures ogs and arm are translated to mouse movement and mouse clicks, which

provide feedback of the decoded intended gesture v̂ to the user according to Figure 3.2.

We use HMM, see [Rab89], a common probabilistic machine learning technique

to decode gestures from the EMG signals. We use discrete states which are the gestures
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(a) Gestures used: (from left to right) Fist, spread, wave up, wave down and normal

(b) Mouse functionalities: (from left to right) Left click, right click, scroll up, scroll down, normal

Figure 3.3. Gestures used for mouse control. a) Show the various gestures used and b) indicate the
corresponding mouse functionalities.

ogs(t)∈ {0,1,2,3,4} and continuous observations related to EMG signals which are mod-

eled as a multivariate Gaussian distribution. The wearable produces an 8-dimensional

spatial EMG signal oemg(t) ∈ R8. We use the mean ōemg ∈ R8 and standard deviation

õemg ∈R8 of the signals over 1s window and 0.2s frame shift as input observations giving

us o := (ōemg, ⊤, õemg, ⊤)⊤ ∈ R16. We collect the training data o for 1 minute, during

which the user performs all 5 gestures. The gestures are implemented in a fixed order

in a 3 second interval for each gesture without stopping.

To this data we employ the Baum-Welch algorithm to train the HMM model

parameters. Details related to the Baum-Welch algorithm implementation can be found

in our previous work [Sur16].

We then use the standard forward algorithm to perform live decoding of the

gestures similar to our previous work in [Sur16]. We use a standard discrete-time Kalman

filter [TBF05] to decode the arm state arm(t) from the IMU signals oimu(t).

We use a discrete, linear time-invariant model to describe the dynamics of the
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mouse state, mp(t) and mv(t), based on Newton’s second law:

mp(t +1)

mv(t +1)

=

1 η

0 1


mp(t)

mv(t)

+

η2/2

η

ma(t)+wp(t), (3.1)

where ma(t) is the input acceleration given by the planar angular orientation of the

arm which is under the user’s control, η is the update time constant and wp(t) is the

Gaussian process noise. In this way, the acceleration of the mouse pointer is controlled

by changing the arm orientation, which is a more stable signal than the one provided by

the accelerometer. The measurement model of the KF given by:

ym(t) = rarmI4oimu(t)+wm(t), (3.2)

where rarm is the distance between the MYO armband to the tip of the user’s fin-

ger, which can be measured or fixed approximately and wm is the Gaussian measurement

noise present in the gyroscope and magnetometer signals. Equations (3.1) and (3.2) are

in the standard form to apply the KF to estimate the mouse state which is then used

by the GUI program to control the mouse movement in the computer. We direct the

interested reader to [TBF05] for KF framework and its examples. This enables the arm-

band to potentially substitute for a computer mouse as a complete Human Computer

interaction (HCI) device, which can be more practical in VR/AR environments, where a

computer mouse could be cumbersome. In a more traditional setting, this also gives the

user the opportunity to interact with the computer using both the mouse and the arm-

band. Section 3.5.2 shows the results of our proposed intention decoder. The decoded

intentions are sent to the GUI which is illustrated in Section 3.4.2
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Figure 3.4. UI used to interact with the interpreter.

3.4.2 User Interface Design

We developed a GUI in MATLAB, where the user interacts using arm movements

and gestures, which are mapped to mouse movements and mouse clicks according to

Figure 3.2. Figure 3.4 illustrates a snapshot of the GUI during the planning phase

having 5 different areas to specify the parameters: desired shape Sd, rotation θ d, scaling

s and centroid cd.

In this manner the user communicates their desired intention which is sent to the

interpreter that is described in Section 3.4.5.

3.4.3 Swarm Controller

Our swarm controller is designed to achieve the interpreter’s intention vs(l) :=

{z(l),s(l),c(l),θ(l),µ(l)} at time lτint. Having second-order integrator dynamics for the

agents, and the need of controlling the swarm centroid motivates our controller which

extends [Cor09] (for first-order agents) with the dynamic consensus feedback intercon-

nection of [ZM10].
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With pi,vi being the position and velocity of the ith agent, our second-order

distributed swarm controller takes the form:

pi(t +1) =pi(t)+ vi(t), (3.3a)

vi(t +1) =−α(pi(t)+ vi(t)) +

α
di(t)

∑
j ̸=i
{ai j(t)(p j(t)+ vi(t))+

s(l)di(t)(zi(l)− z j(l))Rθ (t)}− kp(ci(t +1)− c(l)),

ci(t +1) =ci(t)+

∑
j ̸=i

wi j(c j(t)− ci(t))+ pi(t)− pi(t−1), (3.3b)

where kp,α ∈ (0,1) are control gains and Rθ is the rotation matrix corresponding to

θ . The variable ci(t) ∈ Rn is the estimated center of the swarm by the ith agent. Note

that the wi j are the Metropolis weights defined in Section 2. This algorithm, which

applies to second-order systems, cancels out the drift observed in [Cor09] with the help

of dynamic consensus, and drives the swarm to the desired centroid at time lτint. The

FODAC algorithm in [ZM10] in equation (3.3b) is used to distributively estimate the

mean of time varying reference signal p(t) which would give us the estimate of the

swarm’s centroid c(t).

Using (3.3) the swarm achieves the desired interpreter’s intention vs(l). After

some calculations, with X(t) = [p(t)⊤,v(t)⊤, c(t)⊤,q(t)⊤]⊤ ∈ R4M×n as the combined
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state of the swarm, the state space form of our swarm controller is represented as:

X(t +1) = AX(t)+F, (3.4)

A =



I I O O

−αD−1
µ Lµ − kpI −αD−1

µ Lµ −kpW kpI

I O Wµ −I

I O O O


,

F = [O⊤, [sαD−1
µ LµzRθ + k1M c]⊤ , O⊤ , O⊤]⊤.

Here q(t) = p(t − 1) is a dummy state introduced to obtain a linear system in stan-

dard form. It is interesting to note that the swarm controller (3.4) consists of an

autonomous component A and a controlled component F housing the desired inter-

preter’s intention vs(l). So vs(l) can be communicated once at the beginning of the

lth iteration and the agents just need to adjust their positions and communicate lo-

cally with their neighbors to achieve the intermediate goal. Letting Zd(l) = [1M c(l)]⊤+

[s(l)z(l)Rθ (l)]⊤, the desired intention Xd(l) ∈ R4M×n in this state space is given by

Xd(l) = [Zd(l)⊤,0⊤, [1M c(l)]⊤,Zd(l)⊤]⊤. Now we will theoretically analyze the perfor-

mance of the proposed swarm controller in the next section.

3.4.4 Swarm Controller Analysis

In this section we will analyze our proposed controller (3.4) to determine stability

and convergence. We will look at the case when Gµ(t) remains constant for t ∈ [τ l(l−

1),τ l(l)]. That is, Gµ(t) = Gµ(τ l(l − 1)) for t ∈ [(l − 1)τint, lτint]. So this makes our

system time-invariant in that interval. In this work, we will make use of the following

assumptions on Gµ(t):

Assumption 1 ((Connectivity)). The communication graph Gµ(t) has at least one globally
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reachable vertex at every time t.

Assumption 2 ((Constant graphs)). The communication graph Gµ(t) remains constant

for t ∈ [(l−1)τint, lτint].

System (3.4) represents n copies of the same dynamics corresponding to n different

dimensions. To simplify notation, we will analyze only one of the dimensions. After

fixing µ and omitting it for simplicity, our swarm controller (3.4) can be reduced by

combining the p and v dynamics to obtain:

p(t +1) =(I−αD−1L)p(t)− kp1Mc(t)+F1(l), (3.5a)

c(t +1) =Wc(t)+ p(t)−q(t), (3.5b)

q(t +1) =p(t). (3.5c)

where F1(l) = s(l)αD−1Lz(l)R(l)+ kp1M c(l). System (3.5) is an interconnected system

whose stability depends on the chosen gains α and kp. We will use the discrete analogue

of composite Lyapunov functions [Kha02] to design the gains that guarantee the stability

of the interconnected system. With δ1 = 1−(1−αλ N
2 )2, δ2 = 1−(1−λW

2 )2 we can state

the following theorem.

Theorem 1. (Stability of Swarm Controller). Under Assumption 1 (connectivity) and

Assumption 2 (constant interconnection graph), with the control gains satisfying kp <

δ1δ2
2 , the swarm globally uniformly asymptotically stabilizes to the desired state Xd under

the swarm controller dynamics (3.4) from any initial condition.

The proof of Theorem 1 is presented in the Appendix. Next we will use the

results of Theorem 1 to get an intuition of the role of graph connectivity (λ N
2 and λW

2 )

in the convergence of our swarm controller (3.4).
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Corollary 1. The convergence rate of (3.4) is directly proportional to λ N
2 and λW

2 of the

communication graph.

The proof of Corollary 1 can be easily verified by looking at the convergence

rate of the system in proof of Theorem 1. Using these results we will design a planning

algorithm, which optimally determines the intermediate subgoals which will be described

in Section 3.4.5.

Stability under time delays:

Next we will give some insight into our controller’s performance under commu-

nication time delays. Let us consider our system (3.5) subjected to a communication

delay τd ∈ {0,1, ...,τ}, where τ < ∞ is the maximum delay possible. Then we have :

p(t +1) =(I−αD−1L)p(t− τd)− kp1Mc(t)+F1(l), (3.6a)

c(t +1) =Wc(t− τd)+ p(t)−q(t), (3.6b)

q(t +1) =p(t). (3.6c)

Remark 1. (Robustness to time delay): We see that the interconnections in (3.6) are

without delays as they are independent of the communication network and each agent

updates them locally. As τd is bounded and there are no delays in interconnections,

we can easily apply results from [XW08, RB05] to show consensus against time-varying

bounded delays for each sub-system. Then we can analyze stability of (3.6) similar to

Theorem 1 by considering each subsystem individually and then checking stability for

interconnections. Hence, in the interest of space we skip rigorous analysis.

Now we will move on to the Interpreter, which is the next aspect of our framework.

3.4.5 The Interpreter

In this section, we describe the role of the interpreter in the framework. For ease

of illustration, we consider the formulation in 2D space. The interpreter mainly consists
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of two parts: the behavior specifier and the high level planner, which are illustrated in

the following paragraphs. Problem 2: Behavior Specifier The Behavior specifier converts

the desired human intention into parameters that can be comprehended by the swarm.

The human user specifies the desired shape Sd ∈ P which takes the form of an arbitrary

polygon, the desired centroid cd ∈R2, scaling sd ∈R and rotation θ d ∈R. The interpreter

then decides the formation denoted by the relative positions of the agent zd ∈ RM×n,

which would best illustrate the shape Sd given by the human. For simplicity, we use

a uniform distribution in the interior of the shape Sd to obtain zd, which is illustrated

in Figure 3.5b. The human specifies the polygon by providing the vertices sequentially

using the GUI from Section 3.4.2, which is shown on the left side of the Figure 3.5b.

The corresponding formation density ρM = M/area(Sd) is calculated, where area(Sd) is

the area of polygon Sd. We assume the density is large enough to fit M robots in the

shape Sd. Note that, since the shape Sd is bounded, there exists a large enough box

B such that Sd ⊆ B and M area(B)
area(S) is equal to a perfect square r2, for some r2 ≥ M and

r2/area(B) = M/area(S) = ρM. Using this density, robots are distributed uniformly in

the bounding box B of the polygon Sd by creating a meshgrid. Finally, we discard the

generated points not in the polygon and we arrive at the desired formation zd of M

points shown in the right half of Figure 3.5b.

The parameters zd, Sd, cd, sd and θ d are passed on to the Planner, which is

described next.

Planner

While the planner does not deal with detailed, low-level motion plans for each

robot, high-level (optimal) laws are provided for an abstraction of the system, and then

used as a starting point for implementation later. At the lower layer, robots rely on

distributed algorithms that aim to realize the output for the planner.

The Planner receives the decoded human intention in the form of desired forma-
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tion Sd (or, equivalently, zd), scaling sd, rotation θ d, and centroid cd. The planner then

constructs a set of intermediate way points {S(l),s(l),θ(l),c(l)}, ∀l ∈ {1, . . . ,N}, where

N denotes the number of intermediate steps in the plan to reach the final goal.

To do this, we employ an N-Horizon Discrete Switched Linear Quadratic Regu-

lator (DSLQR) formulation. A particular DSLQR problem with a dynamical variable

h ∈ Rd and time horizon l ∈ {1, . . . ,N} can be formulated as follows:

minJ(u,µ) =
N

∑
l=0

(h(l)⊤Qµh(l)+u(l)⊤Rµu(l))

+h(N)⊤Q f h(N), (3.7a)

subject to h(l +1) = A h(l)+Bu(l), (3.7b)

where h(0) = h0. Here, the running cost consist of a switching LQ cost function, with

parameterized matrices Qµ and Rµ , depending on a mode µ . The function will be

designed to enhance swarm performance while the linear constraint will be used to en-

force an easy-to-interpret behavior by a human, which defines a shape morphing (SMD)

dynamics.

Details and methodology of DSLQR systems can be found in [ZHA09]. We show

next how we apply this approach in our particular setup and describe the matrices that

we choose for our framework.

(i) Shape-Morphing Dynamics: We introduce the notion of shape morphing Dy-

namics (SMD) to denote a dynamical system that can be used to morph into any desired

shape. Since the interpreter needs to provide feedback to the user, the planner needs to

provide an abstraction of the complicated swarm dynamics in an Mn-dimensional space.

These dynamics need to be slower than the swarm dynamics to enhance interpretability,

and are hence implemented in the l timescale described in Section 3.3.

Here, we propose a simple linear dynamical system approach to model these

dynamics, which takes into account the desired human intention hd = (Sd,sd,θ d,c).
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We let h = [S,s,θ ,c]⊤ denote the state of the SMD system with h(l) ∈H, where

H= P×Rn×R×R. Then, the SMD takes the form:

h(l +1) = A h(l)+Bu(l), (3.8)

where matrices A ,B ∈H×H and control input u ∈H.

We use the N horizon Discrete LQR control technique to drive the SMD towards

hd starting from some initial configuration h(0) = h0. By considering a change of variable

he(l) = h(l)− hd, we define a first term contributing to the problem cost functional as

follows:

JSMD(u) =
N−1

∑
l=0

(he⊤(l)Qhe(l)+u(l)⊤Ru(l))+ (3.9)

he(N)⊤Q f he(N).

where the matrices Q,R,Q f ∈ H×H are positive definite and u(l), ∀l ∈ {1, . . . ,N} is a

step change applied during the lth time. So u(l) is chosen such that the cost JSMD

is minimized. This is solved using the standard LQR approach, and the results are

shown in Figure 3.5 for a N = 10 horizon problem. Intuitively, one can choose these

matrices to satisfy Q≺ R≺Q f to provide a more “interpretable” and natural transition

dynamics. This condition implies that the priority is to reach the desired behavior hd

with small changes in the intermediate steps, which would make it look more natural and

“interpretable” as seen in Figure 3.5. Further discussions on the choice of parameters and

their implications are done in Section 3.5.3. Figure 3.5 shows the stages of transformation

of a 5 sided polygon to a rotated and translated 4 sided polygon. The figure depicts

a seemingly natural transition which can be easily interpreted by the user. The case

of mismatch in the number of vertices in the initial and desired shapes is handled by
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adding vertices appropriately on the perimeter of the shape that has fewer vertices.

(ii) Swarm performance costs. We just discussed how to generate intermediate

shapes taking into account the SMD. Now we consider the swarm performance and

communication cost to choose the operating mode ν in the general setup. The operating

modes ν correspond to a subset of ν-disk graphs defined over the swarm when distributed

over a shape. Since agent formations are chosen in a consistent manner as described

in e.g. Figure 3.5b, the number of possible graphs over the agents for different ν is

very much reduced and remains constant for scaled shapes. From now on, we consider

this set is given by {ν1, . . . ,νm} by choosing appropriate communication radii. The

proposed planner aims to provide high-level optimal plans for the swarm without taking

each individual agent into consideration. This philosophy is consistent with a multi-

level optimization approach to complex systems, by which high-level (optimal) laws are

provided for an abstraction of the system, and then used as a starting point to a more

detailed optimization. At the lower layer, robots can employ more involved controls as

well as distributed algorithms, which are more robust to single robot failures. In this

way, we are able to use abstraction for the intermediate interface to communicate with

user, while not giving up robustness from distributed algorithms at the level of individual

robots.

(a) SMD illustration (b) Formation Specifier

Figure 3.5. (a) SMD illustration for shape changing from rotated cone to a standing rectangle. The
model parameters used are A = B = Q = Ih, R = 100Ih and Q f = 1500Ih. (b) Left: The user specifies
the desired shape Sd by providing v vertices (triangles). Right: the interpreter determines the relative
positions zd of M = 500 agents (blue dots) to represent the shape drawn by user.
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Operating costs involved: To increase the speed of convergence and to facilitate

quicker interpretation, we need to maximize the notion of connectivity involving the

second smallest eigenvalue λ N
2 or λW

2 of the respective Laplacian matrices LN and LW .

This can be found from the determinant of the matrix G ∈ R(M−1)×(M−1) defined as

G = F⊤LNF with F ∈ RM×(M−1), F1M = 0 and F⊤F = I . Since the determinant of a

matrix is a product of its eigenvalues, connectivity determined by λ N
2 increases iff the

determinant of G increases. So the connectivity cost JCON(l) being in formation z and

operation mode ν at time l is given by:

JCON(ν ,h) =−κ1 logdet(κ2Gν(l)). (3.10)

To ensure JCON remains well scaled and positive we introduce positive constants κ1 and

κ2 respectively. Having a ν corresponding to a higher communication radius implies that

we will be using more energy to communicate and maintain communication links. This

is encoded as a communication cost Jcom(l) being in formation z and operation mode ν

at time l. It is given by

JCOM(ν ,h) = κ3 log(ν2
ν 1⊤MAν(h)1M), (3.11)

where ν(l) is the communication range at time l and κ3 is a positive constant used for

scaling.

Adding these costs together defines the total cost used by the planner as:

J(u,ν ,h) =JSMD(u)+ JCON(ν ,h)+ JCOM(ν ,h) (3.12)

J(u,ν ,h) =
N−1

∑
l=0

(h̄e(l)⊤Qν(l)h̄
e(l)+u(l)⊤Ru(l)+

h̄e(N)⊤Q f h̄e(N).
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where Qν =

Q 0

0 JCON(ν)+ JCOM(ν)

 , h̄e =

he

1

, u =

u

0

 and R =

R 0

0 1

 .

Optimization Approach

Observe that a solution to the above problem (3.12) requires the evaluation of all

possible graph combinations for different chosen controls u and starting configurations

h. By choosing the graphs based on the communication radii, and considering a class

of formations, we reduce significantly the number of possible graphs to evaluate. Also

note that the variables ν belong to a discrete set, while the controls u are continuous,

and also the cost function J is non-linear. This makes the resulting problem nonconvex

and NP-hard.

Our approach to this problem is based on optimal control and the LQR method.

The approach is summarized in Algorithm 2. Initially, we remove the dependency on

h from (3.12) by an finding an optimal set of initial configurations {h̃(i) i ∈ 0, ...,N}

using the LQR solution approach to solve JSMD. This gives us {ũ(i) i ∈ 0, ...,N} from

which we can construct {h̃}. Using the constructed {h̃}, we can initially remove the

dependency of h in (3.12). After this, we employ the DSLQR formulation from [ZHA09]

to obtain the optimal set of u(l) and ν(l) which minimizes J with respect to the optimal

initialization of h. Note that, by rederiving u(l), we are obtaining a new sequence of h.
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Algorithm 2: Planner

1 Input: A,B,Q,R,{ν},h(0),h(N),J(u,ν ,h);

2 Output: {u(l)},{ν(l)},{h(l +1)}∀l ∈ {0,1, ..,N−1};

3 for l ∈ {0,1, ..,N−1} do

4 ũ(l) = LQR(A ,B,Q,R,Q f );

5 h̃(l +1) = SMD(A ,B, ũ(l), h̃(l));

6 end

7 J(u,ν)← J(u,ν ; h̃);

8 for l ∈ {0,1, ..,N−1} do

9 u(l),ν(l) = DSLQR(A ,B,Q,R,Q f ,J(u,ν),{ν});

10 h(l +1) = SMD(A ,B,u(l),h(l));

11 end

3.5 Implementation Results and Discussions

3.5.1 System Setup

The user can choose between MYO armband and mouse to interact with a GUI

to control the formation of a simulated swarm in a two dimensional environment. The

swarm controller developed in Section 3.4.3 essentially generates waypoints for the swarm

to follow, we assume holonomic dynamics for the individual agents and assume they

reach their respective waypoints. We do not focus on collision avoidance, which will we

addressed in future work. We utilize the ROS kinetic framework with Python scripting

language to interface with the MYO armband and control the mouse pointer. We use

Matlab to create the GUI shown in Figure 3.4, which uses the mouse or the MYO

armband as an input device. For the formation controller we set the control gain α = 0.15

and proportional constant kp = 0.03.
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(a) Mouse movement with wearable (b) Mouse movement without wearable

Figure 3.6. Aggregate results of tracing a pentagon (Red). a) The user specifies the shape by using
MYO armband. (Blue) b) The user specifies the shape by using the mouse (Green).

3.5.2 Preliminary Results on Intention Decoding

We performed tests to gauge the accuracy and speed of the proposed intention

decoder. For the HMM model, some of our previous tests had given an accuracy levels of

over 90% on an average [Sur16] for similar gestures and framework. On preliminary tests

we observed similar results and hence, in the interest of space, we skip the accuracy test

for the HMM model. For the effectiveness of the arm movement decoder, we compare

the results of operating a mouse with and without the MYO armband. We use a single

user and perform 5 trials. The user was given one minute and was tasked to continuously

trace a pentagon (height= 6 units, width= 2 units and area = 10 units) which represents

the human intention. Figure 3.6 represents the aggregate results over 5 trials. These

trials were done in a Matlab environment, while the user observed the movement of

mouse pointer along the polygon as feedback. It can be seen from the Figure 3.6 that

the results are similar for both cases. Table 3.1 describes the absolute error involved in

each of the trials. The total error is calculated by summing the shortest distance from

each traced point to the polygon. The Average error is total error divided by the number

of points traced. The speed is tested by the number of complete loops the user is able

to make in the given time which is one minute. It can be seen that the errors involved

are about the same with both interfaces, however the speed of using the mouse is higher
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which is expected as user need time to adapt to the new interface.

Table 3.1. Absolute Error comparison of mouse and wearable.

Mouse Wearable

Sl. no Loops Avg Error Total Error Loops Avg Error Total Error

1 7 0.026 122.57 5 0.038 179.26

2 8 0.028 129.40 5 0.037 174.74

3 9 0.031 147.02 7 0.048 222.07

4 8 0.031 148.92 7 0.05 235.27

5 9 0.035 161.50 5 0.029 132.72

Table 3.2. Percentage of points within a given buffer.

Mouse(%) Wearable(%)

Sl. no 0.05d 0.1d 0.2d 0.05d 0.1d 0.2d

1 79.25 93.56 99.80 79.24 93.56 99.80

2 86.66 97.71 100.00 75.13 92.73 100.00

3 85.66 98.46 100.00 77.05 92.3 0 100.00

4 79.86 95.09 100.00 64.68 90.31 98.71

5 81.37 94.56 100.00 85.36 97.66 100.00

We also compared accuracy levels by computing percentage error which is illus-

trated in Table 3.2. We created a buffer around the perimeter of the polygon, and

calculated the percentage of points within the buffer as compared to the total number of

points traced in that particular trial. A traced point is within the buffer if its Euclidean

distance to the polygon is less than the buffer units. These buffers where not shown to

the user and were used for post computation only. We created three different buffers

of sizes 0.05, 0.1, 0.2 units, which are indicated as the columns 0.05d, 0.1d, 0.2d of
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Table 3.2 respectively. We can see that almost all (≈ 100%) points traced by using both

the mouse and the wearable is within a distance of 0.2 units. The performance within

0.1 units is also similar for both devices in terms of precision with all trials being > 90%

accurate. In the sub 0.05 units category we see a decline in accuracy for both cases. In

this category the mouse performs better than the myo armband on average, but we see

that the peak accuracy levels are still comparable (85.36% for wearable v/s 86.66% for

mouse).’

The preliminary results shown in Table 3.1 and Table 3.2 indicate that the per-

formance of the wearable is quite close to the mouse, which is encouraging in AR/VR

applications where the usage of mouse is more cumbersome compared to the wearable.

3.5.3 Shape Morphing Dynamics

In this section we illustrate our shape morphing dynamics formulation (3.8) and

discuss the implications of varying the various parameters involved in the dynamics.

Q and R matrices. We know from LQR theory that higher the values in the Q matrix, the

shape converges to the desired shape in fewer iterations. The matrix R however provides

a tradeoff, by penalizing the change between consecutive shapes. These aspects are

illustrated in Figure 3.7

(a) r = 10−2 (b) r = 100 (c) r = 102 (d) r = 104

Figure 3.7. Results of varying the R = rI for SMD while keeping Q = I constant for N = 10 horizons.

A and B matrices. From standard notions of discrete linear control theory, we

know that the eigenvalues of A should be within the unit circle to ensure stability
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and the B matrix translates the control input u to the system dynamics. Figure 3.8

illustrates these concepts on our system.

(a) r = 10−2 (b) r = 100 (c) r = 102 (d) r = 104

Figure 3.8. (a)-(b) Effect on SMD by varying A keeping B = I,Q = I,R = 103I constant. (c)-(d) Effect
on SMD by varying B keeping A = Q = R = I constant for N = 10 horizons.

Now we will validate the proposed framework by running simulations of a swarm

of 50 agents to reach the desired human intention shown in Figure 3.9.

Figure 3.9(a)-(d) indicate the desired human intention. Using A = B = Q = Ih,

R = 100Ih, Q f = 1500Ih, κ1 = 106, κ2 = 0.05, κ3 = 2×104 the planner was implemented

for a N = 8 horizon problem with m = 3 subsystems. The communication ranges are

ν(l) ∈ {10,40,150}, corresponding to the three operating modes. Figure 3.9e illustrates

the intermediate shapes resulting from the 8 horizon planner, starting from the current

intention (triangle on the left), to the desired intention (larger rotated quadrilateral) on

the right. Figure 3.9f describes the evolution of the cost (3.12) and switching strategy in

a backward horizon. The costs 1,2 and 3 correspond to the cost incurred by the system

if they exclusively run on the respective operating modes ν = 10,ν = 40 or ν = 150

throughout the execution. The optimal cost is shown in purple is calculated by solving

(3.12) by using Algorithm 2.

Figure 3.9f shows that switching occurs in a timely manner to maintain mini-

mum costs. In this way, switching occurs from 1st mode to the 2nd mode during the 2nd

timestep. During the 7th timestep another switching occurs to the 3rd operating mode

to maintain minimum cost. This is coherent with the intuition of using larger commu-

nication radii for more sparse swarms. As the scaling increases with every timestep, the
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agents are forced further apart and the cost of using a smaller communication range

ν = 10 rapidly increases. Whereas, the cost of using the largest range ν = 150 remains

almost constant throughout because the connectivity and communication costs mostly

remain the same. Figure 3.9e shows the execution of the swarm controller during the

l = 2 horizon. Each of the red dots represent individual agents of the swarm. We evalu-

ate the performance of the swarm controller (3.4) by measuring the error with respect to

the intermediate formations and centroid at each time step t. The formation error and

centroid error are measured as e f
l (t) = ∥p(t)− s(l)z(l)R(θ(l))∥ and ec

l (t) = ∥c(t)− cd(l)∥

respectively in reaching the lth intermediate goal. The evolution of these errors(y-axis)

with respect to time t(x-axis) is illustrated in Figures 3.9g and 3.9h. We see that the

swarm successfully reaches every intermediate goal and finally reaches the desired human

intention.

We also tested the DSLQR approach with different random initialization against

the proposed LQR initialization. We found that the resulting cost from LQR initializa-

tion is far lesser (more than two times) than the random initializations in every horizon

for over 25 trials with 5 horizons. This justifies the usage of LQR initialization for the

DSLQR algorithm.

3.6 Summary

In this chapter we have proposed and successfully implemented a novel HSI frame-

work for formation control using the concept of an interpreter. Using this framework the

user communicates their intentions by drawing shapes, and the swarm successfully de-

picts the drawn shape with the aid of the interpreter. The effectiveness of this framework

has been illustrated through theoretical stability analysis and simulations.

In the next chapters, we focus on designing behavioral perception based robot

navigation algorithms in risky and uncertain environments.
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(a) Current
shape

(b) Desired
shape

(c) Desired rotation: θ d = 50◦

(d) Desired scaling: sd = 11.6

(e) Planning and Execution (f) Switching cost throughout execution
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(g) Formation error e f (t)

0

20

(h) Centroid error ec(t)

Figure 3.9. Results of executing a particular desired behavior communicated by the human.
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This chapter, in full, is a reprint of the material as it appears in the publication

Human-swarm interactions for formation control using interpreters, A. Suresh and S.

Martínez, International Journal of Control, Automation and Systems, 18, pp. 2131–

2144, 2020. A preliminary version of the work appeared in the proceedings of the IFAC

Cyber-Physical-Human Systems conference, Miami, USA, pp. 83–88, December 2018,

as Gesture-based human-swarm interactions for formation control using interpreters, A.

Suresh and S. Martínez. The dissertation author was the primary investigator and

author of these papers.
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Chapter 4

Risk-perception-Aware Path Planning

This chapter investigates the design of risk-perception-aware motion-planning

strategies that incorporate non-rational perception of risks associated with uncertain

spatial costs. Our proposed method employs the Cumulative Prospect Theory (CPT) to

generate a perceived risk map over a given environment. CPT-like perceived risks and

path-length metrics are then combined to define a cost function that is compliant with

the requirements of asymptotic optimality of sampling-based motion planners (RRT*).

The modeling power of CPT is illustrated in theory and in simulation, along with a

comparison to other risk perception models like Conditional Value at Risk (CVaR). The-

oretically, we define a notion of expressiveness for a risk perception model and show

that CPT’s is higher than that of CVaR and expected risk. We then show that this

expressiveness translates to our path planning setting, where we observe that a planner

equipped with CPT together with a simultaneous perturbation stochastic approximation

(SPSA) method can better approximate arbitrary paths in an environment. Addition-

ally, we show in simulation that our planner captures a rich set of meaningful paths,

representative of different risk perceptions in a custom environment. We then compare

the performance of our planner with T-RRT* (a planner for continuous cost spaces)

and Risk-RRT* (a risk-aware planner for dynamic human obstacles) through simula-

tions in cluttered and dynamic environments respectively, showing the advantage of our
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proposed planner.

4.1 Literature review

Traditional risk-aware path planning considers risk in the form of dynamic un-

certainty [KBP12], collision time [SGW19], or sensing uncertainty [BB07]. Chance con-

strained approaches [LKH13, BOW11] are used to handle agent and environment uncer-

tainty in a robust manner, however discrete polyhedral obstacles are considered which

cannot incorporate continuous spatial costs. Stochastic dynamic programming [TB12]

in used in dynamic environments to locally integrate planning and estimation without

optimality guarantees. Moreover, in all the above works, how the risks and uncertainties

are perceived or relatively weighted has been overlooked. A few recent works [SCMP19]

contemplate risk perception models, but assume rational DMs and use coherent risk

measures like Conditional Value at Risk (CVaR) [HKY19]. Unlike CPT’s suggestions,

these measures are built using certain axioms that assume rationality and linearity of the

DM’s risk perception [ADEH99]. CPT has been extensively used in engineering applica-

tions like traffic routing [GFBA10], network protection [HS19], stochastic optimization

[JAF+18], and safe shipping [WLY18] to model non-rational decision making. However,

CPT is yet to be applied in robotic planning and control.

Regarding planning algorithms themselves, RRT* [KF11] has been the basis for

many motion planners due to its asymptotic optimality properties and its ability to solve

complex problems [BHM18]. Risk [CM17] and uncertainty [ESBS16] have been an ingre-

dient of motion planning problems involving a human, but have been mainly modeled in

a probabilistic manner [SLVP18] with discrete obstacles. Very few of these works have

considered modeling planning environments via continuous cost maps [DSC16, SE15],

while, to the best of our knowledge, the simultaneous treatment of cost and uncertainty

perception to model a DM’s spatial risk profile has largely been ignored.
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4.2 Contributions

Our contributions lie in three main areas: Firstly, we adapt CPT into path

planning to model non-rational perception of spatial cost embedded in an environment.

With this, we can capture a larger variety of risk perception models, extending the

existing literature.

Secondly, we generate desirable paths using a sampling-based (RRT*-based) plan-

ning algorithm on the perceived risky environment. Our planner integrates a continuous

risk profile and path length to calculate path cost, enabling us to plan in the perceived

environment setting above.

Furthermore, the chosen cost satisfies the sufficient conditions for asymptotic

optimality of the planner, leading to reliable and consistent paths according to a specified

risk profile. We then compare our planner’s performance with T-RRT* (continuous cost

space planner) and Risk-RRT* (risk-aware planner) through simulations in cluttered and

dynamic environments respectively. We show that our proposed planner can generate

better paths in comparison.

Finally, we define the notion of “expressiveness” for a risk perception model and

show that CPT’s is higher than that of CVaR and expected risk. Furthermore using

SPSA, we show that the expressiveness hierarchy translates to our path planning setting,

where we observe that a planner equipped with CPT can better approximate arbitrary

paths in an environment.

We clarify that here, we merely examine CPT based environment perception

models for motion planning and leave the validation of these models with human user

studies for future work.
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4.3 Environment Setup

In this work, we consider spatial sources of risk embedded in the C space. Our

starting point is an uncertain cost function ρ(x) that aims to quantify objectively the

(negative) consequences of being at a location x or adopting a certain decision under

uncertainty at a point x.

For example, suppose a robot moves to a location x from x′ where there is an

obstacle with certain probability. Then, we can define a cost measurement as the possible

damage to the robot by moving from x′ to x under action a′ applied at x′. A cost value

ρ(x′,x,a′) can be defined depending on i) the type of robot (flexible robot or rigid

robot), ii) the probability of having an obstacle in the said location, and iii) the type

of action applied at x′ to get to x (e.g. slow/fast velocity). For simplicity, adopting a

worst-case scenario, we may reduce the previous cost function to a function of the state

ρ(x)≡maxx′,a′ ρ(x′,x,a′)1.

As another example, consider a drone navigating in a building which is ablaze.

In this case, the cost function can be proportional to the temperature profile. As sensors

are noisy, the temperature profile is uncertain, resulting into a noisy spatial cost value

ρ(x). Similarly, environmental conditions that affect the robot’s motion may lead to

under performance. When moving over an icy road, the dynamics of the robot may

behave unpredictably, resulting in a temporary loss of control and departure from an

intended goal state. In this case, the uncertain cost may be quantified as the state

disturbance under a given action over a given period of time. For example, for a simple

second-order and fully actuated vehicle dynamics with acceleration input a which is

subject to a locally constant “ice” disturbance d(x) ≈ d, in a small neighborhood of x,

we have (x′− x) = (a+ d(x))∆t2/2 for a small time ∆t. Thus, the difference with an

intended state can be measured by the random variable ρ(x) = ∥d(x)∥∆t2

2 , which encodes
1Instead of a max operation, one may use an expected operation wrt x′,a′.
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information about d(x) and the unit time of actuation, ∆t. Here d(x) is uncertain, and

can be modeled with prior data or measured with a noisy sensor as in the temperature

profile case.

Prior knowledge in the form of expert inputs and data collected from sensors

can be used to get information about the cost ρ(x), environmental uncertainty, and the

robot’s capabilities. In this way, icy roads pose much lesser cost in the previous sense

to a 4WD car with snow tires than a 2WD car with summer tires, hence the same cost

at a given location could be scaled differently depending upon the robot’s capabilities.

In this work, we will assume that the cost at a location x ∈ C has been char-

acterized as a random variable ρ(x) with a mean ρµ(x) ∈ R≥0 and standard deviation

ρσ (x) ∈ R≥0, for each x ∈ C . We remark that this cost can be constructed from diverse

criteria: From nature of location (For eg. operating table at hospital being mostly static

but highly risky) to dynamic properties (For eg. velocity, state) of close-by obstacles.

In particular, it is reasonable to approximate ρµ(x) via a “bump function,” a concept

extensively used in differential geometry. To fix ideas, consider the previous case where

a vehicle moves through an “icy” environment, and assume ∆t = 1. Then, a mean distur-

bance over a subset A⊆ C should result approximately into a disturbance ∥d∥2 ℓ= ρmaxℓ,

where ℓ is the portion of the trajectory from x to x′ that is inside the icy section A. As x is

farther from x′, the disturbance reduces its effect on x, and the value of ℓ should decrease

to zero. In other words, there is a B such that A⊆ B, where B is an enlarged region whose

boundary delimits the uncertain cost area from the certain one (i.e. outside B the cost

is zero with low uncertainty). The effect of ℓ is thus similar to that of a bump function

defined with respect to A and B. Bump functions are infinitely smooth, take a positive

constant value over A, which smoothly decreases and becomes zero outside B. There are

many ways of defining bump functions on manifolds, such as via convolutions, which

works in arbitrary dimensions as described the following. Let χD : C → R denote the
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indicator function of a subset D⊆C , and, given A, define f (x) = ρmax

C exp(− 1
1−∥x∥2 )χA(x),

with
∫

A exp(− 1
1−∥x∥2 ) = C. Then, a bump function based on A and B can be given by

the convolution b(x) = χB ⋆ f (x), x ∈ C . This function takes a value of 0 outside B, ρmax

inside A and a value between 0 and ρmax at the points x ∈ B\A. See Section 4.8 for an

alternative choice of bump function.

In this work, the notions of “risk” and “risk perception” relate to the way in which

the values of ρ(x) are scaled and averaged in expectation. That is, risk is a moment

of a given uncertain function (either ρ(x) or a composition with ρ). For example, the

risk of being at a location x can be measured via expected cost; that is Re(x) = E(ρ(x)),

which may represent “expected damage to robot” with respect to uncertainty. However,

there are other ways of weighting the ρ(x) outcomes to define alternative risk functions,

such as using CPT. With this is mind, we proceed to define the following three main

problems and address them in Section 4.5, Section 4.6 and Section 4.7, respectively.

4.4 Problem Statement

Here we list the set of problems we address in this chapter:

Problem 6. (CPT environment generator). Given the configuration space C containing

the uncertain cost ρ along with the DM’s CPT parameters Θ, obtain a DM’s (non-

rational) perceived risk Rc consistent with CPT theory.

Problem 7. (Planning with perceived risk). Given a start and goal points xs and xg,

compute a desirable path P from xs to xg in accordance with the DM’s perceived risk Rc.

Problem 8. (CPT planner evaluation). Given a configuration space C , and an uncertain

cost ρ along with a drawn path Pd, evaluate the CPT planner as a model approximator

to generate the perceived risk Rc representing the path Pd.
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4.5 Risk perception using CPT

Here, we will generate a DM’s perceived risk and address Problem 1. We consider

an uncertain cost ρ(x) is given at every point x ∈ C , which we approximate via its first

two moments, a mean value ρµ(x)∈R≥0 and a standard deviation ρσ (x)∈R≥0. In what

follows, we use a discrete approximation2 of ρ(x) by considering M ∈Z≥0 bins, to obtain

a set of possible cost values ρ(x) ≜ {ρ1(x), . . . ,ρM(x)} such that ρM(x) < ρM−1(x) <

... < ρ1(x) with their corresponding probabilities p(x) ≜ {p1(x), . . . , pM(x)}, such that

∑M
i=1 pi(x) = 1 ∀x ∈ C . Further, we will assume that pi(x1) = pi(x2) ≡ pi, ∀x1, x2 ∈

C ,and i ∈ {1, ...,M}. In other words, even though cost values ρi(x), i ∈ {1, . . . ,M}, may

change from point to point in C , the probabilities pi(x) remain the same for different

x. Note that we can do this wlog by discretizing the continuous RV appropriately, see

Algorithm 3. The function discretize finds yi(x) < yi+1(x) such that P[yi(x) ≤ ρ(x) ≤

yi+1(x)] = pi+1(x)− pi(x).

Now, the expected Risk Re(x) at a point x is

Re(x)≜
M

∑
i=1

ρi(x)pi(x). (4.1)

That is, from (4.1) we have an expected risk Re : C →R≥0 defined over C which is shown

in Figure 1.2a and corresponds to a standard or rational notion of risk.

Next, we use the CPT notions developed in Section 2 to provide a non-rational

perception model of the cost ρ(x). According to CPT [TK92], there is a notion of

cumulative functions Π := {π1, ...,πM} used to non-rationally modify the perception

of the probabilities pi(x) in a cumulative fashion. Defining a partial sum function
2The discretization of the random cost function is used to be able to use CPT directly with discrete

random variables. However, it is possible to generalize what follows to the continuous random variable
case.
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S j(p1, . . . , pM)≜ ∑M
i= j p j we have

π j = w◦S j(p1, . . . , pM)−w◦S j+1(p1, . . . , pM), (4.2)

where we employ the weighting function w from (2.3).

With this, a DM’s CPT risk Rc : C → R≥0 associated to the configuration space

is given by:

Rc(x)≜
M

∑
j=1

(v◦ρ j(x))(π j ◦ p(x)). (4.3)

We note that both functions Re and Rc are differentiable, which is important for the

good behavior of the planner and which will be used for the analysis in Section 4.6.

Algorithm 3: CPT Environment (CPT-Env)
1 Input: ρµ(x), ρσ (x), Θ, {p1, ..., pM}
2 Output : Rc(x)
3 for i ∈ {1, ...,M} do
4 yi(x),yi+1(x)← discretize(pi(x), pi+1(x));
5 ρi(x)← yi+1(x)−yi(x)

2 ;
6 end
7 w◦ p(x)← e−β (− log◦p(x))α ;
8 v◦ρ(x)← λ (ρ(x))γ ;
9 for j ∈ {1, ...,M} do
10 π j← w◦S j(p1, . . . , pM)−w◦S j+1(p1, . . . , pM) ;
11 end
12 Rc(x)← ∑M

j=1(v◦ρ j(x))(π j ◦ p(x)) ;

Given an uncertain spatial cost ρ with the first moment ρµ (Figure 4.2b) and

second moment ρσ (Figure 4.2c) across an environment, the DM’s perception can vary

from being rational (i.e. using expected risk Re in Figure 1.2a) to non-rational (i.e us-

ing CPT risk Rc). By varying Θ, CPT risk Rc can be tuned to represent risk averse

(Figure 1.2b), risk indifferent (Figure 4.2d) perception, as well as uncertainty indifferent

(Figure 4.2e) to uncertainty averse (Figure 4.2f) perception.
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This process gives us the CPT perceived risk at a point x, the process is sum-

marized in Algorithm 3. It can be seen that Algorithm 3 does not depend on the

dimensionality of the C space, but on the discretization factor M. We will now use the

perceived environment for planning in the next section.

4.6 Sampling-based Planning using perceived risk

Here, we will use CPT notions to derive new cost functions, which will be used

for planning in the DM’s perceived environment generated in Section 4.5. In traditional

RRT* optimal planning is achieved using path length as the metric. In our setting, the

notion of path length is insufficient as it does not capture the risk in C . Thus, we define

cost functions that a) take into account risk and path length of a path, and b) satisfy the

requirements that guarantee the asymptotic performance of an RRT*-based planner.

Path costs functions

Let two points x,y ∈ C be arbitrarily close. A decrease in risk is a desirable trait,

hence it is reasonable to add an additional term in the cost only if R(y)−R(x)≥ 0, which

indicates an increase in DM’s perceived risk by traveling from x to y. Consider the set of

parameterized paths P(C )≜ {η : [0,1]→ C | η(0) = x, η(1) = y}. First, we first define

the cost Jc : P(C )→ R≥0 of a path η ∈P(C ). Consider a discretization of [0,1] given

by {0, t1, t2, . . . , tL = 1} with tℓ+1− tℓ = ∆t, for all ℓ. Then, a discrete approximation of

the cost over η should be:

Jc(η)≈ ∆t
L

∑
ℓ=1

max{0, Rc(η(tℓ+1))−Rc(η(tℓ))
∆t

}+δL(η),

where L(η) denotes the arc-length of the curve η , and δ ∈ R≥0 is a constant encoding

an urgency versus risk tradeoff. The greater the δ value, the greater is the urgency

and hence path length is more heavily weighted whereas, smaller δ indicates greater
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prominence towards risk. The choice of δ will be discussed in Section 4.8. By taking

limits in the previous expression, and due to the continuity and integrability of max, we

can express Jc(η) as:

Jc(η) = lim
∆t→0

∆t
L

∑
ℓ=1

max{0, Rc(η(tℓ+1))−Rc(η(tℓ))
∆t

}+δL(η)

=
∫ 1

0
max{0, d

dt
(Rc(η(t))}dt +δL(η) =∫ 1

0
max{0,(Rc)′(η(t)) ·η ′(t)}dt +δL(η). (4.4)

From here, the cost of traveling from x to y is given by

Jc(x,y)≜ min
η∈P(C ):η(0)=x,η(1)=y

Jc(η).

Similarly, the path cost using expected risk Je : P(C )→R≥0 can be obtained by

replacing the CPT cost Rc in (4.4) with the expected risk Re as calculated in (4.1).

Remark 2. (Monotonicity). It can be verified that the costs Jc and Je satisfy monotonic

properties in the sense that 1) they assign a positive cost to any path in P(C ), and 2)

given two paths η1 and η2, and their concatenation η2|η1, in the space P(C ), it holds

that Jc(η1)≤ Jc(η1|η2) (resp. Je(η1)≤ Je(η1|η2)), (due to the additive property of the

integrals) and 3) Jc (resp. Je) are bounded over a bounded C .

Proposed Algorithm

Now we have all the elements to adapt RRT* to our problem setting. Given C ,

a number of iterations T and a start point xs ∈ C , we wish to produce graph G(V,E),

which represents a tree rooted at xs whose nodes V are sample points in the configuration

space and the edges E represent the path between the nodes in V . Let Jc
cum : C → R≥0

be a function that maps x ∈ C to the cumulative cost to reach a point x from the root xs

of the tree G(V,E) using the CPT cost metric (4.4). Similarly we define Je
cum : C →R≥0

for the expected cost function Je.
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Algorithm 4: CPT-RRT*
1 Input: T,xs,xg ; Output : G(V,E),P
2 V ← xs, E← ϕ , Jc

cum(xs)← 0;
3 for i ∈ {1, . . . ,T} do
4 G← (V,E); xrand← Sample();
5 xnearest← Nearest(G,xrand); xnew← Steer(xnearest,xrand);
6 V ←V ∪ xnew; xmin← xnearest;
7 Xnear← Near(G,xnew,γRRT*,d);
8 cmin← Jc

cum(xnearest)+ Jc(xnearest,xnew) ;
9 for xnear ∈ Xnear do
10 c′← Jc

cum(xnear)+ Jc(xnear,xnew);
11 if c′ < cmin then
12 xmin← xnear; cmin← c′ ;
13 end
14 end
15 Jc

cum(xnew)← cmin ; E← E
⋃
({xnear,xnew});

16 for xnear ∈ Xnear do
17 c′← Jc

cum(xnew)+ Jc(xnew,xnear);
18 if c′ < Jc

cum(xnear) then
19 xpar← Parent(xnear,G);
20 E← (E \ ({xpar,xnear}))

⋃
({xnew,xnear}) ;

21 Xchld←Children(xnear,G);
22 for xchld ∈ Xchld do
23 Jc

cum(xchld)← Jc
cum(xchld)− Jc

cum(xnear)+ c′

24 end
25 Jc

cum(xnear)← c′

26 end
27 end
28 end
29 P← Path(G,xs,xg) ;
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Remark 3. (Additivity). The cumulative costs Jh
cum and Jcum are additive with respect

to costs Jc and Je in the sense that: for any x ∈ V we have Jc
cum(x) = Jc

cum(Parent(x))+

Jc(Parent(x),x) and similarly Jc
cum(x) = Je

cum(Parent(x))+ Jc(Parent(x),x).

The other functional components of our algorithm CPT-RRT* (Algorithm 4) are

similar to RRT*, and we briefly outline it out here for the sake of completeness:

• Sample(): Returns a pseudo-random sample x ∈ C drawn from a uniform distribu-

tion across C . Other risk-averse sampling schemes as in [DSC16] may be employed.

However, such schemes lead to conservative plans, which may not be suitable for

all risk profiles.

• Nearest(G,x): Returns the nearest node according to the Euclidean distance metric

from x in tree G.

• Steer(x1,x2) returns 
x2, if ∥x2− x1∥ ≤ d

x1 +d x2−x1
∥x2−x1∥ , otherwise.

• Near(G,x,γRRT ∗ ,d): returns a set of nodes X ∈ V around x, which are within a

radius as given in [KF11].

• Parent(x,G): Returns the parent node of x in the tree G.

• Children(x,G): Returns the list of children of x in G.

• Path(G,xs,xg): Returns the path from the nearest node to xg in G to xs.

We note that in order to compute Jc for each path, we approximate the cost as

the sum of costs over its edges, (x1,x2), and for each edge we compute the cost as the

differences max{0,Rc(x2)−Rc(x1)}+δL(x1,x2), where the latter is just the length of the

edge. Then, this approximation will approach the computation of the real cost in the
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limit as the number of samples goes to infinity. The values Rc are evaluated according

to Algorithm 3. Our proposed CPT-RRT* algorithm augments RRT* algorithm in the

following aspects: we consider a general continuous cost profile which leads to no obstacle

collision checking. We also consider both path length and CPT costs for choosing parents

and rewiring with the parameter δ which serves as relative weighting between CPT costs

and Euclidean path length.

Remark 4. (ER-RRT*). We can obtain the expected risk version of Algorithm 4 by

replacing cost function Jc by Je and following the same procedure as Algorithm 4.

Lemma 2. (Asymptotic Optimality). Assuming compactness of C and the choice of γRRT ∗

according to Theorem 38 in [KF11] , the CPT-RRT* algorithm is asymptotically optimal.

Proof. It follows from the application of Theorem 38 in [KF11], and the conditions

required for the result to hold. More precisely, the cost functions are monotonic (which

follows from Remark 2), it holds that c(η) = 0 iff η reduces to a single point (resp. the

same for c), and the cost of any path is bounded. The latter follows from the compactness

of C and continuity of the cost functions. In addition, the costs are also cumulative, due

to the additivity property in Remark 3. Finally, the result also requires the condition of

the zero measure of the set of points of an optimal trajectory. This holds because both

costs include a term for path length.

Simulation results of CPT-RRT* algorithm are presented in Section 4.8.1. Next

we describe our proposed method to evaluate and compare risk perception models in our

setting.

4.7 CPT-planner parameter adaptation

In this section, we theoretically compare CPT value function with other risk

perception functions and we describe an algorithm that can adapt the CPT parameters
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of the planner to approximate arbitrary paths in the environment. By doing so, we aim

to evaluate the expressive power of the CPT risk perception model, both theoretically

and in a motion planner by comparing its capability to approximate single and arbitrary

paths in the environment versus other approaches using different risk perception models.

If successful, this method could be used as a first ingredient in a larger scheme

aimed at learning the risk function of a human decision maker3 using techniques such as

inverse reinforcement learning (IRL). We recall that IRL requires either discrete state

and action spaces or, if carried out over infinite-dimensional state and action spaces, a

class of parameterized functions that can be used to approximate system outputs. Since

our planning problem is defined over a continuous state and action space, the class of

CPT planners for a parameter set could play the role of a function approximation class

required to apply IRL. Then, as is done in IRL, a larger collection of path examples can

used to learn the best weighted combination of specific CPT planners in the class. While

certainly of interest, this IRL question is out of the scope of this work, and we just focus

on analyzing the expressive power of the proposed class of CPT planners. Having a good

expressive power is a necessary prerequisite for the class of CPT planners to constitute a

viable function approximation class. Firstly, we will define the notion of expressiveness

and compare the expressiveness risk perception models from a theoretical point of view.

Next, we will describe an approach to compare expressiveness in a path planning setting

using SPSA.

4.7.1 Expressiveness for a risk perception model.

Let ρ be a random cost variable with an associated probability distribution. Let

R be a risk value function (with R(ρ)∈R≥0) which associates a real value to the random

cost variable ρ . We can compare the expressiveness of two risk perception models by
3Just for offline planning, or in situations where the human does not update the environment online

as new information is found.
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comparing the range space of their respective risk value functions.

Definition 2. (Expressiveness). Consider two risk perception models M1 and M2 with

corresponding classes of risk value functions V1 and V2 with respective range spaces R1

and R2. We say that M1 is more expressive (≧) than M2 if R2 ⊆ R1 for any given

positive random variable ρ . That is,

M1 ≧ M2 ⇐⇒ {R2(ρ)|R2 ∈ V2} ⊆ {R1(ρ)|R1 ∈ V1}

With this definition, we can compare expressivity of CPT with Conditional Value

at Risk (CVaR) [ADEH99], also known as “expected shortfall”, another popular risk per-

ception model in the financial decision making community. CVaR uses a single parame-

ter q ∈ [0,1) representing the fraction of worst case outcomes to consider for evaluating

expected risk of an uncertain cost ρ . We will use Rv
Q to denote the perceived risk by

CVaR model with q = Q. So a q≈ 1 considers the worst case outcome of ρ and a q = 0

considers all the outcomes thus making the CVaR value equal to expected risk (Rv
0 = RE).

Now we will proceed to compare expressiveness of Expected Risk, CVaR and CPT with

parametrized risk value function classes Re, Rv and Rc respectively.

Proposition 1. Let us Consider Expected risk (ER), CVaR and CPT risk models with

risk value function classes Re, Rv and Rc defined accordingly. Then, Expected Risk is the

least expressive of the three models, that is CVar ≧ ER and CPT ≧ ER for any given

random variable ρ .

Proof. The function class Re has a single function E(ρ) which gives the expected value

of ρ . So the range set of Re is a singleton, containing the expected value of ρ . It

is easy to see that by choosing a function Rv
0 ∈ Rv and Rc

Θ ∈ Rc where Θ = {1,1,1,1}

we have Rv
0(ρ) = Re(ρ) = Rc

Θ. Which implies that E(ρ) ∈ {Rv
q(ρ)|q ∈ [0,1)} and also

E(ρ) ∈ {Rc
Θ(ρ)|Rc

Θ ∈ Rc}, thus proving the expressive order.
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Next we will look at the relationship between the CVaR value of a random variable

ρ and the expected value of another random variable κρ where κ > 0 is a scaling factor.

Proposition 2. Let us consider CVaR value of a given random variable ρ , then there

exists a κq ≥ 1 such that Rv
q(ρ) = E(κqρ) for all q ∈ [0,1).

Proof. The range space of Rv is [E(ρ),b], where b is the worst case outcome of ρ . We

also know that E(κρ) = κE(ρ). From this we can construct κq =
Rv

q(ρ)
E(κρ) which shows

that Rv
q(ρ) = E(κqρ)

From this we can compare the expressivity of CPT and CVaR models.

Proposition 3. Let us consider CVaR and CPT risk models with risk value function

classes Rv and Rc defined accordingly. Then, we have the expressive order CPT≧CVaR

for any given random variable ρ .

Proof. Considering a subclass of CPT value functions Rc
Θ∗ where Θ∗ ∈ {Θ|α = 1,β =

1,γ = 1,λ = κq}, we have CPT value Rc
θ = E(κqρ) with θ ∈ Θ∗ and some constant κq

defined according to previous proposition. From this we can say that {Rv
q(ρ)|q ∈ [0,1)}

⊆ {Rc
θ |θ ∈Θ∗} ⊆R(Rc), which concludes the proof.

Lemma 3. Let us Consider Expected risk (ER), CVaR and CPT risk models with risk

value function classes Re, Rv and Rc defined accordingly. Then, we have the following

expressive order : CPT≧ CVaR≧ ER.

Proof. The proof immediately follows from the above three propositions.

The above arguments imply that risk aversion can equivalently be modeled as

an expected value of a scaled random variable, with greater scaling implying higher risk

aversion. This is captured in both CPT (λ parameter) and CVaR (q parameter) models.

Additionally, CPT also captures risk sensitivity and uncertainty sensitivity which makes
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Figure 4.1. Boxplots showing the distribution of 1000 value samples of CPT and CVaR risk perception
model for three different distributions.

it more expressive than CVaR. This can be visualized in Fig. 4.1. A thousand samples

of Θ ∈ R4 were drawn uniformly randomly for CPT, while for CVaR, q was sampled

uniformly across [0,1]. Three distributions: Normal, half Normal and Uniform, were

considered with mean 100 and standard deviation of 10 for the first two and a range

of [70,130] for the latter. The median values for each box plot is indicated on the top

row. The mean value of the distribution is indicated as “stars”, the black lines above

and below the box represent the range, and + indicates outliers. It can be clearly seen

that the range of values captured by CPT is greater, which is in accordance with the

theoretical argument above. Next, we will propose a method to evaluate expressiveness

in the context of path planning.

4.7.2 Comparing expressiveness in path planning

Let us suppose that we have an arbitrary example path Pd drawn in the environ-

ment. If the class of CPT planners is expressive enough, we should be able to find a set

of parameters that is able to to exactly mimic this drawn path. Since an arbitrary path
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Pd belongs to a very high dimensional space4 and the planner parameters are typically

finite, any amount of parametric tuning may not produce good approximations. This

is what we evaluate in the following. We use the term Ar(P;Pd) ∈ R≥0 to denote the

area enclosed between the given path Pd and another path P. This value measures the

closeness between P and Pd.

A path P produced by a CPT planner can be represented by the CPT parameters

Θ. In order to find the closest possible path P∗ to Pd we have to evaluate

argmin
PΘ,Θ∈T

Ar(PΘ;Pd), (4.5)

where PΘ is the path produced by CPT-RRT* with CPT parameters Θ, and T is the

set of all possible values of Θ. Directly evaluating (4.5) is computationally not feasible

as the set T is infinite and resides in 4D space.

An alternative to (4.5) is to use parameter estimation algorithms to determine

Θ∗ ∈ T which characterizes the path P∗ with Ar(PΘ;Pd) as a loss/cost function. We

note that neither Ar(PΘ;Pd) can be computed directly (without running CPT-RRT*

first), nor the gradient of Ar wrt Θ is accessible. This limits the use of standard gradient

descent algorithms to estimate Θ∗. To address this problem, we use SPSA [Spa03] with

Ar(PΘ;Pd) as the loss function to estimate the parameters Θ∗. Next, we briefly explain

the main idea and adaptation of SPSA to our setting and refer the reader to [Spa03] for

more detailed treatment and analysis of the SPSA algorithm.

We start with an initial estimate Θ0 and iterate to produce estimates Θk, k ∈Z≥0

using the loss function measurements Ar(PΘk ;Pd). The main idea is to perturb the

estimate Θk according to [Spa03] to get Θ+ and Θ−, for the kth iteration. These

perturbations are then used to generate the perturbed paths PΘ+ ,PΘ− using Algorithm 4.
4An arbitrary path can be modeled as a curve defined by a large number of parameters (possibly

infinite).
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With these perturbed paths, the loss function measurements Ar(PΘ+;Pd),Ar(PΘ−;Pd) are

evaluated and used to update our parameter Θk according to [Spa03]. To test the

goodness of the updated parameter, we determine the corresponding path PΘk+1 and

measure Ar(PΘk+1;Pd). If the area is within a tolerance κ ∈R>0, that is, if Ar(PΘk+1;Pd)<

κ , the iteration stops and PΘk+1 is returned. We followed the guidelines from [Spa03] for

choosing the parameters used in SPSA. The results of this adaptation are evaluated and

compared with the results that employ other risk perception models in Section 4.8.

4.8 Results and Discussion

In this section we illustrate the results of the solutions to the problem statement

proposed in Sections 4.5 and 4.6, considering a specific scenario having some risk and

uncertainty profiles.

4.8.1 Environment Perception and Planning

We consider a hypothetical scenario where an agent needs to navigate in a room

during a fire emergency. In this, the 2D configuration space for planning becomes

C = [−10,10]× [−10,10]. The agent is shown a rough floor map (Figure 4.2a) with

obstacles (which are thought to be ablaze) in the environment with a blot of ink/torn

patch, making that region unclear and hard to decipher. This results in the spatial

uncertain cost ρ with first moment (ρµ) represented by cost associated to obstacles and

fire source and second moment (ρσ ) represented by the uncertainty associated to the ink

spot/tear.

The blue colored objects are the obstacles whose location is known to be within

some tolerance (dark green borders) and the light orange ellipses illustrate that these

objects have caught fire. The grey ellipse indicates a possible tear/ink spot on the map,

which makes that particular region hard to read. The start and goal positions are in-
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dicated as blue spot and green cross respectively. We use a scaled sum of bi-variate

Gaussian distribution to model the sources of continuous cost (orange ellipses) with ap-

propriate means and variances to depict the scenario in Figure 4.2a. We utilize bump

functions from differential geometry to create smooth “bumps” depicting the discrete

obstacles. One approach to do this is described in Section 4.3. An alternative procedure

is briefly described as follows. Consider the maximum cost value imparted to the obsta-

cles as ρmax ∈ R≥0 and let a1,a2,b1,b2 ∈ R≥0 be the inner (blue rectangle) and outer

(dark green borders) measurements of the obstacles from the center c = (c1,c2)∈C . Let

x = (x1,x2) ∈ C be a point in the configuration space with f ,g,h being real valued scalar

functions given by f (y) = e−
1
y ,y ∈ R>0 and f (y) = 0 otherwise, g(y) = f (y)

f (y)+ f (1−y) and

h(y) = 1−g( y2−a2

b2−a2 ). Then, ρµ(x) can be calculated by :

ρµ(x) = ρmaxh(x1− c1)h(x2− c2). (4.6)

This procedure produces smooth “bumps” in the cost profile which are visualized in

Figure 4.2b using ρmax = 20. This approach can be easily generalized to arbitrary high

dimensions by simply multiplying upto h(xi−ci) terms in (4.6) to create a bump function

in the ith dimension. To generate the second moment of cost ρσ , we use a scaled bi-

variate Gaussian distribution with appropriate means and variances to depict the ink

spot/tear in Figure 4.2a. Now we will illustrate the results of implementing Algorithm 4

in this environment.

Simulations and discussions

With the uncertain cost ρ with moments ρµ and ρσ from previous paragraph,

we use a half Normal distribution and discretization factor M = 20 to generate the costs

ρ(x) and their corresponding p(x) from Section 4.5. The results of using Algorithm 3

to every point in C to generate the perceived environment is shown in Figures 1.2 and
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(a) Rough sketch of environ-
ment.

(b) Mean cost ρµ (c) Uncertainty ρσ

(d) Risk indifferent profile with
Θ = {0.74,1,0.3,2.25}

(e) Uncertainty in-
different profile with
Θ = {0.74,3,0.88,2.25}

(f) Uncertainty averse profile
Θ = {0.74,0.05,0.88,2.25}

Figure 4.2. Environment perception using CPT.

4.2. The level of risk at a point Rc or Re is indicated by color map. Figure 1.2a shows a

rationally perceived environment using expected risk Re. Whereas, Figure 1.2b indicates

a non-rational highly risk averse perception using CPT (Rc) with Θ = {0.74,2,0.9,10}

having a high λ value. A risk indifferent profile (Figure 4.2d) is generated by Θ =

{0.74,1,0.3,2.25} having a low risk sensitivity γ value. Similarly, uncertainty indifferent

profile (Figure 4.2e) and uncertainty averse profile (Figure 4.2f) are generated by fixing

α and having high and low β values respectively.

After the perceived environment is generated, Algorithm 4 is used to plan a path

from the start point to the goal point shown in Figure 4.2a. We use T = 20,000 itera-

tions for the CPT-RRT* algorithm with δ = 10−4. The same random seed was used for
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all executions for consistency. The path planning results are illustrated in Figure 4.3.

As expected, we see that the path depends on the perceived risk profile. Figure 4.3a

indicates a circuitous path due to the highly risk averse perception, whereas Figure 4.3d

indicates a shorter and more direct path for a rational DM using expected risk. In-

creasing the uncertainty sensitivity (lowering β ) and reducing risk aversion (lowering

λ ) makes the planner avoid the highly uncertain ink spot/tear in the top-right region

and take a more riskier path in the lower region as shown in Figure 4.3b. By having a

medium risk aversion and lower uncertainty sensitivity (increasing β ), the planner pro-

duces a different path through the medium risky and uncertain middle region as shown

in Figure 4.3c.

We also demonstrate the capability of our planner in 3D space, which is illustrated

in Fig. 4.4. We employ a cubic configuration space measuring 10 units, cluttered with

randomly placed 50 cube obstacles of unit volume. The start position is (1,1,1) and

goal position is (9,9,9). There is also a continuous source of risk (modeled as a scaled

normal distribution as before) centered at (3,3,3). We use Θ = {0.74,1,0.9,5} (same

as 4.3b) with γRRT∗ = 500, d = 0.2 and δ = 10−6. From Fig. 4.4, we see that CPT-RRT

is able to find a reasonably smooth path avoiding obstacles and the risky area, in similar

number of iterations as in the 2D case. This shows the capability of our planner in 3D

space.

Solution quality

Figure 4.5 illustrates the empirical convergence and solution quality of the paths

produced by our algorithm. We performed empirical convergence tests, by running

CPT-RRT* 100 times with the same parameters and initial conditions and measuring

the area between paths produced after every 500 iterations for a total of 80,000 iterations.

The results are shown in Figure 4.5a. We see that initially (< 10000 iterations) there

are changes in the output path as the space is being explored and the output path is

66



(a) High cost and high uncertainty sensitivity (Θ =
{0.74,1,0.9,10})

(b) Medium cost aversion and high uncertainty sen-
sitivity (Θ = {0.74,1,0.9,5})

(c) Medium cost aversion and low uncertainty sen-
sitivity (Θ = {0.74,2,0.9,5})

(d) Expected Risk

Figure 4.3. Paths produced by CPT-RRT* under different perception models. White lines indicate
the tree grown from the start position, red line indicates the optimal path to goal after T = 20,000
iterations. Background color map depicts the CPT costs in (a)-(c) and expected costs in (d)
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Figure 4.4. Path(Red line) by CPT-RRT* in 3D environment with 50 discrete random obstacles and a
continuous risk source after 20,000 iterations.

changing. After 10,000 iterations we consistently see minimal path changes indicating

that the algorithm is converging towards a desirable path. Then we also checked the

solution quality of the path by computing the cost of the output path every 250 iterations

as shown in Figure 4.5b for 100 trials consisting of 25,000 iteration. We see that the

there is a consistent decrease in path cost in all the trials throughout. We also note that

after 10,000 iterations the cost decrease starts to plateau, indicating that the algorithm

is close to a high quality (low cost) solution. From these observations of Figure 4.5, we

recommend upwards of T = 10,000 iterations to achieve smooth and consistent paths in

our setting.

Comparison in narrow and cluttered environments

Here, we will illustrate and compare the performance between our RRT* frame-

work and T-RRT* [DSC16] (another algorithm operating on continuous cost spaces) in

a cluttered environment with narrow passages as shown in Figure 4.6. To construct this
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(a) Convergence over iterations

(b) Path cost over iterations

Figure 4.5. a) Empirical convergence analysis. The distance between paths after every 500 iterations
(y-axis) with the number of iterations in thousand (x-axis). b) Cost of the output path (y-axis) every
250 iterations with the number of iterations (x-axis)
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(a) Paths produced by CPT-RRT*. (b) Paths produced by T-RRT* using IC.

(c) Paths produced by T-RRT* using MW. (d) Paths produced by varying δ

Figure 4.6. Path comparison with T-RRT* and varying δ . (a)-(c)Paths produced in a cluttered envi-
ronment using T = 20,000 iterations for CPT-RRT* and 20,000 nodes for T-RRT*. (d) Paths produced
by CPT-RRT* by varying δ with Θ = {0.74,1,0.9,7.5}.

environment, we used 100 randomly placed small objects on the right half and two big

objects separated by a narrow passage on the left half. Start point xs is on the top right

corner and the goal xg is at the center of the narrow passage. Bump functions similar to

previous paragraphs were used to construct a smooth spatial cost ρ from the obstacles.

Since T-RRT* does not have risk perception capabilities, for a fair comparison we use

the continuous cost ρ to implement both algorithms. In this way, we will be able to

specifically compare the planning capabilities of both algorithms in the same continu-

ous cost environment. We used γRRT* = 100 and d = 0.35 for both algorithms. From

Figure 4.6a we can see that our algorithm is able to sample and generate paths in the

narrow passage, as well as avoid obstacles in a cluttered environment. In comparison,

we can see that from T-RRT* employing integral cost (IC) in Figure 4.6b and minimum

work (MW) in Figure 4.6c cannot generate paths in the narrow costly region fast enough

irrespective of the TRate used due to the sampling bias towards low-cost regions. We used

nodes instead of iterations for T-RRT* to maintain an equal number of nodes in the

tree, as a node does not get added if it fails the transition test. Also, T-RRT* paths do
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not appear to be as smooth as the paths from our framework, irrespective of the cost(IC

or MW) used. We also note that, the cluttered and high cost environment induces a

high failure rate of the transition test, resulting in longer run times of T-RRT* required

to build the same number of nodes as our algorithm, especially for high TRate values.

Comparison in dynamic environments

Here, we contrast the performance of CPT-RRT* and Risk-RRT* [CM17] (a

risk aware planner) in a 10 by 10 environment area with static and moving obstacles as

shown in Figure 4.7. To account for risk dynamics, we will be planning in the space-time

domain, and assume knowledge of the dynamics (or a good estimate) of ρµ(t) and ρσ (t),

which will result in a time-varying perceived risk map Rc(x, t). We also assume that each

edge in the tree will be traversed in some time ∆t. The underlying RRT* parameters

employed by both algorithms were taken to be identical, with γRRT∗ = 100 and d = 0.25,

while δ = 0.1 for CPT-RRT*. Our starting point is the same parametric CCR Risk

Map [CKT+16] as in Risk-RRT*, which generates a continuous, and time-varying, cost

map based on the pose and velocity of a moving human as shown in Fig. 4.7a (a snapshot).

The human obstacles move back and forth within the indicated range (gray line), with

top two obstacles moving d units in ∆t time, while middle left obstacle moves at 0.1d

units. Since the CCR map does not incorporate uncertainty, we will use it as the mean

cost ρµ(t). We employ a scaled normal distribution on top of each source of dynamic

risk (moving human) to denote ρσ (t), representing uncertainty for each source. From

ρµ(t) and ρσ (t), we calculate Rc(x, t) according to Algorithm 3 which is visualized in

Fig. 4.7b. Note that with higher risk (moving obstacles as compared to static or no

obstacles), the lighter the color in the map. We compare our algorithm with Risk-RRT*

in two scenarios. At first, for fair comparison, and since Risk-RRT* does not consider

uncertainty or risk perception models, we use directly the CCR cost map or ρµ(t) for

planning. This corresponds to a rational DM model. The results are summarized
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in Fig. 4.7c which show path length and cumulative risk returned by CPT-RRT* and

Risk-RRT* using the CCR map in 50 trials. In general, we see a lower performance in

Risk-RRT* due to its conservative approach in dealing with risk. First, since risk is not

explicitly accounted for in the cost function of Risk-RRT* and “risk” is treated as an

“obstacle” to avoid, the resulting path produced by Risk-RRT* is longer, even though

its cost function optimizes path length. The length of the path from our planner is

shorter, with comparable cumulative risk of the output paths of both planners computed

as in (4.4). Furthermore, 12 out of the 50 trials in case of Risk-RRT* could not find a

solution within 15,000 iterations. This seems to be a consequence of a higher sample

rejection rate due to the tight free spaces created by the dynamic obstacles when close

to other objects. This drawback is more pronounced when considering a risk-averse DM.

Fig. 4.7b represents such DM who perceives that getting close to the dynamic obstacles

is highly risky, as compared to the perception of a rational DM represented by Fig. 4.7a.

In this way, the risk values in Fig. 4.7b are in the range 0−421, which is much higher

than those of the CCR Map in Fig. 4.7a (with ranges 0−100). Due to higher risk values

as given by this map, the sample rejection in Risk-RRT* is very high and could not find

a feasible path in any of 50 trials, whereas CPT-RRT* consistently found a path similar

to the one shown in Fig. 4.7b in all of the 50 trials.

Variation in δ

Using the previous environment (Figure 4.2a) and a cost and uncertainty averse

profile (Figure 4.3a)), we run CPT-RRT* with δ varying from δ = 10−6 to δ = 102 for

T = 15,000 iterations. The results are shown in Figure 4.6d. We can see that when δ ≥ 1

the path output changes reflecting an increase in urgency over risk and thus choosing

shorter paths. When δ is comparable to the risk values (in this case δ = 100), we see

that the paths no longer avoid the high risk area and can even go through the soft

obstacles. From this study, we observe that δ needs to be rather small as compared to
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(a) Paths returned by CPT-RRT*(Orange)
and Risk-RRT*(White) in CCR map

(b) Paths returned by CPT-RRT*(Orange) in
risk averse perception of CCR map with Θ =
{0.74,1,0.88,6.25}

(c) Boxplots showing path length and cumulative risk returned by CPT-RRT* and Risk-RRT*
using the CCR map in 50 trials (38 trials for Risk-RRT* as 12 did not succeed in finding a
path) consisting of 15,000 RRT* iterations.

Figure 4.7. Comparison with Risk-RRT*. The CCR Map containing 3 moving humans and a stationary
obstacles at initial time is shown in the background.
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the given risk profile in order to ensure meaningful consideration of risk in the planning

process. If explicit obstacle avoidance is a necessity, then a standard collision check can

be performed prior to adding a node in the tree G .

Overall, our adaptation of CPT to the planning setting produces paths that are

logically consistent with a given risk scenario. Additionally, our planning framework can

explore narrow corridors and cluttered environment and produce smooth paths quickly.

4.8.2 CPT planner expressive power evaluation

We now discuss the proposed SPSA framework in Section 4.7 to gauge the adapt-

ability of CPT as a perception model to depict a drawn path Pd. To implement SPSA,

we follow guidelines from [Spa03]. We consider a Bernoulli distribution of ∆k with

support {−1,1} and equal probabilities, learning rate ak =
0.4

(1.6+k)0.601 and perturbation

parameter ck =
0.97

(1.6+k)0.301 . We choose Θ0 = {0.74,1,0.88,2.25} for CPT throughout the

simulation, which are the nominal parameters from [TK92] and q0 = 0.5 for the CVaR

variant. We use the same environment as in Figure 4.2 for all the simulations. Four dif-

ferent paths {P1
d ,P

2
d ,P

3
d ,P

4
d } are drawn by hand on the expected risk profile (Figure 4.3d)

using a computer mouse as shown in Figure 4.8a. Path P1
d is similar to a path generated

with expected risk perception (Figure 4.3d). Whereas, path P4
d and P2

d are similar to

paths generated with high risk aversion (Figure 4.3a) and uncertainty insensitivity (Fig-

ure 4.3c) respectively. Path P3
d is more challenging to represent as it shows an initial

aversion to risk and uncertainty and then takes a seemingly costlier turn at the top. We

then use the SPSA approach described in Section 4.7 with a tolerance κ = 15 and a

maximum of 10 SPSA iterations per trial. We use Tk = 15000 iterations and δ = 0.01 to

implement Algorithm 4 to determine PΘ in order to determine the loss Ar during each

SPSA iteration. For the CVaR variant, the planner (Algorithm 4) replaces Rc with Rv

in order to use perceived risk according to CVaR while the rest of the RRT* framework
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remains unchanged. At the end each trial we get the area (loss) Ar between the returned

PΘ and the drawn path Px
d .

We represent the statistics of the returned cost Ar as boxplots as shown in

Figure 4.8b. Each box plot represents the distribution of 50 cost/Area Ar values re-

turned after each trial for each path and perception model. The Y-Axis represents the

cost/Area Ar in a base 10 log scale. We calculate a few sample areas: Ar(P1
d ,P

2
d ) =

99.14,Ar(P2
d ,P

3
d ) = 35.20 and Ar(P3

d ,P
4
d ) = 73.41 to give a quantitative idea of the mea-

sure Ar in this scenario to the reader. The median values for each box plot is indicated

on the top row. The mean value of the distribution is indicated as “stars”, the black

lines above and below the box represent the range, and + indicates outliers. We observe

that from Figure 4.8b, both Path P1
d and Path P4

d were captured equally well with CVar

and CPT with low Ar values. Since both CPT and CVaR are generalizations of expected

risk, paths close (like P1
d ) to paths generated from expected risk can be easily mimicked.

Similarly, since CPT and CVaR are designed to capture risk aversion, paths close (like

P4
d ) to risk averse paths (Figure 4.3a) can also be easily captured.

However, we see a contrast in performance for path P2
d and path P3

d . CPT, on

both occasions, is able to track the drawn paths reasonably well with low Ar values.

Whereas CVaR has consistently higher (an order of magnitude) Ar values, indicating

the inability to capture the risk perception leading to path P2
d and path P3

d . This is due

to the fact that CPT can handle uncertainty perception independently from the cost

(as seen between Figure 4.2e and Figure 4.2f). This ability is needed to capture paths

like P2
d and P3

d which is lacking in models like CVaR and expected risk. This shows the

generalizability of CPT over CVaR with CPT having a richer modeling capability, thus

validating the theoretical results from Lemma 3.
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(a) Four paths {P1
d ,P

2
d ,P

3
d ,P

4
d } are drawn in blue, orange, green and red respec-

tively.

(b) Boxplots showing the cost(Area) returned after using SPSA with CPT and CVaR
to capture risk profile of the drawn paths.

Figure 4.8. Result of using CPT and CVaR to model drawn paths.
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4.9 Summary

In this Chapter, we have proposed a novel adaptation of CPT to model a DM’s

non-rational perception of a risky environment in the context of path planning. Firstly,

using CPT, we provided a tuning knob to model various risk perceptions of an uncertain

spatial cost. Next, we demonstrated a novel embedding of non-rational risk perception

into a sampling based planner, the CPT-RRT*, to plan asymptotically optimal paths in

perceived environments. Finally, we theoretically and empirically evaluated CPT as a

good approximator to the risk perception of arbitrary drawn paths by comparing against

CVaR, and show that CPT is a richer model approximator.

In the next chapter we will look at designing risk-perception-aware control strate-

gies.

This chapter, in full, is a reprint of the material as it appears in the publication

Planning under non-rational perception of uncertain spatial costs, A. Suresh and S.

Martínez, IEEE Robotics and Automation Letters, 6(2), pp. 4133–4140, 2021. The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Risk-Perception-Aware Safe Control Design

This work proposes a novel Risk-Perception-Aware (RPA) control design using

non-rational perception of risks associated with uncertain dynamic spatial costs. We use

Cumulative Prospect Theory (CPT) to model the risk perception of a Decision Maker

(DM) and use it to construct perceived risk functions that transform the uncertain

dynamic spatial cost to deterministic perceived risks of a DM. These risks are then

used to build safety sets which can represent risk-averse to risk-insensitive perception.

Using these sets, we define novel notions of “inclusiveness” and “versatility” which can

be employed to compare and evaluate any risk models in the context of RPA safety-

critical controls. We then prove that CPT is the most “inclusive” and “versatile” model

w.r.t. Conditional Value at Risk (CVaR) and Expected Risk (ER). Given a RPM, we

construct a class of Control Barrier Functions (CBFs) and generate perceived-safety-

critical controls using a Quadratic Program (QP) to guide an agent safely to a goal. For

a class of truncated-Gaussian costs, we provide sufficient geometric conditions for the

above QP to be feasible. We also prove that CPT-equipped RPA controller has both a

larger feasible control set and more accurate stabilization w.r.t CVaR and ER models.

We present simulations in a 2D environment to illustrate the proposed controller.
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5.1 Literature Review

Safe control design has been tackled using various frameworks such as artificial

potential functions [Kha90], barrier certificates [PJ04] and more recently, control bar-

rier functions (CBFs) [ACE+19]. CBFs have gained popularity due to their Lyapunov-

like properties, rigorous safety guarantees and ease of application. They have been

successfully used in optimization [ACE+19], stabilization [OC19] and data-driven con-

trol frameworks [LSH21]. CBFs have traditionally been used for static obstacles. Re-

cently, CBFs are employed to handle moving obstacles [CPG18] and multi-agent sys-

tems [GCE21, AXA21a], however they do not consider risk or uncertainty. Uncertainty

is mainly handled using robustness measures [PJP07], stochastic control [Cla19], or

chance constraints [KDFA20]. Very few works have considered the notion of risk percep-

tion explicitly in a control system [SY18, AXA21b]. The previous works use CVaR to

quantify risk perception, which only captures rational risk-averse behavior. CPT on the

other hand is a more expressive (see [SM21a]), non-linear and non-rational perception

theory which is yet to be applied in the context of safety for a control system. Moreover,

CPT has been successfully used in engineering applications like path planning [SM21a],

traffic routing [GFBA10], and network protection [HS19].

5.2 Contributions

We first show how to employ non-rational risk-perception notions to express

perceived safety for control systems, expanding the spectrum of risk perception models

considered in the literature. We formally introduce the novel concepts of “inclusiveness”

and “versatility” to compare and contrast the ability of different models to handle a

variety of DMs’ risk profiles. We consider two popular models, CVaR, and ER, and

prove that CPT is both more “inclusive” and “versatile” than these. Next, we construct
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a class of CBFs which guarantee safety according to a DM’s perceived risk, corresponding

to any RPM. Using a QP formulation, we obtain Risk-Perception-Aware (RPA) controls

that can guide an agent to a desired goal while maintain perceived safety. We analyze

feasibility conditions and stability properties of the proposed approach in terms of the

three RPMs, and prove that CPT equipped RPA controller has both a larger feasible

control set and more accurate stabilization. We illustrate our results through simulations

and animations in a 2D environment.

5.3 Risk perception formalism and Problem Statement

Here, we introduce notation1, formalize risk perception, and briefly describe CPT

and CVaR (see [Dha16] and [RU00] for more details). Later, we describe our problem

statement.

Risk Perception: By risk perception, we refer to the notion of attaching a value

(risk) to a random cost output. Formally, let S be a discrete sample space endowed

with a probability distribution P. We model environmental cost via a discrete random

variable (RV) c : S → R≥0, taking M values, ci ∈ R≥0, i ∈ {1, . . . ,M}, and such that

pi = P(c = ci), with ∑M
i pi = 1. We let C be the set of such RVs and R : C →R≥0 a value

function which associates a value (risk) to a RV.

A value function R can be defined in many ways, resulting in different risk per-

ceptions. Here, an RPM (or, briefly, a model) is characterized as a parameterized

family M ≜ {RΘ|Θ ∈Rl} of value functions. In what follows, we consider three popular

RPMs: Expected RiskER,CVaR2 [RU00] and CPT [TK92]. CPT captures non-rational

decision making, and was introduced in [Dha16, D.P98]. In CPT, outcomes are first
1The Euclidean norm in Rn is denoted by ∥.∥. We use E as the expectation operator of a random

variable. The set Br(y)≜ {x ∈X |∥x− y∥ ≤ r} is a ball of radius r centered at y.
2The CVaR model uses a class of value functions parameterized by q∈ [0,1] to represent expectation

over a fraction (q) of the worst-case outcomes. Thus the CVaR value with q = 1 is the worst-case
outcome of c, cM. While, with q = 0 CVaR value equals ER (Rcv

0 = Re).
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weighed using a non-linear utility function v : R≥0→ R≥0, with v(c) = λcγ , modeling a

DM’s perceived cost. The parameters λ ∈ [1,∞),γ ∈ [0,1] represent “risk aversion” and

“risk sensitivity”, respectively. In addition, a non-linear probability weighing function

w : [0,1]→ [0,1], given by w(p) = e−β (− log p)α and w(0) = 0, is used to model uncertainty

perception. Here, uncertainty sensitivity is tuned via the parameters α,β ∈ R>0. CPT

also suggests that probabilities are perceived via decision weights Πi ∈ [0,1], which are

calculated in a cumulative fashion with Πi = w(∑M
j=i p j)−w(∑M

j=i+1 p j) and ΠM = w(pM).

With this, assigning the parameter q for CVaR and θ = {α,β ,γ,λ} for CPT, the

value functions of ER (Rer), CVaR (Rcv) and CPT (Rcpt) of a DM are defined as:

Rer(c)≜ E(c) =
M

∑
i=1

ci pi, (5.1a)

Rcv
q (c)≜ E [c|c≥min{d : P(c≤ d)≥ q}] , (5.1b)

Rcpt
θ (c)≜

M

∑
j=1

v(c j)Π j. (5.1c)

In CPT, θ can be varied to generate different value functions pertaining to various

risk profiles of DMs (from risk-taker to risk-averse). We refer to [SM21a, Dha16] for more

details on the parameter choices in CPT.

Risky Environment: Consider a compact state space X ⊂Rn containing dynamic

spatial sources of risk at y ∈X and an agent or robot at a state x ∈X . The relative

state space is Z ≜ {ξ = y− x|x ∈X , y ∈X }. Our starting point is a discrete random

field cost c : Z → R≥0, that aims to quantify objectively the (negative) consequences

of being at x ∈X relative to a known risk source at y ∈X . More precisely, c(ξ ) is a

discrete RV which takes values ci(ξ ) ∈ R≥0, for i ∈ {1, . . . ,M}. We assume that c has

associated mean and standard deviation functions cµ : Z → R≥0 and cσ : Z → R≥0,

respectively. We assume that cµ ,cσ are continuously differentiable in their domains.

Given c, an associated spatial-risk function is given by Rc : Z → R≥0, Rc(ξ )≡ R(c(ξ )),
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where R belongs to any of the previous RPMs defined in (5.1) above. When clear from

the context, we will identify Rc ≡ R ∈M . The larger Rc is at ξ , the higher the perceived

risk of being at x ∈X .

Dynamic Systems: We aim to control an agent modeled as a control-affine dy-

namic system:

ẋ = fx(x,u) = f (x)+G(x)u, (5.2)

where u ∈ Rm, G : X → Rn×m, f : X → Rn and f and G are locally Lipschitz. We also

consider a dynamic risk

ẏ = fy(y), y ∈X , fy : X → Rn, (5.3)

with a locally Lipschitz fy. We focus on moving obstacles as the source of risk, but

the approach can be extended to other scenarios. We also assume that a asymptotically

stable controller k : X →Rm has been designed to guide the agent to a goal state x∗ ∈X

in the absence of risk sources.

Problem Statement: We wish to drive the agent to a goal x∗ ∈X safely, while

avoiding risky areas. Formally, we define safety considering a perceived spatial risk

function Rc:

Definition 3. (Perceived Safety) An agent moving under (5.2), and subject to an uncer-

tain cost source c with dynamics (5.3), is said to be safe w.r.t. the perceived risk Rc iff

Rc(ξ (t))≤ ρ , ∀ t ≥ 0, for some tolerance ρ ∈ R>0.

We now state the problems we address in this work:

Problem 9. (RPA safe sets) Given a risky environment X , endowed with an uncertain

cost c, design perceived safety sets considering models from (5.1). Characterize and

contrast the properties of these sets among the three models.
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Problem 10. (RPA safe controls) Under previous conditions, design a controller u, nom-

inally deviating from a stable state feedback controller k, such that the agent reaches

the goal x∗ safely (Definition 3) and examine feasibility of u.

5.4 Perceived Safety using various RPMs

Here, we address Problem 9 by defining two properties: “Inclusiveness” and “Ver-

satility”, which will be used to compare and contrast ER, CVaR and CPT models.

Fix a cost field c, and a safety level ρ ∈ R≥0, and define:

Xsafe(R;y) ={x ∈X |R(y− x)≤ ρ}, (5.4a)

Xrisky(R;y) ={x ∈X |R(y− x)> ρ}, (5.4b)

where Xsafe(R;y) (or Xrisky(R;y)) indicates the set of all states x which are perceived

safe (or risky) w.r.t a model M with value function R, when a risk source is at y. Given

M , let RM (c) ≡ RM ⊂ R≥0 denote3 the set of all possible perceived risk values of c.

Similarly, let the total safe set YM (y,c)≡YM and total risky set YM (y,c)≡YM denote4

all the states in X that can be considered safe (resp. risky) according to a model M

when a risk source is at y.

Definition 4. (Inclusiveness and Strict Inclusiveness). Consider two models M1 and M2,

a threshold ρ ∈R>0, a cost field c, and a risk source at y ∈X . Let the sets Y1, Y 1 and

Y2, Y 2 be the total safe and risky sets respectively of M1 and M2 wrt y and a spatial

cost c. We say that M1 is more inclusive than M2 (M1 ▷ M2) if either Y 2 ⊆ Y 1 and

Y2 ⊊ Y1 holds, or Y 2 ⊊ Y 1 and Y2 ⊆Y1 holds, for all y ∈X and costs c : Z →R≥0. If

both the above conditions simultaneously hold, then M1 is strictly more inclusive than

M2 (M1 ▶ M2).
3RM (c)≜ {r ∈ R|r = RΘ(c),∀RΘ ∈M }.
4YM (y,c)≜⋃

R∈M Xsafe(R;y), YM (y,c)≜⋃
Rc∈M Xrisky(R;y)).
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The above definition implies that, if M1▷M2, then M1 has the ability to perceive

a wider range of both safe and risky sets for a given environment than M2.

Now we compare the inclusiveness of CPT, CVaR and ER via their respective

value functions. We first identify conditions for strict inclusiveness (Lemma 6) and

compare the range space of these models (Lemma 7), which can be found in the Appendix.

Based on these, the following theorem compares inclusiveness among the three models.

Theorem 2. (Inclusiveness Comparison) Let c be a discrete random field. Consider ER,

CVaR and CPT models with value functions Rer, Rcv
q , and Rcpt

θ , respectively. For any

threshold ρ ∈ R≥0 and risk source at ȳ ∈X , CPT is more inclusive than CVaR and

ER. If cost outcomes ci > 1, ∀i, then CPT is strictly more inclusive than CVaR and ER.

Additionally if cσ (ȳ− x)> 0,∀x ∈X , then CVaR is more inclusive than ER.

Proof. From Lemma 7, Rer ⊊ Rcpt and RCVaR ⊆Rcpt. As in Lemma 7, take Rcpt
θ1 =

λcµ , for some θ1. Choosing λ = b̄, with b̄ > b
cµ
, we get Rcpt

θ1 > Rcv
q , for any q ∈ [0,1],

and Rcpt
θ1 > Rer. Thus, from Lemma 7, we have CPT ▷ CVaR and CPT ▷ ER. With

ci > 1 for all i, taking θ1 = {1,1,1,λ}, with λ > 1, we get Rcpt
θ1 > Rcv

q for any q ∈ [0,1]

and Rcpt
θ1 > Rer. Now, take θ2 = {1,1,γ,1}, with 0 < γ < 1, we have Rcpt

θ2 = ∑i cγ
i pi.

Since ci, pi > 0, ∀i, then Rcpt
θ2 <∑i ci pi, implying Rcpt

θ2 < cµ and Rcpt
θ2 < Rcv

q , ∀q∈ [0,1].

From Lemma 6, we get CPT▶ CVaR and CPT▶ ER.

Finally, note that by definition Rcv
q is monotonically increasing in q and lies

between cµ = Rer and cmax. Since cσ > 0, there exits a q ∈ (0,1) such that Rcv
q > Rer,

but there is no q s.t. Rcv
q < Rer. Hence from Lemma 6 and the first part of this result,

we get CPT▶ CVaR▷ ER.

Theorem 2 implies that CPT can produce a larger variety of safe and risky sets

perceived from any given environment and a risk source, leading to richer risk perception.

This is illustrated via simulations in Section 5.5 and Section 5.6.
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5.4.1 Versatility of Risk Perception Models

We now define the concept of versatility of a model in the context of perceived

safety.

Definition 5. (Versatility of a RPM). Consider a compact space X , a risk source ȳ∈X ,

and a discrete random field cost c, with range in [cmin,cmax]⊆R≥0. Let I be a compact

interval. A model M is said to be I−versatile if {x ∈X |c(ȳ− x) ≤ cℓ} ⊆ YM for any

cℓ ∈ I for a given ρ > 0. If I ⊇ [cmin,cmax], then M is most versatile in X .

The above definition implies that an RPM is I−versatile, if it has a risk-perception

function that perceives any states having costs less than cℓ as safe, ∀cℓ ∈ I. Further, M

is most versatile when it contains risk-perception functions that capture a range of

perceptions from most risk averse (only states having costs c≤ cmin are safe) to the least

risk-sensitive (every state including states having the highest cost cmax as safe). Now

we look at versatility of the three models.

Theorem 3. (Versatility Comparison) Consider a compact space X , with a risk source

ȳ ∈X , and associated discrete random field cost c with cmin ≥ 1 and a finite cmax. CPT

is the only most versatile model in X among CPT, ER and CVaR. With I1 = [cµ ,cmax]

and I2 = {cµ}, CVaR is I1−versatile and ER is I2−versatile.

Proof. First, we show CPT captures most risk averse perception, i.e. the set {x ∈

X |c(ȳ− x) ≤ cmin} is considered safe. By choosing θ as in Lemma 6 and λ = ρ
cmin

,

this result follows from (5.4a) and Definition 5. Next, we show CPT can capture the

least risk sensitive perception (the set {x ∈X |c(ȳ− x)≤ cmax} is considered safe). Let

θ2 = {1,1,γ,1}, with 0 ≤ γ ≤ 1 we have Rcpt
θ2(c) = ∑i cγ

i pi. Choosing γ < logρ
logcmax

, since

ci ≥ 1, pi ≥ 0, ∀i, and ρ ≥ 1, we get Rcpt
θ1 ≤ ρ . Thus, from (5.4a) and Definition 5, this

result follows.
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Now we show CPT is most versatile. With θ1 = {1,1,1,λ} and θ2. Observe

that Rcpt
θ1 is continuous in λ and Rcpt

θ2 is continuous in γ . By the intermediate value

theorem ∃λ s.t. Rcpt
θ1 ∈ [cµ ,cmax], and a γ s.t. Rcpt

θ2 ∈ [cmin,cµ ]. Hence, from above

arguments, CPT is most versatile in X . The last result with ER and CVaR trivially

follows from the range spaces RCVaR and Rer in the proof of Lemma 7.

The above result illustrates that given any environment with a random cost c,

out of the three models, CPT can perceive a larger range of costs as safe/risky and

hence is “more versatile” among the others. Next, we will look at control design with

perceived safety.

5.5 Control design with Risk-Perception-Aware-CBFs

Here, we address Problem 10 and design controls u for an agent subject to (5.2),

to ensure perceived safety (Definition 3). To do this, we formally adapt CBFs (see

[ACE+19]) to our setting.

Definition 6 (RPA-CBF). Consider an agent subject to (5.2), a dynamic source of

risk (5.3), and a perceived risk R model. A C 1 function hR ≜ h(R) : Z → R is an

RPA-CBF for this system, if there is an extended class K∞ function η1 such that the

control set KR defined as

KR(R) = {u ∈U |ḣR(ξ )≥−η1(hR(ξ )))}, (5.5)

is non-empty for all ξ ∈Z .

The existence of hR according to Definition 6 implies that the super-level set

{x ∈X |hR(ξ ) > 0} is forward invariant under (5.2). We specify hR = h(R) via h given

as

h(ξ )≜ η2(ρ−R(ξ )), (5.6)
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where η2 : R→R is a C 1 extended K∞ function. Since η2 is non-decreasing, h(R(ξ ))≥ 0

implies R(ξ )≤ ρ and thus, x is perceived safe (x ∈ Xsafe) w.r.t. R when risk source is at

y.

The RPA control input u can be now computed via:

u(x) = argmin
u

∥u− k(x)∥2 (5.7a)

s.t. dη2

dR

(
∂R
∂ξ

(ξ )
)
· ( fy(y)− fx(x,u))≥−η1(hR(ξ )). (5.7b)

The above problem captures the notion of minimally modifying a stable controller to

ensure safety of the system. Note that (5.7) is for a fixed time t thus, risk and its

derivatives are only evaluated at the current x,y. Considering a fully actuated linear

agent in 2D, we visualize the optimization landscape (U ) and the state space X ⊂ R2

in Fig. 5.1. We note that depending on the choice of model, (5.7b) varies as shown in

Fig. 5.1a. We use identity function for both η1,η2 in Fig.5.1. These functions affect

constraint (5.7b) (lines in Fig. 5.1a) and can be designed according to practical consider-

ations like frequency of implementation and performance near safe set boundary. From

Fig. 5.1a, u4 and k(x) coincide as Rcpt with γ = 0.8 is insensitive enough to ignore the

obstacle. On the flip side, u3 is almost in the opposite direction of k(x), indicating an

extreme aversion. The values of u1 and u2 (corresponding resp. to Rer, risk neutral Rcv,

and highly risk averse Rcv) produce almost similar and more moderate controls. This

indicates CPT can produce a wider range of controls and a larger feasible control set.

We theoretically analyze and justify this claim in the following paragraphs.

5.5.1 Feasibility analysis and comparison

We first construct finite outcomes of c from cµ and cσ called “truncated-Gaussian

cost” which will be used for analysis. In this construction5, we approximate c by means
5This truncation reassigns the probability mass s.t. c(ξ ) ∈ [cµ(ξ )−3cσ (ξ ),cµ(ξ )+3cσ (ξ )] using an

appropriate re-normalization constant.
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(a) Optimization space U with objective
∥u− k(x)∥ as a contour map.

(b) State space X with Expected risk Rer as
a contour map.

Figure 5.1. (a) control space U ⊂R2 and (b) state space X ⊂R2 at a time instant t for fully actuated
(ẋ = u) agent x (green dot) heading towards goal x∗ (green cross) and obstacle y (red dot, imperfectly
localized in grey disc) with ẏ (black arrow). Contour maps (yellow means higher cost) indicate ∥u−k(x)∥
in (a) and Rer in (b). Controls u1(red: Rer), u2(green: Rcv with q = 0.99) and u3,u4(orange,blue: Rcpt

with λ = 5.0 for u3 and γ = 0.8 for u4, with other parameters fixed at 1.0) are obtained by solving (5.7).
In (a), the constraint (5.7b) is visualized as a line (color coded according to models) with respective
optimal u as points (black dots). Area by white arrows indicate the feasibility region. In (b), optimal
u are visualized as respective vectors. Considering Rer and obstacle at y, agent’s safe (Xsafe) and risky
(Xrisky) areas are shown separated by boundary Rer = ρ (black circle).

of M discrete values ci, i ∈ {1, . . . ,M}, with probability calculated by p1 = F(c1), and

pi = F(ci)−F(ci−1), for i ∈ {2, . . . ,M}, where F is the CDF of c.

Now, we show conditions on u for the set KR to be non-empty for a given risk

function R. We first define a few constants to help us compare the feasibility conditions

of the three models. Let ϕξ ∈ [−π,π] be the relative angle between ∂R
∂ξ and ξ̇ (u;x,y)6, and

c′µ =
dcµ
dξ and c′σ = dcσ

dξ . Now define ker(ξ ) = η1(Rer(ξ ))/ dη2
dRer , kcvq (ξ ) = η1(Rcv

q (ξ ))/ dη2
dRcv

q

and kcvσ = P(F−1(q))
q . Also let kcptθ (ξ ) = η1(Rcpt

θ (ξ ))/ dη2
dRcptθ

, kcptµ = λγ ∑M
i=1 cγ−1

i Πi and

kcptσ = λγ ∑M
i=1

(
3− 6i

M

)
(ci)

γ−1 Πi. Consider ηer = ker(ξ )
∥c′µ∥ , ηcv =

kcv
q (ξ )

∥c′µ+kcv
σ c′σ∥ and ηcpt =

kcpt
θ (ξ )

∥kcpt
µ c′µ+kcpt

σ c′σ∥
. The following holds.

Proposition 4 (Feasibility). Let an agent and risk source be subject to (5.2) and (5.3),

respectively. Consider a truncated Gaussian cost c . Given any x,y, if there is a u and
6The angle between two vectors a,b ∈ Rn is ϕ = cos−1

( a·b
∥a∥∥b∥

)
. We assume dcµ

dξ and dcσ
dξ are aligned.

Hence ∂R
∂ξ is also aligned with ∂c

∂ξ .
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η1 s.t.:

∥ξ̇ (u;x,y)∥cos(ϕξ )≥−

 η1(hR(ξ ))
dη2
dR

∥∥∥∂R
∂ξ (ξ )

∥∥∥
 , (5.8)

then hR defined according to (5.6) is a valid RPA-CBF for any C 1 and extended K∞

function η2, and (5.7) is feasible. Specifically, the RHS of the above inequality reduces

to −ηer, −ηcv, and −ηcpt for ER, CVaR and CPT, respectively.

Proof. For first part, rearranging terms in (5.8) we get:

κ
∥∥∥∥∂R

∂ξ
(ξ )

∥∥∥∥ ·∥∥ fy(y)− fx(x,u)
∥∥cos(ϕξ )≥−η1(hR(ξ )), (5.9)

where κ = dη1
dR . From (5.9) and the fact that LHS is time derivative of hR(ξ ) (using the

chain rule) we have ḣR(x,u;y)≥−η1(hR(ξ )). The result follows from Definition 6. For the

last part, the expressions are obtained by substituting the respective risk functions and

evaluating the partial derivatives ∂R
∂cµ

and ∂R
∂cσ

(part of ∂R
∂ξ ). For ER, these calculations

are trivial. For CVaR and CPT, the derivatives w.r.t cµ and cσ are easy to evaluate

with truncated Gaussian costs.

From (5.8), the RHS is independent of u and the LHS is independent of R and

the model. This separation makes it easier to compare feasibility conditions of various

models.

Remark 5 (Satisfying Feasibility). Constraint (5.7b) is linear in u as fx(x,u) is affine

in u from (5.2). Thus (5.7) has a closed form solution, making it computationally

efficient. Furthermore, (5.8) gives the sufficient conditions on u to satisfy (5.7b) assuming

truncated Gaussian costs. So if x(0)∈Xsafe and if (5.8) can be satisfied throughout with

an appropriate u and η1, then the agent’s entire trajectory will be perceived safe.

Remark 6 (Uncertainty perception among RPMs). The ER model is insensitive to uncer-

tainty as ∂Rer

∂σ = 0. In this way, CVaR is averse to uncertainty as ∂Rcv
q

∂σ ≥ 0 for all q. With
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CPT, θ can be tuned to get both uncertainty insensitive and uncertainty averse behavior,

additionally, it can also produce uncertainty liking behavior (when ∂Rcpt
θ

∂σ ≤ 0)7.

Next, we compare the size of control sets KR respectively generated by each of

the RPMs.

Proposition 5 (Feasibility set comparison). Assume conditions of Proposition 4 hold.

Then, the feasibility sets defined according to (5.5) satisfy: Ker ⊆ Kcpt and Kcv ⊆ Kcpt.

Proof. The comparison is established on the model’s respective feasibility conditions

(5.8). Since the LHS in (5.8) remains the same for any model and parameter choice,

it is sufficient to show that ηer ≤ ηcpt and ηcv ≤ ηcpt. In that respect, uncertainty

perception (behavior of ∂R
∂σ ) is particularly important. These inequalities follow from

the choice of θ = θ1 in the proof of Theorem 2 and CPT’s more adaptable uncertainty

perception from Remark 1.

It is interesting to note that although CVaR is more inclusive than ER as proved

in Theorem 2, it does not immediately translate into CVaR having a larger control

feasibility set. This due to the additional kcvσ
dcσ
dξ (ξ ) term in the denominator of (5.8) for

CVaR. We elaborate in the following remark:

Remark 7. Consider the control feasibility sets KER and KCVaR respectively for ER and

CVaR, defined according to (5.5). Then, depending on the choice of q and construction

of cσ we can obtain either KER ⊆ KCVaR or KCVaR ⊆ KER. Although we have kv
q(ξ ) >

7The first two properties follow by choosing θ as in Theorem 2. The latter property can be obtained
by tuning the uncertainty perception parameters α and β . Since the chosen distribution is symmetric,
we can examine the relation between Πi and ΠM−i for i ∈

(
0, M

2

)
. If we have Πi < ΠM−i (for example

when w is concave) or Πi > ΠM−i (when w is convex), then we have ∂Rcpt
∂cσ

> 0, or ∂Rcpt
∂cσ

< 0, respectively.
A concave w (α = 1,β < 1) implies that unlikely outcomes are viewed to be more probable compared
with the more certain outcomes. This results into an “uncertainty averse behavior”, which is reflected
in the positive sign of ∂Rcpt

∂cσ
. Conversely, a convex w (α = 1,β > 1) leads to an “uncertainty liking

behavior” with ∂Rcpt
∂cσ

< 0.
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ke(ξ ) from Theorem 2, there isn’t conclusive proof to suggest KER ⊆ KCVaR due to the

additional kv
σ

dcσ
dξ (ξ ) term in the denominator of (5.8).

Stability Analysis: Next, let us look at the stability properties of the proposed

controller u in (5.7). It is clear that if the nominal controller k(x) also satisfies the safety

constraint (5.7b), then u = k(x) and the stability properties of k(x) transfer over to u.

First we look into the models and determine how they affect the deviation from k(x).

Later, we treat the controller u as a perturbed version of k(x) and analyze accordingly.

Let δ = k(x)−u(x) be the perturbation to the nominal controller k(x) and δ er, δ cv
q

and δ cpt
θ be the respective perturbations of ER, CVaR and CPT with corresponding

parameter choices. Then we have the following:

Proposition 6 (Stability Comparison). Under the assumptions of Proposition 4, choose

u as in (5.7). Assume ∥δ er∥, ∥δ cv
q ∥ and ∥δ cpt

θ∥ are bounded. Then for any given states

x, y, and choice of q, there exists a θ such that:

1. ∥δ cpt
θ∥ ≤ ∥δ er∥ and ∥δ cpt

θ∥ ≤ ∥δ cv
q ∥.

2. The agent stabilizes inside BεM
(x∗) asymptotically for all models εcpt ≤ εcv and

εcpt ≤ εer holds.

Proof. For 1), apply Proposition 5 and the fact that Ker ⊆ Kcpt and Kcv ⊆ Kcpt.

For 2), employ an ISS argument to construct the BεM
(x∗) for each model consid-

ering the unforced system with u = k(x) in (5.2) and P(x) = G(x)δ being the forcing term

after applying RPA controls u from (5.7). From ISS, since the radius of the stability ball

is proportional to the upper bound on ∥P(x)∥, the result immediately follows from the

first part.

Proposition 6 implies that, with an appropriate θ , CPT can not only produce

the least perturbation among the three models, but can also stabilize to the smallest

ball around x∗.

91



Figure 5.2. Illustration of simulation setting and measuring DTE for an agent at x(t), facing an obstacle
which is localized imperfectly in a circle of radius r and centered at yµ(t).

5.6 Simulation Results

Here, we demonstrate the results from Section 5.4 and 5.5, considering a 2D

environment with moving obstacles. Uncertain Cost: We consider a single agent with

unicycle dynamics and a single obstacle whose known dynamics evolve in the space

X ⊂ R2. We assume the obstacle is imperfectly localized in a ball of radius r centered

at yµ ∈X , i.e , y ∈ Br(yµ)
8. With this, the relative vector ξ ∈ Br(yµ − x). We use the

notion of “distance to endangerment (DTE)”, d : Rn → R≥0, d(ξ ) ≜ ∥ξ∥ to construct

the uncertain cost c. From this, we obtain d ∈ [∥x− yµ∥− r,∥x− yµ∥+ r] (visualized

in Figure 5.2). Define the cost c(ξ ) = k1e−k2d(ξ )2 , representing the cost of being at x,

knowing the obstacle y∈Br(yµ), with constants k1,k2 > 0. Assume that c is distributed as

a truncated Gaussian (Section 5.4) with cµ(ξ ) = k1e−k2d2
µ (ξ ) and cσ (ξ ) = cµ(r)pN (ξ ,I)9,

where dµ = ∥x− yµ∥ and I is the 2D identity matrix. We construct uncertain cost
8W.l.o.g. this assumption also allows us to consider obstacles with a size.
9 pN (µ,Σ) is the pdf of a bi-variate Normal distribution with mean µ and covariance Σ
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Figure 5.3. RPA-CBF demonstration through trajectories (top) and their corresponding h(ξ ) evolution
(bottom). We consider 2D space [2,17]× [0,15] ⊂ X ⊂ R2, agent starting at x(0) = (5,2)⊤ (green
diamond) and its goal at x∗ = (10,10)⊤ (green cross). Risk source moves from (13,13)⊤ (red dot) to
(2,3)⊤. Red ellipse represents the localization uncertainty Br(yµ). Without the risk source, agent
takes nominal path (black line) using k(x). Four risk functions are considered : CPT insensitive (θ =
{0.74,1.0,0.74,3.5}), CPT averse (θ = {0.74,1.0,0.88,4.5}), CVaR averse (q = 0.99999), and ER. We
simulate agent’s path by applying u from (5.7) with above functions from t = 0s to t = 12s, at 500Hz.
The agent takes blue path (CPT insensitive), green path (CPT averse), cyan path (CVaR averse) and
magenta path (ER) to reach goal, with corresponding h(ξ ) shown below. For a detailed video showing
more paths and risk dynamics see “https://youtu.be/lZ8s1QVtxwk”.

outcomes according to Section 5.4 and calculate Rcpt,Rcv,Rer appropriately. We use

ρ = cµ(r) to denote the risk threshold.

RPA-CBF Controller: We use the costs defined in the previous paragraph with

r = 1.5 and k1 = 200,k2 = 0.01. We use identity functions for η1 and η2 and respective risk

functions in (5.1) to construct the RPA-CBF in (5.6). If obstacle and vehicle follow along

straight paths, a collision can occur and perceived safety (Definition 3) can be violated.

To handle unicycle dynamics we use the projected point method to control a virtual point

p∈R2, a distance l along the direction of its heading (refer [SM21b]) for details. We use

a standard proportional controller for k(x) = kx with a constant k = (0.6,0.6). We note
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that one can always appropriately tune the reference value ρ by l units to ensure safety

w.r.t. x. The results of varying λ , γ and q are shown in Fig. 5.3. The results of using

various models to generate u from (5.7) are shown in Fig. 5.3. The agent most likely

will collide with the obstacle (red dot localized uncertainly in red ellipse) if it follows the

nominal path (black line) from applying controls k(x), thus making it unsafe. By using

the controller u from (5.7), the agent swerves away from the obstacle corresponding to

its risk perception and manages to reach the goal while maintaining h ≥ 0 throughout,

implying that perceived safety is maintained according to Definition 3. We see that

the range of paths produced by CVaR lies between the magenta (ER) and cyan (CVaR

extreme risk aversion) paths whereas, CPT is able to generate a wider range of paths

(between green and blue and beyond) by tuning the risk aversion and risk sensitivity

parameter than CVaR thus capturing a greater variety of risk perception, which follows

the theoretical arguments from Theorem 2 and Theorem 3. We also see that the agent

also reaches the goal due to the inherent stability properties of the nominal controller

k(x). See “https://youtu.be/lZ8s1QVtxwk” for a detailed video showing more paths and

dynamics. Interestingly, we also found that CPT is more computationally efficient than

CVaR in this setting. Time taken for 6000 evaluations10 (corresponding to one path in

Fig. 5.3) of (5.7) is 4.5s for CVaR, 2.9s for CPT and 1.9s for ER. We think this is because

CVaR evaluates inverse cdf for every calculation whereas, CPT uses less costlier function

evaluations11. Proper complexity analysis and comparison between various RPMs and

their dependence on the probability distribution properties is still an open problem to

solve. For another implementation with multiple moving obstacles we direct the reader

to [SM21b]. This implementation uses principles from [GCE21] to construct a single

RPA-CBF resulting from multiple sources of risk.
10Implemented in python with quadprog without visualization on a laptop with i7-8550U CPU @

1.80GHz and 16GB ram
11Using truncated Gaussian costs, decision weights Π remain the same for a fixed θ , making CPT

calculations more efficient.
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5.7 Summary

In this chapter, we have proposed a novel integration of CPT into a safety-critical

control scheme. This enables to generate risk-perception-aware controls (according to

a DM’s risk profile) in an environment embedded with dynamic uncertain costs. Thus,

opening new avenues to incorporate behavioral decision theory into safety-critical con-

trols.

In the next chapter, we look at user study design to better understand human

risk perception in everyday environments.

This chapter, in full, is a reprint of the material as it appears in the publication

Risk-Perception-Aware Control Design under Dynamic Spatial Risks, A. Suresh and S.

Martínez, IEEE Control Systems Letters, 6, pp. 1802–1807, 2022. The dissertation

author was the primary investigator and author of this paper.
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Chapter 6

Risk-Aware Navigation in Human-Centered
Environments

In this chapter, we propose a novel user study design to understand human de-

cision making for path planning in risky and uncertain environments. We explore how

robots can model human perception of risk for risk-aware navigation. By observing

and understanding human risk preferences and conveying its risk preference to humans,

robots can adjust their risk perception models appropriately. These models will then

enable robots to detect high-risk areas in human-occupied environments and navigate in

in a socially-acceptable manner. Although there are many theoretical models of risk, it

is important to validate these models with human perception of risk, particularly with

a large and diverse sample size to capture a wide range of preferences. This will reveal

which models are well-suited for robot navigation in everyday settings, particularly for

systems that communicate their reasoning to people.

Another important aspect is to assess the reliability of humans’ self perception of

risk and time-urgency to navigate in everyday scenarios. Often, humans tend to decide

and act in a different manner, compared to their self perception of their own actions. So

it is important to evaluate the effectiveness of questionnaires and self-reported measures

of risk and time-urgency in the context of risk-aware navigation in everyday scenarios.
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6.1 Literature Review

Risk is a very relevant and urgent notion that is used to design navigation al-

gorithms in robotics. In order for AI to reason and make decisions in risky situations,

various models have been employed to quantify risk. As we have seen before Conditional

Value at Risk (CVaR) is one such popular model from financial risk management, which

has been directly employed in robotics [CMP+21, STZT20]. CVaR based methods

capture risk aversion (i.e., to ‘play it safe’) by employing linear and rational notions

of decision-making under risk, which cannot capture the non-linear and non-rational

decision-making that humans exhibit [Ste70, Ste57, Dha16].

To alleviate this shortcoming, Cumulative Prospect theory (CPT) [TK92] based

methods have been recently proposed [SM21a, SM22] to plan and navigate in risky

environments. These are more general methods designed to capture non-rational human

decision-making along with standard risk notions. Theoretically, it has been shown that

CPT is more “versatile”, “inclusive” [SM22], and expressive [SM21a] than CVaR and

Expected Risk (ER), thus capturing a wider range of diverse risk profiles of humans.

Recently, user studies found that CPT is indeed more representative of human

decision-making in a traffic intersection scenario [KBT+20]. Researchers have also

conducted a study to learn the utility function of human decision makers in a re-

source management setting [dSCMD20]. These studies utilized time-urgent and resource-

constrained decision-making scenarios with money as a modality. A more general study

pertaining to everyday scenarios using more abstract modalities remains under-explored.

Commonly used risk modalities like money [MP], time [GFBA10] or collision

probabilities [HY20] is not very natural or explainable to humans, especially considering

everyday social navigation scenarios. Recent studies have found that humans are often

sub-optimal in planning paths in everyday scenarios [RDL18]. However, they assume

that the human is either “noisy-rational” or they do not have the correct environment
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models to make optimal decisions. These arguments are from a robot’s perspective

which acts in an expected manner and also expects the human to do so. However, from

a human-centric and explainable-AI perspective, the robot’s “expected” behavior might

lead to mistrust and confusion [KPAK13]. So there a need for robots to be equipped

with models, that can describe human’s perception of the environment. This will lead

to better understanding human decision making and consequently a better explainable

AI in robots.

There has been great interest in using risk models in the robotics field to design

safe intelligent systems for human-centered environments. For instance, recent work

has explored fall risk assessment as a robot navigates with humans [NYMH20, KM20,

BPMU18], risk of localization and mapping systems [HAS19, AHJS20], and risk for

search and rescue operations [SAZ+21]. In our work, we are interested in risk models for

human-aware robot navigation, particularly by considering human’s perception of risks

[KPAK13].

Much of prior work on risk-aware robot navigation focuses on obstacle avoidance

which includes avoiding walls, objects, and people in the environment. These methods

can be characterized as using probabilistic, dynamical systems, and reinforcement learn-

ing methods. For instance, some prior work employing probabilistic techniques use a

Gaussian process risk map to model risk [HSP+20, GMH+19]. Examples of dynami-

cal systems approaches model risk as an entropic risk measure which generate multiple

trajectory forecast for multiple agents in crowds [NIG+20]. Reinforcement learning meth-

ods have employed deep reinforcement learning techniques to learn an uncertainty-aware

policy that can update it’s measure of risk without fine-tuning or retraining [CDK+21].
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6.2 Contributions

Although great progress has been made to model risk for uncertain, human-

occupied environments, there is a lack of work that validates human perception of risk

under different conditions, compares theoretical models of risk with human perception

of risk, and explore how consistent human perception of risk and time urgency is with

standard survey responses. This work explores these gaps. Our main contributions are

as follows:

1. Reveal trends in humans’ path choices in risky environments

2. Reveal comparison trends between humans’ path choices and that of popular risk

models

3. Reveal the relationship between humans’ self risk assessment, self time-urgency

assessment, and their path choices in risky and time-urgent scenarios.

Our work also reveals insights into human navigation preferences compared to

risk-aware models. Furthermore, equipped with these insights we can aim to design

better models of human risk that enable more human-aware navigation models. These

models can enable robots to operate safely and adapt to human preferences in real-world

environments.

6.3 Research Questions

We explore how people’s decision-making during risky scenarios compares to the-

oretical models of human perceptions of risk. We introduce a new study design that

explores human-decision making in a navigation task with different risky scenarios. Also,

we explore how consistent humans’ self-assessment of risk and time-urgency is with their
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risk-taking and time-urgent behavior. In particular, we are interested in addressing the

following research questions:

RQ 1. How do humans make decisions under risky situations?

RQ 2. How do the human decisions compare to the ones from standard risk models in

everyday risky situation?

RQ 3. How does human’s self risk assessment and self time-urgency evaluation compare

to their path choices in risky and time-urgent scenarios?

Next, we describe our study methodology used to address the above research

questions.

6.4 Study Methodology

We conducted an IRB-approved (approval code: 201638) human-subjects online

study on Qualtrics1 survey platform. We recruited 80 participants affiliated with a

university campus through university list-serves and via word of mouth. The participants

consisted of 27 females, 48 males, and 3 that preferred not to answer this question with

ages ranging from 21-32 (mean = 25.6, SD = 2.5).

This study focused on human-decision making under different risk scenarios. We

consider a COVID-19 pandemic grocery shopping scenario, where the risk is character-

ized by the close proximity to “sick” people. Participants are in the shoes of an “Instacart

Shopper” who needs to go from the entrance to the milk section. Time-urgency is char-

acterized by the need to complete shopping quickly in order to get better ratings. This

scenario is illustrated in Figure 6.1. There are three paths to choose from: Path A,

Path B, and Path C. Each of these paths have varying intensity of risk and time urgency

characteristics (discussed in detail in Section 6.4.1). The participants indicate their most
1https://www.qualtrics.com/
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Figure 6.1. Grocery store environment used in the user studies. The participants have three paths (A,
B, and C) to choose from, to go from the entrance (shown as the ‘Start’ in blue) to the milk section
(shown as the ‘Goal’ in green). The supermarket is crowded with people having various levels of sickness
ranging from ‘Nil’ to ‘Severe’.

preferred and least preferred path for each scenario (constituents of one trial). Next, we

will describe the study design in detail.

6.4.1 Study Design

We designed an online study that takes participants through several modules in-

cluding a consent form, demographic survey, study description, demonstration, practice

rounds, nine study trials, and post-study questionnaires. The consent form provided a

brief description of the study and described how there are minimal risks for participating

in this study. After giving informed consent, the participants filled out a demographic

survey that collected information about their age, gender, occupation, and area of ex-

pertise. Afterwards, we described the study to participants.

We started by discussing the goal of the study which is to investigate how people
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plan paths in risky situations. This work will enable us to design robot navigation

systems that plan human-like paths as well as better adapt to peoples’ motion in everyday

environments. To study how humans select paths, we designed a study scenario that

incorporates different levels of risk to enable us to study human decision-making. In

each scenario, there is a trade-off between time and risk, where the riskiest path is also

the shortest, while the longest path is the least risky in terms of encountering “sick”

people.

Now, we discuss our thought process used to create the trial scenarios.

Scenario Creation

The users’ are presented with three choices of paths to choose from including

paths A, B, and C (see Figure 6.1). Path A is the longest, path B is the shortest, and

path C has a length that is in between path A and path B. We used the situation of

“being coughed at by sick people” to elicit risk for each path in every scenario. This risk

was described by four decision variables: “time taken”, “number of sick people”, “level of

sickness”, and “chance of being coughed on” (see Table 6.1). The time taken varies from

5-20 minutes, number of sick people from 0 to 2, level of sickness from 0 to 3 and chance

of being coughed at was expressed as a percentage for each sick person encountered.

For level of sickness, we used the following terminology: 0-Nil, 1-Mild, 2-Moderate and

3-Severe (see Figure 6.1). We purposefully kept the consequences abstract, in order

to extract realistic risk perception from participants. The variables are summarized in

Table 6.1. Then, we asked participants to select their most favorite and least favorite

path.

To engage participants in our study, we constructed nine different scenarios to

explore how they make decisions under risky situations. Keeping the research questions

in mind, we use the following rationale to construct the scenarios:
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Table 6.1. Description of decision variables and their ranges for each path in every scenario.

No. Decision Variables Range of values presented

1 Time Taken
Path A : 20 mins
Path B : 5 mins
Path C : 10 mins

2 Number of Sick people
Path A : 0-1
Path B : 2-3
Path C : 1-2

3 Level of Sickness 0-3 for each path
4 Chance of being coughed at 0-100 % for each path

• There are a total of nine trials with different values of decision variables, aimed to

capture a wide range of scenarios.

• In each trial, the shortest path (Path B) has the most risk and uncertainty, while

the longest path (Path A) has the least risk and uncertainty.

• The participants choose most and least preferred path, thus giving us their prefer-

ence order.

• The risk variables for each trial is designed such that the preferred choice (A or B

or C) w.r.t. expected behavior (using expected risk) is varied across scenarios.

• There are 2 scenarios whose risk variables are such that all paths are preferred

equally likely from an expected risk point of view.

• We group the nine trials into three levels of uncertainty (w.r.t. number of sick

people). This helps us in understanding how the choices vary with increase in

uncertainty.

The participants engaged in 9 trials where the three risk variables (2-4 in Table

6.1) on each path are varied to elicit different decision-making in risky situations. We

used four parameters in total (one for time and three for risk) to characterize each path

in every scenario.
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In the next stage of the study, participants are given a demonstration of a study

trial. The participants were presented with a demonstration scenario of the grocery

store, which describes the four decision variables pictorially, in sentences and through a

summary table. These modalities were selected after a few rounds of pilot studies which

indicated different people prefer different modalities to describe the scenarios. Then,

they selected their most and least favorite path. Based on their most preferred path

choices, we randomly selected a risk outcome and displayed the final results (e.g., ’You

encountered no sick people’). Next, participants engaged in three practice rounds with

three different scenarios and selected their most and least favorite path.

After the participants engaged in practice rounds, they were exposed to the same

nine study trials (within-subject study design) with different “risk” in each scenario. To

remove ordering effects and influence of regret, we randomized the ordering of the trials

across all participants.

6.4.2 Post-Study Questionnaire

At the end of the study, we administered two post-study questionnaires.The first

questionnaire is called the General Risk Propensity Scale (GRiPS) [ZHN19] which mea-

sures participants’ self risk taking abilities. In other words, it evaluates how risk averse

or risk loving they think they are in their daily lives (See Section 6.5). GRiPS is a

self-report measure (see Table 6.2) of general risk and pro-social behavior consisting of

8-items which participants answer on a Likert scale from 1 (Strongly Disagree) to 5

(Strongly Agree).

The second questionnaire is called the “Time Urgency Scale” [LRTC91] which

measures participants’ self assessment of how time-urgent and urgent they think they

are in everyday scenarios. It is a self-report measure (See Table 6.3) of general time-

related behavior consisting of 6-items (as commonly used [MN11]) which participants
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Table 6.2. The 8-item the General Risk Propensity Scale (GRiPS) [ZHN19] that we administered to
participants after engaging in our study.

GRIPS Survey Questions
1. Taking risks makes life more fun
2. My friends would say that I’m a risk taker
3. I enjoy taking risks in most aspects of my life
4. Taking risks is an important part of life
5. I commonly make risky decisions
6. I am a believer of taking chances
7. I would take a risk even is it meant I might get hurt
8. I am attracted, rather than scared, by risk

Table 6.3. The 6-item the Time Urgency Scale [LRTC91] that we administered to participants after
engaging in our study.

Time Urgency Survey Questions
1. I find myself hurrying to get places even when there is plenty of time.
2. I often work slowly and leisurely.
3. People that know me well agree that I tend to do most things in a hurry.
4. I tend to be quick and energetic at work.
5. I often feel very pressed for time.
6. My spouse or a close friend would rate me as definitely relaxed and easy going.

answer on a Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

In addition, after the study trials and questionnaires were administered, we asked

participants how they relatively weighed (as a %) each of the four variables in making

their decision.

To summarize, the trial data helped us in answer RQ 1. RQ 2 can be assessed

from analyzing the trial data along with the questionnaire responses.

6.5 Evaluation

Here we describe the metrics and methodology used to evaluate data from the

user study described earlier.
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6.5.1 Data Collection

From the study we obtain the following numeric data from each participant:

1. The participant’s most preferred path for each trial M ≜ {m1,m2, ...,m9}. For any

trial j, we set m j ≜ 0 for path A, m j ≜ 1 for path B, and m j ≜ 0.5 for path C.

We use this coding strategy as Path A is the least risky and least urgent, whereas

Path B is the most riskiest and most urgent, while Path C is in between.

2. The participants’ least preferred path for each trial denoted as L ≜ {l1, l2, ..., l9}.

We use a similar coding strategy as above where l j ≜ 0 for path A, l j ≜ 1 for path

B, and l j ≜ 0.5 for path C.

3. The participants’ GRIPS survey (Table 6.2) responses R ≜ {r1,r2, ...,r8}.

4. The participants’ Time Urgency survey (Table 6.3) responses T ≜ {t1, t2, ..., t6}.

5. The participants’ relative consideration (in %) of each decision variable (Table 6.1)

V ≜ {v1,v2, ...,v4}, following the numbering in Table 6.1.

6.5.2 Metrics

We employ metrics to evaluate the participants’ perception of risk (subjective

metrics) and their risk-taking behavior (objective metrics).

Subjective Metrics:

These metrics evaluate the participant’s self perception of time-urgency and risk.

We use the data from the two standardized questionnaires to define the following:

• We obtain the risk score R as the average response (normalized between 0 and

1) from the GRIPS survey responses R (as commonly used [NQN+20]). Where a

R = 1 indicates a risk liking perception vs R = 0 indicating a risk averse perception.
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• We obtain the time urgency score T as the average response (normalized between

0 and 1) from the Time-urgency survey responses T . Where a T = 1 indicates

being time urgent, whereas T = 0 indicates being time relaxed.

From the two questionnaires, we obtain the participant’s perception of their own

risk-taking and time-urgent behavior in their daily lives.

Objective Metrics:

These metrics illustrate the participant’s risk and time urgency characteristics

during the user study. Here, we consider three different risk perceptions to compare

the users’ decision making. First, we consider “expected behavior” using Expected Risk

(ER), from which we get Mexp and Lexp, which are the MPP and LPP choices made

respectively treating risk in an expected manner. The next behavior we observe is “risk

aversion” using CVaR, where we similarly get Maverse and Laverse. Finally, we consider

“risk insensitive” behavior using CPT with Minsens and Linsens as the MPP and LPP

choices respectively. We note that from our previous theoretical results [SM21a], we

have shown that CPT is the most inclusive model and can capture all three perceptions

(risk insensitive, risk averse, expected). CVaR can capture expected and risk averse

perception, whereas ER only captures the expected behavior.

1. We measure the average most preferred path score M for each participant from M.

This indicates the average risk the participant is willing to take as well as the time

urgency the participant faces while planning.

2. We measure the average least preferred path score L.

3. We measure deviation from expected behavior Jexp = ∑9
i=1 |M−Mexp|, where a

larger value indicated a greater deviation from expected perception.

4. Similarly, we measure deviation from risk aversion Javerse = ∑9
i=1 |M −Maverse|,

where a larger value indicated a greater deviation from risk averse perception.
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5. Similarly, we use deviation from risk insensitivity Jinsens = ∑9
i=1 |M−Linsens|, where

a larger value indicated a greater deviation from risk insensitive perception.

6. We can then evaluate the models by taking the minimum of the deviations over

the behaviors that the model can capture. So for ER the model deviation is given

by JER = Jexp, for CVaR we get JCVaR = min{Jexp,Javerse} and for CPT we have

JCPT = min{Jexp,Javerse,Jinsens}.

7. We calculate a risk similarity score Rsim = M−R to show us if people choose paths

according to the GRIPS survey responses. The measure Rsim varies from −1 to

1, where a larger positive value indicates that the participant chose paths in a

riskier fashion than they indicate in the survey. Whereas, a larger negative value

indicates that the participants are more risk averse in the study than they claim

in the survey.

8. Similarly, we calculate a time urgency similarity score T sim = M−T to show us if

people choose paths according to the time urgency survey responses. As above,

the measure T sim varies from −1 to 1, where a larger positive value indicates that

the participant chose shorter and more urgent paths than they indicate in the

survey. Whereas, a larger negative value indicates that the participants are more

time relaxed in the study than they claim in the survey.

6.6 Results and Discussion

We use metrics defined in the previous section to answer the research questions

posed in Section 6.3. We provide descriptive statistics of the relevant variables and

metrics including the mean, median, standard deviation and 95% confidence interval. To

study correlation between two variables, we calculate the Pearson’s correlation coefficient,

along with null-hypothesis significance testing with threshold p-value = 0.05.
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Table 6.4. Descriptive statistics of relevant variables to address RQ 1

No. Variable Mean Median 95% confidence
interval of mean

Standard
Deviation Min Max

1 M 0.60 0.60 0.56 to 0.66 0.20 0.00 1.00
2 L 0.40 0.40 0.35 to 0.47 0.30 0.00 0.94
3 Jexp for MPP 0.40 0.40 0.35 to 0.40 0.10 0.11 0.61
4 Javerse for MPP 0.30 0.30 0.31 to 0.36 0.10 0.00 0.61
5 Jinsens for MPP 0.30 0.30 0.28 to 0.36 0.20 0.00 0.89
6 JCVaR for MPP 0.30 0.30 0.31 to 0.36 0.10 0.00 0.61
7 JCPT for MPP 0.20 0.20 0.21 to 0.26 0.10 0.00 0.44
8 Jexp for LPP 0.40 0.40 0.37 to 0.42 0.10 0.06 0.67
9 Javerse for LPP 0.40 0.40 0.34 to 0.44 0.20 0.00 1.00
10 Jinsens for LPP 0.30 0.40 0.31 to 0.43 0.30 0.00 0.89
11 JCVaR for LPP 0.30 0.30 0.27 to 0.34 0.20 0.00 0.61
12 JCPT for LPP 0.20 0.30 0.22 to 0.30 0.20 0.00 0.61

6.6.1 Study and compare path choices with RPMs

In order to compare risk models with human decision-making, we provide descrip-

tive statistics of the relevant variables, which is summarized in Table 6.4. The indepen-

dent variables are the behavior-based path choices for MPP (Mexp, Maverse, Linsens) and

LPP (Lexp, Laverse, Linsens). The dependent variables are participants path choices M

and L for each trial.

Now, we provide a discussion for each variable in Table 6.4, row by row. Recall

that MPP for a jth trial with m j = 0 is path A with lowest risk and most time relaxed.

Whereas, m j = 1 is path B with highest risk and most time-urgent and Path C is in

between in both risk and time-urgency with m j = 0.5.

1. Average MPP M: The mean, median and confidence interval are over 0.5. This

indicates a preference towards Path B which is more risky and time urgent. We

also see that the extremes are 0 (most risk averse and time relaxed) and 1 (most

risk insensitive and time-urgent), which shows that there were participants in the

complete opposite end of the spectra.
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2. Average LPP L: The mean, median and confidence interval are below 0.5. This

indicates a preference towards Path A which is less risky and time relaxed. We

see that the max < 1 indicating that there was no participant who unanimously

disliked path B, whereas the min is 0 indicating there was at least one participant

who disliked Path A for all trials.

3. Deviation from expected behavior Jexp for MPP: Row 3 shows a higher deviation

in almost all columns as compared to risk-averse Javerse and risk insensitive Jinsens

behavior. Thus indicating that participants’ preference was not very frequently

according to ER. In fact, the min > 0, which indicates that not a single participant

chose paths according to expected risk in all their trials.

4. Deviation from risk averse Javerse and risk insensitive Jinsens behavior for MPP:

The statistics for risk averse and risk insensitive behavior is almost similar, with

both having min 0, indicating that there are participants that completely choose

according to the respective risk perception.

5. Deviation from risk models JER(same as Jexp),JCVaR,JCPT for MPP: Since JCPT

is lesser than both JCVaR and JER(same as Jexp) in all columns, it is clear that

CPT as a model can better capture decision making. This corroborates with the

theoretical results that CPT is more “expressive” [SM21a] and “inclusive” [SM22]

than CVaR and ER. This is because it can produce a full range of risk perception

from most insensitive to most averse. Also, JCVaR is lesser than JER as CVaR can

capture risk aversion better than ER, which people have exhibited in these trials.

6. Deviations Jexp, Javerse, and Jinsens for LPP: The deviations show similar character-

istics in mean, median and confidence interval, with Jinsens showing slightly lesser

mean. Both Jinsens and Javerse have a min 0, while min of Jexp > 0. This indicates

that similar to MPP, not a single participant chose LPPs in an expected manner,
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Table 6.5. Descriptive statistics of relevant variables to address RQ 2

No. Variable Mean Median 95% confidence
interval of mean

Standard
Deviation Min Max

1 R 3.40 3.30 3.18 to 3.55 0.90 1.00 5.00
2 T 3.10 3.00 2.90 to 3.25 0.80 1.33 4.83
3 Rsim for MPP 0.10 0.00 -0.05 to 0.09 0.30 -0.84 0.94
4 Rsim for LPP 0.00 0.00 -0.08 to 0.07 0.30 -0.91 0.94
5 T sim for MPP 0.10 0.10 0.04 to 0.15 0.30 -0.58 0.67
6 T sim for LPP 0.10 0.10 0.00 to 0.14 0.30 -0.58 0.67

whereas some participants showed characteristic risk averse and risk insensitive

perception for all trials. Also, max of Javerse = 1, showing that there was at least

one participant who didn’t exhibit risk aversion at all for all the choices.

7. Deviations JER(same as Jexp),JCVaR,JCPT for LPP: The trend is similar to that

from MPP. JCPT is lesser than both JCVaR and JER(same as Jexp), and JCVaR is

lesser than JER, in all columns. Thus, showing CPT capturing better decision

making than CVaR and ER.

Next we will look at addressing RQ 3.

6.6.2 Compare Path choice characteristics with survey responses

In order to compare risk models with human decision-making, we provide de-

scriptive statistics of the relevant variables, which is summarized in Table 6.5. The

independent variables Survey responses R and T . The dependent variables are partic-

ipants path choices M and L for each trial. We will also perform correlation studies

between the dependent and independent variables to provide to deeper insight. Now, we

provide a discussion for each variable in Table 6.5, row by row. Recall that MPP for a

jth trial with m j = 0 is path A with lowest risk and most time relaxed. Whereas, m j = 1

is path B with highest risk and most time-urgent and Path C is in between in both risk

and time-urgency with m j = 0.5.
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1. Average Survey responses R: The mean, median and confidence interval are all

over 3, indicating that on an average majority of the participants perceive that

they are inclined towards taking risks. But the standard deviation is quite high at

0.9 indicating less neutral perception. There are also extreme cases (with min 1

and max 5), implying that there are some people who think they are extreme risk

takers and also some who are scared and averse to take risks.

2. Average Survey responses T : Here, the perception is more balanced with the mean,

median and confidence interval close to 3.0. For this survey as well there are

extreme responses with min 1.33 and max 4.83 and high standard deviation of 0.9.

Hence, there are a people variety of different perception from highly time relaxed

to highly time urgent.

3. Risk similarity score Rsim for MPP and LPP: On an average Rsim is balanced

with the mean, median and confidence interval close to 0. However, there are

extreme responses with min −0.84 and max 0.94 and high standard deviation of

0.3. Hence, there are a people variety of different perception and the GRIPS may

not fully represent their decision making in he study.

4. Time urgency similarity score T sim for MPP and LPP: This metric shows more

biased characteristics than Rsim. For both LPP and MPP, the mean, median, and

confidence interval are positive, implying that the people act more urgently than

they indicate in the survey. Although the standard deviation is high at 0.3, the

min and max are well within the extremes, indicating that time urgency has a

more moderate perception range.

Correlation

Here, we try to identify trends between GRiPS and Time-Urgency survey re-

sponses and path choices by measuring correlation and performing linear regression.
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(a) Normalized GRIPS response R v/s Normalized
time urgency response T

(b) Risk similarity score Rsim v/s time urgency sim-
ilarity score T sim

(c) Normalized GRIPS response R v/s Mean MPP
score M

(d) Normalized time urgency response T v/s Mean
MPP score M

Figure 6.2. Scatter plots and correlation between various variables derived from user data in the study

The results are described in Table 6.6 and is partly visualized in Figure 6.2, which are

discussed below.

Again, recall that MPP for a jth trial with m j = 0 is path A with lowest risk and

most time relaxed. Whereas, m j = 1 is path B with highest risk and most time-urgent

and Path C is in between in both risk and time-urgency with m j = 0.5.

1. There was an insignificant interaction between the average survey responses for

risk R and time urgency T with p = 0.912 and an effect size close to 0 (see row 1 in

Table 6.6); thus, these variables are not correlated. This reveals that participants’

self risk evaluation and time-urgency perception from the survey are not related

to each other and these two entities are assessed differently by individuals.

2. There was a significant interaction between the average survey responses for risk
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Table 6.6. Correlation statistics of relevant variables to address RQ 2

No. Variable X Variable Y P-Value Effect Size
(Pearson’s r)

95% confidence
interval of effect size

1 T R 0.912 -0.012 -0.232 to 0.208
2 T sim for LPP Rsim for LPP <0.001 0.617 0.460 to 0.737
3 T sim for MPP Rsim for MPP <0.001 0.540 0.364 to 0.679
4 M R 0.936 0.009 -0.211 to 0.228
5 L R 0.655 -0.051 -0.268 to 0.171
6 M T 0.738 0.038 -0.183 to 0.256
7 L T 0.268 -0.125 -0.336 to 0.098

similarity score Rsim and time urgency similarity score T sim for MPP and LPP with

and p < 0.05 and a effect size <0.5 (see row 2 and 3 in Table 6.6); thus, these

variables are correlated. This implies that people who acted more/less riskier than

they indicated in the GRIPS survey, also acted correspondingly more/less time

urgent than they indicated in the time-urgency survey. This can arise because

of the study construction, where paths which are shorter (time urgent) are also

riskiest and vice versa.

3. There was an insignificant interaction between the normalized GRIPS response R

with MPP and LPP scores M/L with p = 0.936 and p = 0.655, and effect size

close to 0 (see row 4 and 5 in Table 6.6); thus, these variables are not correlated.

This reveals that participants’ self risk evaluation and their path choice not related

to each other. So just relying on the GRIPS survey to depict participants’ risk

perception may not be effective in such situations.

4. There was an insignificant interaction between time urgency response T with MPP

and LPP score M/L with p = 0.738 and p = 0.268, and effect size close to 0 (see

row 6 and 7 in Table 6.6); thus, these variables are not correlated. This reveals

that participants’ self time-urgency evaluation and their path choice not related

to each other. So just relying on the time-urgency survey to depict participants’
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time perception may not be effective in such situations.

Next, we use the Paired t-test for the pairs of variables in Table 6.6 to see any

comparison trends. The results are summarized in Table 6.7. We will discuss the results

in the following paragraphs.

1. We find that responses for risk R tends to be slightly larger than time urgency

T with p < 0.05 and a small effect size of 0.249. (see row 1 in Table 6.7); there-

fore, these variables are correlated. From the GRiPS and Time Urgency surveys,

participants have the propensity to take more risks in comparison to be more

time-urgent.

2. We find that risk similarity score Rsim tends to be slightly smaller than T sim for

MPP and LPP with p < 0.05 and a small effect size of 0.249 (see row 2 and 3

in Table 6.7); thus, these variables are correlated. This means that w.r.t. the

corresponding surveys, participants behaved with time-urgency more than their

riskier behavior.

3. There was an insignificant interaction between the normalized GRiPS response R

with MPP M with p = 0.544, and effect size close to 0 (see row 4 and 5 in Table 6.7).

However with LPP scores /L, R showed a positive correlation with p < 0.001 and

a medium effect size d > 0.5. This reveals no correlation between participants’ self

risk evaluation and their MPP choicee. But, considering LPP choices, participants’

LPP is less likely riskier than they indicated. Thus, although their MPP may not

match the survey responses, they tend to not prefer safer paths than their indicated

risk appetite.

4. We found time urgency response T that is slightly less than the MPP score M at

p = 0.06 and slightly larger than the LPP score /L with p = 0.08 and effect size
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Table 6.7. Paired t-test statistics of relevant variables to address RQ 2

No. Variable X Variable Y P-Value Effect Size
(Cohen’s d)

Difference
Between Means

(Y - X)

95% confidence
interval of difference

1 T R 0.029 0.249 0.070 0.010 to 0.140
2 T sim for LPP Rsim for LPP 0.029 0.249 -0.070 -0.140 to -0.010
3 T sim for MPP Rsim for MPP 0.029 0.249 -0.070 -0.140 to -0.010
4 M R 0.544 0.068 -0.020 -0.090 to 0.050
5 L R <0.001 0.503 0.18 0.100 to 0.260
6 M T 0.006 0.318 -0.090 -0.160 to -0.030
7 L T 0.008 0.302 0.110 0.030 to 0.190

close of 0.318 and 0.302 respectively (see row 6 and 7 in Table 6.7). This reveals

that participants’ prefer to choose slightly more time-urgent paths than indicated

by their survey responses. Whereas, they tend to not prefer more time-relaxed

paths than their indicated risk appetite.

6.7 Summary

In this chapter, we have proposed a novel user study design to understand human

decision making for path planning in a risky and uncertain environments. The summary

of our findings from the user study is as follows:

1. Participants tend to prefer riskier and time urgent paths, while they least prefer

safer and time relaxed paths.

2. Participants tend to show risk averse and risk insensitive behavior more often than

expected behavior with respect to risk.

3. CPT risk model captures participants’ decision making better than CVaR and ER,

while ER performs the worst of the three models.

4. On an average the survey responses effectively captured participants’ risk and time

urgency behavior from the trials. However, they may not be fully indicative of
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people’s risk and time urgency preferences as there was a large standard deviation

in the similarity scores.

5. Participants tend to prefer safer paths the least compared to their indicated risk

appetite for the survey.

6. There was no significant correlation between participants’ risk propensity and time

urgency indicated in the respective surveys.

6.8 Limitations and Future Work

Here we will discuss some of the main limitations of our work and then mention

possible future work for improvement.

Due to the online nature of the study, participants’ path choices may not be fully

representative of their actions in real world setting. Also, there might have been an

inadvertent sampling bias resulting in a relatively younger age group of the participant

population. A more in-person study in a real world supermarket or similar setting may

be needed to further validate our claims.

Although, we had a large sample size in terms of number of people, we only col-

lected limited data (only 9 trials) per participant to minimize fatigue. More data points

are needed to explicitly compare and characterize decision making between participants

and risk models. This limitation can be again alleviated by conducting in-person user

studies where data can be collected in a natural and continuous manner (entire paths),

which can then be used to perform more rigorous comparisons between various risk

models.

The material in this chapter, in full, is currently under preparation for publication

as Risk-Aware Navigation in Human-Centered Environments, A. Suresh, A. Taylor, L.

Riek, and S. Martínez. The dissertation author was the primary investigator and author

of these papers.
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Chapter 7

Conclusions

In this thesis, we have developed and evaluated intuitive and risk-perception-

aware navigation algorithms to enable robots to perceive, reason and act more appropri-

ately in risky and uncertain human centered environments .

In Chapter 3, we addressed the notion of intuition by developing a human-swarm-

interaction framework. We have combined diverse tools from control theory, network

science, machine learning, signal processing, optimization and robotics to create this

multi-disciplinary framework. Firstly, we have demonstrated the effectiveness of human

interaction using this framework, whose accuracy and speeds are comparable to standard

interaction devices. Next, we have proposed and utilized a unique notion of shape

morphing dynamics along with switching systems to simultaneously plan intermediate

shapes for the swarm to depict and choose swarm parameters, indicating the domain of

both the user and the swarm. We have also developed, analyzed and illustrated a novel

decentralized formation controller capable of reaching any shape, centroid, rotation and

scaling in the 2−D space. Lastly, we have integrated the framework by developing a GUI

environment which interacts with user by means of gestures, and rest of the framework

is encapsulated in the GUI using matlab simulations.

In Chapter 4, we have proposed a novel adaptation of CPT to model a DM’s

non-rational perception of a risky environment in the context of path planning. Firstly,
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we adapt CPT into path planning to model non-rational perception of spatial cost em-

bedded in an environment. With this, we can capture a larger variety of risk perception

models, extending the existing literature. Secondly, we generate desirable paths using a

sampling-based (RRT*-based) planning algorithm on the perceived risky environment.

Our planner integrates a continuous risk profile and path length to calculate path cost,

enabling us to plan in the perceived environment setting above. Furthermore, the chosen

cost satisfies the sufficient conditions for asymptotic optimality of the planner, leading

to reliable and consistent paths according to a specified risk profile. We then compare

our planner’s performance with T-RRT* (continuous cost space planner) and Risk-RRT*

(risk-aware planner) through simulations in cluttered and dynamic environments respec-

tively. We show that our proposed planner can generate better paths in comparison.

Finally, we define the notion of “expressiveness” for a risk perception model and show

that CPT’s is higher than that of CVaR and expected risk. Furthermore using SPSA,

we show that the expressiveness hierarchy translates to our path planning setting, where

we observe that a planner equipped with CPT can better approximate arbitrary paths

in an environment.

In Chapter 5, we proposed a risk-perception-aware safety-critical control scheme

to guide a robot in dynamic risky and uncertain environments. We first showed how

to employ non-rational risk-perception notions to express perceived safety for control

systems, expanding the spectrum of risk perception models considered in the literature.

We formally introduced the novel concepts of “inclusiveness” and “versatility” to com-

pare and contrast the ability of different models to handle a variety of DMs’ risk profiles.

We considered two popular models, CVaR, and ER, and prove that CPT is both more

“inclusive” and “versatile” than these. Next, we constructed a class of CBFs which guar-

antee safety according to a DM’s perceived risk, corresponding to any RPM. Using a QP

formulation, we obtained Risk-Perception-Aware (RPA) controls that can guide an agent
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to a desired goal while maintain perceived safety. We analyzed feasibility conditions and

stability properties of the proposed approach in terms of the three RPMs, and proved

that CPT equipped RPA controller has both a larger feasible control set and more ac-

curate stabilization. We illustrated our results through simulations and animations in a

2D environment.

In Chapter 6, we proposed a novel user study design to understand human de-

cision making for path planning in a risky and uncertain environments. We explored

how robots can model how humans perceive risk in terms of risk-aware navigation. We

revealed trends in humans’ path choices in risky environments and compared correlation

between humans’ path choices and that of popular risk models. We also revealed the

relationship between humans’ self risk assessment, self time-urgency assessment, and

their path choices in risky and time-urgent scenarios. We provided insights for design-

ing Explainable AI systems for robotic navigation in everyday human occupied spaces.

Furthermore, with these findings, we can aim to design better models of human risk

and time-urgency perception that can enable better human-aware navigation in robots.

Thus, enabling robots to operate safely and adapt to human preferences in real-world

environments.
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Appendix A

HSI Proofs

A.1 Preliminaries for proof of Theorem 1

Let us first define the following quantities : x = (x⊤1 ,x
⊤
2 ,x
⊤
3 )
⊤, x1 = p, x2 = c, x3 =

q, F2 = F3 = 0,∈ RM , f1(x1) = (I − αD−1L)x1; f2(x2) = Wx2; f3(x3) = 0 g1(x) =

−kpx2; g2(x) = x1− x3; g3(x) = x1 ; and F= [F⊤1 ,F
⊤
2 ,F

⊤
3 ]
⊤.

With these definitions (3.5) can be represented as :

xk(t +1) = fk(xk(t))+gk(x(t))+Fk, ∀k ∈ {1,2,3}, (A.1)

where fk is the system dynamics of the kth system, gk is the interconnection to the

kth system and Fk is the drift of the kth system. Now f1(x1)+F1 resembles the shape

stabilizing JOR algorithm in [Cor09] with some additional centroid drift kp1M c. From

[Cor09] we know this system converges to the desired shape with some centroid transla-

tion. Henceforth, we will ignore the drift F while analyzing the overall system stability.

As we see next, stability is established by first analyzing the convergence rates of each of

the subsystems defined by fk, and by identifying suitable conditions on the interconnec-

tions gk, for k ∈ {1,2,3}. To this end, we define the Lyapunov function V (xk) =
1
2x⊤k xk,

defined over xk for k ∈ {1,2,3}.

Lemma 4. The subsystem x1(t+1) = f1(x1(t))−1M1⊤M]x1(t) is globally uniformly asymp-
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totically stable at x1 = 0.

Proof. Considering A = IM−αD−1L, we have that the eigenvalues λ A ∈ (0,1] and 1 is a

simple eigenvalue with right eigenvector 1M, which shows x1(t + 1) = Ax1(t) is globally

stable. We can perform a similarity transformation on A to get As = IM−αLN where LN =

D
−1
2 LD

−1
2 is the symmetric normalized Laplacian of the graph. We perform a Hotelling

deflation [Saa03] on As using the largest eigenvalue to get A = As−D
−1
2 1M1⊤MD

−1
2 . In this

way, we have deactivated the largest eigenvalue of As and now we have λ A ∈ [0,1−αλ N
2 ]

where λ N
2 is the second smallest eigenvalue of the normalized Laplacian LN . We will

proceed by analyzing the stability properties of A which is similar to analyzing the

stability of x1(t +1) = [(IM−αD−1L)−1M1⊤M]x1(t).

With ∆V (x1) = V (x1(t + 1))−V (x1(t)) and Q = A⊤A− IM we have ∆V (x1) =

x⊤1 Qx1 < 0. The above observation follows from the fact that A is symmetric and λ A ∈

(0,1−αλ N
2 ], hence the eigenvalues λ Q ∈ (−1,(1−αλ N

2 )2−1], which makes Q negative

definite. From Lyapunov theory we have that x1(t +1) = [(IM−αD−1L)−1M1⊤M]x1(t) is

globally uniformly asymptotically stable about the origin. From the theory of symmetric

quadratic forms we also have the following inequality

∆V (x1)≤−(1− (1−αλ N
2 )2)∥x1∥2, (A.2)

which gives us a convergence rate for the x1(t +1) = [(IM−αD−1L)−1M1⊤M]x1(t) dynam-

ics.

Now we will analyze the second subsystem. The Matrix W has 1 as the simple

eigenvalue with eigenvector 1M. The matrix W = W − 1⊤M1M
M is Schur stable and λW ∈

(−n−2
n ,1−λW

2 ), where λW
2 ∈ [0,1] is the second smallest eigenvalue associated with the

weighted graph Gw. Hence we will analyze the convergence of the system x2(t + 1) =
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Wx2(t), which will give us the convergence rate for system f2.

Lemma 5. The system x2(t +1) =Wx2(t) is globally uniformly asymptotically stable to

the origin, and the convergence rate of system f2 is proportional to (1− (1−λW
2 )2).

Proof. With ∆V (x2) = V (x2(t + 1))−V (x2(t)) and Q2 = W⊤W − IM we have ∆V (x2) =

x⊤2 (t)Q2x2(t)< 0. This follows from the fact that the eigenvalues λQ2 ∈ ((n−2
n )2−1,(1−

λW
2 )2− 1), which makes Q2 negative definite. Hence according to Lyapunov theory

x2(t +1) = f2(x2(t))−
1⊤M1M

M x2(t) is globally uniformly asymptotically stable to the origin.

In addition,
∆V2(x2)≤−(1− (1−λW

2 )2)∥x2∥2, (A.3)

which finally gives us the convergence rate for the f2(x2) dynamics.

The analysis of the third subsystem, x3(t + 1) = 0, is trivial. Now, let us define

the following constants: δ1 = 1− (1−αλ N
2 )2, δ2 = 1− (1−λW

2 )2, δ3 = 1, γ11 = γ13 =

γ22 = γ32 = γ33 = 0, γ12 = kp, γ21 = γ23 = γ31 = 1,βk = 1, and ϕ(xk) = ∥xk∥, ∀k ∈ {1,2,3}.

Now we are ready to state the stability of System (3.4).

Proof of Theorem 1

Proof. The system (3.4) can be equivalently represented in the form (3.5). Now let us

first consider driftless system (3.5). The positive definite Lyapunov functions Vk(xk) ≡

V (xk) and the interconnection functions gk(x) satisfy the conditions of (A.4) for all t ≥ 0.

From Lemma 4 and Lemma 5 for each subsystem k, l ∈ {1,2,3} we have:

∆V (xk)≤−δkϕ 2(xk), (A.4a)∥∥∥∂V (xk)

∂xk

∥∥∥≤βkϕ(xk), (A.4b)

∥gk(t,x)∥ ≤
3

∑
l=1

γklϕ(xk). (A.4c)
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Now if we consider a diagonal matrix diag(δ ) ∈ R3×3 with entries (δ1,δ2,δ3), a

column vector β = (β1,β2,β3)
⊤ and a matrix Γ = (γkl) ∈ R3×3, we can define a Matrix

S ∈ R3×3 as follows

S = diag(δ )−βΓ. (A.5)

The Matrix S is an M-matrix, which is characterized by non-positive off diagonal entries

and positive leading principal minors. The first leading principal minor is positive from

the definition of the constants and the connectivity Assumption 1. For the second leading

principal minor to be positive we require kp < δ1δ2. For the third leading principal minor

(det(S)) to be positive we require kp < δ1δ2
2 .

Now, we choose kp accordingly such that S defined according to (A.5) is an M

matrix. Now from [Kha02] (cf. Theorem 9.2) we can conclude that the interconnected

system (3.5) is globally stable.

As the interconnections are asymptically stable we can infer the following. Firstly,

the subsystem (3.5a) reaches the desired centroid due to the shifting term kp1Mcd. Addi-

tionally, assumptions in executing the FODAC algorithm in [ZM10] are satisfied due to

the current assumption, and the fact that the first order differences of the reference sig-

nal are asymptotically stable from Lemma 4. Thus, the centroid estimate ĉ(t) converges

to p(t). Thus, the overall system converges to the desired state Xd.
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Appendix B

Chapter 5 Additional results

B.1 Inclusiveness Condition

Lemma 6 (Inclusiveness condition). Consider a threshold ρ ∈R≥0, a risk source at ȳ∈X ,

and two models M1, M2 with range spaces R1, R2, respectively. If R2 ⊆ R1, and if

there exists an R1 ∈M1 such that R1 > R2 or R1 < R2 for any R2 ∈M2, and any c,

then M1 ▷ M2. In addition, if there are Ra
1,R

b
1 ∈M1 such that Ra

1 > Ra
2 and Rb

1 < Rb
2,

∀Ra
2,R

b
2 ∈M2, and any c, then M1 ▶ M2.

Proof. Fix c. Since R2 ⊆ R1, ∀R2 ∈M2, there is R1 ∈M1 s.t. R1(ȳ− x) = R2(ȳ− x),

∀x ∈X . Thus, Y2 ⊆ Y1 and Y 2 ⊆ Y 1. Assume ∃R1, R̃1 ∈M1 s.t. R1(ȳ− x)> R2(ȳ− x)

or R̃1(ȳ− x)< R2(ȳ− x) hold for all R2 ∈M2. This implies either Y 2 ⊊ Y 1 or Y2 ⊊ Y1.

Inclusiveness follows from Definition 4. In parallel, M1 ▶ M2.

B.2 Range Comparison

Lemma 7. (RPM range space comparison) Consider CPT, CVaR and ER risk models,

with associated range sets Rcpt, RCVaR , and Rer. Then, Rcpt ⊋RCVaR ⊇Rer, holds ∀c.

Proof. Fix c. Note that Rer = {cµ}. By choosing Rcpt
θ with θ = {1,1,1,1} and Rcv

0 ∈

we have Rcv
0 = Rer = Rcpt

θ , ∀c. Note that only if cσ = 0 then Rcv
q = cµ = Rer for all q.
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When cσ ̸= 0, with any other valid choice of parameters q in CVaR we obtain Rcv
q /∈Rer.

We can find θ ̸= θ such that Rcpt
θ /∈Rer, ∀c. Hence, Rer ⊆RCVaR and Rcpt ⊋ Rer.

For CVaR, Rcv
0 = {cµ} and Rcv

1 = {b}, where b ∈ R is the worst-case outcome of

c. Since Rcv
q increases in q, RCVaR ⊆ [cµ ,b]. Choosing θ1 = {1,1,1,λ}, for λ ≥ 1, leads

to Rcpt
θ1 = λ ∑i ci pi = λcµ . Taking λ ∈ [1, b̄], with b̄ > b

cµ
, we get Rcpt ⊃ [cµ ,b]; hence,

Rcpt ⊋ RCVaR.
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