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Abstract of the Dissertation

Parallel, Data-Driven Simulation and Visualization of the Heart

by

Eduardo Ribeiro Poyart

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Demetri Terzopoulos, Chair

This thesis focuses on the Lagrangian approach to fluid simulation, its parallelization, and its

application in the medical imaging and simulation contexts. The fundamentals of Smoothed

Particle Hydrodynamics (SPH) are analyzed, and common implementation techniques are

shown. We describe our SPH implementation and show a novel approach to particle-mesh

collision resolution. We also focus on the data pre-processing step, so that captured time-

varying volumetric heart scans can be directly used to drive the simulation, rather than

hand-crafted models. Our new mesh interpolation approach generates intermediate steps to

allow stable, higher resolution simulations. Multithreading and GPU parallelism are ana-

lyzed, and a multi-CPU approach is shown, which allows the simulation to be highly scalable.

We present a visualization framework, VSim, and its application to heart simulations, espe-

cially for training, education and collaboration purposes. Additionally, we show the relation

between Lagrangian fluids and our previously published work on particle-based hair simula-

tion, and we explore ultrasound volume registration methods with the purpose of enabling

blood flow simulations in large volumes.
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CHAPTER 1

Introduction

Fluid simulation remains a challenging area in computer graphics. It is a hard problem to

model and visualize the complexity that arises from the behavior of real-life fluids. A signifi-

cant amount of recent work has been done on both the Eulerian and Lagrangian approaches

to fluid simulation. This thesis focuses on parallel fluid simulation in the Lagrangian ap-

proach, specifically using the technique known as Smoothed Particle Hydrodynamics (SPH).

In the medical imaging and simulation context, the simulation of blood flow and its inter-

action with surrounding tissue has many applications. One such application is the training

of medical students in ultrasonograpy. Fluid simulations can be used to display doppler ef-

fects, and they enable medical students to be trained in the acquisition of ultrasound images

and the analysis of such effects. Another application is the study of the interaction of blood

with structures such as heart valves, and also with external structures such as needles that

are inserted into veins. In virtual surgery, a Lagrangian blood flow simulation can show

the amount of bleeding. It can also visually affect the surgery simulation, since blood can

accumulate during surgery and obscure certain areas if not removed. Simulating this phe-

nomenon in a training system increases realism and better prepares the surgeon for dealing

with the problem.

As engineering techniques develop and improve CT and other scanners, resolution and

accuracy improves, and heart models extracted using such data-capture techniques become

more accurate, with all the important internal cardiac structures faithfully represented. This

thesis is aligned with this evolution. Simulating fluid flow in precisely extracted heart models

and observing its behavior is a valuable proposition.
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In computer graphics, we rely on increasingly high-performance hardware to enable us

to create interactive systems—systems that support user interaction and that enable simu-

lation and rendering at a high frame rate. Traditionally, integrated circuit manufacturing

improvements over time yielded increases in processor speed. Single CPU and linear memory

computer architectures had persisted for some time. When advances in CPU clock speed

permitted it, offline simulation techniques could be applied to real-time simulation. Clock

frequency increases traditionally increased the running speed of programs, without any need

to modify those programs.

However, hardware design has now reached physical limits that have reduced the rate of

improvement in clock frequencies (Hennessy and Patterson, 2006). Mobile devices have also

been contributing to pushing the computing world in the direction of low power and low

performance. For example, a doctor can carry a tablet device and consult it while treating

patients. This is another motivation to revisit algorithms that were originally designed for

high-power desktop computers.

A promising avenue for the improvement of computational performance is parallel pro-

cessing. Both desktop and mobile devices are increasingly housing multiple CPU cores and

massively multithreaded GPU cores, which entails a change in computing architectures and

an associated change in algorithm design. Furthermore, cloud computing services allow

low-cost access to large number of machines connected through fast networks.

In the aforementioned context, this thesis presents a method to perform parallel La-

grangian fluid simulation in the presence of kinetic geometric models of the heart captured

from patients through CT scans, with little to no human intervention in preparing the sim-

ulation meshes. The proposed simulation system is highly parallelizable and readily scales

with the number of CPUs.
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1.1 Contributions

The thesis advances the state of the art in heart simulation and visualization in the following

aspects:

1. We present a novel system to interpolate meshes captured from four-dimensional (4D)

heart scans. This interpolation works on arbitrary meshes with heterogeneous geome-

tries and does not require prior annotation of correspondence points. Mesh interpola-

tion makes Lagrangian fluid simulation possible by enabling the heart walls to interact

with particles with increased precision.

2. We improve on the heart-blood interaction model by presenting an approach to particle

collision response that confines particles to the interior of the simulated volume and

increases the physical accuracy of the movement of each particle.

3. We present an extensive study on the speed-up obtained by parallelizing the Lagrangian

fluid simulation across multiple computers, which has immediate application in the use

of cloud computing services. The speed gain, taking into account the effect of network

data transfer, is studied and captured in an equation that describes the scalability of

the system with the number of machines used.

4. Our simulator produces novel results: Without prior manual steps of heart mesh mod-

eling or editing, we show a full-fledged simulation of the heart beating and the blood

flowing, using a kinetic cardiac mesh entirely captured from a 4D CT scan. Blood

flow is driven by the captured data. We are also able to isolate and simulate the left

ventricle system.

5. VSim, our previously published related work, is a framework for 3D visualization with

focus on supporting education, collaboration, and training. We propose that, using

VSim, physicians and researchers can annotate heart features and structures and share

real-time interactive 3D visualizations with their communities and students, among

other uses. Our contributions in this context are as follows:

3



(a) We propose a novel camera motion control approach that ensures smooth camera

motion during the navigation of a 3D scene.

(b) We propose a narrative creation system for end users.

(c) We present an approach to embedding spatially-localized resources into the 3D

model.

6. We also present, in the Appendix, our previously published work on hair simulation,

which also performs simulation on a Lagrangian framework, and discuss associated

parallelization approaches.

7. As minor contributions, we propose (a) the elimination of one of the free parameters

of SPH, the rest density, by using the initial distribution of particles to compute it and

(b) a method to remove geometric structures caused by noise in the CT scan.

1.2 Overview

The remainder of this thesis is structured as follows:

Chapter 2 presents an analysis of SPH, and we identify an implementation of the state

equations and kernels that produce good results. Methods to enforce incompressibility are

also studied.

Chapter 3 focuses on the context of heart simulation. We present our method for heart

mesh interpolation and particle collision with the mesh.

Chapter 4 discusses parallelism. We present our implementation of GPU-based SPH,

and analyze alternatives. We present our experiments with network communication between

servers transferring particle data, to enable highly scalable parallel implementations.

Chapter 5 turns to the topic of visualization, presenting VSim, a framework for 3D

visualization in education and collaboration.

Chapter 6 presents our conclusions and discusses future work.

4



Appendix A discusses ultrasound imaging and how fluid simulations can be done in vessels

in ultrasound data, presenting our experiments in ultrasound volume registration, which can

generate larger areas of captured volumes for simulation purposes.

Appendix B presents a relevant summary of our published work in parallel hair simula-

tion, which shares Lagrangian simulation attributes with the presented heart simulation.

5



CHAPTER 2

Background and Prior Work

2.1 Fluid Simulation

2.1.1 Eulerian and Lagrangian Views

Fluid simulation can be based on an Eulerian or a Lagrangian approach. In the Eulerian

formulation, space is subdivided with a regular or irregular grid. In the Lagrangian formu-

lation, fluid itself is subdivided into particles, each one carrying mass, position and velocity,

and representing an amount of fluid.

Both formulations can lead to parallelizable code. In the Eulerian formulation, parallel

methods can be used for preconditioning or solving the linear system of equations resulting

from the formulation (McAdams et al., 2010). In a purely Lagrangian formulation, there

is no global coupling between particles, and parallelization is more natural. Because of the

lack of global coupling, however, incompressibility is not trivial to enforce.

2.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian formulation for fluid simulation

using particles. It was first described for applications in astrophysical simulation (Gingold

and Monaghan, 1977; Lucy, 1977). SPH was recently applied to heart simulation by Guo

et al. (2013).

6



2.2.1 Navier-Stokes Formulation

In this section we present a summary of the Müller et al. (2003) formulation of SPH, and

our adaptations to it.

We aim to model the Navier-Stokes equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ ρg + µ∇2v. (2.1)

The left-hand side corresponds to mass times acceleration, and the right-hand side corre-

sponds to the sum of forces acting on a particle. In this dissertation, we shall refer to the

three terms in the right-hand side as the force fp due to pressure, the force f g due to gravity,

and the force fv due to viscosity.

The idea behind SPH is the following: Each particle models a volume of fluid, and it

contains a certain mass, density and pressure, along with its position and velocity. In an

Eulerian simulation, it is also necessary to model the conservation of mass:

∂ρ

∂t
+∇ · (ρv) = 0. (2.2)

Since we assume particles have constant mass and the number of particles is conserved, the

mass conservation equation is not necessary in SPH. Furthermore, since particles move with

the fluid in the Lagrangian view, the material derivative term on the left-hand side of (2.1)

can be replaced with a simple derivative of velocity, yielding

ρ
dv

dt
= −∇p+ ρg + µ∇2v. (2.3)

We also assume that we can interpolate scalar quantities (such as density) anywhere in

the volume of fluid by taking a weighted sum of contributions from nearby particles. The

formula

A(r) =
∑
j

mj
Aj
ρj
W (r− rj, h) (2.4)

7



is a general form of this interpolation. It represents a general quantity A being interpolated

at a point r, in which the contribution of each particle j, located at rj, is weighed by a

kernel W . The kernel is a function of the distance between the particle and the interpolated

point, as well as a constant h defining the extent of the kernel (in our case, exactly the

kernel radius). This equation is used to find the density at each particle, then the force due

to pressure, and the force due to viscosity:

Density: ρ(r) =
∑
j

mjW (ri − rj, h); (2.5a)

Pressure: fpi = −
∑
j

mj
pj
ρj
∇W (ri − rj, h); (2.5b)

Viscosity: fvi = µ
∑
j

mj
vj
ρj
∇2W (ri − rj, h); (2.5c)

where the pressure is computed from density via the ideal gas equation p = kρ, and k is a

gas constant.

This leads to asymmetrical pressure and viscosity forces. The force that particle i exerts

on particle j is different from the force that j exerts on i. A solution to this problem is to

use the arithmetic mean of the pressures of the interacting particles in the pressure case,

and the relative velocity between the particles instead of the absolute velocities of particles

in the viscosity case.

Also, since the particles always exert a repulsive pressure force against each other, this

formulation would be suited for simulating a gas, but not a fluid. Fluids have bonding forces

that act between molecules at close distance, which prevents them from dissipating and

occupying the enclosing volume like a gas. In standard SPH, this is modeled by changing

the state equation to p = k(ρ− ρ0). This change introduces a rest density, ρ0, which is the

density that the fluid wants to have if undisturbed. If there is a region of density higher than

ρ0, the fluid particles will exert a repulsive pressure on each other, as expected. If there is a

region of density lower than ρ0, particles will exert a negative pressure, that is, an attractive

force on nearby particles. The potential profile resembles a Lennard-Jones potential.

8



The rest density term ρ0 represents the density that the fluid wants to have if undisturbed.

In fact, if a volume of SPH fluid is left in zero gravity, its particles will attract each other

when below the kernel distance, and will repel each other if they are too close. After sufficient

time has passed, this volume of fluid will evolve to a more or less uniform density equal to

ρ0.

The final formulation for pressure and viscosity is

Pressure: fpi = −
∑
j

mj
pi + pj

2ρj
∇W (ri − rj, h); (2.6a)

Viscosity: fvi = µ
∑
j

mj
vj − vi
ρj

∇2W (ri − rj, h); (2.6b)

where p = k(ρ− ρ0).

2.2.2 Kernels

The kernels are used to smear out the effect of each particle in space. They are normalized

to have an integral of one, for stability purposes. Many different kernels have been proposed

in the literature. Here we present the ones that were used in our implementation.

For the density computation, a sixth-degree polynomial kernel is used, as designed by

Müller et al. (2003):

Wpoly6(r, h) =


315

64πh9
(h2 − r2)3 0 ≤ r ≤ h

0 otherwise.

(2.7)

The gradient of the pressure kernel appears in the pressure computation. Gaussian-like

kernels have derivatives approaching zero at the center. Because of that, too little pressure is

exerted if particles happen to get close together, leading to clumping. Desbrun and Gascuel
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Figure 2.1: Kernels for density, gradient of pressure, and Laplacian of viscosity.

(1996) propose the use of a “spiky” kernel for pressure:

Wspiky(r, h) =


15

πh6
(h− r)3 0 ≤ r ≤ h

0 otherwise;

(2.8)

with

∇Wspiky(r, h) =


− 45

πrh6
(h− r)2(x̂ı, ŷ, zk̂) 0 ≤ r ≤ h

0 otherwise.

(2.9)

The Laplacian of the viscosity kernel appears in the viscosity computation. Müller et al.

(2003) use a kernel such that its Laplacian is as follows:

∇2Wviscosity(r, h) =


45

πh6
(h− r) 0 ≤ r ≤ h

0 otherwise.

(2.10)

The above kernels are plotted in Figure 2.1.

2.2.3 Incompressibility

Several methods to enforce to enforce incompressibility in SPH can be found in the lit-

erature. The Weakly Compressible SPH (WCSPH) method (Becker and Teschner, 2007)

employs stiffer equations of state to achieve less compressibility. In this method, the follow-
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ing variation of the gas equation is used:

p = B

((
ρ

ρ0

)γ
− 1

)
, (2.11)

with γ = 7. This equation is one of the forms of the Tait equation (Dymond and Malhotra,

1988), which was originally published by Peter Guthrie Tait in 1888 and relates liquid density

to pressure.

When using WCSPH, small time steps must be used because of the stiffness of the

equations. As we will see later, we will need to use small time steps for another reason—the

movement of the heart mesh and collisions between particles and the mesh. We use WCSPH

with good results in our simulation. We modified the Tait equation to improve stability

under certain conditions where the mesh movement produced pressures that were too high.

The modification was to clamp the pressure computation to a maximum value, as follows:

p = min

(
B

((
ρ

ρ0

)γ
− 1

)
, pmax

)
, (2.12)

where pmax is a high value that we determined by measuring typical pressure values; we used

106.

Alternative SPH-based simulation methods are ISPH and PCISPH. In the Incompressible

SPH (ISPH) method, Enright et al. (2002) used the pressure projection step from Eulerian

fluid dynamics to enforce incompressibility. It allows larger time steps than WCSPH, but

at a higher computational cost. In the Predictive-Corrective Incompressible SPH (PCISPH)

method, Solenthaler and Pajarola (2009) use a prediction-correction step that propagates

density variations across the fluid, in a manner similar to Jacobi iterations for linear systems,

up to a point where an error threshold is achieved. The method is more efficient than

WCSPH, but at a higher implementation cost.
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2.2.4 Recent Advancements in SPH

A large amount of current work is dedicated to high-performance SPH simulation, especially

on the GPU. In terms of performance, it is important to notice that the focus of our work is

on the analysis of multi-CPU computations and data transfer. As we will see, the scalability

on multiple CPUs can extend the performance obtained on a single CPU. Each CPU on such

a system can work with a companion GPU to increase the total particle count that can be

simulated.

Ihmsen et al. (2014) provide an extensive survey of SPH simulation techniques. This can

be complemented by another survey by Weaver and Xiao (2016).

Goswami et al. (2010) achieved interactive simulation of 250k particles entirely on the

GPU, although without particular concern for incompressibility. Krog and Elster (2012)

simulated a similar number of particles on the GPU. Nie et al. (2015) present a PCISPH

system implemented on the GPU, capable of simulating 60k particles at 30 fps, interacting

with fixed meshes.

2.3 Heart Simulation

A significant amount of previous work has been done in heart simulation, with varying

degrees of automation in the heart model generation.

The idea of immersed boundaries was developed by Peskin to address the interaction with

the heart walls in a Navier-Stokes simulation, first by analyzing only the fluid flow around

a heart valve in 2D (Peskin, 1972), subsequently extended to the full heart in 2D (Peskin,

1977), then in 3D (Peskin and McQueen, 1989). In the immersed boundary treatment, fluid

is simulated in the Eulerian domain. Within a volume of fluids, there are moving boundaries,

such as the heart valves. These boundaries are considered massless and made of an elastic

material, therefore Hooke’s laws are used to simulate their behavior. They are modeled

in the Lagrangian domain (with the fluid still remaining in the Eulerian domain), and are

represented with points and their displacement from their unstressed location. During the
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simulation, the boundaries are replaced with a force field which approximates their real effect

on the fluid.

Kovács et al. (2001) presented two approaches that use the immersed boundary method.

The flow is solved in the Eulerian domain by a Navier-Stokes solver, and the heart mesh is

hand generated, including the valves. Details about the heart model are given in another

work by Peskin and McQueen (1996).

2.4 Computed Tomography

One of the methods used to acquire volumetric data from the human body is Computed

Tomography (CT). In particular, 4D CT scanning methods (Vedam et al., 2003) provide an

end-result dataset consisting of multiple 3D volumes, temporally distributed along a cycle

(for example the respiratory cycle or the cardiac cycle). One of the acquisition methods con-

sists of acquiring multiple slices over several cycles, with subsequent binning of the slices into

their appropriate phase in the cycle. Among other uses, 4D CT scans have been employed

to fight cancer tumors with better accuracy (Keall, 2004).

In general, 4D CT scans have low temporal resolution. Recent methods whose temporal

resolution is considered high are on the order of 100ms (Leng et al., 2008). Even with those

high temporal resolution methods, the number of samples in a cycle of a slow-beating heart,

for example at 60 bpm (one beat per second), would be on the order of 10.

2.5 Mesh Interpolation

As will be discussed in Section 3.4, because of the low temporal resolution of 4D CT scans, a

mesh interpolation algorithm is employed to produce intermediate meshes. Here we review

previous work on mesh interpolation.

Chen and Medioni (1992), working on the problem of aligning partial range-scans of an

object in order to reconstruct the whole object, have devised the Iterative Closest Point
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method. In the context of object reconstruction, there exists a rigid transformation T that

can be applied to mesh P to bring it into alignment with mesh Q. Their formulation is as

follows. First, a set of control points in the surface is defined, and an initial transformation

T0 is defined which brings P into near alignment with Q. Then the following process is

repeated iteratively:

1. Apply the current transformation T to the control points in P and their normals.

2. Find the intersection of the line defined by the normal and passing through the point

with the surface Q.

3. Compute a tangent plane in Q at the intersection position.

4. By least-squares, find the transformation T that minimizes the sum of squared distances

between each control point and its tangent plane in Q.

Rusinkiewicz and Levoy (2001) have performed a comparison of many variants of the

original ICP description, and present their own combination of these variants optimized for

performance.

Our mesh interpolation approach has similarities to mesh morphing algorithms. A survey

of mesh morphing techniques was provided by Lazarus and Verroust (1998). Generally,

morphing methods for triangular meshes require user input for the specification of feature

pairs (Lee et al., 1999). The problem of finding vertex correspondences and dealing with

non-topologically equivalent meshes is hard; for our purposes, as we will see, we do not need

to have vertex-to-vertex equivalence and we support meshes with different topologies.

Two methods that work on the same class of morphing problems as our approach—that

is, automated solution for the correspondence problems—are the approach by Hong et al.

(1988) and the approach by Kanai et al. (1997). The former finds correspondence between

facets first, then correspondence between vertices. The latter embeds the meshes into a unit

disk on the plane using harmonic maps; then, correspondence can be established and the

mesh can be interpolated.
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In the related area of morphing hexahedral and tetrahedral meshes, Staten et al. (2012)

provide a survey comparing six different morphing methods.

2.5.1 Active Contour Models

Active contour models are an energy minimization approach to the extraction of high-level

information from image data. They were initially developed with the use of 2D splines to

detect features in 2D images (Kass et al., 1988). A spline, called a “snake”, is defined. An

energy functional describes internal energies in the snake due to bending, external energies

applied by the image, and user-defined energies that allow interactive manipulation. An

implicit Euler method is used to solve the internal energies; an explicit Euler iterative method

is used to make the snake respond to external forces. The user places the snake close to a

desired image feature as an initial step; the energy functional is minimized, and each step of

iteration brings the snake closer to image contours.

Active contour models can be extended to the third dimension, and instead of an image, a

3D volume can be used. For example, (McInerney and Terzopoulos, 1997) define a T-surface,

which is a closed triangular mesh. In this mesh, vertices are treated as masses, which are

connected by springs. Internal and external forces are applied as before, including an inflation

force that makes the mesh expand and seek features in the image. The vertices are moved

in an explicit Euler step. Then, the T-surface is reconstructed with new triangles obtained

from the intersection of the previous T-surface with the edges of a simplicial discretization

of the volume.

T-surfaces are relevant to our problem of extracting a mesh from a volumetric image and

interpolating this mesh. Although we used a method based on marching cubes to extract

meshes, they remain an interesting avenue to explore. Active contour models incorporate

prior knowledge, particularly our knowledge that a normal heart should be composed of four

chambers, so they are applicable for these cases. We also need to support the extraction of

meshes from a heart that may have a defect, for example a ventricular septal defect (leakage

between the left and right ventricles). T-surfaces remain applicable in this case, since they
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adapt to the topology that they find in the image, by means of merging when it intersects

other parts of itself.

2.6 Visualization And Collaboration

Two pieces of real-time software for exploring three-dimensional models have previously been

developed at UCLA, but both have reached the end of their usefulness. Active development

was stopped on the original proprietary software developed for the Urban Simulation Team

(uSim) and it is only available for Linux systems. Similarly, development was terminated on

the freely available software from UCLA’s Academic Technology Services (vrNav) because

of the complexities of improving its interface, adding functionality, and maintaining the

requisite software dependencies. Many aspects that influenced the research on VSim were

studied during development of uSim (Jepson et al., 1996, 1995; Liggett et al., 1995; Friedman,

1994).

Camera control has been studied with various approaches, including a declarative control

language in which camera actions are textually described in a non-interactive way (Chris-

tianson et al., 1996), an automated camera planner making real-time decisions based on

predefined high-level information provided textually by the user (Bares and Lester, 1997),

and camera control by hierarchical finite state machines, which are a combination of low-level

“camera modules”, controlling geometric placement of the camera, and high-level “idioms”,

selecting camera modules and, timing between shots (He et al., 1996).

Turner et al. (1991) introduce a dynamic, rather than kinematic, camera control system.

We found that, for our purposes, such a controller must be over-damped so as to avoid os-

cillations around the desired position. The first-person camera smoothing system developed

for VSim, described in Section 5.2.2, can be considered similar to an over-damped dynamic

system, but it is implemented in a simple and efficient way.

Zeleznik and Forsberg (1999) control the camera using the mouse and a single button.

This is achieved through mouse gestures that perform different control functions. Depending
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on the way the user initiates the gesture (e.g., vertically vs. horizontally), a different type

of control is engaged (e.g., zoom vs. translation on the film plane).
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CHAPTER 3

Data-Driven Simulation of Fluid in the Heart

In this chapter, we describe our novel approach for fluid simulation in the heart. In particular,

using our method for mesh extraction, noise removal and interpolation, and mesh-particle

interaction, we are able to automatically extract a model from a 4D CT scan, make it pump

blood, and visualize the results. The model is incomplete in terms of internal structures

(septum, valves), but a promising blood pumping simulation is obtained nevertheless. The

septum and valves may be added as artificially-inserted planes in the simulation, as we will

describe.

3.1 Geometric Data Extraction

An important goal of our work is to use captured data for the geometry of the heart, with

the fluid simulation taking part inside of it and interacting with it. That is, instead of aiming

to hand-model the heart and obtain a clean, simple, guaranteed watertight mesh, the goal

is to use real patient data and, to the extent possible, automate the preparation of this data

for the simulation.

For experimentation purposes, we use the sample volume data available in the Osirix web

site (Pixmeo SARL, 2015), in particular, the dataset called MAGIX. The MAGIX dataset

consists of a 4D cardiac CT scan, with 10 frames from a full heartbeat cycle. Each frame is

a 3D volume of the chest region, with 512 × 512 × 76 sample points in a regular grid. The

volume is provided in DICOM (Digital Imaging and Communications in Medicine) format

(ACR and NEMA, 1985; Spilker, 1989). For many of the operations below, we use algorithms

provided by the Visualization Toolkit (VTK) (Kitware, Inc., 2015; Schroeder et al., 2006).
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The volumes are converted into a mesh by applying a Marching Cubes algorithm. March-

ing Cubes (Lorensen and Cline, 1987) is an isosurface extraction algorithm that works by

finding triangle edges at locations where the isosurface intersects a cube. We use VTK’s

marching cubes implementation, vtkMarchingCubes. This implementation uses an accel-

eration structure (in VTK called a locator) to quickly find and merge coincident vertices.

Without it, the operation of including a new vertex would require a linear search on all

previously included vertices.

The volumetric data contains density values at each sample point. Finding the isosurface

value at which to extract the surface means finding a good boundary value between the

density of solid heart material (the heart muscle) and liquid (the blood). This step can be

performed by a doctor in an interactive system; this will ensure that the isosurface value

corresponds to the correct interface.

If the goal is to extract only the left side of the heart, the side that receives oxygenated

blood from the lungs and pumps it to the body, the problem becomes easier. We performed

experiments with the left side only. We also performed experiments with the extraction of

both the left and right sides by using a different value, but the interventricular septum, the

wall that divides the two ventricles, was not fully isolated in this way due to low contrast.

Figure 3.1 shows a CT slice; highligted in yellow is the isosurface value that defines the left

circulatory system.

A property of the isosurface extracted from the CT volume is that it has no boundary

edges in it, except at the faces of the enclosing volume. Boundary edges are defined as edges

that are part of only one triangle. Figure 3.2 shows the boundary edges of the first frame

of the cardiac data; they indeed all lie at the faces of the enclosing volume. Therefore, if a

scanned volume fully encloses the heart, and as long as there is enough contrast between the

heart walls and its interior, the resulting meshes will have an interior heart volume that is

watertight. Boundary edges will be on arteries and veins, at the points where they exit the

capture volume. The method of mesh extraction itself does not create holes, non-manifold

areas or stitching problems through which particles can escape. (We define “bad stitching”
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Figure 3.1: Isosurface extraction. The CT slice is seen from the top; the left
side of the heart corresponds to the right ventricle, and the right side to the left
ventricle. The value in yellow represents the interface between the inner heart
wall and the blood in the left ventricle.
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Figure 3.2: Boundary edges of the extracted mesh. All boundary edges lie at the
faces of the enclosing volume.

as duplicated vertices at the same location, each of them connected to a different part of the

mesh, where in reality there should be a single vertex).

Although no holes in the heart isosurface are created due to boundary edges, there can

still be holes due to thin structures or low contrast. These holes are not easily detectable

through automated means, since they are part of a manifold mesh structure. A thorough

visual inspection showed that these holes did not occur in the heart chambers themselves.

The heart walls have a large thickness and contrasting density to the surrounding tissue. On

the other hand, thin blood vessels showed a few such holes. These holes should not affect

the results of the simulation in a significant way.
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In one of our experiments we used an isosurface value that extracted all heart chambers,

as opposed to the left system only. In that experiment, the interventricular septum was not

properly extracted from the volume data. It is possible to simulate the septum, as well as

the valves, using planes defined in mesh space. The septum plane should be positioned at

the septum location, and during the simulation it prevents particles from crossing in either

direction (i.e., behaving exactly like any other polygon in the mesh). The valve planes are

unidirectional: they allow particles to pass through in one direction, but not in the other.

3.2 Mesh Simplification

After the isosurface extraction, we performed mesh simplification. VTK’s mesh decimation

algorithm is applied at this step. Its implementation is similar to the approach by Schroeder

et al. (1992). It works as follows:

1. Define error as the error introduced if a vertex is removed and the surrounding area

is retriangulated (measured as distance from vertex to plane).

2. Each vertex is added to a priority queue based on the computed error.

3. The vertex with highest error is removed and the error is recomputed for the surround-

ing vertices.

4. The process is repeated until there are no more vertices to remove.

To ensure that the decimated mesh maintains good characteristics of not having holes or

bad stitching, we disallow vertex splitting and topology changes. These settings can be done

through the API in the VTK implementation. We also disallow boundary vertex deletion to

preserve good shape at the boundaries, and also because the additional reduction would be

small.

Figure 3.3 shows the original mesh extracted by the Marching Cubes algorithm, and the

decimated mesh obtained after applying the mesh simplification algorithm.
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Figure 3.3: A section of the heart wall is shown as a wireframe. Left: full mesh
extracted via Marching Cubes. Right: simplified mesh.

Figure 3.4 shows the first frame of the complete extracted mesh. Two views of the

same mesh are shown. Bones are present in the resulting mesh, exactly as obtained by the

isosurface extraction. With our goal of minimizing manual steps, manually removing bones

is not desirable. The presence of bones does not incur a significant performance penalty;

the spatial subdivision structure used during the simulation provides an O(log n) search for

nearby triangles.

Figure 3.4: Extracted heart mesh, as rendered by our simulator (two different
views). The mesh includes bones, which are not used in the simulation.
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3.3 Noise Removal

The mesh extraction procedure also generated a number of small, isolated structures. They

are closed manifold meshes, disconnected from the remaining structures. They are generated

by voxel values in the fluid that exceed the isosurface extraction threshold.

We give careful consideration to the cost versus benefit of removing this noise. On

the one hand, noise structures appear and disappear in different frames of the simulation,

and they may lead to unnatural forces being given to fluid particles and the generation of

turbulence. On the other hand, these noise structures tend to statistically concentrate in

places where there are actual structures, where the isosurface extraction failed to detect these

full structures. This happens at the interventricular septum and at the chordae tendineae

(fibrous structures inside the ventricles), and it is a desirable effect: simulated fluid will

interact with the noise structures in locations where there are chordae tendineae, for example,

rather than flowing freely and interacting with no structures at all.

A noise removal procedure is described here, although its use can be considered optional.

In our mesh interpolation procedure (described in Section 3.4), small noisy structures tended

to move in random directions, being attracted by nearby surfaces. Our system ultimately

benefitted from noise removal because it reduced this unnatural movement of structures.

We wish to remove small, isolated sub-meshes of the heart mesh. These are almost always

closed meshes, except at boundaries of the volume. They may not be convex meshes.

One possible alternative is to compute the volume of each sub-mesh, or to approximate it

with the volume of its convex hull. The volume of a convex hull can be computed by finding

a point inside the hull (e.g., its barycenter) and computing the volumes of all cones formed

with an apex at the center point and with a base at a triangle in the convex hull. The sum of

these volumes is the volume inside the convex hull. The volume of a cone is (1/3)ah, where

a is the area of the triangular base and h is the height from the base to the apex.

We followed another approach, in a novel algorithm described below: box-bounded noise

removal. VTK provides us with spatial subdivision structures, locators, that accelerate the
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search for triangles in a mesh. We first obtain a set S of all triangles that intersect a bounding

box centered at one of the vertices of the mesh. The size of this bounding box approximates

the size of the structures that we want to remove.

Two conditions must be met so that these triangles are removed:

1. All vertices of all triangles in S must be inside the bounding box (in the general case,

a triangle can intersect the bounding box and have vertices outside of it);

2. All triangles adjacent to edges of triangles in the set S must also belong to S.

The first condition catches the case of obviously large structures. The second condition

is subtle: It is possible that, in rare cases, an edge of a triangle lies exactly at a face of

the bounding box. Through this edge, this triangle may be connected to, and be part of, a

large structure outside the bounding box, yet only this triangle happened to fall inside the

bounding box. It is not part of a noise structure and should not be deleted. Therefore, by

ensuring that all triangles connected to any edges in our set S are not outside of the set S,

we eliminate this case.

VTK also provides us with mesh connectivity and navigation information, such that it

is efficient to find all vertices of a triangle and all triangles connected to a vertex. Instead

of finding triangles adjacent to an edge, we find triangles connected to a vertex, which takes

advantage of the efficiency of VTK’s data structures and is equivalent in functionality after

a simple selection of the desired triangles.

If we find a structure that we need to remove, we mark the triangles in the set S for

removal, and mark all vertices in them as visited, and we do not visit them again. In either

case, we then move on to the next iteration of the loop by centering the bounding box on

the next vertex.

The described box-bounded noise removal approach is more efficient than a precise com-

putation of the volume of the convex hull of small structures. No structure with a volume

greater than the volume of the provided bounding box is removed. It also effectively provides
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a secondary criterion based on the extent of sub-meshes: Thin sub-meshes of small volume

are not removed if they extend beyond the bounding box.

Figure 3.5 shows a view of the inside of the left ventricle, before and after removal of

small structures.

3.4 Mesh Interpolation

With the use of SPH for fluid simulation, smaller steps lead to better propagation of pres-

sures, resulting in a fluid that is closer to incompressibility. Each step in SPH is fast and

parallelizable, as we will see in Section 4.1. However, as seen in Section 2.4, the temporal

resolution of 4D CT scans is low, on the order of 10 frames for a full heartbeat cycle.

The average displacement between consecutive meshes extracted from frames of the

MAGIX 4D CT scan was measured using the following method: First, measure the av-

erage distance between vertices of mesh n and their closest point in mesh n + 1. Then,

repeat the process using the vertices of mesh n+ 1 and their closest points in mesh n. The

mean of the two values is assigned to mesh n as its average displacement. Since many parts

of the extracted meshes correspond to non-heart structures such as ribs, only a subset of the

meshes was used, cropped to correspond only to one of the heart walls. The result is shown

in Figure 3.6.

The average displacement between one CT frame and the next can reach 2.6mm. This

displacement is too high, since it is too close to the desired order of magnitude of the SPH

kernel radius, which in our experiments is 6mm. In particular, we measured the average

distance between particles and their closest neighbors (in a steady-state simulation where

particles were at the bottom of a cubic box, using our SPH parameters: ρ0 = 0.025, kgas =

2.0× 106, h = 6, µ = 8). We found that this average distance is close to 2.5mm.

To prevent particles from passing through the heart walls, we need smaller displacements.

We achieve that by interpolating the mesh using an algorithm created for this purpose,

inspired by ICP. ICP finds a transformation that brings a mesh into alignment with another
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Figure 3.5: Noise removal. Top: before noise removal; bottom: after noise re-
moval. A few small structures near the center of the image can be seen disap-
pearing. The size used was 1.0mm.
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Figure 3.6: Average distance between a mesh and the next mesh, measured at one
of the heart walls.

mesh; by contrast, our algorithm finds progressive vertex-wise deformations of a mesh to

make it approach the shape of another mesh.

3.4.1 Edge-Direction-Preserving Interpolation

Our approach is motivated by the following constraint: We want to deform a mesh to make it

globally approach the shape of another mesh, but we want to preserve local features. Many

such local features are found in the endocardium; for example, chordae tendinae.

An important concept in our approach is bidirectional interpolation. Since we have

meshes comprising an entire heart cycle, we always have a previous and a following mesh.

We can better preserve shapes if we interpolate a mesh to the mid-point between itself and

the previous mesh, and to the mid-point between itself and the next mesh.

A naive mesh interpolation procedure can be described as follows: For each vertex on

mesh P , find the closest point in mesh Q and store it as its destination point. Mesh P

can then be linearly interpolated to an arbitrary position between the two meshes via a

parameter t. This procedure, when applied to heart meshes, has many problems, the two

major ones being:
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1. Many vertices in mesh P can have the same closest point in mesh Q, which makes

many triangles collapse to a single point and generates other long, thin triangles.

2. Different parts of structures may find different closest points in their opposite sides,

such that they are stretched in different directions, making them unrealistically change

shape.

To overcome this problem, we balance the motion of vertices to their closest points with

the preservation of edge directions. Three parameters are used:

1. n, the number of iterations;

2. fcp, the factor between 0 and 1 by which to move vertices towards closest points at

each iteration;

3. fr, the factor between 0 and 1 by which to move edges back to their original directions

at each iteration.

Algorithm 1, the interpolation point generator algorithm, is an iterative procedure to

successfully move vertices towards their closest points in the target mesh and relax the

lengths and orientations of all edges so that they more closely resemble edges in the original

mesh. It is composed of two steps: closestPoint and relax.

In the closestPoint step, all vertices in the original mesh are moved towards their closest

points in the target mesh by a factor fcp.

In the relax step, for each vertex v in the original mesh, all its neighbors w are analyzed.

For each neighbor w, the new edge direction is compared with the original edge direction.

An interpolated direction, corresponding to a blend between the new and old directions by

a factor fr, is computed. The vertex w is then moved so that the corresponding edge has

this interpolated direction.

Note that a vertex may be moved multiple times in the relax step. These two steps are

repeated n times. We used the following parameters: n = 20, fcp = 0.7, fr = 0.4.
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v0

w0

v1

w1

Figure 3.7: Interpolation point generation: Step 1 – closestPoint function. Points
v0 and w0 are connected by an edge. From their positions in the original dataset
D0, they are moved to new positions v1 and w1 in the working dataset D1. The
amount of displacement is defined by the nearest points in the second mesh (not
shown) scaled by a factor fcp.

Since at each step all vertices are moved to their closest points in the target mesh, there

is always a global movement that approaches the shape of the target mesh. The relaxation

step attempts to brings local shapes back to their original forms, preventing the mesh from

suffering strong local deformations, such as many vertices collapsing to a single point. The

algorithm is detailed in Algorithms 1, 2, and 3. Figures 3.7 and 3.8 describe it graphically.

v0

w0

v1

w1

w′1

d0
dr
d1

Figure 3.8: Interpolation point generation: Step 2 – relax function. Point w1

should be moved so that the edge d1 more closely approximates its length and
direction in the original mesh (d0). The vector d0 is parallel to and has the same
length as v0w0. An interpolation between d1 and d0 is computed with a factor fr,
and the direction dr is found. dr is added to position v1 to find the new position
w′1.
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Algorithm 1 Interpolation point generator: main function.

Copy original dataset D0 to a new working dataset D1

for n iterations do
closestPoint()
relax()

end for

Algorithm 2 Interpolation point generator: closestPoint function.

function closestPoint()
for all vertices v1 in working dataset D1 do

Find closest point on target mesh
Move v1 toward the closest point by a factor of fcp

end for
end function

Algorithm 3 Interpolation point generator: relax function.

function relax()
for all vertices v1 in working dataset D1 do

for all edges e between v1 and a neighbor w1 do
v0, w0 ← the corresponding vertices in the original dataset D0

Compute the edge direction in the original dataset:

d0 ← w0 − v0
Compute the current edge direction in the working dataset:

d1 ← w1 − v1
Relax the edge direction by a factor of fr:

dr ← fr ∗ d1 + (1− fr) ∗ d0
Apply the relaxed edge direction to the neighboring vertex:

w′1 ← v1 + dr

end for
end for

end function

31



Figure 3.9 shows a slice of the heart wall at two consecutive frames (represented in blue

and pink), without interpolation. A yellow sphere of diameter 2.5—our average distance

between particles—is shown close to the meshes for size comparison. Figure 3.10 shows the

result of our interpolation between those meshes. The blue meshes were interpolated from

the original blue mesh in Figure 3.9, up to the halfway point towards the pink mesh. The

pink mesh, similarly, was interpolated up to the halfway point towards the blue mesh. A

total of 8 interpolation steps were used in this example.

Two sets of destination positions are computed for all vertices of a mesh: the displacement

towards the previous mesh (back displacements) and the displacement towards the next

mesh (forward displacements). They are stored in custom data fields associated with each

vertex, in the VTK mesh data structure (vtkPolyData). During the simulation, they can be

efficiently accessed. If the current simulation sub-frame is less than the mid-point between

two meshes, the forward displacements are used. If it is more than the mid-point, the back

displacements of the next mesh are used.

3.4.2 Refinement

To further improve the coherence between meshes at their mid-point, we apply a refinement

step after the iterative interpolation point generation step. Recall that the first step finds

a displacement for every vertex on mesh A so that it approaches the shape of mesh B on

a large scale, while retaining its small-scale details. This displacement moves vertices all

the way towards mesh B’s non-displaced location. A displacement for mesh B is similarly

computed, so that it approaches mesh A’s non-displaced shape.

At this stage, if mesh A is interpolated by 0.5 and mesh B is interpolated by −0.5, they

should produce two meshes that approximately match. Let us call these meshes A′ and B′.

The goal of the refinement step is to improve this match. The interpolation point generation

step is repeated to find a displacement for mesh A′ so that it approached B′ and vice versa.

The final displacements are the ones obtained at this step.

32



Figure 3.9: Two consecutive meshes, before interpolation. The scene is zoomed
in close to a heart wall. A slice of the heart wall is shown. A sphere of diameter
2.5 is shown for comparison.

Figure 3.10: Two consecutive meshes, after interpolation. The blue meshes were
interpolated from the original blue mesh in Figure 3.9, and the pink meshes were
interpolated from the original pink mesh. Interpolation is done up to the halfway
point towards the other mesh.
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Note that after the initial step, the displacement values stored in mesh A take its vertices

all the way to mesh B. If we wish to perform a simulation using only this step, we need

to interpolate A from 0.0 to 0.5, then B from −0.5 to 0.0 (before repeating with the next

mesh). After the refinement step, the stored displacement values take mesh A’s vertices to

the midpoint between A and B, and the same for mesh B. So, we must now interpolate A

from 0.0 to 1.0 such that it reaches the mid point, and similarly B from -1.0 to 0.0. A small

modification in the code that performs vertex position update allows that to happen.

Another important observation is that the reference meshes for refinement must be copies

of the meshes obtained at the first step of interpolation. The forward interpolation positions

for mesh A will be updated to match the mesh B interpolated by −0.5. Then, when pro-

cessing mesh B, it is necessary to access mesh A interpolated in the forward direction by

0.5. That requires working on a copy, since the forward interpolation positions of mesh A

will have been changed at this point.

3.5 Fluid Simulation

We simulate fluids by following the SPH approach of Müller et al. (2003), but using a

stiffer state equation to make it perform like WCSPH. We also apply container collision in

a modified way.

Experiments were performed first in a simple container, a cube with an open top. In this

container, we perform visual validation of the simulation system—we ensure that simulated

fluid has the appearance of real fluid. Searching for wall collisions is less costly than on a

full heart mesh. The performance was around 10 fps with 10,000 particles, running on a

single CPU core. This simplified simulator was then ported to the GPU by using the GPU’s

global memory to store particle data. We obtained a 2.5× speed-up, increasing the number

of particles that can be simulated to 25,000.

Then we move on to the more complex task of simulating in the heart mesh, which was

extracted and processed as described in Sections 3.1 to 3.4.
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3.5.1 Rest Density

Simulation systems with too many free parameters are hard to configure and tune. It is

desirable to infer parameters from other parameters when possible, to remove from the user

the burden of experimenting and tweaking them until the results are acceptable.

In our system, we remove the free parameter ρ0 by automatically detecting the rest density

according to the first frame of the simulation. In effect, the user initializes the system by

adding particles with a certain distribution. In the first frame, the simulator computes the

average ρ assigned to all particles. That value will be used as

ρ0 =

∑n
i=1 ρi
n

. (3.1)

This can be done since ρ0 is not used at the density step, only at the pressure step.

The rationale for computing ρ0 this way is as follows. First, it is common for the user to

have a volume where he wants to have an initial number of particles. In our heart simulator,

this can be a volume that partially occupies the interior of the heart. The distribution can

be either an uniform grid or a random distribution. Second, it is easier and more convenient

to define the volume and how many particles should be in it than to pick a value for ρ0. By

initializing the system with this volume of fluid, the value of ρ0 is effectively defined.

Furthermore, if the user has to initialize a volume of particles and pick his own value

for ρ0, the fluid may end up being subject to unrealistic physical conditions. If the fluid is

under excessive pressure, the simulation explodes with particles flying off in all directions. If

the fluid is under too little pressure, it condensates in a few areas, forming bubbles of space

inside its volume. If, instead, we initialize with the average ρ method, we know that the

fluid will be subject to realistic physical conditions.

3.5.2 Collision With the Container

This section describes two approaches for collision handling. The first approach is appro-

priate for simple, static containers such as our test container. The second approach is
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Figure 3.11: Collision in Muller
et al.

Figure 3.12: Elastic collision
with the container.

appropriate for moving meshes such as our animated heart mesh. The second approach is

more general and it can be used for static containers as well.

3.5.2.1 First Approach: Elastic Collision at the Container Position

For particles that end up outside of the containing volume, rather than simply taking the

end position and pushing the particle inside the volume along the normal of the wall, we

properly simulate elastic collision with the walls. Particles collide with the container at the

exact point of intersection between the particle velocity vector and the container. Their final

position is computed by simulating this occurrence as an elastic collision.

Figures 3.11 and 3.12 illustrate the differences between the Muller collision method and

the elastic collision methods. The particle travel vector (the vector between the last and cur-

rent positions) is indicated in blue, and the resulting velocity in green. In our method, we

can parametrize the coefficient of restitution of the elastic collision, which causes a reduction

in the normal component of the reflected velocity. Although we did not implement a tan-

gential friction component, this is also possible. With this method, particles better conserve

their energies, and the extra damping introduced by the simulation system is reduced.
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Corner cases can arise when the particle is close to the edge between two faces of the

container. To properly resolve them, we iterate again with the remainder of the reflected

travel vector, starting from the collision point. If the particle exits the container again, we

repeat the procedure and the particle is reflected back inside the container, until it does not

exit the container anymore. The new collision method resulted in negligible performance

penalty for the algorithm.

Due to pressure from other particles, a layer of particles tend to form along the walls,

resulting in a noticeable grouping of particles when seen from certain angles. This is due to

the fact that the walls do not exert pressure over the particles. In this sense, the particle

layer that forms naturally takes the role of the wall itself and it exerts a higher pressure over

the neighboring particles, balancing the system.

As an alternative, the walls could be made to exert pressure on particles, as if they

were made of particles themselves; this is usually done by adding ghost particles at points

outside of the container that mirror the position of real particles. This works well for simple

containers. However, with our goal being to enable simulation inside a complex heart mesh,

this is not always possible—it is not straightforward to determine ghost particle positions

when the mesh is highly folded and the triangle sizes are the same order of magnitude as

the particle spacing. Therefore, we let the naturally occurring layers of particles do its job

of balancing the pressure.

3.5.2.2 Second Approach: Collision With Margin

As mentioned, meshes extracted from heart CT scans contain lots of folds and small triangles.

Furthermore, the mesh moves from frame to frame, and it is important to avoid particles

leaking from the volume as much as possible.

The second approach for particle collision described here is appropriate for use in moving

heart meshes. Due to the mesh motion, if a particle is positioned exactly at a container

boundary, it is possible that it will be outside of the container at the next step. This can
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Figure 3.13: Collision with margin. The mesh is the thick black line. Particles
are kept at a distance d from it. When a particle moves from x0 to x, it is
repositioned at x′ and its velocity vector (blue) is recomputed (green).

happen even with the use of mesh interpolation and small time steps. The algorithm is

modified so that particles are made to collide at a distance d from the container.

In practice, a closest-point-in-mesh search is performed. This step is accelerated by the

use of a VTK-provided spatial subdivision structure that indexes the mesh, vtkCellLocator

(in Section 4.1.1, we describe our modifications to this VTK class so that it is made thread-

safe). The closest point p to a particle at position x can be a vertex, a point in an edge,

or a point in a triangle of the mesh. If the distance between x and p is less than d, the

particle is considered to have collided with the mesh, and the normal of this collision is

n̂ = (p− x)/(|p− x|). If this distance is too small for an accurate normal computation, the

normal of a triangle containing p is used.

Once the normal is obtained, the particle position is pushed along the normal to a point

x′ so that its distance to the mesh is d. This is once again similar to the Muller approach,

with the difference that particles are not positioned at the mesh, but at a distance d from

it. This keeps particles from getting too close to the mesh walls, preventing leaks. After the

position is corrected, the velocity is updated as before, taking into account the coefficient of

restitution. Figure 3.13 shows this approach.

The fact that the particles stay at a distance d from the walls can be viewed as a result

of them not being point entities, but something akin to spheres with some radius. Recall

that, in SPH, particles are modeled as representing volumes of fluid. These volumes do not
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Figure 3.14: Grid used to accelerate search for nearby particles.

have any particular shape; in fact, they can be seen as having a fuzzy border due to the

interpolation kernels used. However, for rendering, it is common to use spherical particles or

some variation of them. The rendering radius can be made to approximately match d and

the visual surface of the fluid will closely resemble the heart mesh shape.

3.5.3 Neighborhood Particle Search

If no spatial subdivision data structure is used, all particles must be considered for interaction

with all other particles, leading to an algorithm of squared complexity, which is not desirable.

In our heart simulation, we use VTK’s data structures for particle neighborhood search.

However, for our GPU implementation, a GPU-friendly data structure had to be used. We

describe it next.

We observe that each particle interacts with other particles within a distance less than h.

Thus, we use a grid of voxels of size 2h to accelerate the lookup for nearby particles. Each

cell holds a list of particles that currently reside in it. As each particle moves, if it changes

grid cells, it is removed from the list of particles corresponding to the previous grid cell, and

added to the list of the current grid cell. The enumeration of all particles in a cell is trivial

with this data structure—it is just a list traversal.

Figure 3.14 illustrates a 2D view of the 3D voxel grid. In this example, we need to

compute forces for all the particles in the central cell. Suppose we are computing the forces
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for the particle indicated in blue. The brown circle with radius h is the area of actuation

of the kernel. For all particles at distances greater than h, the kernel has a value of 0, so

those particles need not be considered. If the radius is h and the cell size is 2h, the only

particles that must be considered reside in the 3× 3× 3 block of cells around the cell where

the blue particle resides. Therefore, this limits the number of cells that must be traversed.

The complexity is reduced to n× nc, where nc is the maximum number of particles per cell.

That is, it is linear in the total number of particles.

We opted not to limit the maximum number of particles per cell. However, limiting this

number has another interesting consequence: If done carefully, it helps enforce incompress-

ibility in the volume. Let us say a particle is entering a grid cell, but this cell already is

full to capacity. The particle can be made to stay at the edge of the cell from where it is

coming. Although this helps with incompressibility, it causes big losses of energy, especially

if all particles of the fluid are flowing in an average direction. To mitigate that, the particle

may be allowed to keep its velocity value; i.e., it need not be reduced to 0. In the next

frame, if other particles in the destination cell move away, the particle that was forbidden to

enter may now be allowed in. Clearly, this does not fully solve the energy loss problem, but

in reality the primary purpose of this mechanism is not to enforce incompressibility; other

methods must be used for that. The cell capacity limitation should be designed to happen

rarely.

When designing a SPH algorithm for GPUs with shared memory, the cell capacity lim-

itation also helps with the memory footprint. As we will see in Section 4.2, all particles in

27 adjacent cells must be copied to shared memory, and the amount of shared memory is

limited.

3.5.4 Surface Tension

Traditionally, with a smaller number of particles, each particle was viewed as representing

a volume of fluid. Surface tension is usually introduced in the algorithm to improve the

behavior of the system. With a sufficiently high number of particles, each one represents
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Figure 3.15: Surface tension.

a smaller volume of fluid, consequently a smaller number of molecules. Emergent behavior

such as surface tension becomes apparent. The effect is described in detail below.

Surface tension is the increased cohesion that happens between molecules on the surface

of a fluid. Since surface molecules are not surrounded by other molecules on all sides, the

net force pulls these molecules inwards. This, in turn, increases the pressure of the fluid near

the surface, which balances the inward-pointing force. The result is that surface molecules

are closer together and more strongly bonded than molecules in the bulk of fluid.

Figure 3.15 shows an experiment made with the SPH simulator that was implemented.

The container is tilted with its top towards the camera. The top part of the blue particles is

a one-particle deep layer at the bottom of the recipient. At the very edge of this layer, it is

clear that there is a one-dimensional line of particles closer together—the emerging surface

tension of the system. No artificial surface tension term was added, contrary to (Müller

et al., 2003).

Interestingly, in recent work, Schechter and Bridson (2012) also noticed emerging surface

tension effects in SPH simulations. However, in this case these effects were unwanted. The
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intention was that a volume of fluid resting in space in zero gravity did not change shape.

So additional steps were taken to counteract the effects of surface tension.

3.5.5 Solid-Fluid Coupling

In our work, the heart walls interact with particles with a one-way effect—the heart mesh

drives the particle movement. During the process of capture of the heart model, the heart

and fluid interaction happened as it normally does. Any effect that the blood had in the

heart walls, such as the effect of pressure and blood movement, became a part of the model

itself. At simulation time, the heart drives the blood with one-way interaction and, as an

end result, we have a recreation of the full function of the heart, including pumping blood.

A brief discussion on ways to achieve two-way interaction follows. Solid-fluid coupling in

SPH can be done by using standard rigid-body simulation methods for the solid objects. For

example, a boat floats on an ocean due to a counterbalance of the gravity force actuating on

the boat and the water pressure on the boat’s hull. If the ocean is simulated using particles,

the force and torque exerted by each individual particle can be summed together, resulting

in a net force and torque on the boat.

In blood flow simulation, we want to model the forces and torques actuating on various

rigid and semi-rigid structures in the body; for example, valves in the heart. The most

interesting case are semi-rigid structures. There are three options:

1. Model semi-rigid structures as articulated rigid bodies. This method may be interesting

if the structures do not suffer large deformations such as squishing or stretching, but

rather small ones such as bending. Care must be taken with the particle collision

algorithm in the areas of articulation, so that particles do not get trapped where they

should not.

2. Model semi-rigid structures as deformable bodies, with an Eulerian simulation method.

The structure is modeled as a volumetric mesh with tetrahedra, and deformable body

simulation is performed there. Although Eulerian simulation involves solving linear
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systems and it is generally slow, the performance can be kept at a good level if the

number of elements is small. Updated sparse Cholesky factors (Hecht et al., 2012) or

multigrid methods (McAdams et al., 2010) can be used.

3. Model semi-rigid structures as deformable bodies made with particle systems. This

option would keep the modeling consistent between the fluid and the structures. Semi-

rigid structures, including structures capable of muscular control, can be modeled by

spring/mass systems, with springs added between the particles (Tu and Terzopoulos,

1994). The method is not very expensive in terms of CPU cost.

3.5.6 Simulation Results

We performed experiments both with the left-ventricle only and with a complete heart. The

experiments followed the procedure below:

• First, the heart is filled with blood, by using particle emitters that create new particles

at every frame. One emitter is positioned at the left atrium in the left circulatory

system experiment. In the full heart experiment, two emitters are used: one at the left

atrium and one at the right atrium. In this step, a single frame of the moving heart

was used, without any movement.

• Then, we started the heart movement: The mesh is successively interpolated towards

the next mesh position, then the mesh is replaced by the next mesh at the previous

mesh position, and it starts to get interpolated towards the next mesh, and so on.

Movement of blood can be seen as soon as the heart starts pumping. The blood leaves

the heart through the aorta, and it can be observed that the rhythm with which the blood

travels through the aorta corresponds to the pumping rhythm of the heart. The emitters

continually generate particles inside the atria. It is interesting to notice that the simulation

can be left running indefinitely and produces a continuous flow of blood.

With the full heart experiment, we noticed that, due to the absence of the interventricular

septum (as noted in Section 3.1), blood from the left side of the heart mixed with blood from
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the right side. This can be corrected with an artificial septum (also described in Section 3.1).

We had good results with the addition of an artificial septum, although this was not desirable

due to the manual step that it introduces.

We also noticed, from the observation of rendered simulation videos, that the actuation

of the mitral valve (the valve between the left atrium and the left ventricle) was partially

captured in the data capture step. In a few of the meshes where it should be closed, we

observed an actual closing that prevented blood flow. Even though this did not happen in

all the frames where it should, because of a lack of contrast in a few frames, this fact mostly

prevented blood from flowing back to the atrium, allowing for a more realistic simulation.

The results were rendered in an offline fashion. During the simulation, particle positions

were saved to files; we used the POV-Ray software to render the results using ray-tracing.

The POV-Ray primitive of “blobs” was used to represent the fluid. It works by making each

particle create a field in space with a radially decaying value in its surroundings. This field

is additive among particles. A level set is defined, and rays are traced against this level set.

In Figure 3.16, we see the left ventricle being filled up with blood, and in Figure 3.17

we see one cycle of the heartbeat. In Figure 3.18 we see one cycle of the heartbeat for the

full heart experiment. In all these figures, only the blood is rendered (the heart itself is

invisible). In the left ventricle, around 8,000 particles were used. The full heart experiment

exercised the system at a larger scale and showed its robustness with 25,000 particles.

Mesh interpolation (Section 3.4) and collision with margin (Section 3.5.2) greatly re-

duce leaked particles. Figure 3.19 shows frames from an experiment identical to the left

ventricle experiment shown in Figure 3.17, except that mesh interpolation was disabled for

comparison purposes. The benefit of mesh interpolation is very apparent in the frames and

in the resulting video. Not only there are fewer particle leaks, but the video shows that the

movement is smoother and more natural.

A few particles still escape the interior of the heart volume. This can be seen in Fig-

ures 3.17 and 3.18. The remaining leaked particles appear when a mesh is replaced by

another mesh with a very different local topology. For example, due to noise or slight bright-
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Figure 3.16: Filling the cardiac left ventricle with blood.
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Figure 3.17: Simulation results for one heartbeat cycle, left ventricle.
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Figure 3.18: Simulation results for one heartbeat cycle, full heart.
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Figure 3.19: Simulation results with mesh interpolation disabled, for comparison
purposes. The larger number of leaked particles is noticeable.
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ness differences in the CT scan, a mesh where the topology is somewhat smooth in a certain

area of the heart wall may be followed by a mesh where there is an indentation in that area.

We observed that this actually happens. Due to this fact, particles end up leaking outside

of the enclosed volume when meshes are replaced.

After reducing the particle leak to a minimal amount, leaving only the leaked particles

due to mesh replacement, we decided to focus on other aspects of the simulation, since the

harm caused by these leaked particle was not substantial at this point.

3.6 Rendering

In this section, two rendering approaches are described. First, a fast technique for real-time

particle-based fluids is shown. Then, we describe the off-line raytracing approach that we

used for our renderings.

3.6.1 Real-Time Approach

A real-time technique for rendering particle-based fluids is described below. This technique

is used in many video games and real-time rendering software.

The most costly aspect of rendering free surface fluids is extracting the surface so that

it can be shaded and visualized. Instead of explicitly extracting the surface, let us look at

the problem in screen space and use the capabilities of the GPU.

In the first step, spheres can be rendered using point-based methods. Only their depth

values are rendered to the z-buffer. One sphere is rendered per particle, and they are correctly

scaled for perspective. At the end of this step, we have a surface of spheres whose depth

values are in the z-buffer.

Then, the z-buffer is blurred. A separable bilateral filter (Pham and Van Vliet, 2005) is

used to preserve sharp discontinuities while blurring soft discontinuities. Once the z-buffer

is blurred, normals can be extracted using partial differences. With that, we have a smooth

field of normals which approximate the normals at the surface of the fluid. Standard Phong
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shading can be applied, or a cube map texture lookup can be done to simulate reflections.

The surface can be rendered transparently, and an opacity shading can be applied based

on the volume thickness at each pixel (this thickness field can be constructed in the sphere

rendering pass by using an accumulation buffer as render target). This method was described

by van der Laan et al. (2009) and is used in real time rendering of fluids in games.

3.6.2 Ray-Tracing Approach

A ray tracer can be used to extract the surface of the fluid. We used POV-Ray (Persistence

of Vision Pty. Ltd., 2004). POV-Ray has been parallelized so that an image can be rendered

by a cluster of machines (Fava et al., 1999). However, for animation rendering, each frame as

a whole can be rendered by an individual machine or CPU, and intra-frame parallelization

is not required.

POV-Ray has support for blobs (Blinn, 1982), also called metaballs (Nishimura et al.,

1985). They are implicit surfaces defined by points and a density function. The points are

the locations of fluid particles. The density function defines a scalar field in space. The field

is accumulated for all particles, and an isosurface is extracted from it at a threshold t. In

POV-Ray, the density function is

density = s

(
1−

(
min(d, r)

r

)2
)2

, (3.2)

where s is a strength value that we set to 1, d is the distance to the particle, and r is a

maximum radius. We obtained good results with r = 5.0 and t = 0.4.
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CHAPTER 4

Parallel Scalability

4.1 CPU Parallelism

Let us review the steps of our SPH simulation:

• Density step: For each particle pi, all its neighboring particles are analyzed, and a

density value is stored in pi based on the application of the density kernel.

• Force step: For each particle pi, once again all its neighboring particles are analyzed,

and the forces due to pressure from each neighboring particle are accumulated at pi.

Forces due to viscosity and gravity are also accumulated here.

• Position step: For each particle pi, velocity and position vectors are updated in a for-

ward Euler step. Then, collisions with triangles from the boundary mesh are computed.

A final position value is computed and stored in pi.

It can be clearly seen that, as a Lagrangian particle-based simulation, each of these steps

is individually parallelizable. The steps, however, are sequential in nature. Once all density

values are computed, the force step can begin; once all forces are computed, the position

step can begin.

Each particle can be computed individually, as long as the data structures utilized are

thread-safe. Our implementation uses VTK’s spatial subdivision structures to perform two

tasks: search for nearby particles and search for nearby triangles. For our parallel imple-

mentation that used the full heart mesh, we performed experiments with many of these
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structures and made modifications to one of VTK’s implementations in order to make it

thread-safe. These modifications are presented later in this section.

Before delving into the discussion on parallelism and thread-safety, we present a review

of spatial subdivision data structures and their implementation on VTK.

Octrees (Jackins and Tanimoto, 1980) are a recursive subdivision of space that can ac-

celerate the search for nearby objects in a 3D model or simulation. In an octree, the space

is subdivided into disjoint sets of 8 octants, and each octant is also subdivided, recursively

up to a finite number of steps. Each octant is a node in a tree, and its sub-octants are its

children. Leafs of the tree contain references to objects in space, for example triangles or

points. The number of steps of recursion can be uniform or it can vary for each branch of

the tree, particularly to achieve depths in which the number of objects is approximately the

same in all leafs.

Octrees can be constructed sequentially or in parallel. Parallel octree construction is

particularly useful when dealing with structured data such as voxels. In this context, an

octree can be constructed with a bottom-up approach (Lal et al., 1998), in which voxel sets

are constructed at each level and then combined and passed to the higher level. Each unit of

work is done by a worker, where the number of workers is as many as the number of available

CPUs. In VTK, the octree is constructed sequentially.

4.1.1 Single CPU, Multiple Cores

In our parallel implementation, we used as spatial subdivision structures the following VTK

classes:

• vtkOctreePointLocator to search for closest particles, for the density and force steps;

• a modified vtkCellLocator to search for closest triangles in the boundary mesh, for the

position step.

At this time, the implementation of VTK’s vtkCellLocator is not thread-safe when lo-

cating the closest cells to a point. Even though it mostly reads data from a read-only tree
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constructed at the build phase, it also stores internal work data, such as markers for visited

nodes and cell buckets that store neighboring cells. If this data is written from multiple

threads, undefined results occur. A semaphore is needed every time a query is issued.

We removed the need for a lock by modifying vtkCellLocator so that it is thread-safe.

We separated the internal work data structures from the large read-only tree data structure.

The work data structures were stored in a new Context class. This class can be instantiated

once per thread, preventing data races between threads. We structured our parallel loops

with an inner loop that works on a stride (usually of 100 elements) in a single thread, and an

outer loop that is parallelized. With this structure, the Context class is created only once per

stride, so it does not incur a big cost. The benefit of parallelizing the use of vtkCellLocator

provided a big gain in performance.

To analyze performance, we divide the algorithm into two steps:

1. Mesh update step: vertex update and mesh locator building. Vertex update refers

to updating the position of all vertices of the mesh to their interpolated position,

according to the current interpolation frame. Mesh locator building refers to building

the locator that indexes mesh triangles. These steps are performed once per frame.

The vertex update step was parallelized, and the parallel results are shown below.

2. Simulation step: particle locator building, density computation, force computation and

position update. These steps are iterated multiple times for each frame (i.e., for each

mesh update step), with the goal of reducing the time step size and allowing pressure

propagation. We use 8 iterations. The density, force, and position steps were also

parallelized and the results are shown below.

Table 4.1 shows timing measurements for the mesh update step; Table 4.2 shows timing

measurements for the simulation step. For this measurement, the heart mesh was previously

filled with 15k particles. The measurements are an average over 20 frames. The mesh locator

build step and the particle locator build step are not parallelizable, so their timing is shown

only once.
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Step Single threaded Multithreaded

Vertex update 7.6 5.6
Mesh locator 52.3

Table 4.1: Average times in milliseconds for the mesh update step. Timing was
done on a hyper-threaded 4-core 2.4 GHz Intel Core i7 CPU, 8 virtual CPUs,
15k particles.

Step Single threaded Multithreaded

Particle locator 2.3
Density 80.95 17.5
Force 159.8 35.1
Position 411.1 92.9

Table 4.2: Average times in milliseconds for the simulation step. Timing was
done on a hyper-threaded 4-core 2.4 GHz Intel Core i7 CPU, 8 virtual CPUs,
15k particles.

It can be seen that the most time-consuming step is the position computation. Finding

the closest point in the mesh for every particle is a heavy step, but it is necessary for collision

handling. Building the mesh locator is also a significant time slice. This time could be saved

at the expense of memory by storing all the locators for all the interpolated meshes. The

count of these locators would be the number of meshes (in our case, 10) times the number

of interpolated frames (in our case 8). However, the time for mesh locator computation does

not scale with the number of particles, so the benefit in eliminating it would not be big for

a large number of particles.

4.1.2 Multiple CPUs

Within a single CPU, the limitation is the number of cores available. In order to overcome

this limitation, we can run the simulation over several machines that communicate over the

network. Details about this approach are presented in this section.

The single-CPU SPH simulation proceeds as follows: first, from the positions of the

particles, the densities are computed in the density step. Then, using positions and densities
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Figure 4.1: Steps of the SPH computation in a single CPU. Red nodes denote
computations; blue nodes denote data.

as input, forces are computed in the force step. Then, using positions, velocities and forces as

input, new positions and velocities are computed in the position step. Figure 4.1 illustrates

the data flow.

We propose a method to parallelize the computations between multiple machines. We

define a master node and one or more worker nodes. The master node drives the process and

centralizes the communications. The worker nodes receive data from the master, perform

the computations, and send the resulting data back. The master node could be a machine

with a small number of CPUs. The worker nodes benefit from having a large number of

CPUs; each worker node can internally parallelize the work assigned to it.

Let us assume the workers are initialized with the same parameters as the master (e.g.,

ρ0, µ), prior to the start of the simulation. The workers operate on a fraction of the particles,

according to their index: if there are n workers and p particles, worker i operates on particles

p/i to ((p+ 1)/i)− 1.

At the beginning of each frame, the master has all the information about the particles,

and it must update the workers as necessary. For the first step, the density computation,

the workers need only the positions of the particles. The master sends the positions of all

particles to all the workers (p vectors of 3 components). The workers compute the density

values, {ρ}, and send them back to the master. Each worker sends p/n scalars.
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The master now has all ρ values, and it can begin the force computation step. This step

requires positions, ρ’s, and velocities (to compute the forces due to viscosity). The velocities

can be sent to the workers simultaneously to their computation of the density step. The

densities also must be sent from the master to all workers, since each worker only computed

a fraction of the values. Once they have all data, they compute the forces and send back

their results (p/n vectors of 3 components).

The position computation can now be performed. The force values are sent to all workers,

and they already have positions and velocities. So, they update positions and velocities, and

send them back (2(p/n) vectors of 3 components). The simulation frame is now complete.

The master can store or render the results, as needed, and begin the next frame. In Figure 4.2,

we see the communication and computation timeline described here.

With multi-CPU parallelization, the time needed to perform computations is decreased.

On the other hand, time is added for data transfers between nodes. If the added data transfer

time td is smaller than the time saved by the decrease in computation time, we manage to

speed up the simulation.

And what is the decrease in computation time? Each machine works independently on

its assigned particles; there is no data dependency during a step. Although there may be a

small overhead in starting and ending the loop, let us assume it is small. The computation

time with n nodes is tc/n, where tc is the computation time for one node.

Thus, the decrease in computation time is the difference between tc, the sequential com-

putation time, and tc/n, the computation time of each parallel node. We want this time

saving to be greater than the time added by the data transfer step, td.

Thus,

td < tc −
tc
n

(4.1)

is the condition to obtain speed-up; that is, the additional data transfer time should be

smaller than the computational time savings.
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Figure 4.2: Communication and computation timeline. Time progresses from
top to bottom. Green blocks represent data transfer. The network is busy during
these periods. Red blocks represent CPU computations; the CPU of a node is
busy during these periods.
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If TCP connections are used, then td is a function of the number of nodes: the master

must send all the position, velocity, density, and force data to all the nodes. We can thus

rewrite (4.1) as

nt′d < tc −
tc
n

∴

t′d < tc
1− 1

n

n
. (4.2)

The value of the right-hand side of (4.2) decreases to 0 as n approaches infinity, which shows

that there is an upper limit to speed-up. In practice, it is still feasible to use TCP connections

and achieve speed-up, if td is sufficiently small.

4.1.2.1 Multicast

The communication from master to worker can be done via UDP Multicast, and we can

further increase the scalability. Multicast (Deering, 1989) is an extension to the IP protocol

to allow one host to send datagrams to many others with a single transmission to a single

destination address. Although not widely adopted in multi-networking applications, it is

very well supported at the level of individual hosts and IP routers (Ratnasamy et al., 2006),

so its application is feasible if all hosts are on the same network. With multicast, the master

does not need to replicate the data on the network to send the updated densities, velocities,

and forces.

The multicast protocol is not connection-oriented—there is no point-to-point connection

between hosts. Therefore, the UDP protocol is supported, but not TCP. Without care, if a

packet is lost in our simulation, the computation fails. A mechanism must be used to handle

transmission errors and dropped packets. Such mechanisms have been defined (Speakman

et al., 2001; Adamson et al., 2009) and have been implemented both as open source and as

proprietary software. One such solution works as follows: Sequence numbers are assigned

to packets, and if a packet is missed by a host, it can send a request for retransmission.

The retransmission is also sent via UDP multicast and is ignored by the other hosts. While
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the idea of multicast also encompasses wide area networks, here we assume worker nodes

are geographically close—essentially machines in a single data center. This simplifies the

issue. Physical transmission lines are short and fast, and it is safe to conclude that the rate

of dropped packets will be low during a simulation run. Therefore, retransmission schemes

protect the system from failures while having little impact in simulation time.

The timeline with multicast is shown in Figure 4.3. It can be seen that, if the number of

nodes is large, the use of multicast will have a big positive effect on the speed-up. If the data

transfer time is also large, while unicast will be limited in speed-up due to the multiplying

effect of the data transfer to each node, multicast will still provide speed-up.

With multicast, (4.2) becomes

t′d < tc

(
1− 1

n

)
. (4.3)

The right hand side of (4.3) goes to 1 as n goes to infinity. So, for a large number of nodes,

it is sufficient that t′d < tc in order to achieve speed-up. The number of nodes does not

inherently limit the scalability.

4.1.3 Experimental Results

We performed experiments simulating the data transmission and their scalability with the

number of particles and number of nodes. They consisted of the transmission of buffers of

data of the appropriate sizes. We used 64-bit doubles for all values—densities, pressures and

positions. Particle simulation was not added to these experiments; the focus was solely on

the timing of the data transfer phases. The process is as follows:

1. The master starts, spawns n threads, and waits for connections.

2. The n workers start, each on a different machine connected to the same network. They

connect to the master.

3. The master joins the threads (proceeding only when the last worker connects).
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Figure 4.3: Communication and computation timeline. Multicast is used for
master to worker communication.
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4. The master starts a timer.

5. The density step is simulated: Each master thread transmits data to each worker;

network contention occurs due to the simultaneous transmissions.

6. Each worker receives their data and transmits back a data buffer representing their

results, as if they performed computations. The focus here is on the size of this buffer—

we transmit the actual size that would be needed after computations.

7. The master joins the threads and measures the elapsed time since Step 4.

8. Steps 4 to 7 are repeated for the force computation, and then repeated again for the

position computation.

9. The elapsed time is recorded. The final timing is measured as an average of 10 whole

frames.

In Step 7, the master will have measured the total time needed to transmit data to the

workers and receive their responses. Network contention is also naturally measured here.

Worker computation time is excluded from this measurement.

This experiment was performed using Google Cloud Compute, a commercial platform

that provides access to virtual machines running in a datacenter, allowing for high perfor-

mance computation and networking at a low cost. Such a platform can be used, for example,

by a hospital or research institution that must run high-particle-count simulations. On the

hardware side, scalability is only restricted by the number of machines that can be connected

to the same network. We used one machine as master and up to 4 machines as workers.

Tables 4.3 and 4.4 show timing measurements for this experiment. Two plots are derived

from these tables, with emphasis given for the simulation of 15k particles, so that we can

compare it with the experiments performed on Section 4.1.1. In the plot shown in Figure 4.4,

we see the measurements for 15k particles, for the unicast case. The corresponding data is

shown for the multicast case in Figure 4.5. The effect of network contention can be seen for

the unicast case.
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1 worker
Particles Dens. Force Pos.

5000 1.12 1.05 1.99
10000 1.90 1.83 3.46
15000 2.55 2.37 4.83
20000 3.72 3.13 6.59
25000 4.03 4.30 9.10

2 workers
Particles Dens. Force Pos.

5000 1.19 0.80 1.56
10000 2.03 1.38 2.94
15000 3.26 2.07 5.06
20000 4.29 2.71 6.62
25000 5.87 3.11 8.74

3 workers
Particles Dens. Force Pos.

5000 2.70 2.13 1.92
10000 3.44 1.59 4.86
15000 4.97 3.58 7.15
20000 7.01 3.23 10.40
25000 9.23 4.12 13.69

4 workers
Particles Dens. Force Pos.

5000 1.48 1.73 1.85
10000 4.46 1.83 5.76
15000 7.34 2.62 9.12
20000 8.89 4.04 13.53
25000 12.60 5.31 18.25

Table 4.3: Average data transfer times with TCP unicast. Times are in mil-
liseconds, measured for each step of the simulation algorithm: density, force and
position. 1 to 4 workers were used.
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Figure 4.4: Data transfer times: unicast, 15k particles.
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1 worker
Particles Dens. Force Pos.

5000 0.91 0.86 1.80
10000 1.60 1.60 3.18
15000 2.17 2.28 4.50
20000 2.84 3.00 5.37
25000 3.35 3.79 7.69

2 workers
Particles Dens. Force Pos.

5000 0.88 0.73 5.05
10000 1.36 1.16 2.55
15000 1.90 1.67 3.56
20000 2.72 2.33 4.96
25000 3.92 2.92 7.37

3 workers
Particles Dens. Force Pos.

5000 0.80 0.57 1.21
10000 1.50 1.17 2.30
15000 1.98 1.62 3.79
20000 2.52 1.99 4.65
25000 3.37 2.46 5.78

4 workers
Particles Dens. Force Pos.

5000 1.07 0.96 1.48
10000 1.37 1.39 2.48
15000 2.15 1.90 3.73
20000 2.65 2.47 4.84
25000 3.04 2.81 5.83

Table 4.4: Average data transfer times with UDP multicast. Times are in mil-
liseconds, measured for each step of the simulation algorithm: density, force and
position. 1 to 4 workers were used.
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Figure 4.5: Data transfer times: multicast, 15k particles.
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The multicast experiment was simulated by performing one unicast transmission to one

node. This was done because the Google Cloud Compute platform does not expose multicast

capabilities to the end user. We used the reasonable assumption that the time for a unicast

transmission is roughly equivalent to the time for a multicast transmission. The result of

the simulated multicast experiment was that data transfer time was approximately constant,

independent on the number of workers. Random variation was observed, assumed due to

other network traffic in the datacenter.

As we saw in Table 4.2, the position computation, for 15k particles, takes 92.9 ms in the

4-core multithreaded case. The data transfer time for 15k particles and 4 workers is 9.12 ms

for unicast and 3.73 ms for multicast.

With this experiment, we conclude that such a SPH-based simulation can benefit for

multi-CPU parallelism, both with multicast and with unicast. The data transfer time is

much smaller than the computation time, so the computation can be split among multiple

machines with a gain in performance.

Further reduction in data transfer time can be applied with floating-point compression.

Recent research in this area presents both lossy and lossless compression algorithms that are

fast and adequate for multi-CPU particle simulations (Lindstrom, 2014).

4.2 GPU Parallelism

Current GPU architectures typically contain two types of memory: slower global memory,

accessible by all threads, and faster shared memory, which is local to a thread block. There

is also a small amount of local memory per thread. Figure 4.6 represents this architecture.

We parallelized our SPH implementation on the GPU using global memory. This im-

plementation is described below. Many challenges are associated with GPU programming.

Debugging is difficult, and data dependencies can lead to hard to find bugs. We found that

the following steps can help the task of converting code from the CPU to the GPU:
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Figure 4.6: Multithreaded GPU architecture.

• Start from working, debugged CPU code. Debugging in the CPU is easier and there

is a wider range of available tools.

• Port the code to the GPU using global memory. The amount of global memory is

relatively large, and global memory is accessible from all threads, simplifying this task.

It is desirable, at this point, that the code be structured in a way so that it can be

compiled for the CPU or the GPU through a compilation conditional. This helps with

eventual algorithmic improvements.

• Optimize the code by using block-shared memory instead of global memory. This is a

hard task that involves deep changes, however it benefits from the fact that there is

already working code for the CPU and GPU.

On our global memory GPU implementation, the data structure for the per-cell linked

list of particles was modified. There are two reasons behind the modifications. First, pointers

to CPU memory and GPU memory are different and should not be confused. If a linked list

uses pointers on the CPU, these pointers will potentially not point to the same objects in

GPU memory. To overcome that, instead of a list, each cell now holds an integer, which is
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the index of the first particle in this cell, or a special value of −1 if the cell is empty. Second,

it would be costly to gather a linked list of references to particles (potentially fragmented in

memory) and copy it to the GPU. So, instead of a separate linked list, particles themselves

have an integer index pointing to the next particle on the list, or −1 if it is the last one.

That is, the linked list is embedded in the particle data structure. This simplifies the data

transfers.

At each frame, all particle and cell data are copied to global memory on the GPU. Since

the amount of GPU global memory is relatively large, this is feasible. Particle data consists

of the full array of particles, each one containing: position x, velocity v, force, density, and

next particle index. There are also two extra fields: vnew, the particle’s new velocity, and

xnew, the particle’s new position. These fields temporarily hold velocity and position for the

current frame being computed. Cell data consists solely of the integer index for the first

particle in the cell.

Once all data are copied to the GPU, a kernel is launched to compute the particle

densities. The kernel structure consists of one thread per particle. A synchronization barrier

is needed after the densities are computed, since the force computation, which is done on the

next step, uses density values from for all surrounding particles. Density values are stored

in the particle data structure in GPU memory; there is no need to copy this data back to

the CPU at this point.

After the synchronization barrier, a second kernel is launched to compute both forces and

new positions and velocities. For the force computation, densities of surrounding particles

are consulted. Once a particle knows the resultant force acting upon it, it can immediately

perform its own velocity and position integration. The reason for the fields vnew and xnew now

becomes clear: A particle can compute its new velocity and position, but it cannot update

its current velocity and position because other particles may read them when computing

their forces.
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At the end of this step, all particles have their vnew and xnew values. The CPU takes

care of performing collision detection and transferring vnew and xnew to the actual position

and velocity fields, x and v.

Goswami et al. (2010) describe a method for GPU SPH using shared memory. There is

a limit to the number of particles per cell, and if a cell contains more than the maximum, it

is split and computed in two separate blocks.

Morton code (Morton, 1966), also referred to as Z-indexing, can be used to sort grid

cells such that particles that are close to each other in space are also close to each other in

memory. This helps either cache coherence for CPU access (Ihmsen et al., 2011) or data

transfer to shared memory on the GPU (Goswami et al., 2010).
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CHAPTER 5

Visualization and Navigation

We now focus on the problem of visualizing and moving the camera in order to enable the

system to be used for diagnostics, education, and collaboration. Our goal is a simulation

system that animates captured heart data and simulates the behavior of fluids inside, and

that is easy to use to produce smooth animations. It must be provided with adequate camera

controls, and a narrative subsystem to support education and collaboration.

5.1 The Visualization Software VSim

We have previously worked on the development of the visualization software VSim (Poyart

et al., 2011). Originally, VSim loaded and displayed 3D models of architectural and archeo-

logical importance, with the goal of supporting education and collaboration. In this chapter,

we describe the relevant aspects of VSim, such as the ability to create narratives and its

camera control model. We propose that the VSim narrative and camera models are good

choices for visualizations beyond architectural models, in particular heart structures and

fluid movement inside the heart.

VSim addressed the difficulty in sharing digital architectural content by providing a user

interface that is intuitive and effective for both spatial navigation in the 3D world and the

user’s interaction with the software. To address advantages and disadvantages inherent to

different camera control methods, a switchable camera control scheme is used, allowing the

user to select between two modes. A novel cameral control method used in one of these

modes ensures smooth camera motion.
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We also proposed a system for the end-user to create narratives which provide predefined

navigation paths in the 3D environment, and to add contextual material consisting of text,

images, videos, sounds, and web links. This system was designed to minimize the entry

barrier for new users, while still being powerful and flexible. We also provide the possibility

of adding spatially-localized resources, which do not follow a narrative but are presented to

the user at the appropriate locations, for example when looking at a certain heart structure.

Finally, we discuss the important issue of enforcing copyrights and branding for the content

used in VSim.

VSim is based on a non-trivial integration of known techniques that have been adapted to

our problem domain (originally of 3D Humanities Content Visualization, and subsequently

extended to medical simulations). Some of these adaptations are novel and a contribution

in their own right. These contributions were outlined in Chapter 1.

Section 5.2 presents our two approaches for camera control and navigation in the 3D

environment. Section 5.4 describes the system for creating narratives, and Section 5.5 dis-

cusses the embedded resources. In Section 5.7 we describe our graphical user interface, its

model of smooth motion, and how it can be adapted to touch-screen interfaces.

5.2 Navigation in the 3D Environment

From a computer graphics point of view, the problem of navigating in a 3D environment

is essentially one of controlling camera position and orientation. These camera parameters

must be updated at every frame, while taking into account user input (keyboard, mouse,

joystick and touch-screen devices), and software-driven events (e.g., collision with geometry,

or the playback of a narrative).

Video games are a major portion of the entertainment industry, and considering that

many video games are essentially 3D virtual environments, it is natural to look at them for

inspiration. Furthermore, users already familiar with video-game-style controls, when faced

with the transition to a new software, will feel natural if the control mechanics are simi-
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lar. However, simply reproducing video-game-style controls does not solve all the problems

identified for our real-time visualization software. In particular, while video-game controls

are suitable to fast-action aiming at targets, they are not suitable for recording movies with

smooth motion, or for pedagogical applications and large-audience situations.

User studies with university faculty made before the development of VSim have covered

ease of navigation and use in a classroom setting. Faculty interviewed was, in general,

hesitant to try to navigate the 3D models themselves during classes while they talked about

them at the same time. The navigation system present here, including the camera controls

and the narrative system, was designed to give instructors a non-threatening way to engage

with the models as instructional technology.

We have decided to provide the user with two camera control options, called the uSim

mode and the first person mode. These modes are described below. Both of them follow the

“flying vehicle control” metaphor described by Ware and Osborne (1990).

5.2.1 uSim Mode

This mode received this name because it is similar to the control mode used in uSim, a

previous visualization software developed at UCLA (Jepson et al., 1995). The main goal of

this mode is to provide movement that is as smooth as possible. A secondary goal is to allow

the user to control both camera orientation and velocity with a single hand on the mouse,

an important feature for teachers and lecturers that were interested in using the software as

a tool during a classroom presentation.

In this mode, we define a point c in two-dimensional space, residing at the center of the

screen. Let m be the mouse position in the same coordinate system. As the user moves the

mouse away from c, the vector vusim = m−c defines a direction and magnitude. The camera

movement at each time interval dt (e.g. at each frame) is defined in the following way: the

horizontal component of vusim defines a rotation around the vertical (y) axis, and its vertical

component defines a rotation around the horizontal (x) axis. The y axis is defined in a
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world coordinate system, always pointing up. The x axis is defined in a local, camera-centric

coordinate system.

With this system, the mouse position on the screen defines the angular velocity of the

camera. An interesting consequence is that even if the user does not provide very smooth

movement with his/her hand on the mouse (which is in fact hard to do), smoothing is a

result of the fact that his/her hand movements are translated to a first-order derivative of

the camera orientation. Any jerkiness is translated to jerkiness in velocity, not in position.

Integrating in time the velocity to compute the position has a natural smoothing effect. In

both this mode and the first-person mode described below, the spacebar key toggles between

the camera-control mode and the mouse-release mode, the latter meaning that the mouse

is no longer used to control the camera, and can be moved around to click at user-interface

elements like menus and icons.

Camera linear velocity is controlled by the mouse buttons: the left button accelerates

and the right button decelerates. For the application of architectural visualization, the user

can choose between being allowed to fly, in which case the camera motion vector always

coincides with the eye forward vector, or being constrained to ground level, in which case

the camera motion vector is a normalized horizontal projection of the eye forward vector.

A collision detection system ensures that the camera is always at a constant distance from

the ground. If the user attempts to climb over a step that is small enough, the camera is

allowed to climb, updating its height for the next section of terrain. To apply this camera

system to heart simulation visualization, we allow only the flight mode.

5.2.2 First-Person Mode

In this mode, mouse movements are directly translated to camera movements. If the mouse

moves from position m0 to position m1, the vector vfp = m1 − m0 defines the camera

rotation. If the user stops moving the mouse, vfp = 0 and the camera stops moving.

This is the control method used in most first-person computer video games. Notice that

in this mode, mouse movements are directly translated to the camera orientation, rather
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than to its first-order derivative. Any jerkiness in mouse movement is translated directly

to jerkiness in camera rotation. On the other hand, an advantage of this mode is that the

user can quickly point the camera to any direction, as if he/she is turning his/her head. It

is arguably more intuitive to think that one’s hand is directly controlling the look-at vector,

rather than to think that it is controlling the camera’s angular velocity.

In order to improve the smoothness of the camera’s motion in this mode, without com-

promising the advantage mentioned above, we proceeded as follows: Let p0 and w0 be,

respectively, the pitch and yaw components of the camera’s orientation at time t0, as de-

fined with respect to an arbitrary global orientation system. The movement vector vfp is

then translated into “desired” values, pdesired and wdesired. The current p0 and w0 values are

interpolated towards pdesired and wdesired following an inverse exponential law

p(t) = p0e
−jr + pdesired(1− e−jr), r = t− t0, (5.1)

where t is the current time and j is a scaling constant. An analogous formula is used for

the yaw w. An efficient stepwise integration method to approximate this behavior can be

implemented as follows. At each frame (a time interval ∆t), p is moved towards pdesired a

distance ∆p proportional to the magnitude of the distance between them; i.e.,

∆p = k∆t|pdesired − p|. (5.2)

We obtained best results with k = 8.0. This value can be intuitively understood the

following way: If the speed were to be defined on the first frame and kept constant, p would

take 1/8th of a second to reach pdesired. The actual time is larger, since the frame rate is

usually higher than 8 fps. Even though mathematically this would result in motion that gets

slower and slower but never stops, in practice the limits of floating-point accuracy are reached

quickly, which makes the motion stop. A threshold point could have been introduced, but,

in our tests, we did not have any noticeable residual motion when the user stopped moving

the mouse, so the threshold test was not necessary.
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This method essentially absorbed a large amount of high-frequency, unintended mouse

jerkiness and provided a smoother movement while keeping high interactivity.

Linear velocity of the camera is controlled by the keys w (forward), a (left), s (back) and

d (right). This control scheme is used in numerous first-person computer games. However,

in our case, the velocity does not change immediately, but linearly increases and decreases

over a short period of time, limited by a maximum velocity. We used 0.66s for this time

value, and our conclusion is that it should be kept small. We essentially follow the same

philosophy as for camera rotations—there should be smoothness in motion, but at the same

time the user should feel crisp and responsive camera control.

5.3 Look-Aside

During interactive visualization or in demonstrations, while moving around the environment,

often it is desirable to look at a feature that attracts your attention, while your movement

continues in the original direction. The analogy is as follows: When walking down a pathway

at UCLA with foreign colleagues and showing them the place, you notice a building that

attracts your attention. You point it to them, and they turn their heads to look at it, while

continuing walking and talking about it.

We designed a novel mechanism for doing exactly that—looking to the sides without

changing your direction. A keypress is defined to act as a look-aside key. We used the shift

key for that purpose. When it is pressed

• the movement vector of the camera is kept constant, regardless of camera orientation

movements, and

• the camera is free to look around and to point at objects of interest while maintaining

its original movement vector.

When the look-aside key is released, the current camera orientation may not be the same

as the movement vector. The user may or may not have pointed the camera back to the
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forward vector. How to reconcile the two? One could think about smoothly rotating the

camera so that it points back at the movement vector. We found that this is not desirable,

since the user took the action of pointing the camera somewhere else. The approach taken

was the opposite—smoothly interpolate the movement vector so that, over a small period

of time, it matches the current camera vector again. The big advantage of that approach is

that the camera control is always at the user’s hands, never being taken away from them.

The interpolation used is a regular vector interpolation, rather than spherical: If the

camera is pointed close to 180 degrees from the movement vector (such that you are moving

backwards while pressing the look-aside key), the end result is that your movement comes

close to a stop and then starts again in the forward direction. With spherical interpolation,

there would be a strong, undesirable sideways movement in the middle of the interpolation.

We found that this mechanism works best in the first-person mode, but it can also be

used in the uSim mode.

5.4 Narratives

Another feature of our framework is the ability to create narratives—a mechanism for both

the content contributor and the end-user to create arguments, tours and lesson plans, aug-

mented with on-screen multimedia content. The user adds narrative nodes (keyframes)

defining the camera position and orientation, and organizes these nodes in a timeline. Fig-

ure 5.1 shows the narrative editor UI and its constitutive elements. Figure 5.2 is a detailed

view of part of the narrative editor bar. Even though VSim’s narrative concept was originally

developed in the context of architectural visualization, the same concept can be applied to

medical visualization, except for the fact that there is no ground plane or “walking” simula-

tion, everything else is applicable.

Nodes in a narrative are created by simply positioning the camera and clicking on the “+”

button. With this action, a narrative node is added to the timeline. Data associated with

nodes include camera position and orientation, time to remain in the node, and node overlay

74



Figure 5.1: The narrative editor. The central area of the top bar contains
narrative nodes and transitions. The control areal on the left contains buttons
for creating and removing nodes. The Edit button launches the overlay editor for
the selected node.

Figure 5.2: A detailed view of the narrative editor bar.
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content (described in Section 5.4.2). The user can edit the timeline by directly manipulating

and reorganizing the nodes.

When playing the narrative, the camera position is interpolated between nodes in the

manner described below.

5.4.1 Camera Movement

The camera follows straight lines between nodes. Second-order continuity at nodes was not

a requirement for the first version of the software, since users were mostly interested in

stopping at nodes and showing content there. It can be added in the future, if needed.

Within the straight line followed by the camera, its position is interpolated in an ease-

in/ease-out fashion using a cubic function as described below. We start with the following

function:

y = x− x3. (5.3)

From this function, the x axis is scaled so that the inflection points x = ±1/
√

3 fall at 0 and

1, and the y axis is scaled so that the minimum and maximum in that range also fall at 0

and 1. We input a linear interpolant into this function as x, with values ranging from 0 to

1. The output y is a cubic interpolant that is used both for camera position and rotation

(as a quaternion slerp interpolant). By using this method for ease-in/ease-out instead of a

quarter-sine, we avoid the expense of a sine computation.

5.4.2 Overlays

Each keyframe, or node, can be enriched with textual information, images, videos, and

sounds—called overlays. The user can freely lay out these elements on the screen in 2D

space while in a keyframe. When a narrative is playing and a keyframe is reached, its

overlay fades in and is displayed for an user-determined amount of time, or until the user

presses a key. This function essentially allows the content contributor and end users to
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Figure 5.3: The overlay editor.

augment the virtual world with multi-media content. Figure 5.3 shows the overlay editor

with a text element added to the scene.

5.5 Embedded Resources

Users may wish to explore the model through free navigation; i.e., not following a narrative.

It is natural to think that these users should also be presented with contextual multimedia

elements (embedded resources) associated with locations in the environment. As an example,

when the user is viewing a structure in the heart such as a valve or an artery, an embedded

resource could show documents related to the structure observed—pictures of the actual

organ, text, video and audio recordings, and so on. Due to the fact that the user should

not be interrupted in his/her continuous navigation, embedded resources do not pop up on

screen, but rather, icons appear on the embedded resource bar at the bottom of the screen.

The user can choose to view them or not.
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Figure 5.4: Embedded resource positioning: naive approach. The gray shape is
the model being viewed. A point in space c and a radius r are used to describe the
area of interest. This point is both the point of interest and the center of camera
influence. Notice that the user can see resources associated with point c in the
model, whether he is on the outside or on the inside of it. The author would like
the resource to be seen from the outside of the model only, which this approach
does not capture.

An important question is how to define the area in which an embedded resource icon

should appear. A naive approach would be to associate the resource with a point in space,

and make it appear whenever the camera is inside a sphere of a certain radius, centered at

this point. However, this would show resources that are behind the user. Another approach

is to combine the sphere with a specific camera angle, which does not entirely solve the

problem, as the user could be, for example, on the inside of the heart, whereas the structure

of interest can only be viewed from the outside, or vice-versa. Figure 5.4 illustrates this

problem.

The approach that we took is described as follows: The content creator defines a resource’s

location in the model through a data structure composed of

1. target t (3D position),

2. camera position center c (3D position), and

3. camera area radius r (scalar value).

The embedded resource becomes available to the user and appears in the embedded resources

bar whenever the following conditions are true:
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Figure 5.5: Embedded resource positioning: our solution separates the center
c from the target point t. The embedded resource is activated if the camera is
inside the sphere and the target t is in the field of view. The author can express
the fact that the resource should appear when the user is outside of the model and
looking at the point of interest.

1. The scene has the target point t in the field of view.

2. The camera is inside a sphere of radius r centered at c.

Past approaches essentially had the center c and target t combined as the same value.

By separating them, we allow resources to appear whenever the user is, for example, in front

of the heart and looking at the heart. Figure 5.5 shows a model, in gray. Points c and t are

shown, as well as the sphere defined by radius r. If the user, in his/her virtual navigation,

steps inside the sphere and turns the camera towards the point of interest t, both conditions

are met and the embedded resource appears. This corresponds to the author’s intention—

he/she can now express the fact that the resource should appear when the user is in front

of the model, not inside of it, and looking at the relevant feature in the model.

If desired, a flag can be added to the embedded resource data structure to inhibit the need

for a target; this would allow the authoring of resources that “attract attention”, independent

of the direction the user is looking; however, we have concluded that this mode should not

be the default.

An inside-sphere test has to be made on every frame and for each resource, and there

could be many resources associated with a scene. The use of spheres makes this computation

efficient. Other, more complex shapes could be used as area of influence, but spheres are
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adequate in most cases, and they also simplify a content creator’s method of thinking about

the problem.

5.6 Restrictions and Enforcing Copyright

We incorporated a lightweight model of restrictions, through which the content creator can

have some level of assurance that his/her content will not be easily modified, and that his/her

branding elements will not be easily removed.

The content creator can set a series of flags that are associated with his redistributable file

(a file that combines the 3D model with meta-information about narratives and embedded

resources). These flags enable or disable VSim functionality for, among other things:

1. Adding and removing a branding bar, which can show, for example, the institution

logo.

2. Modifying narratives.

3. Modifying embedded resources.

4. Keeping the user restricted to paths defined by narratives; i.e., no free-form navigation.

5. Creating video files.

6. Increasing the screen resolution beyond a certain limit.

The initial implementation is lightweight, and it is a step toward a more secure imple-

mentation. We decided not to add encryption and the associated burden of encryption keys.

Taking into account the fact that the software is open-source, it is not impossible for some-

one with the source code in hand to circumvent the restrictions. However, it is not easy for

someone without programming expertise to do so, which is adequate for our requirements.

Security can be enhanced in future versions by means of encrypted data files, building on

top of our current system.
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5.7 Graphical User Interface

Two ideas guided the graphical user interface design—it should be intuitive and easy to use,

and it should be adaptable to emerging technologies such as tablet devices and touch-screen

interfaces.

We envision a typical user of the software to be a lecturer in a discipline in humanities.

This user may have little or no experience with other 3D navigation software and with tools

to create narratives and movies. We designed a narrative bar residing on a control bar at

the top of the screen. It consists of nodes (large rectangles corresponding to keyframes,

containing a thumbnail of the scene) and transitions (smaller rectangles in between nodes).

Accessing a node opens up a window to control node aspects (time to remain in node, fade

in/out time, and others). Accessing a transition, similarly, allows the user to control variables

such as transition timing. Adding and removing nodes is done through buttons labelled “+”

and “−”, a concise and efficient representation.

All GUI animations are smooth. For example, the side scrolling of the narrative bar

(when there are more nodes than the screen can fit) is visually a rolling movement rather

than a jump. This gives the user important visual cues. Similarly, the whole control bar

(which is semi-transparent) can be closed to reveal the whole 3D scene, also with a smooth

movement. We found that the most pleasant motion was achieved not linearly, but by making

the speed follow an inverse exponential law, similarly to the first-person camera (Equations

(5.1) and (5.2)).

The UI was designed on a style that is adequate for porting of the software to tablet

platforms. All interactive elements (widgets) are large (by being “finger-sized”, they can be

used with touch-screen input, as opposed to mouse clicks). Rather than separate windows

with OS-specific features, the widgets are rendered using OpenGL on top of the 3D envi-

ronment. A custom widget system was developed for that purpose. By sidestepping this

OS dependency, the widget system should work out-of-the-box on touch-screen platforms,

and the look-and-feel is preserved. Minor OS-specific elements are still used; e.g., on dialog

boxes to open files, which should not present a big portability problem.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

We have discussed Smoothed Particle Hydrodynamics, its application in fast fluid simulation,

and we presented our implementation and discussed the challenges involved. We provided

an extensive analysis of three parallelization approaches, (1) multithreading on a multi-

core CPU, (2) offloading computations to a general-purpose GPU, and (3) a multi-machine

networked parallelization approach. This latter option allows highly scalable parallelization

and it can be implemented to run on virtual machines in existing low-cost cloud services.

We analyzed the scalability with the use of both unicast and multicast protocols, and we

showed that the data transfer times over the network are small enough to provide speed-up

and scalability.

A method to use acquired volumetric scan data to drive the simulation was shown. An

important goal of this thesis was to perform simulation on heart data acquired from patients,

while keeping the manual, hand-crafted data preparation to a minimum. We showed how

this is possible with no hand-crafted preparation, although due to scan resolution the results

suffered from inter-ventricular fluid leakage. This is an important step towards the goal of

simulating a fully extracted heart mesh, including the inter-ventricular septum. This goal

becomes more and more realistic with higher resolution and higher accuracy 4D scanning

technologies.

To achieve Lagrangian simulation contained by the extracted heart mesh, we devised a

novel mesh interpolation method using a variant of Iterative Closest Points. This allows

a smoother and more stable simulation. Our particle-wall interaction, another new aspect,
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produced good results both in simple “dam-break” tests and in the actual heart data. Finally,

we simulated a heart mesh filled with 25k particles and made it successfully pump simulated

blood.

We argued that although it is a software system that we originally developed for vi-

sualization and collaboration in the archaeological and architectural domains, VSim, with

its novel camera control and interaction method as well as its capabilities for the creation

of narratives and embedded resources, can also be applied to medical simulation, provid-

ing benefits when used for medical training, research, and collaboration. VSim is currently

being used at UCLA in an experimental phase for classroom presentations, in the area of

visualizing architectural and archaeological content. The initial response of users that have

been exposed to the prototype software has been positive.

The novel camera control method described for VSim is especially applicable. There are

advantages and disadvantages to both camera control modes that were tested, so we followed

the route of implementing both, and allowed easy switching between them. The first-person

mode is easy to use and provides fast and direct camera control, whereas the uSim mode

has smooth motion appropriate for video recording and single-handed control appropriate

for classroom presentations. We believe that offering both modes was the ideal solution.

We have also approached GUI issues with an aim to keeping the software portable and

adaptable. By developing a custom widget library in OpenGL, we have seamless integration

of UI elements with the 3D environment, and the possibility for future adaptation for touch-

screen interfaces. We found that the benefits of developing such a custom library offset its

cost.

Narratives in VSim allow end users and content creators to provide argumentation within

the 3D environment. Embedded resources allow the augmentation of the 3D environment

with relevant content for users that choose to perform free navigation. The elegant scheme

developed for the activation of embedded resources based on camera position and orientation

has met all our requirements, allowing the content creator to express when and where the

resources should appear in a variety of scenarios.
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6.2 Future work

The results presented in this dissertation can be extended in several ways:

• Adding valves to the heart to replace missing structures extracted from the CT data,

and generating a more accurate simulation. With that, we can observe blood flowing

separately in the left and right ventricles and being pumped through their separate

circulatory systems.

• Using higher resolution volumetric scans and fine-tuning the parameters in order to

extract the intra-ventricular septum.

• Simulating blood flow inside vessels in ultrasound and MRI data volumes. A level set

can be extracted from the data to identify vessel boundaries, and SPH particle simula-

tion can be performed inside these volumes. Some questions that can be answered are:

How many particles are needed for an accurate simulation, how close can we get to

real-time, and what simulated parameters (e.g., blood pressure) can we extract from

the simulation?

• Experimenting on fluid coupling with solid structures, such as needles, and semi-solid

structures, such as heart valves. For example, two goals can be attempted, (1) use 4D

ultrasound of a beating heart to simulate the flow of blood being driven by the heart

imagery itself, and (2) simulate a needle insertion, with the consequential bleeding and

turbulence effects in the blood and vein.

• Extending the research into the Computer Architecture area to define modifications to

current parallel architectures that can accelerate particle-based simulations.

Additionally, it is interesting to consider a piece of work that we previously published,

on particle-based hair simulation, which is presented in Appendix B. The relationship be-

tween that work and Lagrangian simulations is that hair simulation for animation purposes

can benefit from results obtained in Lagrangian fluids, particularly with regards to GPU

parallelization.
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Finally, our experiments with ultrasound volumes, which are presented in Appendix A,

have demonstrated the feasibility of automated volume registration, and how it can be

made more robust through multiresolution pyramids. The medical team in our research

group is doing a great deal of manual work after capturing ultrasound volumes for training

purposes. Volume registration is one of their future challenges. Reducing the amount of

work needed for registration can have huge benefits, even if the need remains for an initial,

approximate manual registration. Future work would involve validating our experiments

with our heart blood flow simulation by comparing them with 4D ultrasound, which can

capture the actual blood flow and associated tissue deformations. Also, it should be possible

to devise a procedure for ultrasound capture that enables automated volume registration

and can be used to provide large volumes of data to drive simulations of interest.

85



APPENDIX A

Ultrasound Data for Circulatory Simulation

Ultrasound imaging plays a very important role in medical care. Ultrasound equipment is

small, light, and inexpensive compared to magnetic resonance (MR) imaging or computed

tomography (CT) equipment. It is non-invasive and produces no radiation. CT imaging

is a fast method but uses radiation. MR imaging can take a half hour or more, and it

cannot be used if the patient has a pacemaker. Both methods are expensive. Ultrasound,

on the other hand, can be used in the emergency room to detect problems, such as organ

rupture or internal bleeding, that may require immediate surgery. Ultrasound is real-time,

so it can provide image guidance for procedures. It can also show the tissue response as the

physician performs manipulations while scanning. Due to the low cost, more hospitals have

more ultrasound equipment than other sophisticated imaging equipment. The drawback of

ultrasound is the low resolution and noise in the produced images.

A.1 Ultrasound Imaging

The principle of ultrasound imaging is as follows: A transducer positioned at the tip of a

probe is held in contact with the patient’s skin. This transducer emits ultrasonic waves,

which travel through tissue. A reflection happens whenever there is a change in density.

The transducer captures these reflections and transforms them into images. Usually, the

transducer emits waves in a fan-like shape, so the image produced is a planar slice through

the body corresponding to the plane where the ultrasound waves travel. Ultrasound probes

can also be curved, linear, or have multiple configurations, performing more complex scans.
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Figure A.1: An ultrasound volume seen from different angles. Two blood vessels
can be clearly seen in the top-right view.

A special type of ultrasound probe can have a moving transducer that, instead of a single

slice, captures a volume. The moving transducer basically captures several parallel slices

automatically as the probe is held still, and the hardware and software processes it into a

volume of data. Trained physicians can acquire volumes with little to no distortion due to

hand movement. The output from the volume acquisition process is a three-dimensional grid

of intensity values, which correspond to different densities of body tissues. Figure A.1 shows

a volume captured this way. These images were rendered on a tablet device where they can

be viewed and manipulated.

Rendering and manipulating ultrasound volumes in tablet devices can have many inter-

esting applications in medicine. The rendering method we used is described below. It allows

interactive manipulation of the volumes.

Slices are taken from the volume in the x, y and z directions and stored in textures.

The textures have color set to white and alpha set to the intensity value coming from the

volume. The resolution of each texture is the full resolution of the volume, but the number
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of textures in each direction is a fraction of the full volume. We used a decimating factor of

4. This improves frame rate by reducing the number of pixels that must be filled, for devices

that are limited by pixel fill rate, at the cost of resolution in the z direction in camera space,

which has less effect in image quality than resolution in the x and y directions.

All these textures are rendered in their respective positions and orientations. To correctly

visualize the volume, each pixel must be the integral of all the values along its direction.

The usual alpha blending for transparent surfaces in computer graphics is governed by the

following equation:

c = αct + (1− α)c0, (A.1)

where c is the final color, ct and α are the color and alpha (opacity) values of the texture

being rendered, and c0 is the color that previously exists in the frame buffer. This is an

order-dependent method (transparent surfaces must be rendered from back to front) and,

furthermore, it does not produce the expected integration for volume rendering. We instead

used the following equation:

c = αct + c0. (A.2)

This performs the expected integration of intensity values and it is order-independent. All

OpenGL-compliant graphics hardware supports this rendering mode.

An extension of this method can be implemented in the following way: As the user

rotates the volume and the normals of one of the three sets of textures approach a right

angle with respect to the camera direction, these textures have diminishing impact on the

resulting image. A customized shader can be used in order to modulate the whole texture

with lower alpha values, according to the dot product between the texture normal and the

camera direction, and starting from a certain angle, the set of textures can be dropped

altogether.

Volumes captured with ultrasound can be used for medical training. A medical student

can learn and practice in a computer-based environment using software that takes such a

volume and re-slices it according to the position and orientation of a handheld probe attached
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to the computer. This training probe tracks the student’s hand movements using sensors not

unlike the accelerometers commonly found in smartphones and tablets. Thus, a very natural

way of controlling the probe can be achieved, and the image that is viewed (the re-slicing of

the captured volume data) is very similar to those produced by real ultrasound equipment.

Another feature of ultrasound imaging is the ability to use the Doppler effect to detect

movement in the images. This is commonly used to find blood vessels by detecting blood

flow. In the produced image, which is generally grayscale, the software can draw red or blue

pixels according to whether blood is flowing towards or away from the probe. This results

in pulsating red/blue areas in the image that indicate the presence of blood vessels.

Ultrasound imaging can have enough resolution to capture small veins and arteries, in

addition to large ones. With a large enough volume, it can capture the branching and

merging structure of these vessels, and fluid simulation can be done inside of them.

Training systems can benefit from the addition of Doppler visualization. For that, a fast

simulation system is essential. Two steps must be done:

1. registration of ultrasound volumes, to construct larger volumes from several scans

stitched together, and

2. segmentation of blood pathways, which can be done by a level set method that con-

structs a blood vessel mesh (with its potential ramifications to other vessels) from the

intensity image, or by other methods such as “snakes”, or active contour models (Kass

et al., 1988).

These two steps are analyzed in the following sections.

A.1.1 Human Circulatory System Simulation

Blood flow simulation in the human circulatory system can have more impact on health care

than just for training purposes. It can be used to study the blood interaction with walls of

arteries and veins, with valves (especially in the heart), and with other structures.
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A special type of ultrasound probe can capture so-called 4D volumes; i.e., three-dimensional

time-varying volumes. One can use a time-varying level set extracted from a 4D volume to

drive fluid simulation, with interesting applications.

Needle insertion is an interesting research avenue. The objective is to study the inter-

action between blood and needle. One of the effects is the appearance of turbulence on

the blood flow. Studying and predicting the amount of bleeding when a needle is inserted

is another interesting example. Simulations such as those can be validated by ultrasound

imaging itself. For example, a volume can be captured without and with a needle inserted.

Simulation can then be applied to the former volume, with a virtual needle added to it.

Then, comparisons can be made with the latter volume in order to validate how accurate

the simulation is. The predicted and real amount of bleeding can also be compared. Since

SPH offers the power to model viscosity, the blood’s actual viscosity can be fine tuned, and

the effects of changes in viscosity can also be observed.

Not only can blood flow simulation be applied to ultrasound data (potentially captured

just-in-time in the emergency room), but also to high resolution MRA and CTA data (the A

stands for angiography). As an example, the simulation of blood flow in a brain angiogram

and its interaction with thicker or thinner vessel walls can be useful for the detection of

aneurysms or areas where rupture of vessels can potentially occur.

A.2 Volume Registration

The dimensions of the acquired volumes on a single scan are usually small, with sides that

are on the order of a few centimeters in length. In order to simulate the flow of fluids in

a larger region, a number of volumes can be scanned with overlap and automatically or

semi-automatically stitched together.

We have experimented with registration in the following way: We have opted to use

intensity-based, rather than feature-based registration, since automatic feature tracking

across different scans is not feasible with ultrasound, due to noise, shadow effects, and overall
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softness of edges. We started with a typical ultrasound volume. A copy of this volume is

made with a linear translation p in one direction. Then, we perform registration between

the two copies. The registration algorithm finds a resulting position, and we measure the

distance between the correct and the obtained positions.

In this experiment, only translation was used. Although in the future we plan to repeat

the experiment with rotations, we assume that our method of capturing volumes will have

a very small, if any, rotational component compared to the translational component. It is

possible that this can be defined as part of the volume capture procedure for the physician

to follow.

The algorithm used is gradient descent. Starting from a current position pn, the position

is updated as follows:

pn+1 = pn + k
∂f(pn)

∂pn
, (A.3)

where pn+1 is the new position, k is a constant, and f is an image metric that measures the

similarity between two images. The image metric used was the sum of squared differences

of intensity between voxels:

f(p) =
∑
x,y,z

(I1(x, y, z)− I2((x, y, z) + p))2. (A.4)

To reduce the amount of data that must be processed, we perform the image metric

computation only on a random sample of voxels in the overlapping region, rather than on

the full image. For volumes with 300× 300× 300 voxels, we used 100,000 samples.

We performed the described registration with several values of p, increasing from 0 to 40

voxels away from the registered position. The resulting minima found by gradient descent

are the correct global minima up to a certain distance, beyond which the algorithm mostly

fails and yields a local minimum.

The upper left plot in Figure A.2 shows the results with no noise added to the image.

Gradient descent found the correct registration when the starting distance was up to around

25 voxels from the starting position. This corresponds to 8% of the volume dimension.
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Figure A.2: Registration: initial distance versus registration error. The horizon-
tal axis is the starting position in voxels away from the true registration position.
The vertical axis is the registration error—the length of the vector from the true
registration position to the computed position. The first plot corresponds to no
added noise; the second, third, and fourth plots correspond to a noise range of
16, 32 and 64 intensity units, respectively.

We repeated the experiment with random noise added to the volumes. The noise follows

a uniform distribution. The range of this distribution was 16, then 32, then 64 units of

intensity. This was added to the image information, which consisted of voxels with values

from 0 to 255. An interesting result that can be observed is that the noise did not have a

big impact on the maximum distance that leads to good registration.

Multiresolution pyramids are a common technique in image registration, where an image

is subsampled to lower resolutions and registration is performed in those lower resolutions

first, giving a rough alignment that can be used as a starting point, which can is then refined

at the higher resolutions. This technique can also be used with volumes; i.e., 3D images.

We can perform registration in subsampled volumes first, and get to the area of convergence

within 25 voxels from the correct point.
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A.3 Segmentation

Volume segmentation is a related area in which work can be done. If we consider the case

of ultrasound volume segmentation for simulation purposes, for example for needle insertion

simulation, the work is currently done manually. This process is very labor intensive.

Level sets and mesh extraction can be used for segmentation. Analysis of the available

data shows that the interior of vessels usually displays a nicely defined region of zero-values

of intensity, in contrast to the vessel walls which are captured as high intensity. Other

methods, such as “snakes” (Kass et al., 1988) and other active contours, can be used as well.

93



APPENDIX B

Hair Simulation and Parallelism

Here we follow up our discussion on parallel simulation techniques by reviewing our work on

Lagrangian hair simulation and the techniques used to parallelize this simulation.

B.1 Segment-Based Head Collision

In our previous work (Poyart and Faloutsos, 2010), we showed that high-quality physical

simulation of hair can be achieved with a novel approach that allows hair strands to rest

in layers on top of one another, even when the head is tilted in arbitrary directions. This

was done in the following way: each hair strand starts at a root position in the head, and

is composed of a sequence of particles connected by springs. Particles in each strand are

indexed, starting at the root position. The index of the particle determines an offset for the

collision with the head, such that particles further away from the root collide at a bigger

distance, therefore resting on top of other hair strands below it. Figure B.1 illustrates this

mechanism.

Figure B.1: Segment based collision. The line segments between the dots are hair
segments; the solid circle represents the head surface where the root nodes lie.
The dashed circles are collision spheres for subsequent nodes of the hair.
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Figure B.2: Hair simulation examples.

This type of hair simulation is also Lagrangian and particle-based, with springs attached

between the particles. Some of the aspects of particle-based fluid simulation can be applied

to it, especially for collisions between hair and head as well as interactions between hair

strands.

One particular problem with Lagrangian hair simulation is enforcing the constant length

of hair strands, particularly when springs and masses are used. This is analogous to the

incompressibility problem in SPH. We used stiff conditions to minimize hair stretchiness, not

unlike the WCSPH method described in Section 2.2.3. We also implement an error reduction

parameter (ERP) similar to the one implemented in Open Dynamics Engine (Smith, 2000).

ERP is a scalar value between 0 and 1 that defines how much of the length error will be

corrected at each time step. The correction is performed as a change in position of each node,

along the length of the spring, towards the correct length. If ERP = 0, there is no correction.

If ERP = 1, there is full correction—each node will be moved such that the length is fully

corrected in one time step. Setting ERP too high, however, introduces damping, so it is set

to a moderate value.

Some resulting images are shown in Figure B.2.

B.2 Hair-Hair Interaction and Parallelism

In our implementation, we did not have hair-hair interaction. An approach to solving that

would be to approximate hair-hair interaction by the use of potential fields, like the density

and pressure fields in SPH. Forces on the attracting region of the Lennard-Jones potential
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can keep bundles of hair together, and repulsing forces at further distances can give volume

to the hair. In the work on continuum simulation of hair by McAdams et al. (2009), hair

is immersed in a fluid (it is indeed immersed in air in the real world) and simulating this

fluid allows for complex contact and collision effects to appear. An interesting extension

would be to use both particle-based fluids and hair, and keep the simulation entirely in the

Lagrangian domain.

Due to the absence of hair-hair interaction, each hair strand is treated independently, so

parallelism is not difficult. We were able to simulate three heads full of hair, animated simul-

taneously in real-time. Introducing hair-hair interaction makes the problem more difficult,

but one way to address it is as follows: A 2D grid structure can be defined at the surface of

the head. For sufficiently short hair, each hair strand only interacts with other hair strands

in its vicinity, so the position of the root of each hair can define its cell in the grid. The size

of the cells can be tuned to be a function of the length of the hair. When processing each

cell, only the data on the neighboring cells need be accessed. Parallelism and efficiency can

be increased. As a future avenue of research, a customized GPU architecture can also be

devised, in which each thread block has access to the local memory of its 8 neighbors, and

we can benefit from it to accelerate hair and other simulations.
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