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ReMAPping the Microtubule Landscape: How Phosphorylation 
Dictates the Activities of Microtubule-Associated Proteins

Amrita Ramkumar1, Brigette Y. Jong1, and Kassandra M. Ori-McKenney1,*

1Department of Molecular and Cellular Biology; University of California, Davis, CA 95616 USA

Abstract

Classical microtubule associated proteins (MAPs) were originally identified based on their co-

purification with microtubules assembled from mammalian brain lysate. They have since been 

found to perform a range of functions involved in regulating the dynamics of the microtubule 

cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal 

development, microtubule remodeling during neuronal activity, and microtubule stabilization 

during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental 

disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally 

regulated by phosphorylation depending on developmental time point and cellular context. 

Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a 

particular MAP and can thus have profound implications for neuronal health. Here we review 

MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, Tau and DCX, and how each is regulated by 

phosphorylation in neuronal physiology and disease.
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INTRODUCTION

Neuronal development and function is governed by the underlying architecture of the 

cytoskeleton, which includes the microtubule, actin and intermediate filament networks. The 

microtubule cytoskeletal network is organized into stable and dynamic arrays that provide 

structural support, serve as tracks for molecular motor transport, and function as signaling 

platforms during neuronal development and plasticity (Keating and Borisy, 1999; Bartolini 

and Gundersen, 2006; Witte and Bradke, 2008; Hoogenraad and Bradke, 2009; Stiess et al., 

2010; Dent and Baas, 2014). It is therefore essential to understand the regulatory 

mechanisms of microtubule cytoskeleton organization as a neuron develops, changes, or 

maintains its internal structure, because altering these processes can disrupt neuronal 

function and ultimately lead to pathological conditions (Kaufmann and Moser, 2000; Jan 

and Jan, 2010). For example, mutations in proteins affecting the assembly of microtubules 

can lead to neurodevelopmental disorders such as Lissencephaly (Pilz et al., 1998; Viot et 
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al., 2004; Tsai et al., 2016), mutations in proteins involved in the remodeling of the 

microtubule cytoskeleton are correlated with neuropsychiatric disorders such as 

schizophrenia (Arnold et al., 1991; Cotter et al., 2000; Somenarain and Jones, 2010), and 

mutations in proteins important for microtubule stability or microtubule-based transport can 

cause neurodegenerative pathologies, such as motor neuron disease and Alzheimer’s disease 

(Tolnay and Probst, 1999; Lewczuk et al., 2004; Harms et al., 2012). Therefore, the precise 

regulation of the microtubule cytoskeleton is critical for neuronal health at all stages of life.

Microtubules are composed of alpha- and beta-tubulin heterodimers that assemble into 

protofilaments, which then form lateral contacts with one another to form a tubule (Borisy et 

al., 1974; Kirschner et al., 1974; Olmsted and Borisy, 1975; Downing and Nogales, 1998). 

Both alpha and beta-tubulin bind, but only beta-tubulin hydrolyzes, GTP. Beta-tubulin must 

be in the GTP-bound state in order for the heterodimer to assemble onto a protofilament. 

Once assembled, beta-tubulin is exposed at the “plus end” and alpha-tubulin is exposed at 

the “minus end”. This structural polarity results in growth rate differences of each end, and it 

has been observed that the plus end grows much more rapidly than the minus end both in 

vivo and in vitro (Howard and Hyman, 1993; Howard and Hyman, 2003; Bieling et al., 

2007; Bieling et al., 2010). Microtubules can be remodeled within the cell by switching 

between states of assembly and disassembly in a process known as dynamic instability 

(Mitchison and Kirschner, 1984). There are numerous microtubule associated proteins 

(MAPs) that can bind the microtubule lattice, tubulin heterodimers, or both, and regulate 

these dynamics to properly organize and remodel the microtubule cytoskeleton during 

neuronal development and activity (Papasozomenos et al., 1985; Caceres and Kosik, 1990; 

Bulinski et al., 1997; Gleeson et al., 1999a; Gordon-Weeks and Fischer, 2000; Volle et al., 

2013; Tymanskyj et al., 2017).

Different types of MAPs perform various functions. Proteins that associate with the growing 

plus end of the microtubule, or plus-end tracking proteins (+TIP s), regulate microtubule 

growth and catastrophe (reviewed in (Akhmanova and Steinmetz, 2010)). There are also 

proteins that associate with the minus ends of the microtubule and protect them from 

depolymerization (Goodwin and Vale, 2010; Jiang et al., 2014). Many MAPs are molecular 

motors that utilize the energy of nucleotide hydrolysis to produce force along microtubule, 

including the long-distance transport motors, cytoplasmic dynein and kinesin-1, the 

microtubule sliding motors, kinesin-5 and −12, and microtubule depolymerizing or severing 

proteins, such as mitotic centrosome-associated kinesin (MCAK), spastin, and katanin 

(Andersen and Wittmann, 2002; Vale, 2003; Walczak, 2003; Myers and Baas, 2007; Roll-

Mecak and McNally, 2010; Vallee et al., 2012). There are also tubulin-modifying enzymes 

that exert control over many aspects of microtubule biology through post-translational 

modification of alpha and beta-tubulin (reviewed in (Verhey and Gaertig, 2007; Janke and 

Bulinski, 2011; Yu et al., 2015)). Finally, there are structural or classical MAPs that bind 

along the microtubule lattice and have various effects on microtubule polymerization, 

stability, and bundling (Figure 1 and Figure 2) (Vallee and Borisy, 1978). Many of these 

MAPs are abundantly expressed in the nervous system and some may have overlapping roles 

within neurons in order to maintain the microtubule cytoskeletal architecture (Baas et al., 

2016).
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Microtubule organization within cells can be governed by the association and dissociation of 

different MAPs that can have opposing or synergistic activities (Heins et al., 1991; 

Vandecandelaere et al., 1996; McNally et al., 2002; Szebenyi et al., 2005). It is well 

documented that the interaction of MAPs with the microtubule cytoskeleton is affected by 

posttranslational modifications (Drewes et al., 1997). In particular, the phosphorylation state 

of MAPs can have a pronounced effect on microtubule dynamics, and subtle changes in 

MAP phosphorylation patterns accompany major rearrangements of the microtubule 

network during neuronal outgrowth, differentiation, and plasticity (Table 1 and Figure 2) 

(Ikegami et al., 2000; Biernat et al., 2002; Szebenyi et al., 2005). This review focuses on the 

known kinase regulators of classical MAPs and the downstream effect these modifications 

have on the microtubule cytoskeleton during neuronal development and maintenance. We 

also review how phosphorylation of tubulin heterodimers can directly affect microtubule 

dynamics.

MAP1 FAMILY (MAP1A, MAP1B, MAP1S)

The MAP1 family members were originally identified as high molecular weight protein 

complexes, consisting at least one heavy chain and one light chain, that co-purified with 

microtubules prepared from mammalian brain lysate, and were predominantly enriched in 

brain white matter (Kuznetsov et al., 1981; Vallee, 1982; Bonifacino et al., 1985). All MAP1 

subtypes are expressed in the nervous system, where they function in neuronal development 

and overall maintenance (Hanley et al., 1999; Meixner et al., 2000). Each of the MAP1 

complexes are composed of a heavy chain and at least one light chain, which can modulate 

their interactions with microtubules and actin, among other intracellular partners (Noiges et 

al., 2002).

MAPlA is expressed abundantly throughout development and into adulthood, where it is 

enriched specifically in dendrites (Fink et al., 1996). MAP1B is highly expressed during 

neuronal development where it is localized to axons, then expression decreases after 

neuronal differentiation, but increases again in adulthood where MAP1B has both dendritic 

and axonal functions (Kutschera et al., 1998; Gonzalez-Billault et al., 2001; Bodaleo et al., 

2016). The shortest and least studied MAP1 member, MAP1S, is expressed in a variety of 

tissues including the brain, liver, spleen, heart and other organs (Orban-Nemeth et al., 2005), 

and recent studies indicate that it is involved in cell division, autophagy and phagocytosis 

(Eriksson et al., 2007; Xie et al., 2011a; Xie et al., 2011b; Liu et al., 2012c; Tegha-Dunghu 

et al., 2014).

All three MAP1 proteins, MAP1A, MAP1B and MAP1S, associate with both microtubules 

and actin (Noiges et al., 2002; Tegha-Dunghu et al., 2014). The heavy chains of MAP1A and 

MAP1B have either one or two microtubule binding domains, respectively. The light chains 

for MAP1A, MAP1B and MAP1S contain non-overlapping microtubule and actin binding 

domains, and it is speculated that MAP1 proteins can simultaneously bind and crosslink 

microtubules and actin (Noiges et al., 2002; Halpain and Dehmelt, 2006). All MAP1 

proteins bind the microtubule lattice and are thought to stabilize microtubules 

(Vandecandelaere et al., 1996; Bondallaz et al., 2006; Tegha-Dunghu et al., 2014; Liu et al., 

2015).

Ramkumar et al. Page 3

Dev Dyn. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The role of MAP1A in dendrites during neuronal development and maintenance has been 

studied extensively. Not only is MAP1A important for dendritic outgrowth and morphology, 

but it is also essential in remodeling the dendritic arbor in response to neuronal activity 

(Szebenyi et al., 2005; Liu et al., 2015). MAP1A localizes to excitatory synapses where it 

transiently interacts with post-synaptic density proteins, PSD-93 and PSD95, and is 

important for the localization of NMDA receptors (Brenman et al., 1998; Ikeda et al., 2002; 

Takei et al., 2015). As a result of its role at synapses, MAP1A knockout mice exhibit 

learning and memory defects with impaired long-term potentiation and long-term depression 

(Takei et al., 2015). A mouse model with MAP1A mutations develops ataxia, tremors, and 

late-onset degeneration of Purkinje neurons (Liu et al., 2015). MAP1A has a number of 

other interacting partners that it may tether to the microtubule or actin cytoskeletons, 

including calcium and potassium channels, indicating that loss of MAP1A could cause a 

number of neurological abnormalities depending on neuronal cell type. For a comprehensive 

review of MAP1A, MAP1B and MAP1S function and interacting partners, please refer to 

Halpain and Delnert (2006).

As expected based on its expression and localization patterns, knockdown of MAP1B 

inhibits both axon outgrowth and dendritic spine formation (Riederer, 2007; Tortosa et al., 

2011). Intriguingly, deletion of the MAP1B gene region results in the absence of corpus 

callosum, along with other defects in neuronal migration and neuronal activity (Meixner et 

al., 2000). In regenerating adult mouse dorsal root ganglion neurons, knockdown of MAP1B 

results in enhanced axonal branching, but impaired axonal turning behavior (Bodaleo et al., 

2016). MAP1B therefore has distinct roles in microtubule-based processes, such as neuronal 

migration and growth cone turning, and actin-based processes, such as dendritic spine 

maturation. Considering MAP1B interacts either directly or indirectly with numerous 

neurotransmitter receptors, including GABAc, NMDA, AMPA, and mGluR, receptor 

regulatory proteins, and various channels, it is unsurprising that it has been implicated in a 

variety of neurological diseases including Parkinson’s disease (Chan et al., 2014; Shah and 

Lahiri, 2017), Alzheimer’s Disease (Ulloa et al., 1994; Good et al., 2004; Gevorkian et al., 

2008), and schizophrenia (Davidkova and Carroll, 2007; Lebeau et al., 2011; Tortosa et al., 

2011; Benoist et al., 2013). Whether MAP1B acts an anchor for these proteins to either the 

actin or the microtubule cytoskeletons, or whether it is involved in the proper transport and 

localization of these proteins remains to be more fully elucidated.

MAP1S appears to have roles during mitosis and autophagy. MAP1S decorates the mitotic 

spindle and knockdown of MAP1S results in the formation of an unstable metaphase plate, 

leading to improper chromatid separation and mitotic defects (Dallol et al., 2007; Liu et al., 

2012c; Tegha-Dunghu et al., 2014). As a result, although MAP1S knockout mice do not 

manifest any developmental or behavioral phenotypes, they are at a higher risk to develop 

cancer (Xie et al., 2011b). Furthermore, MAP1S plays a role in suppressing tumorigenesis in 

mouse cancer models and in pancreatic cancer patients (Liu et al., 2012c). It has been shown 

that MAP1S also positively regulates autophagy from biogenesis to degradation via its 

interaction with LC3 (Liu et al., 2012c), and may facilitate the interaction between 

autophagosomes and damaged mitochondria as well (Xie et al., 2011a).
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MAP1A and MAP1B are regulated by phosphorylation, but there is little known about the 

post-translational regulation of MAP1S (Halpain and Dehmelt, 2006). It has been shown that 

MAP1A can be activated through the mitogen-activated protein kinase (MAPK) pathway 

during dendritic remodeling, but whether MAP1A is phosphorylated during this process is 

unknown (Szebenyi et al., 2005). Dual-specificity tyrosine phosphorylated-regulated 

kinase-1a (DYRK1a) phosphorylates MAP1A and MAP2 and causes their release from 

clathrin-coated vesicles, but the effect on microtubule binding has not been assessed 

(Murakami et al., 2012). In addition, it is unknown why MAP1A and MAP2 are associated 

with clathrin-coated vesicles. There are three potential DYRK1a phosphorylation sites in 

MAP1A (Thr2059, Ser2221, and Ser2546) based on the consensus sequence for DYRK1a, 

but none have been confirmed as direct targets of DYRK1a.

MAP1B is a target for phosphorylation by a number of different kinases (Tymanskyj et al., 

2010). Phosphorylated MAP1B is highly enriched in growing axons while non-

phosphorylated MAP1B is present in the somatodendritic compartment (Sato-Yoshitake et 

al., 1989; Riederer et al., 1993; Gordon-Weeks and Fischer, 2000; Riederer, 2007). Glycogen 

synthase kinase III β (GSKIIIβ) has been shown to phosphorylate MAP1B at Ser1260 and 

Thr1265 in growing axons, especially in the distal growth cone (Goold et al., 1999; Goold 

and Gordon-Weeks, 2003; Trivedi et al., 2005). DYRK1a phosphorylates MAP1B at one 

residue, Ser1392, which primes MAP1B for phosphorylation by GSKIIIβ at Ser1388 as well 

(Scales et al., 2009). These phosphorylation events enhance the ability of MAP1B to 

maintain a dynamic microtubule population. The role of MAP1B in facilitating dynamic 

microtubules is counter to the original hypothesis that MAP1B stabilizes microtubules, but 

indicates that MAP1B could have multiple roles in regulating the microtubule cytoskeleton 

depending on its phosphorylation state, and may maintain a balance between microtubule 

stability and catastrophe. Jun N-terminal kinase 1 (JNK1) has also been shown to 

phosphorylate MAP1B in the growing axons to promote microtubule dynamicity, and when 

JNK1 is knocked down, MAP1B is hypophosphorylated and microtubules become highly 

stable in the axons (Chang et al., 2003; Kawauchi et al., 2005). MAP1B can be 

phosphorylated in vitro by other kinases such as cdc2, MARK, and casein-kinase II, and 

dephosphorylated by protein phosphatase 2B (calcineurin) and protein phosphatase 2A 

(Ulloa et al., 1993; Ulloa et al., 1994). Phosphorylation of MAP1B is likely to be highly 

regulated, because it dictates the functions of MAP1B depending on neuronal context. 

Rather than regulating the microtubule binding affinity of MAP1B, phosphorylation appears 

to affect the function of MAP1B in manipulating cytoskeletal dynamics, which are 

remodeled extensively during neuronal outgrowth and after neuronal activity.

MAP2

Similar to the MAP1 family, MAP2 proteins were also identified as high affinity 

microtubule associated proteins in preparations from mammalian brain. In contrast to 

MAP1, MAP2 proteins were found to be enriched in grey brain matter, suggesting a specific 

localization to neuronal dendrites (Murphy et al., 1977; Vallee and Borisy, 1978; Bulinski 

and Borisy, 1980; Hernandez et al., 1986). Since its discovery, MAP2 has become a widely 

used marker for dendrites both in vivo and ex vivo due to its consistent expression in 

neurons and localization to dendrites (Cumming et al., 1984; Vouyiouklis and Brophy, 
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1995). There are four isoforms of MAP2: the high molecular weight proteins (~1830 kDa), 

MAP2A and MAP2B, and the low molecular weight proteins (~470 kDa), MAP2C and 

MAP2D (Hernandez et al., 1986). MAP2D is predominantly expressed during development, 

while MAP2C and MAP2B are expressed throughout development and into adulthood, and 

MAP2A is expressed in adulthood (Cumming et al., 1984; Nunez, 1988; Doll et al., 1993; 

Ferhat et al., 1998). In addition, MAP2A appears to have compensatory roles, and has been 

shown to be upregulated when MAP2C levels are low (Chung et al., 1996).

There have been numerous functions ascribed to the MAP2 family of proteins. They have 

been shown to stabilize microtubules by rescuing catastrophes and increasing microtubule 

stiffness (Gamblin et al., 1996), as well as to bundle microtubules and provide regular 

spacing between microtubules within dendrites (Chen et al., 1992; Dominguez et al., 1994; 

Cunningham et al., 1997; Itoh et al., 1997). Knockdown of MAP2 or deletion of the MAP2 

microtubule-binding domain results in decreased microtubule density and impaired dendrite 

elongation, while overexpression of MAP2 leads to increased dendrite number and length 

(Harada et al., 2002; Tang et al., 2014). MAP2 can also bind actin and neurofilaments and 

may be able to mediate interactions between the three cytoskeletal filaments (Bloom and 

Vallee, 1983; Selden and Pollard, 1983; Papasozomenos et al., 1985; Pedrotti et al., 1994; 

Roger et al., 2004). The ability of MAP2 to crosslink microtubules with actin/neurofilaments 

has been shown to be important during neuronal morphogenesis and dendrite formation, 

during which the cytoskeletal networks are grossly reorganized (Dehmelt et al., 2011).

MAP2 also helps direct microtubule motor transport within dendrites. Not only is MAP2 

important for proper localization of certain proteins and channels to the somatodendritic 

compartment (Theurkauf and Vallee, 1982; Obar et al., 1989; Rubino et al., 1989; Davare et 

al., 1999), but it is also known to be involved in the transport of endoplasmic reticulum 

membranes along microtubules (Heins et al., 1991; Farah et al., 2005). MAP2 may indirectly 

affect the transport of molecular motors such as kinesins and dynein by competing for the 

same binding sites on the microtubule lattice, or directly affect these motors by sterically 

hindering their progress with its projection domain (Heins et al., 1991; Lopez and Sheetz, 

1993; Hagiwara et al., 1994). Interestingly, the levels of MAP2 are decreased in postmortem 

brains from patients with schizophrenia (Arnold et al., 1991; Cotter et al., 2000; Broadbelt et 

al., 2002; Rioux et al., 2003; Somenarain and Jones, 2010; Shelton et al., 2015), highlighting 

the importance of MAP2 function in dendrites, whether that is maintaining microtubule 

stability or directing motor transport of essential cargo. A recent study suggests that the two 

isoforms: MAP2C and MAP2B have very different roles in directing kinesin-based transport 

(Gumy et al., 2017). Gumy et al., (2017) shows that unlike MAP2C, MAP2B is not bound to 

the microtubule lattice, but is free in the cytoplasm where it binds and sequesters kinesin-1. 

This observed function allows for kinesin-3 motors to transport important cargo into the 

axons of neurons. These data provide a new mechanism for how MAP2 contributes to 

neuronal development and maintenance.

All isoforms of MAP2 are highly phosphorylated at different stages of development by a 

number of kinases, but in most cases phosphorylation causes MAP2 to dissociate from the 

microtubule. There are a number of KXGS motifs within the microtubule binding repeats of 

MAP2, which have been shown to be targets of phosphorylation by cAMP-dependent 
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protein kinase (PKA), protein kinase C (PKC), and MARK. PKA phosphorylates MAP2C at 

three serine residues, Ser319, Ser350, and Ser382, which causes MAP2C to release from the 

microtubule and associate with actin in peripheral membrane ruffles in vivo (Rubino et al., 

1989; Ozer and Halpain, 2000). Non-phosphorylated MAP2 is able to bundle actin 

filaments, but phosphorylated MAP2 remains competent to interact with actin, though it is 

unable to generate actin bundles (Sattilaro, 1986). Therefore, the role of phosphorylated 

MAP2 in actin organization is complex and remains unclear. Phosphorylation by both 

MARK at Ser1713 and Ser1682 and PKC at Ser1703, Ser1711, Ser1728 causes MAP2 to 

dissociate from the microtubule (Ainsztein and Purich, 1994; Illenberger et al., 1996; 

Drewes et al., 1997; Ebneth et al., 1999). JNK1 phosphorylation of both MAP2 and MAP1B 

occurs during neuronal development and is thought to regulate microtubule assembly for 

proper dendrite outgrowth (Chang et al., 2003). Based on the functions of MAP2 during 

development, phosphorylation and release from the lattice could have profound implications 

not only for microtubule dynamics, but also for motor transport of essential dendritic cargo 

(Heins et al., 1991). Many other protein kinases can phosphorylate MAP2 proteins in vitro 
such as Ca2+/calmodulin-dependent protein kinase (CaMKII), extracellular signal-regulated 

kinase-1 (ERK), GSKIIIβ, and cdc2 kinase, but the targeted residues and the functional 

consequences of phosphorylation have yet to be determined (Brugg and Matus, 1991; Itoh et 

al., 1997). The phosphorylation state of MAP2 is also determined by neuronal activity, 

which correlates with changes in cytoskeletal architecture within dendrites (Halpain and 

Greengard, 1990; Diaz-Nido et al., 1993; Quinlan and Halpain, 1996; Philpot et al., 1997). 

Therefore, MAP2 function is regulated by phosphorylation not only during neuronal 

development, but also after differentiation during synaptic activity for maintenance of 

neuronal health (Diaz-Nido et al., 1993; Diez-Guerra and Avila, 1993; Dhamodharan and 

Wadsworth, 1995; Riederer et al., 1995).

MAP4/MAP3

Microtubule-associated protein 4 (MAP4, a.k.a. MAP3) is expressed in a variety of different 

cell types, where it has been shown to promote microtubule assembly, inhibit the binding of 

other MAPs, and potentially cross-link microtubules and actin/neurofilaments (Huber et al., 

1985; Matsushima et al., 2012). During neuronal development, MAP4 is lowly expressed in 

the nervous system, but is subsequently upregulated in both neurons and glia in the adult 

brain (Bernhardt et al., 1985; Huber et al., 1985; Matsushima et al., 2012). 

Immunofluorescence studies on primary neurons reveal that MAP4 is mainly restricted to 

the axons (Matsushima et al., 2012), where it is concentrated at branching points (Tokuraku 

et al., 2010). Both in vivo and in vitro studies have revealed that MAP4 enhances tubulin 

polymerization and overall microtubule stability (Nguyen et al., 1997; Nguyen et al., 1998; 

Xiao et al., 2012). In Xenopus melanophores, muscle cells, and in vitro motility assays, 

MAP4 has been shown to inhibit dynein motility, but there are conflicting results as to its 

effects on kinesin (Bulinski et al., 1997; Tokuraku et al., 2010; Samora et al., 2011; 

Semenova et al., 2014; Mogessie et al., 2015). In Xenopus melanophores, MAP4 enhances 

kinesin-2-based transport and inhibits dynein-based transport (Semenova et al., 2014). In 

muscle myoblast cells, a MAP4 isoform, termed oMAP4, aligns microtubules into 

antiparallel bundles that withstand motor force, and prevents dynein-and kinesin-driven 
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microtubule sliding (Mogessie et al., 2015). This newly identified oMAP4 isoform is 

necessary to establish and maintain microtubule bundles during polarization and elongation 

of myotubes. The presence of MAP4 on the microtubule also inhibits the association of the 

depolymerizing kinesin, MCAK (Holmfeldt et al., 2002), and the microtubule severing 

enzyme, katanin (McNally et al., 2002). Therefore, the regulation of MAP4 association with 

the microtubule lattice should have profound consequences for microtubule stability.

Based on the above studies, MAP4 could contribute to microtubule stability in two ways: 1) 

by bundling microtubules and promoting resistance to external forces, and 2) by binding the 

microtubule and sterically blocking proteins that actively disassemble the microtubule.

MAP4 can be regulated by a number of kinases, including PKC, MAPK, MARK, and 

cyclin-B-cdc2 (Mori et al., 1991; Hoshi et al., 1992; Illenberger et al., 1996; Ookata et al., 

1997; Ebneth et al., 1999). Phosphorylation by all four of these kinases leads to the 

detachment of MAP4 from microtubules and subsequent destabilization of the microtubule 

cytoskeleton (Ebneth et al., 1999; Mandelkow et al., 2004), but they each exert their effects 

on MAP4 in different cellular contexts. The MAP4 phosphorylation sites, Ser696, Ser768, 

Ser787, and Ser815, located within the proline-rich region of its microtubule-binding 

domain are proposed to be the key residues regulating microtubule affinity (Mori et al., 

1991; Ookata et al., 1997; Srsen et al., 1999). p38/MAPK phosphorylation of MAP4 is 

induced in cardiomyocytes under hypoxic conditions (Hu et al., 2010; Hu et al., 2014). 

Furthermore, p38/MAPK is an essential signal required for the cytoskeletal rearrangement 

that precedes endothelial barrier disruption (Li et al., 2015). Therefore, it is conceivable that 

a potential regulatory balance between MAP4 phosphorylation and dephosphorylation 

controlled by p38/MAPK may exist to maintain microtubule organization under high stress 

conditions.

Cyclin B-cdc2 phosphorylates MAP4 at Ser696 and Ser787 in vivo and in vitro, and causes 

microtubules to become more dynamic by decreasing the frequency of rescue (Ookata et al., 

1995; Ookata et al., 1997). Phosphorylation of MAP4 by PKC and MARK has also been 

shown to disrupt microtubule stability and lead to cell death (Mori et al., 1991; Illenberger et 

al., 1996; Drewes et al., 1997; Ebneth et al., 1999). Taken together, phosphorylation and 

subsequent release of MAP4 from the microtubule affects microtubule stability in two ways: 

1) by removing a stabilizing protein from the lattice that would otherwise prevent 

catastrophe, or 2) by allowing catastrophe factors, such as MCAK and katanin, to more 

easily access the microtubule surface and induce disassembly. Further studies will be 

necessary to determine the molecular basis for MAP4 inhibition of other MAPs and the 

functional output on microtubule growth and stability.

MAP6/STOP

MAP6, or STOP (Stable-Tubule-Only Polypeptide), is expressed in a range of tissues in 

vertebrate animals, and is known to protect microtubules from depolymerization in 

conditions such as low temperatures or treatment with depolymerizing drugs (Bosc et al., 

2003; Arama et al., 2012; Delphin et al., 2012; Gory-Faure et al., 2014). There are three 

major MAP6 isoforms that have been described in the mouse nervous system: MAP6-E (E-
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STOP), which is expressed throughout neuronal development, as well as in the adult brain, 

and MAP6-N (N-STOP), and MAP6d1 (SL21), both of which are expressed in the brain and 

other tissues postnatally (Gory-Faure et al., 2014; Deloulme et al., 2015). Mice deficient in 

MAP6 have lower synaptic vesicle pools, defects in synaptic plasticity, and altered 

neurotransmission, all of which are associated with behavioral disorders such as 

schizophrenia (Andrieux et al., 2002; Eastwood et al., 2007; Bouvrais-Veret et al., 2008; 

Fournet et al., 2012b; Volle et al., 2013; Daoust et al., 2014). In cultured neurons, MAP6 

proteins are present in both axons and dendrites, where they are thought to interact with the 

microtubule cytoskeleton, but MAP6 proteins also show transient localization within both 

pre- and post-synaptic compartments, where they are thought to interact with the actin 

cytoskeleton (Andrieux et al., 2002; Baratier et al., 2006). There are several proteins that 

interact with both the actin and microtubule cytoskeletons to enable cross-talk between the 

two cytoskeletal networks (Bartolini and Gundersen, 2010). However, the interactions 

between MAP6 and microtubules or actin may be mutually exclusive and appear tightly 

regulated by phosphorylation (Baratier et al., 2006; Lefevre et al., 2013).

Many studies have focused on the phosphorylation of MAP6 by CaMKII (Bosc et al., 2001; 

Bosc et al., 2003; Baratier et al., 2006). MAP6 is phosphorylated by CaMKII in vitro on at 

least three of the four potential CaMKII consensus sites found within its sequence: Ser139, 

Ser198, and Ser491 (Baratier et al., 2006; Lefevre et al., 2013). Phosphorylation of MAP6 

by CaMKII causes MAP6 to dissociate from the microtubule (Lefevre et al., 2013). In vivo, 

phosphorylation is normally preceded by synaptic activation and causes a redistribution of 

MAP6 from primary branches to synaptic compartments (Baratier et al., 2006). It has also 

been shown that during synaptic activation, microtubule binding by MAP6 can be inhibited 

by Ca2+-bound calmodulin, which binds and competes with the microtubule-binding domain 

of MAP6 to prevent microtubule association (Lefevre et al., 2013). These data suggest a 

model in which the microtubule association of MAP6 is regulated in two ways: 1) by 

binding Ca2+-calmodulin in response to transient Ca2+ influxes induced by synaptic 

activation, or 2) through phosphorylation by active CaMKII. The latter is a proposed 

mechanism for MAP6 regulation during short or long term synaptic potentiation, which both 

involve active CaMKII after Ca2+ levels return to basal levels (Baratier et al., 2006; Lefevre 

et al., 2013).

Phosphorylation by CaMKII could also be an important regulatory switch for MAP6 

function. In vitro, phosphorylated MAP6 is unable to bind to microtubules, though it can 

still bind to polymerized actin (Baratier et al., 2006). In cultured neurons, phosphorylated 

MAP6 co-localizes with actin in pre- and post-synaptic compartments (Baratier et al., 2006). 

Actin is important for the localization and regulation of synaptic vesicle pools and MAP6 

binding to actin may be important to maintain the vesicular pool (Hannah et al., 1999). It has 

been suggested that during synapse formation, there is increased actin polymerization events 

in both pre- and post-synaptic compartments (Fischer et al., 1998). It will be interesting to 

examine how MAP6 actually affects actin dynamics both in vivo and in vitro to further 

understand its role in these compartments during synaptic transmission.

As mentioned above, a hallmark of MAP6 deficiency is a dramatic depletion of synaptic 

vesicle pools in glutamatergic synapses, which could underlie the behavioral abnormalities 
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observed in MAP6 mutant mice (Eastwood et al., 2007; Fournet et al., 2012b; Volle et al., 

2013; Daoust et al., 2014). Taking all of this data together, the current model is that 

dephosphorylated MAP6 binds and stabilizes microtubules throughout the neuron, but upon 

synaptic activation, CaMKII phosphorylation of MAP6 facilitates its dissociation from the 

microtubule and relocalization to pools of actin within synapses. There is a controversy as to 

whether the behavioral alterations observed in the MAP6 null mice are attributed to the 

downstream effects on the microtubule or the actin cytoskeleton. Surprisingly, treatment of 

the MAP6 null mice with either antipsychotics or microtubule stabilizing drugs improves the 

observed behavioral phenotypes (Andrieux et al., 2002; Merenlender-Wagner et al., 2010; 

Fournet et al., 2012a), indicating that the role of MAP6 in stabilizing the microtubule 

cytoskeleton is essential during neuronal function. It will be interesting to further investigate 

the independent vs. concurrent roles of MAP6 in regulating the microtubule and actin 

cytoskeletons, and determine if MAP6 can facilitate cross talk between these two networks.

MAP7/Ensconsin/E-MAP-115

MAP7, also known as Ensconsin or E-MAP-115, was originally identified based on its 

tenacious association with microtubules (Bulinski and Borisy, 1980; Masson and Kreis, 

1993; Bulinski and Bossler, 1994; Masson and Kreis, 1995; Fabre-Jonca et al., 1998; 

Bulinski et al., 1999; Faire et al., 1999). In vivo, MAP7 interacts with kinesin-1 to regulate 

cell polarity in Drosophila oocytes, organelle transport in S2 cells, and nuclear positioning in 

both Drosophila and mammalian muscle cells (Sung et al., 2008; Metzger et al., 2012; 

Barlan et al., 2013). In vitro, MAP7 competes with another MAP, tau, and directly enhances 

kinesin-1 binding to the microtubule, but inhibits kinesin-3 from accessing the microtubule 

(Monroy et al., 2017). Recently, MAP7 was found to be upregulated during collateral branch 

formation in dorsal root ganglion (DRG) neurons, and overexpression of MAP7 led to a 

dramatic increase in the number of collateral branches (Tymanskyj et al., 2017). Together 

these results suggest that MAP7 is involved both in kinesin-1-based transport and 

microtubule organization in a variety of cell types.

As with most MAPs, MAP7 is regulated by phosphorylation, but the extent to which 

phosphorylation regulates its function is less understood. Initial studies in HeLa cells 

reported that MAP7 was differentially localized depending on the stage of mitosis (Masson 

and Kreis, 1993). MAP7 is absent from microtubules during early prophase, but as mitosis 

progresses, MAP7 intensity increases at the spindle poles, then spreads to coat the mitotic 

spindle (Masson and Kreis, 1995; Gallaud et al., 2014). This localization pattern is 

consistent in the syncytial divisions of the Drosophila embryo (Gallaud et al., 2014). 

Interestingly, MAP7 was found to be hyperphosphorylated in mitotic cells and in 

microtubule co-pelleting assays from mitotic cell extract, MAP7 was enriched in the 

supernatant, suggesting that the hyperphosphorylated protein could not bind microtubules 

(Masson and Kreis, 1993). Fluorescent speckle microscopy used to analyze MAP7-

microtubule binding dynamics also revealed an effect of phosphorylation. Treatment with a 

general kinase inhibitor, staurosporine, showed a decrease in MAP7 dynamics compared to 

untreated cells, indicating phosphorylation may regulate microtubule-binding dynamics by 

affecting MAP7 binding or dissociation rates (Faire et al., 1999; Bulinski et al., 2001).
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In Drosophila oocytes, polarity is established by the kinase, MARK (a.k.a. Par-1), and in its 

absence, MAP7 is no longer spatially restricted to the anterior region of the oocyte (Sung et 

al., 2008). MARK was found to phosphorylate MAP7 within both the N-terminal and the C-

terminal regions (Sung et al., 2008). Deletion or alanine-mutations of six predicted 

phosphorylation sites within the MAP7 N-terminus did not affect the association of MAP7 

with the microtubule, but did affect is localization pattern similar to loss of MARK. 

Mutating the only two residues conserved in mammalian MAP7, Ser168 and Ser198, 

reduced the ability of MARK to phosphorylate MAP7 and was sufficient to produce the 

same mislocalization phenotypes in Drosophila oocytes (Sung et al., 2008). This data 

suggests that the phosphorylation of MAP7 by MARK is required for its localization pattern, 

but does not affect microtubule affinity. Although this is in contrast to previous hypotheses 

about the regulation of MAP7 by phosphorylation, other kinases may phosphorylate MAP7 

and differentially affect its function or localization. To date, MARK is the only kinase that 

has been shown to phosphorylate MAP7, and it could regulate the localization pattern of 

MAP7 during other cellular processes such as mitosis. There are three paralogs for the 

MAP7 gene: MAP7D1, MAP7D2 and MAP7D3. MAP7D1 exhibits the highest conservation 

with MAP7, and was recently identified as a phosphorylation substrate of DCLK1 in cortical 

neurons (Koizumi et al., 2017). DCLK1-mediated phosphorylation of MAP7D1 at Ser315 

was shown to promote the elongation of growing axons within cortical neurons, but it is 

unknown how phosphorylation at this site modulates MAP7D1 activities (Koizumi et al., 

2017). It is possible based on the original studies of MAP7 that other kinases could regulate 

the microtubule binding affinity of MAP7 to spatially or functionally control this protein 

during mitotic progression. Further investigation is necessary to determine how context 

dependent phosphorylation of MAP7 regulates its microtubule affinity versus its subcellular 

localization pattern.

MAP9/ASAP

MAP9, also termed ASAP (ASter-Associated Protein), is a microtubule-associated protein 

that localizes to the mitotic spindle and has important roles in bipolar spindle assembly and 

centrosome integrity (Saffin et al., 2005; Venoux et al., 2008b; Somenarain and Jones, 

2010). MAP9 is expressed in the vertebrate nervous system throughout development, and 

depletion of MAP9 in the zebrafish embryo leads to a number of developmental defects that 

lead to early embryonic lethality (Fontenille et al., 2014). In cultured cells, MAP9 decorates 

the mitotic spindle and overexpression causes monopolar spindles, while knockdown leads 

to multipolar spindles and defects in cytokinesis (Saffin et al., 2005). MAP9 is also 

downregulated in certain types of cancers, such as colorectal cancer, and could be used as a 

valuable disease marker (Rouquier et al., 2014). These findings indicate that MAP9 has a 

crucial role in the organization of the bipolar mitotic spindle and in mitotic progression.

To date, studies have shown that MAP9 is phosphorylated by two mitotic kinases: Aurora A 

and Polo-like kinase 1 (PLK1) (Venoux et al., 2008a; Eot-Houllier et al., 2010). Aurora A is 

an important regulator of cell division and phosphorylates a number of MAPs throughout 

mitosis (Glotzer, 2009). MAP9 is phosphorylated by Aurora A on Ser625, and this one 

residue is necessary and sufficient to dictate the localization pattern of MAP9 within the 

mitotic spindle (Venoux et al., 2008a). Phosphorylated MAP9 localizes to the centrosome 
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from G2 to telophase, then to the midbody during cytokinesis, and perturbing the 

phosphorylation of this residue leads to abnormal spindles and defects in mitotic progression 

(Venoux et al., 2008a). In the absence of Aurora A, MAP9 is degraded, highlighting the 

importance of phosphorylation in MAP9 protein stability. It is thought that MAP9 function, 

but not localization, is dependent upon Plk1 kinase (Eot-Houllier et al., 2010). Plk1 

phosphorylates MAP9 at Ser289 after MAP9 has already been recruited to the centrosomes 

by the NEDD1-γ-tubulin pathway. This event may be important for subsequent microtubule 

nucleation from the centrosome, but further studies are necessary to dissect the functional 

interaction between MAP9 and the NEDD1-γ-tubulin pathway (Eot-Houllier et al., 2010). 

Taken together, Aurora A seems to be required to localize and stabilize MAP9 specifically to 

centrosomes during spindle formation, while Plk1 seems to be required for subsequent 

functions of MAP9 within the spindle pole, suggesting specific contributions of both kinases 

to MAP9 regulation.

TAU

Tau is one of the most widely studied MAPs due to its association with neurological diseases 

such as fronto-temporal dementia (FTD) and Alzheimer’s disease (AD) (Tolnay and Probst, 

1999; Del Carmen Alonso, 2010; Irwin et al., 2013; Ghetti et al., 2015; Gao et al., 2017; 

Kocahan and Dogan, 2017). Tau is now also a marker of brain damage following traumatic 

brain injury (TBI)(Zemlan et al., 1999; Zemlan et al., 2002; Franz et al., 2003; Smith et al., 

2003; Tran et al., 2011a; Tran et al., 2011b; Hawkins et al., 2013; Kondo et al., 2015), 

highlighting the deleterious role of tau in neurodegeneration. Although tau was originally 

discovered to enhance microtubule stability and polymerization, it has subsequently been 

ascribed a number of other functions, which include controlling microtubule modifications, 

altering the stiffness and mechanical properties of the microtubule polymer, spacing 

microtubules at certain distances within the axon, and regulating microtubule motor 

transport (Cleveland et al., 1977; Drubin and Kirschner, 1986a; Drubin and Kirschner, 

1986b; Fellous et al., 1986; Bre and Karsenti, 1990; Drechsel et al., 1992; Ebneth et al., 

1998; Samsonov et al., 2004; Peck et al., 2011; Duan et al., 2017). Tau is expressed in the 

brain throughout development and into adulthood, and multiple isoforms of tau exist in the 

central nervous system due to alternative splicing of exons 2, 3, and 10 of the tau pre-mRNA 

(Kosik and Caceres, 1991; Goedert, 2015). There is one tau isoform expressed in the 

neonatal brain, and six tau isoforms expressed in the human adult brain. Of these six, three 

contain four microtubule-binding repeats (4R) and three contain three microtubule-binding 

repeats (3R) (Goedert et al., 1989). Within the brain, tau is predominantly expressed in 

neurons (Drubin and Kirschner, 1986b; Caceres and Kosik, 1990; Kosik and Caceres, 1991; 

Goode et al., 1997). Non-phosphorylated tau is restricted to the axon and is used as an 

axonal marker; however, antibodies against total tau have revealed that it is in both dendritic 

and axonal compartments (Mandell and Banker, 1996). During neuronal development, 3R-

tau plays clear roles in neurite outgrowth, and in mature neurons, both 3R- and 4R-tau aids 

in the assembly of microtubules (Drubin and Kirschner, 1986a; Caceres and Kosik, 1990; 

Kosik and Caceres, 1991; Goode et al., 1997). Tau also contributes to the stability of 

microtubules by inhibiting katanin severing within the axon (Qiang et al., 2006). It has also 

been shown both in vivo and in vitro that tau inhibits kinesin-1 motility, but has less of an 
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effect on dynein motility along microtubules (Ebneth et al., 1998; Seitz et al., 2002; Terwel 

et al., 2002; Vershinin et al., 2007; Dixit et al., 2008). Therefore, tau also directly impacts 

microtubule-based transport.

Tau has been reported to have a number of interacting partners, under normal and pathogenic 

conditions, which are comprehensively reviewed elsewhere (Mandelkow and Mandelkow, 

2012; Bakota et al., 2017). Based on numerous studies, tau is an important MAP necessary 

for the development and maintenance of a neuron; however, tau null mice are viable and 

display increasing cognitive impairments with age (Harada et al., 1994; Ikegami et al., 2000; 

Fujio et al., 2007; Lei et al., 2012). This could be due to the compensatory effects of 

MAP1A, which is upregulated in the brains of tau null mice (Dawson et al., 2001), or 

MAP1B. Tau/MAP1B double knockout mice display more severe phenotypes in axonal 

elongation and neuronal migration compared to the single knockouts (Takei et al., 2000). 

The functional redundancy between MAPs that is observed in these studies highlights the 

importance of these classical MAPs during neuronal development.

Phosphorylation of tau contributes to a number of neuronal pathologies. Tau can be 

posttranslationally modified in a number of different ways: phosphorylation, glycosylation, 

ubiquitination, O-GlcNAcylation, and oxidation, among others (Avila et al., 2004; Avila, 

2006; Avila et al., 2006; Avila, 2008). Phosphorylation of tau has been extensively studied, 

because hyperphosphorylated tau forms large aggregates called neurofibrillary tangles that 

contribute to the pathologies of FTD, AD, and neurodegeneration resulting from TBI 

(Mandelkow and Mandelkow, 1994; Trojanowski and Lee, 1995; Mandelkow and 

Mandelkow, 1998). Tau contains 80 potential serine/threonine and 5 potential tyrosine 

phosphorylation sites (Wang et al., 2007; Wang et al., 2013). In the brains of AD patients, 

tau is hyperphosphorylated at 20–40 sites (Duka et al., 2013). The kinases that have been 

shown to phosphorylate tau include: GSKIIIβ, MARK, MAPK, JNK1, PKA, ERKs, 

DYRK1a, casein kinase I, and cyclin-dependent kinase-5 (CDK5) (Avila, 2008; Hanger et 

al., 2009). Similar to other MAPs reviewed here, it has been demonstrated that tau 

phosphorylation reduces its affinity for microtubules or its ability to promote microtubule 

polymerization, resulting in overall microtubule instability (Avila et al., 2006). 

Phosphorylation at specific sites, such as Y18, regulates the dynamicity of tau on the 

microtubule and has significant effects on kinesin-1 motility (Stern et al., 2017). Whether 

neuronal cell death is a consequence of microtubule instability, transport, or tau 

neurofibrillary tangles is controversial (Dawson et al., 2010). However, it has been 

established that tau tangles are highly pathogenic and can cause neurodegeneration when 

introduced into healthy mice (Clavaguera et al., 2009; Zetterberg et al., 2013; Clavaguera et 

al., 2015; Wu et al., 2016; Fu et al., 2017). In addition, tau aggregates can transfer between 

neurons across synapses and can therefore spread and infect healthy neurons, causing a 

sweep of neurodegeneration (Liu et al., 2012b; Iba et al., 2013; Wu et al., 2016).

Most studies focus on the phosphorylation sites that cause tau to release from the 

microtubule and form aggregates, but thus far, there is one phosphorylation site on tau that 

does not affect microtubule affinity. Phosphorylation at Ser262 within tau does not cause tau 

to dissociate from the microtubule, but affects its ability to interact with and inhibit End-

binding protein-1 (EB1) from tracking the plus end of the microtubule (Sayas et al., 2015; 
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Ramirez-Rios et al., 2016). Therefore, phosphorylation of tau does not always cause tau to 

dissociate from the microtubule, but can affect other functions of this protein, which could 

contribute to neuronal alterations observed in neurodegenerative diseases.

DOUBLECORTIN FAMILY (DCX & DCLK)

The doublecortin (DCX) and doublecortin-like kinase (DCLK) proteins are part of the 

doublecortin-domain containing MAP family that have two tandem microtubule binding 

domains (DC1 and DC2)(Coquelle et al., 2006; Reiner et al., 2006). DCLK proteins contain 

an additional serine/threonine kinase domain at their C-terminal end that shares homology 

with the kinase domain of CaMKs (Kim et al., 2003; Dijkmans et al., 2010). DCX is 

expressed during the early stages of neuronal development and is predominantly localized to 

migrating neurons, followed by downregulation in differentiated neurons (Francis et al., 

1999; Gleeson et al., 1999a; Liu et al., 2012a). The DCX gene has two paralogs: 

doublecortin-like kinase 1 and 2 (DCLK1 and DCLK2) (Reiner et al., 2006). In contrast to 

DCX, DCLK1 and DCLK2 are expressed in both developing and mature neurons (Burgess 

and Reiner, 2000; Tanaka et al., 2006; Liu et al., 2012a). DCLK1 preferentially localizes to 

the distal ends of dendrites and like DCX, DCLK1 is speculated to promote growth of 

dendrites. DCX and DCLK1-deficient neurons do not show dramatic defects in microtubule 

organization; however, they do display vesicular trafficking defects (Deuel et al., 2006). 

Both DCX and DCLK1 directly interact with kinesin-3 family members (KIF1A and 

KIF1C) to facilitate kinesin-3 transport of cargo within dendrites (Liu et al., 2012a; Lipka et 

al., 2016). This conserved function highlights the importance for DCX/DCLK1 in neuronal 

transport processes not only during development but also during neuronal maintenance.

Accumulating evidence suggests that DCLK1 is involved in a variety of cancers. DCLK1 is 

highly expressed in pancreatic cancer cells, where it promotes cell division and cell 

migration; however, its role during these two processes is unclear (Ito et al., 2016). In 

addition, a range of mutations throughout DCLK1 causes breast, colorectal, pancreatic and 

other cancers (Patel et al., 2016). A recent study has also identified a short isoform of 

DCLK1, termed DCLK1-S, which lacks the DCX microtubule-binding domains, but retains 

the entire kinase domain (Sarkar et al., 2017). This isoform is highly expressed in human 

colorectal tumors and colon cancer cells, and is currently being investigated as a potential 

biomarker for the detection cancer stem cells (Sarkar et al., 2017).

The doublecortin family is distinct from other MAPs in terms of its binding to microtubules. 

Classical MAPs such as MAP2 and Tau bind the ridges of the microtubule protofilament, 

while the DCX/DCLK proteins attach to the valleys between protofilaments (Al-Bassam et 

al., 2002; Moores et al., 2004; Bechstedt and Brouhard, 2012). Such binding between the 

grooves of the protofilaments is thought to provide both lateral and longitudinal stability to 

the microtubule filament and may regulate the 13-protofilament microtubules in vivo 

(Moores et al., 2004; Moores et al., 2006; Bechstedt and Brouhard, 2012; Bechstedt et al., 

2014; Ettinger et al., 2016). Both DCX and DCLK1 potently stimulate microtubule 

polymerization in vitro, and it is proposed that they are required to specifically nucleate 13-

protofilament microtubules (Bechstedt and Brouhard, 2012).
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DCX and DCLK1 are important during neurogenesis and neuronal migration (Mizuguchi et 

al., 1999; Mizuguchi et al., 2002; Shu et al., 2006; Jean et al., 2012; Liu et al., 2012a; 

Saaltink et al., 2012; Shin et al., 2013; Verissimo et al., 2013; Lipka et al., 2016). Certain 

mutations that cause the neuronal migration disorder, Lissencephaly, have been mapped to 

the dcx gene (Gleeson et al., 1998; Pilz et al., 1998; Gleeson et al., 1999b; Viot et al., 2004). 

Most patient missense mutations are located within the tandem microtubule binding domains 

of DCX, suggesting that the microtubule binding, polymerization and stabilizing activities of 

DCX may be important for neuronal migration (Gleeson et al., 1999b; Sapir et al., 2000; 

Taylor et al., 2000).

DCX is phosphorylated by a number of different kinases in the developing brain. CDK5 

phosphorylates DCX at Ser297 (Tanaka et al., 2006), PKA and MARK phosphorylate Ser47 

(Schaar et al., 2004), and JNK1 phosphorylates three different sites: Thr321, Thr331 and 

Ser334 (Gdalyahu et al., 2004). All of these sites are located within the tandem microtubule 

binding domains. DCLK1 autophosphorylates itself at a number of different sites both inside 

and outside the microtubule-binding domain (Patel et al., 2016). In general, phosphorylation 

of DCX/DCLK1 lowers their microtubule binding affinities, thereby reducing their effects 

on microtubule polymerization (Tanaka et al., 2006; Patel et al., 2016). CDK5-mediated 

phosphorylation alters the localization pattern of DCX within cultured migrating neurons 

from perinuclear regions to distal microtubule bundles (Tanaka et al., 2006). JNK1-mediated 

phosphorylation of DCX is critical for its role in growth cones and perturbation of this 

phosphorylation event affects neurite outgrowth and the velocity of migrating neurons 

(Gdalyahu et al., 2004). PKA and MARK phosphorylation of DCX are also necessary for 

DCX localization to the leading processes during neuronal migration, but negatively regulate 

the association of DCX with microtubules, highlighting the importance of MAP association 

and dissociation in controlling microtubule dynamics (Schaar et al., 2004). Interestingly, the 

PKA/MARK phospho-site on DCX, Ser47, is mutated in two individuals with Lissencephaly 

(Schaar et al., 2004). Collectively, these results underscore the importance of 

phosphorylation in regulating DCX during neuronal development.

TUBULIN

Most studies focus on how MAPs control microtubule dynamics and stability, but tubulin 

itself can be post-translationally modified and these modifications can have profound effects 

on microtubule dynamics and MAP association. For the purpose of this review, we will 

focus on what is known about the effects of phosphorylation on tubulin (Table 2). For 

comprehensive reviews on other tubulin post-translational modifications, please see: 

(Bulinski, 2009; Janke and Bulinski, 2011; Yu et al., 2015).

Phosphorylation of tubulin was reported by a number of groups over 30 years ago using total 

brain tubulin from either bovine or rat (Goodman et al., 1970; Murray and Froscio, 1971; 

Eipper, 1974). Brain tubulin was initially found to be phosphorylated by cAMP (Goodman 

et al., 1970; Murray and Froscio, 1971), then Eipper (1974) performed further experiments 

to show that beta-tubulin, in particular, was phosphorylated within its C-terminal tail. Gard 

and Kirschner (1985) also found that beta-tubulin was phosphorylated in neuroblastoma cell 

lines and that treatment with microtubule stabilizing drugs such as taxol induced tubulin 
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phosphorylation, while treatment with depolymerizing drugs such as nocodazole decreased 

tubulin phosphorylation. Further work both in vivo in neuroblastoma lines and in vitro with 

purified components revealed that casein kinase II could phosphorylate beta-tubulin within 

the C-terminal tail at Ser444 or Ser446, and that this phosphorylation event did not inhibit 

microtubule assembly (Gard and Kirschner, 1985; Serrano et al., 1987; Luduena et al., 

1988). It is unknown whether phosphorylation of this residue occurs on the tubulin 

heterodimer or within the lattice, or both. How phosphorylation of this particular residue 

affects other aspects of microtubule dynamics besides assembly, or the binding of MAPs, 

will be an interesting area of investigation. Beta-tubulin can also be phosphorylated at 

Ser172, and phosphorylation at this residue has been shown to inhibit microtubule assembly 

(Fourest-Lieuvin et al., 2006; Ori-McKenney et al., 2016). Ser172 is located near the GTP 

binding pocket of beta-tubulin and may prevent nucleotide exchange (Figure 3A). Only beta-

tubulin in the GTP state is able to assemble onto the microtubule protofilament, thus if GTP 

binding is blocked, then microtubule polymerization will likely be inhibited. To date, CDK1 

and DYRK1a have been shown to phosphorylate Ser172 to regulate microtubule growth 

during the cell cycle and during neuronal morphogenesis, respectively (Fourest-Lieuvin et 

al., 2006; Ori-McKenney et al., 2016).

Like beta-tubulin, phosphorylation of alpha-tubulin can also result in a range of effects 

within the cell. Unlike beta-tubulin, which is predominantly phosphorylated at serine and 

threonine residues, alpha-tubulin is phosphorylated at threonine and tyrosine residues, 

indicating that different types of kinases could act upon this subunit. In the presence of 

insulin, insulin receptor kinase phosphorylates alpha-tubulin at multiple tyrosine residues 

(Wandosell et al., 1987). The effect on microtubule growth varies depending on which 

tyrosine residue is phosphorylated. Phosphorylation of a tyrosine residue in the C-terminal 

tail of alpha-tubulin inhibits microtubule assembly, but phosphorylation of tyrosine residues 

in other regions of alpha-tubulin does not affect microtubule assembly (Wandosell et al., 

1987). Upon T-cell activation, alpha-tubulin can be phosphorylated at a tyrosine residue, 

which prevents heterodimer assembly into microtubules (Ley et al., 1994). Similarly, after 

B-cell activation, the tyrosine kinase, Syk, phosphorylates alpha-tubulin on a tyrosine 

present near, but not within its C-terminal tail (Peters et al., 1996). Faruki et al. (2000) 

followed up on this work and showed that phosphorylation of alpha-tubulin at this tyrosine 

can occur on the heterodimer and on the microtubule polymer indicating that it does not 

affect microtubule assembly (Faruki et al., 2000). Interestingly, phosphorylation at one 

conserved site within alpha-tubulin inhibits the assembly of the heterodimer into the 

microtubule polymer: Thr349. An atypical MAPK phosphatase phosphorylates Thr349 

within alpha-tubulin in response to osmotic stress in rice and Arabidopsis (Ban et al., 2013; 

Fujita et al., 2013). Thr349 is located at the exposed surface of alpha-tubulin that interacts 

with the beta-tubulin of another heterodimer (Figure 3A), and phosphorylation of this 

residue likely impairs this interaction and prevents microtubule assembly (Ban et al., 2013; 

Fujita et al., 2013).

Other studies have identified tyrosine phosphorylation of tubulin, but were unable to 

determine which subunit was specifically phosphorylated. The kinase, pp60c-src 

phosphorylates tubulin on tyrosine residues in neuronal growth cones (Matten et al., 1990). 

C-Fes tyrosine kinase phosphorylates tubulin on tyrosine residues, which actually stimulates 
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microtubule assembly in vitro (Laurent et al., 2004). Finally, Jak2 phosphorylates tubulin on 

tyrosine residues, but the functional output of this modification is unknown (Ma and 

Sayeski, 2007). Considering that tyrosine phosphorylation has not been detected on beta-

tubulin by previous groups, it is likely that these tyrosine phosphorylation sites are occurring 

on alpha-tubulin (Serrano et al., 1987; Luduena et al., 1988). By examining the PDB 

structure (1TUB) of the tubulin heterodimer, one potential tyrosine residue that may be 

exposed is Tyr261 (Figure 3B). Future studies are necessary to determine not only the 

precise residues targeted for phosphorylation by the tyrosine kinases, but their functional 

consequences on both microtubule assembly and MAP binding.

CONCLUDING PERSPECTIVE

Phosphorylation of MAPs was originally shown to affect association with the microtubule, 

but advances in this field have revealed that phosphorylation can dictate intracellular MAP 

patterning and function. For the MAPs reviewed above, we find three general classes of 

phosphorylation effects (Table 1 and Figure 2): 1) MAP dissociation from the microtubule 

(MAP2, MAP4, MAP6, Tau, DCX), 2) MAP relocalization within the cell (MAP2, MAP6, 

MAP7, MAP9, DCX), or 3) altered MAP function (MAP1A, MAP1B, MAP9, Tau). The 

same MAPs can be classified into multiple groups indicating they can be modulated by 

phosphorylation in different ways. It is also apparent that a relatively few number of kinases 

are responsible for MAP phosphorylation (Table 1). The observations that the same kinases 

regulate multiple MAPs underscores the importance of these kinases during neuronal 

development and maintenance, but also raises an interesting question of how these kinases 

coordinate MAP binding and localization along the microtubule surface. MAPs bound to a 

particular microtubule could determine the growth rate or stability of the microtubule 

polymer, direct motor transport and/or dictate the binding of other MAPs. Many of these 

MAPs exhibit similar spatial and temporal patterns (Gumy et al., 2017). Some are dendrite-

specific, such as MAP1A, MAP2, and DCX, or axon-specific, such as Tau, at certain 

developmental timepoints, but others localize to both the dendrites and the axons throughout 

development and into adulthood. MAP2 and Tau compete for the same binding site on the 

microtubule, but they are compartmentalized into dendrites and axons, respectively (Al-

Bassam et al., 2002). Few studies have focused on how other MAPs compete for 

microtubule binding, but phosphorylation could be an important layer of regulation in 

coordinating MAPs that are localized to the same neuronal regions at the same time. 

Investigating the role of phosphorylation in directing MAP behavior will be essential in 

understanding the functions of MAPs, individually and as ensembles, on the organization of 

the microtubule cytoskeleton. This exciting research area will also provide greater insight 

into how MAPs are coordinated at the molecular and cellular level to ensure proper 

development and maintenance of neurons.
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Figure 1. Domain organization of microtubule-associated proteins (MAPs)
The microtubule-binding domains (yellow), actin-binding domains (blue), kinase domains 

(green), and phosphorylation sites (blue stars) are illustrated for each MAP. Note that the 

phosphorylation sites of DCLK1 are proposed autophosphorylation sites. The following 

accession numbers for the protein sequences were used for this schematic: NP_002364.5 for 

MAP1A, NP_005900.2 for MAP1B, NP_060644.4 for MAP1S, NP_002365.3 for 

MAP2A/B, NP_114033.2 for MAP2C, NP_001127836.1 for MAP4, NP_149052.1 for 

MAP6, NP_001185537.1 for MAP7, NP_001034669.1 for MAP9, NP_005901.2 for tau, 

NP_001317001.1 for DCLK, and NP_835365.1 for DCX.
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Figure 2. Model for the effect of phosphorylation on each MAP
Based on the literature reviewed here, there are different classes of phosphorylation effects 

on MAP activity. Phosphorylation of MAP1B and MAP7 do not seem to affect their ability 

to bind the microtubule, while phosphorylation of DCX, MAP4, Tau, MAP2, and MAP6 all 

release from the microtubule upon phosphorylation. MAP2 and MAP6 re-localize to actin-

rich regions with the cell, but how these MAPs bind actin is unknown.

Ramkumar et al. Page 36

Dev Dyn. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Phosphorylated residues in tubulin using the PDB structure, 1TUB
(A) The structure of the tubulin heterodimer highlighting the two residues that, upon 

phosphorylation, inhibit microtubule polymerization. S172 (in pink) is located near the GTP 

binding pocket of beta-tubulin (in gray). T349 (in red) is located within alpha-tubulin at the 

binding interface. The sequence that precedes the C-terminal tails (CTTs) is colored in cyan. 

(B) The structure of the tubulin heterodimer highlighting one potential tyrosine residue that 

is exposed on alpha-tubulin that could be a target of phosphorylation.
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Table 1

Effects of phosphorylation on each MAP.

MAP Phospho-Site(s) Kinase(s) Phospho-
Effects References

MAP1A Unknown DYRKIa Release from clathrin coated 
vesicles

Szebenyi et al., 2005; Murakami 
et al., 2012

MAP1B S1260, T1265 GSKIIIB,JNK1, CKII, 
cdc2, MAPK, DYRKIa

Maintains dynamic MT pool 
and localizes to growing axons

Trivedi et al., 2005; Chang et al., 
2003; Scales et al., 2009

MAP1S Unknown Unknown Unknown N.A.

MAP2 MAP2C:S319,S350, S382 
MAP2A/B: S1682, S1703, 

S1711, S1713, S1721

PKA,PKC,MARK, 
cdc2,CaMKII,GSK 
IIIB, JNK1, ERK, 

CDKs

Dissociation from MTs and 
association with actin

Ozer&Halpain, 2000; Rubino et 
al., 1999; Ebneth et al., 1999; 
Drewes et al., 1997; Satillaro, 

1986

MAP4 S696,S768,S787,S815 PKC, MAPK, MARK, 
cyclin-B-cdc2

Dissociation from MTs Ookata et al., 1997; Mori et al., 
1991; Hoshi et al., 1992; 

Illenberger et al. 1996

MAP6 S139,S198,S491 CaMKII Dissociation from MTs and 
localization to actin-rich 

synapses

Baratier et al., 2006 Lefevre et 
al., 2013 Bosc et al., 2001 Bosc 

et al., 2003

MAP7 S168,S198 MARK Phosphorylation affects 
localization and/or MT binding

Masson&Kreis, 1993; Faire et 
al., 1999; Sung et al., 2008

MAP9 S625 S289 Aurora A Plk1 Spindle localization and 
function

Venoux et al., 2008; Eot-
Houllier et al., 2010

TAU ≥40 residues including: 
T69,T181,S184,S198, 

S199,S202,T212,S214,T231

MARK, MAPK, JNK1, 
CDK5, GSKIIIβ, ERK 
DYRKIa, CKI, PKA

Dissociation from MTs or EB1 Hanger et al., 2009; Wang et al., 
2013; Duka et al., 2013

DCX S47,S297,T321,T331, S334 CDK5, PKA, MARK, 
JNK1

Dissociates from MTs; altered 
localization

Tanaka et al., 2006; Schaar et 
al., 2004; Gdalyahu et al., 2004
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Table 2

Effects of phosphorylation on the tubulin heterodimer.

Tubulin
Subunit

Phospho-
Site(s) Kinase(s)

Phospho-
Effects on
Function

References

Beta-tubulin

S444/446 cAMP casein kinase II No effect on MT assembly Gard&Kirschner, 1985; Luduena et al., 
1988; Serrano et al., 1987

S172 CDK1, DYRKIa Inhibits MT assembly Fourest-Lieuvin et al., 2006; Ori-
McKenney et al., 2016

Alpha-tubulin
Tyrosine Residues Syk and others May or may not affect MT 

assembly
Wandosell et al., 1987; Peters et al., 

1996; Faruki et al., 2000

T349 MAPK Phosphatase Inhibits MT assembly Ban et al., 2013; Fujita et al., 2013

Not Determined Tyrosine residues

Pp60c-src Unknown Matten et al., 1990

Jak2 Stimulates MT assembly Ma&Sayeski, 2007

c-Fes Unknown Laurent et al., 2004
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