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ABSTRACT: We report herein the development of an S-atom transfer process using triethyl phosphite as the S-atom acceptor that 
allows thiols to serve as precursors of C-centered radials. A range of functionalized and electronically unbiased alkenes including 
those containing common heteroatom-based functional groups readily participate in this reductive coupling. This process is driven 
by the exchange of relatively weak S-H and C-S bonds of aliphatic thiols for C-H, C-C, and S-P bonds of the products formed.  

Renewed enthusiasm surrounding the ability of open-shell in-
termediates to forge carbon frameworks has spurred the devel-
opment of new methods of accessing C-centered radicals.1 Sul-
fur-based reagents have been developed for C-C bond construc-
tion via polar processes2 and radical substitutions.3 Xanthate-
based reductive alkylation4 presents the most general method 
for radical-based C-C bond construction though this does re-
quire xanthate removal with a discrete synthetic step and an ex-
cess of H-atom donor such as n-tributyl tin hydride, tris(trime-
thylsilyl)silane, hydrophosphorous acid, or isopropanol is gen-
erally needed.5 Thiyl radicals, themselves valuable H-atom 
transfer reagents (Scheme 1A),6 are commonly generated via 
disulfide bond cleavage or H-atom abstraction and undergo re-
versible addition to p-systems. As a result, thiols have become 
a mainstay of many radical-mediated processes. Despite this 
ubiquity, thiols have been relegated to essentially one role: a 
source of S-centered radicals.7 

Walling and Hoffman were among the first to report that al-
kyl thiols were cleanly reduced to the corresponding alkanes 
using UV light or thermal initiators and triethyl phosphite via 
the intermediacy of a C-centered radical from cleavage of the 
C-S bond (Scheme 1B).8,9 Subsequently, radical thiol desulfuri-
zation via S-atom transfer to phosphorous-based reagents was 
reported using thermal10 and photochemical conditions.11 Mi-
nozzi and Nanni reported that alkene alkylations could be 
achieved through a tert-butyl isocyanide induced thiol desulfu-
rization and interception of the C-centered radical intermediate 
with an alkene.12 This work outlined 3 thiols that were success-
ful alkylating agents for 4 electron-rich vinyl ethers and vinyl 
silanes.13 Hashmi and co-workers recently reported a photo-
chemical, Au-catalyzed reductive C-C coupling using thiols and 

vinyl arenes.14 Despite these developments, radical-mediated 
methods for C-C bond formation using thiols remain limited.15 

 

Scheme 1. Atom-transfer reactivity of thiols 

 
aSee ref. 6. bSee refs. 8-11. 

We recently reported a regioselective O-atom transfer ena-
bled, alkene hydroamination using N-hydroxyphthalimide as 
both the H-atom and phthalimide sources.16,17 Considering the 
thermodynamics that propel that process – relatively weak N-O 
and O-H bonds exchanged for stronger C-N, C-H, and O-P 
bonds – we hypothesized that thiols could analogously serve as 
alkyl and H-atom sources when paired with an S-atom accept-
ing phosphite under mild reaction conditions.18 Application of 
this strategy would provide an orthogonal role for thiols in syn-
thetic radical chemistry as alkylating agents and provide a tran-
sition metal free alternative to radical-mediated reductive al-
kene alkylations.19,20 
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We began our investigations by subjecting 2-mercapto-acet-
anisole (1)21 and n-butyl vinyl ether (NBVE, 1.5 equiv) to a 
small excess of triethtyl phosphite (1.5 equiv) and 2,2’-azo-
bis(2-methylpropionitrile) (AIBN, 0.15 equiv) in benzene for 
12 h at 70 °C. The desired desulfurized alkylation product, 2a, 
was isolated in 42% yield alongside 50% yield of the unwanted 
thiol reduction product, 2b (Table 1, entry 1). Assessment of a 
range of other phosphites and phosphines produced similar or 
less efficient results.22 Similarly, replacing AIBN with other 
thermal radical initiators diminished the yield of 2a. In the ab-
sence of either triethyl phosphite or AIBN, 2a was not detected 
(entries 2 and 3, respectively) confirming their necessity in the 
observed radical desulfurative alkylation. Notably, thiol-ene re-
action products resulting from thiyl radical addition to alkenes 
throughout these studies were not observed.23 

Table 1. Desulfurative alkylation reaction conditionsa 

 

Entry Deviation from  
standard conditions 

Yield of 2ab 

1 None 42% (50% 2b) 
2 No P(OEt)3 n.d. 
3 No AIBN n.d. 
4 1 added over 2 h 80% (8% 2b) 
5 1 added over 7.5 hc 93% (7% 2b) 

 
aReactions carried out with 1 (1 equiv), P(OEt)3 (1.5 equiv), n-

butyl vinyl ether (1.5 equiv), and AIBN (0.15 equiv) in 0.1M de-
gassed benzene at 70 °C for 14 h; Ar = 4-OMe(C6H4); n.d. = not 
detected. bYields are of isolated material following purification via 
silica gel chromatography. cA 0.16M solution of 1 in benzene was 
added at a rate of 2.3 µL/min. 

Observing a suboptimal ratio of 2a:2b regardless of the phos-
phorous reagent, solvent, or initiator used, we hypothesized that 
2b was formed via competitive H-atom transfer from the thiol 
starting material to the intermediately formed C-centered radi-
cal prior to olefin addition. 

To promote olefin addition without increasing the equiva-
lents used, we opted to keep the concentration of thiol low with 
respect to alkene by adding the thiol to the reaction mixture over 
time. Adding a benzene solution of 1 and AIBN via syringe 
pump to the remaining reaction components over 2 h improved 
the selectively for 2a production (80% yield, entry 4). Decreas-
ing the rate of addition so that 1/AIBN was added over 7.5 h 
resulted in the isolation of 2a in 93% yield (entry 5) while de-
creasing the rate of addition further failed to provide additional 
benefits. 

We then investigated the scope of alkenes that participated in 
this radical desfulfurative alkylation using 1 as a model thiol 
(Scheme 2). An array of functionalized alkenes containing an 
alkyl chloride (3), protected N-based groups (4 and 5), silyl (6), 
thioether (7), and vinyl ethers (8-11) underwent desulfurative 
alkylation with moderate to excellent efficiencies. 

Electronically unbiased alkenes such as tert-butyl ethylene (12), 
allyl benzene (13), and 1-hexene (14), were also easily alkylated 
to exclusively give the linear products. Attempts at analogously 
alkylating styrene was unsuccessful, resulting in mixtures of 
unidentified oligomers. 

 
Scheme 2. Alkene scopea 

 
aAll reactions carried out using 1 (1 equiv), P(OEt)3 (1.5 equiv), 

AIBN (0.15 equiv), and alkene in benzene at 70 °C by adding 1 via 
syringe pump over 7.5 h followed by continued heating for an ad-
ditional 6 h; yields are of isolated material following chromatog-
raphy on silica gel. Diastereomeric ratios determined by analysis of 
crude reaction mixtures by 1H NMR with the structure of the major 
diastereomer shown. Phth = phthalimidyl, Boc = tert-butyl car-
bamoyl, TMS = trimethyl silyl, Ac = acetyl, Ts = para-tol-
ylsulfonyl. bUsing 1.5 equiv alkene. cUsing 5 equiv alkene. dUsing 
3 equiv alkene. eUsing 10 equiv alkene. 
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acetate (16, 69% yield) or not (15, 68% yield). Phenyl ether 
(17), alkyl carbonate (18), carbamate protected 1° amine (19 
and 21), and ester (20) groups were also well tolerated. Olefins 
in the presence of base sensitive b-keto ester (22) and nitrile 
(25) groups, as well as heterocycles such as thiophene (23), fu-
ran (24), and morpholine (26) were successfully alkylated using 
1 and triethyl phosphite. 

Notably, an epoxide-containing allyl ether resulted in the for-
mation of the desired reductive alkylation product 27 in 48% 
yield with no observed epoxide degradation despite the reduc-
ing ability of phosphites.24 We observed diminished reaction ef-
ficiency in the presence of a phenol (29 in 58%) as compared to 
its acetyl protected analog (28 in 80% yield).25 Similar to the 
case of 3-butene-1-ol, geminal disubstituted alkene, 3-methyl-
but-2-en-1-ol (31) and its acetylated congener (30) were alkyl-
ated with essentially the same efficiencies (76% and 75% 
yields, respectively). Cyclic alkenes were alkylated with good 
reaction efficiencies (32 – 36) with norbornene being the most 
efficient likely due to the release of ring strain upon addition. 
 

Scheme 3. Alkenes in complex molecules undergo reductive 
alkylationa 

 
aAll reaction carried out using conditions outlined in Scheme 2; 

yields are of isolated material following chromatography on silica 
gel; diastereomeric ratios determined by analysis of crude reaction 
mixtures by 1H NMR with the major diastereomer shown; Ac = 
acetyl, Ts = para-tolylsulfonyl. bUsing 10 equiv alkene. cUsing 5 
equiv alkene. 

Cyclic diene, 1,5-cis,cis-cyclooctadiene, underwent reduc-
tive alkylation to produce 37 in 54% yield without observation 

of the bicyclic product arising from intramolecular cyclization 
(Scheme 3). Subjecting diallyl ether and N,N-diallyl tosylamine 
to our standard reaction conditions resulted in the formation of 
each of the alkylated, cyclized products 38 (61% yield), 39 
(50% yield), respectively. We did not observe alkylation prod-
ucts for either of these 1,6-heptadienes without cyclization. This 
agrees with the rate of cyclization in 1,5-cis,cis-cyclooctadiene 
(~1x105 s-1)26 being slower than H-atom transfer from alkyl thi-
ols to C-centered radicals (4x106 – 2x107 s-1)27 but 5-exo-trig 
cyclization being faster (~9x108 s-1)26 in 1,6-heptadienes. 

 
Table 2. Scope of thiols that serve as alkylating agentsa 
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32% yield b 

52b 
30% yield 

 
aAll reactions were carried out using conditions outlined in 

Scheme 2; yields are for isolated material following chromatog-
raphy on silica gel; 1-Ada = 1-adamantyl. bCarried out using 5 
equiv alkene. 

We next turned out attention to more complex, alkene con-
taining compounds (Scheme 3). The methyl ester of gibberellic 
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acid underwent chemoselective reductive alkylation with 1 at 
the geminal alkene with high reaction efficiency (40 in 84% 
yield) without indication of alkene alkylation of the allylic al-
cohol.28 Naturally occurring bicyclic diterpene, sclareol, was 
converted to 41 in 72% yield. Alkylated cholesterol (42) and (-
)-citronellol (43) provide two examples of trisubstituted alkenes 
contained within functionalized frameworks that successfully 
participated in this process. A vinyl enol ether derivative of D-
(+)-glucose was successfully alkylated using 1, producing 44 in 
68% yield with no evidence of unwanted epimerization as was 
a 5’-O-allyl uridine nucleoside derivative (45 in 67% yield). 

We then focused on assessing the variety of thiols that could 
serve as alkylating agents in this desulfurative process (Table 
2). We elected to conduct this thiol survey using NBVE and 
tert-butyl ethylene as model alkene because of their favorable 
spectroscopic and physical properties. While our model thiol, 1, 
featuring a 4-methoxy aryl ketone motif efficiently afforded the 
reductive alkylation of both model alkenes (entry 1, compounds 
2a and 12), reaction efficiencies were only moderately influ-
enced when the methoxy group was replaced with either a H- 
or F-atom (entries 2 and 3, compounds 46a-b and 47a-b). The 
primary thiol derived from 1-adamantyl methyl ketone also re-
sulted in excellent reaction efficiencies with NBVE and tert-
butyl ethylene (entry 4, compounds 48a-b). 

Thiols derived from a benzyl ester, trifluoroethyl phospho-
nate ester, and amide also proved capable alkylating agents in 
this S-atom transfer alkylation process (entries 5 – 7, com-
pounds 49a-b, 50a-b, and 51a-b) allowing installation of syn-
thetically valuable functional handles in the product. The sec-
ondary thiol derived from g-butyrolactone also successfully 
produced the desired alkylation products from both model al-
kenes used albeit with decreased efficiency (entry 8, com-
pounds 52a-b). 

 
Scheme 4. Mechanistic proposal 

 
A mechanistic proposal in line with our experimental results 

is provided in Scheme 4. Thermal radical initiation followed by 
H-atom abstraction from thiol produces the corresponding thiyl 
radical which undergoes addition to triethyl phosphite.8 This 
thiyl-phosphite adduct then undergoes rapid and preferential b-
cleavage of the C-S bond, forming triethyl phosphorothioate 
and C-centered radical I. We observed that with high relative 
concentrations of thiol, this C-radical abstracts an H-atom from 
the thiol, resulting in alkane II; maintaining low relative con-
centrations of thiol through slow addition, I undergoes 

regioselective alkene addition resulting in 2° or 3° C-centered 
radical, III. Radical III can now serve as the H-atom abstraction 
agent to deliver the desired alkylation product and regenerate 
the thiyl radical. This process is driven by the cleavage of rela-
tively weak S-H and C-S bonds of the starting materials (~89 
and 78 kcal/mol, respectively) to form stronger P-S, C-C, and 
C-H bonds of the products (90, ~85, 98 kcal/mol).29 

In conclusion, we describe an S-atom transfer, phosphite-me-
diated reductively alkylation of a wide range of alkenes, includ-
ing examples of those present in naturally occurring, biologi-
cally active compounds, using thiols as C-centered radical pre-
cursors. We demonstrate that a variety of 1° and 2° thiols adja-
cent to anion stabilizing groups serve as precursors to achieve 
C-C bond formation with olefins. This expands the ability of 
thiols in radical-mediated processes and opens orthogonal path-
ways in strategic synthetic planning.30  
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