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ABSTRACT 

The new MSP extension to the Max programming environment 
provides an easily comprehensible and versatile way to program 
realtime DSP applications. Because of its full integration into 
Max, MSP allows one to combine MIDI data and audio data 
readily in any program, and to hear the results immediately. This 
makes it an excellent environment for experimenting with new 
DSP algorithms and for designing music performances with a 
realtime DSP component. 

 
This paper presents some algorithms for time-domain audio 
processing in MSP which are not commonly found in the 
repertoire of included effects for commercially available audio 
processors. These algorithms—which use the realtime 
segmentation of captured audio—are computationally 
inexpensive, yet are capable of producing a variety of interesting 
sonic effects. They include simulated time-compression and 
pitch-shifting of audio samples, segmentation of audio samples 
for use as “notes” in another rhythmic structure, and modulation 
to extreme rates of sample playback. 

1. INTRODUCTION 

MSP—written by David Zicarelli based on ideas of Miller 
Puckette—is the addition of audio signal processing capability to 
the existing Max programming environment. It provides an 
intuitive and versatile way to program realtime DSP applications, 
and has already become the chosen environment for such work 
among musicians. MSP presents at least two artistic advantages 
for a musician: it allows one to design and use unconventional 
DSP algorithms not readily available from commercial audio 
effects processors, and it allows a single program to produce 
many different musical results, dependent on the nature of the 
input or on decisions made in real time by the computer or by a 
performer. This is particularly appropriate for artistic works such 
as an audio installation located in a public space, or a musical 
performance that includes spontaneous improvisation. 
 
In these pages I will explain selected algorithms for modification 
of digital audio in which the only method of processing is simply 
the unconventional playback of recorded sounds. The fact that 
these operations use stored audio does not necessarily mean that 
the processing is not effectively realtime. Since MSP can be 
programmed to automatically record incoming sounds, and begin 

playback and processing immediately (for all practical purposes 
at the same time as the sound is being recorded), these algorithms 
can be used on sounds that are performed live, and the control of 
the processing parameters can also be done in real time. 

2. GRANULAR PLAYBACK OF RECORDED AUDIO 

MSP allows one to capture incoming audio and store it either to 
disk or in RAM. As soon as it is stored in RAM it is available for 
access by any other part of the program, via a variety of playback 
methods. The algorithms explained below focus on three primary 
playback ideas: 1) rapid access of very short segments of 
recorded audio (“grains” potentially as short as 1.5 milliseconds, 
but more commonly in the range of 20-100 milliseconds), 2) 
segmentation of recorded sound into “notes” (usually longer than 
“grains”) which can be played rhythmically by Max, and 3) use 
of a recorded sound as a wavetable for a lookup oscillator, such 
that the sound can modulate continuously from its original form 
into a periodic tone or vice versa. 

2.1. Emulated phase vocoding in the time domain 

The use of the Fourier transform for frequency-domain processes 
such as time compression/expansion and pitch-shifting is well 
documented. However, the fact that MSP runs in real time on a 
general-purpose computer (Macintosh PowerPC) means that 
frequency-domain operations involving Fourier transforms often 
tax the computer’s processing power significantly (with currently 
available processors), limiting the number of such processes one 
can use simultaneously. For this reason, in my own works that 
use MSP I have pursued less computationally expensive 
processing methods. One such method is the use of granular 
sample playback for simulation of time compression/expansion. 
 
The conceptual basis of “granulation” is windowing small 
segments of an audio signal in rapid succession (often with some 
overlap of windows).  In the implementation shown here (Figure 
1), two overlapping repeating triangular windows are used. 
Identical triangular windows with a time offset equal to 1/2 the 
window duration are used in this case to maintain unity gain.   In 
effect, a repeating triangular window is the same as amplitude 
modulation (multiplication) of the sound by a triangle wave with 
a DC offset (occupying the range 0 to 1). When two versions of 
this are added together, with the two triangle waves always 180° 
out of phase, the sum of the two triangle waves is always 1, so the 
effect of the amplitude modulation is nullified. 
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Figure 1. Overlapping triangular windows on a sound 

The value of this windowing process is that each individual 
window (i.e., each cycle of each triangle wave) can be treated as 
an independent grain of sound, with its own unique playback 
speed and its own unique starting point within the original sound. 
For example, if each window is 4096 samples in duration, 
unmodified playback can be achieved by having each grain begin 
reading 2048 samples later in the sound than the previous 
(overlapping) grain. However, if each grain begins reading from 
the source sound only 1024 samples later than the previous grain, 
the entire sound will be traversed exactly half as fast the original. 
Of course the sound will be modified because, during the overlap, 
one grain will be playing a delayed version of what the other has 
just played. This results in comb filtering effects which can range 
from very subtle to very prominent, depending on the source 
sound and the delay between grains. The advantage is that by 
controlling only one parameter—how far the starting point of 
each successive grain leaps ahead in the source sound—the sound 
can seem to be compressed or expanded in time, and a variety of 
other effects such as echoes and comb filtering can be achieved. 
 
This starting point incrementing parameter can be expressed as a 
multiplier of the normal (unmodified) leap size, which is 1/2 the 
window period. For example, a multiplier of 2 will cause the 
starting point of each grain to leap ahead in the source sound 
twice as far as normal, thus traversing the sound twice as fast, 
“compressing” it by a factor of 2. A multiplier of 0.5 will make 
the leap half as large as normal, causing the grains to traverse the 
source sound at half the original tempo. 
 
Furthermore, each grain can itself be played at any increment rate 
as it reads the source sound, thus changing the internal speed of 
each grain and transposing its pitch.  If, for example, the grains 
are played with a transposition value of –12 semitones (i.e., at 
half speed) with a tempo factor of 1, the effects is similar to pitch 
shifting down one octave. The sound of each grain is slowed 
down, but the grains progress through the source sound at a 
normal rate. The trade-off in quality is that some parts of the 
source sound are left unread (in the case of downward 
transposition without a corresponding change in the tempo factor) 
or overlapped (in the case of upward transposition). Again, 
depending on the nature of the source sound and on the amount of 
the transposition, the effect may be either subtle or extreme. 
 
This particular implementation of granulation (chosen from 
among many different possible approaches) has two significant 
advantages: 1) the input parameters for varying the process have 
a direct relationship to musical attributes—transposition and 
tempo—which correspond to the sonic effects one expects from 
pitch-shifting and time compression/expansion, and 2) one can 
modulate from a completely unmodified playback of the original 
sound (transposition=0, tempo=1) to a wide variety of 

modifications and effects. To do this, we need a continuous chain 
of triangular windows, overlapping precisely as shown in Figure 
1, and we need to be able to make changes in the starting point 
and speed of each grain at precisely the moment when the 
amplitude of the window is at 0 (in order to avoid clicks caused 
by discontinuities in the output sound). 
 
However, achieving the sample-accurate control necessary to 
realize this idea correctly is not obvious in MSP. MSP calculates 
a vector of several milliseconds worth of samples at one time, and 
control information from Max—such as unique starting point and 
transposition values for each grain—can only be supplied at the 
beginning of each vector calculation. For this reason, I have 
chosen to express the offset between grains as an integer multiple 
of the signal vector size, and the length of each grain (each 
triangular window) is twice that. By looking for the end of the 
window (testing for the maximum sample value coming from a 
count~ object), the edge~ object sends out a bang which can be 
used to trigger new control values at the beginning of the next 
vector (with the Scheduler in Audio Interrupt option checked to 
ensure that the control information is always synchronized with 
the beginning of a new vector). 
 
The implementation shown in Figure 2 is a bit complicated to 
read without explanation, so I will point out its primary features. 
Because it is designed to be used as a subpatch in a larger 
program, certain precautions have been taken which make it easy 
to re-use in multiple contexts and/or multiple copies. For one 
thing, the buffer that contains the source sound is not included in 
the subpatch; the wave~ objects refer to a buffer~ that can reside 
in any loaded program, the name of which can be specified as an 
argument or sent in the second inlet. Similarly, the triangular 
windows are not read from a buffer~, but are instead calculated 
by a mathematical formula (in the bottom part of the example); 
this prevents confusion that could possibly arise from creating 
multiple instances of a buffer~ with the same name. As an 
additional precaution, this example eschews the use of a delay~ 
object, even though that would be the easiest way to make the 
precise sample offset for the two overlapping triangular windows. 
Use of delay~ for this purpose would limit the maximum window 
size (since the amount of RAM set aside for the delay~ must be 
specified as an initializing argument), and that memory could also 
add up quickly if multiple copies of this subpatch are used. 
Avoiding delay~ requires some machinations to keep both 
windows synchronized; they are derived from the same looping 
sample counter (the count~ object), but the offset of one window 
must be recalculated for every 1/2 window length. The initial 
starting point in the source sound is specified as an integer 
number of samples received in the left inlet. This triggers a 
calculation of the window size based on the signal vector length, 
and starts the sample counter looping from 0 to windowsize-1. To 
determine the speed of each grain, this sample count is multiplied 
by a factor derived from the current transposition value, and the 
starting point offset is added to that. At the end of each half-
window (detected by the ==~ and edge~ objects), each successive 
necessary starting point is calculated (and is multiplied by the 
tempo factor). 
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Figure 2. Control of grain  tempo and transposition 

2.2. Rhythmic segmentation of recorded audio 

Instead of using tiny grains of sound (as in most types of granular 
synthesis), one can divide a sound into slightly longer  segments 
more on the order of short notes. These notes will have the 
timbral characteristic of some small portion of the source sound, 
but can be used in any desired musical structure. By making the 
minimum note length equal to the fastest pulse in an arbitrary 
rhythmic structure, one can impose any desired rhythm on a 
recorded sound. Figure 3 shows a way to do this with ordered 
segments of a sound, leaving the source sound essentially intact 
and recognizable. 
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Figure 3. Sample played with rhythmic segmentation 

The inlets allow one to specify a tempo and a metric structure—
beats per measure and divisions per beat—and these values are 
used to calculate the duration of each segment (beat division) and 
the speed of the metro object that triggers each segment. (It is 
assumed that the contents of the buffer~ are set by a record~ 
object elsewhere in the program.) This example has initial default 
values of 120MM, 4 beats, divided in 4 parts per beat. For each 
segment of the sound (each beat division), a counter reads from a 
table to get a stereo panning value (used to calculate the level for 
each of two outlets), an amplitude (specified in dB), and a 
playback speed.  These values can be supplied to the tables with 
set or refer messages. Thus, the tables can at any moment be 
filled with an entirely new rhythm (as delineated by pitch, 
loudness, and stereo location) in any desired tempo and meter. In 
this way, any source sound can be used, yet an arbitrary rhythm 
can be imposed upon it to achieve interesting musical effects. 

2.3. Sample as waveform 

The length of a sound that can be stored in RAM by MSP (in a 
buffer~ object) is limited only by available application memory. 
The most common uses for a buffer~ are a) storage of a very 
small segment of audio (e.g., 512 samples) for use as a lookup 
table by a periodic oscillator (a cycle~ object), and b) storage of a 
longer segment (either pre-recorded or recorded in real time) for 
“sampling” or other less conventional playback methods such as 
those shown here. However, in MSP it is a simple matter to use a 
buffer of any length for either purpose. For example, by attaching 
a phasor~ object to a wave~ object, or by attaching a scaled 
phasor~ object to a play~ object, one can traverse an entire 
buffer periodically at any rate (Figure 4). 
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Figure 4. Two ways to use  entire buffer as a wavetable 

Although the frequency of the phasor~ is known, the actual 
frequency content of the output depends on the contents of the 
buffer, and can be difficult to predict when a long and complex 
buffer is used. Since the frequency of the phasor~ can be varied 
continuously between audio and sub-audio rate, a continuous 
transformation can be made from periodic tone to unaltered 
playback of the buffered sound at its original rate. Figure 5 
demonstrates one example of such a transformation. It is an 
automated process that plays repeated “notes” every 125ms, using 
a phasor~ and wave~ combination that reads through a 2-second 
buffer. With each successive note, the frequency of the phasor~ 
is reduced, beginning at 64Hz and ending at 0.5Hz (the 
appropriate rate to play a 2-second buffer at its original speed). 
Every 16 seconds, a new buffer is selected and a new 14-second 
downward glissando is begun; at the end of the glissando, the 
buffer is played in its entirety for a full two seconds. 
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Figure 5. Transition from wavetable to sample 

The above example uses a pre-established transition from 
periodic tone to unaltered playback. Such modulation could 
equally well be supplied in real time using input from a MIDI 
controller or any other Max control data. 

3. CONCLUSION 

I have demonstrated here three computationally inexpensive 
methods of processing pre-recorded sound (or sound captured 
only a few milliseconds earlier) which are not commonly used in 
commercial effects-processing systems. They employ the 
segmentation of sound for granular synthesis, simulated time 
compression/expansion, simulated pitch shifting, wavetable 
lookup, and rhythmic performance of contiguous segments of a 
sound. These processes use modification parameters specified in 
“musical” terminology (transposition, tempo, beats, etc.) making 
them easy to incorporate in an algorithmic performance or audio 
installation. 
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