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ABSTRACT OF THE DISSERTATION

Advanced Non-Krylov Subspace Model Order Reduction Techniques for Interconnect
Circuits

by

Boyuan Yan

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2009
Dr. Sheldon X.-D. Tan, Chairperson

Model order reduction (MOR) is an efficient technique to reduce the complexity of dy-
namical systems while producing a good approximation of the input and output behavior.
Classical MOR approaches such as Krylov subspace and truncated balanced realization
methods have been well developed in the areas of system, control, and applied math for
general systems in state-space equations. In recent years, MOR techniques using Krylov
subspace algorithm have been studied intensively in the field of electronic design automa
tion (EDA) for interconnect analysis.

Interconnects in integrated circuits (IC) can be extracted as RLC circuits, which are
described by aclass of state-space equations with special structure properties such as sym-
metry, positive semi-definiteness and sparsity. As a result, to reduce the complexity of
interconnect circuits, we can take advantage of the special structures to smplify the clas-
sical MOR methods. On the other hand, there are also some special requirements for
interconnect reduction: scalability to large problems, passivity and structure preserving,

and application to circuits with massive ports. In thisthesis, we present several non-Krylov



subspace MOR techniques for interconnect analysis.

First, we present new methods based on classical balanced truncation for interconnect
analysis. we generalize the simultaneous diagonalization algorithm for first-order balanced
truncation to overcome the high computing costs; we also propose a passive second-order
bal anced truncation technique (and its fast version) to preserve both passivity and structure
information inherent to circuit formulation.

Second, we propose two new methods to perform passive reduction: we present new
algorithm based on the Caratheodory extension, which has a similar computational cost
as the Krylov subspace based methods but ensures the passivity of reduced model without
any restriction on theinternal structure of state-space equation; we al so propose the concept
of conditional passivity and a method to generate frequency band-limited passive reduced
models.

Finally, we work on long-standing problem of reducing interconnect circuits with mas-
sive ports. We propose a decentralized MOR scheme, where a multi-input multi-output
(MIMO) system is decoupled into a number of subsystems in terms of outputs. The de-
coupling process and terminal reduction are based on the relative gain array (RGA), which
measures the degree of interaction of each input-output pair. The reduction scheme can
lead to passive reduction and is suitable for resistive coupling dominatant networks like

power grids and substrate networks.
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Chapter 1

| ntroduction

1.1 Background

Circuit smulation tasks in the field of electronic design automation (EDA), such as the
accurate prediction of interconnect effects at the board and chip level, or analog circuit
analysis with full accounting of parasitic elements, may require the solution of large lin-
ear networks. These networks can become extremely large, especially when circuits are
automatically extracted from layout, or contain models of distributed elements, such as
transmission lines, ground planes, antennas, and other three-dimensional structures. The
use of SPICE-like simulators would be inefficient or even prohibitive for such large prob-
lems.

Model order reduction (MOR) is an efficient technique to reduce the complexity of dy-
namical systems while producing a good approximation of the input and output behavior.
Classical MOR approaches such as Krylov subspace and truncated balanced realization
methods have been well developed in the areas of system, control, and applied math for

general systems in state-space equations. In recent years, MOR techniques using Krylov



subspace algorithm have been studied intensively in the field of EDA for interconnect anal-
ysis.

Interconnects in integrated circuits (IC) can be extracted as RLC circuits, which are
described by aclass of state-space equations with special structure properties such as sym-
metry, positive semi-definiteness and sparsity. As a result, to reduce the complexity of
interconnect circuits, we can take advantage of the specia structures to simplify the clas-
sical MOR methods. On the other hand, there are also some special requirements for in-
terconnect reduction: scalability to large problems, passivity and structure preserving, and
application to circuits with massive ports.

From formulation point of view, MOR techniquesin thefield of EDA can be classified
into first-order based methods (using modified nodal analysis, MNA) and second-order
based methods (using nodal anaysis, NA). Existing methods mainly project the original
system onto a subspace. In terms of projection subspace, these approaches are divided into
two broad categories, namely moment matching based methods (Krylov subspace methods)
and balanced truncation based methods. In the former case, the system is projected onto a
subspace to match dominant moments whilein the latter case the system is projected onto

a subspace both easily controllable and easily observable.

1.2 Krylov subspace methods and existing problems

Moment matching based approaches have been a great success in the past due to its ef-
ficiency and scalability [17, 50, 22, 40, 19, 53]. Due to the introduction of Krylov sub-
space [17, 50, 22], implicit moment matching can be performed in a projection framework

with very good numerical stability. Asaresult, moment matching idea [45] can be applied



to very large-scale problems. Another reason for the success is that, when applied to a
special class of systems (like interconnect circuits in MNA formulation), those methods
can be modified to preserve passivity [40, 19, 53]. So the advantages of Krylov-subspace
methods are as follows:

(1) Take advantage of sparsity: fast and applicable to very large-scale problems.

(2) Take advantage of structure: preserve passivity and reciprocity for circuitsin certain
formulations

While suitable for reduction of large-scale circuits, Krylov subspace methods have the
following drawbacks:

(2) The reduced model is not as compact as desired

(2) Lack of passivity guarantees for general structure system

(3) Degrades as the number of inputs increases

The three problems have not been solved well, which motivated the study in this the-
sis. We propose two fast balanced truncation methods via double gramian approximation
to mitigate problem (1). For problem (2), we present a positive-real rational interpolation
based model reduction via Carathéodory extension. We also propose the concept of condi-
tional passivity and a method to generate frequency band-limited passive reduced models.
All existing MOR methods suffer from problem (3) more or less, which is inherent to the
centralized formulation. In this study, we propose a decentralized framework to decompose

a centralized system with massive ports.



1.3 Non-Krylov subspace solutions

1.3.1 Fast balanced truncation via double gramians approximation

While suitablefor reduction of large-scale circuits, Krylov subspace methods may generate
models not as compact asdesired. Therefore, another approach, truncated balanced realiza-
tion (TBR), or balanced truncation (BT), which has been well devel oped in the control com-
munity [38, 20, 30, 1], has been studied intensively recently [32, 33, 31, 42, 43, 49, 44, 54].
The classical balanced truncation approaches [38, 30] produce nearly optimal models with
controllable a priori global error bound [20]. More recently, algorithms [42] based on
positive-real balanced truncation were presented to compute guaranteed passive reduced
models of controllable accuracy, which is highly appreciated by posing no constrains on
theinternal structure of the state-space. So the advantages of balanced truncation methods
are asfollows:

(1) Generate compact models with wideband accuracy

(2) Positive-real versions can preserve passivity for system in general formulation

However, those classical methods are too expensive to directly apply to large-scale
problems due to the cubic cost to solve two Lyapunov equations or Riccati equations and
the elgenvalue problem. The main drawbacks of the balanced truncation are as follows:

(1) Can not take advantage of sparsity and very expensive O(n?)

(2) Can not take advantage of structure and preserve structure for circuits in certain
formulations

(3) Degrades as the number of inputs increases (less sensitive than Krylov subspace
method)

There has been significant effort devoted to mitigate this difficulty recently, which has



led to two classes of approximate balanced truncation methods. Thefirst classis based on
the approximate balancing by iterative low rank solution of Lyapunov equation [32, 33, 31,
58, 62, 54]. The second class is based on the low rank gramian approximation [43, 49, 44].

Both classes of methods seek to find the dominant subspace of one approximate gramian.
For example, in PMTBR [43], the system is reduced by projecting onto the approximate
dominant controllable subspace without explicitly computing the gramian, which can be
obtained much more cheaply by using singular value decomposition (SVD). Although no
rigorous global error bounds exist as the classical method, those methods often produce
a better approximation over a wide frequency range than Krylov subspace methods at the
similar cost. In addition, one gramian based methods can take advantage of structure to
preserve passivity like Krylov subspace methods.

However, considering only one gramian can lead to large errors as both controllability
and observability gramians and their corresponding subspaces can be quite different for
genera interconnect circuits as shown in [54]. Both classes of methods have difficulty in
considering both gramians as this requires the eigendecomposition of the product of two
gramians, whichisan x n matrix, where n isthe size of the problem. Hence the resulting
method will have the similar computational cost, which is O(n?), of solving Lyapunov
eguations in the standard balanced truncation method.

In this study, we propose two fast balanced truncation methods to consider both grami-
ans at the cost similar to Krylov subspace methods. The first solution is proposed for
genera dynamic system, where the system is balanced in terms of two approximate first-
order gramians as achieved in the classical balanced truncation methods. This method is
very accurate but can not preserve passivity and structure. The second solution is proposed

for circuits in second-order formulation, where the system is balanced in terms of two ap-



proximate second-order gramians. While less accurate, this method can preserve passivity,

structure, reciprocity inherent to RLC circuits.

Solution 1: doublefirst-order gramians approximation

The first solution can balance a first-order system in general structure in terms of two ap-
proximate gramians as achieved in the classical balanced truncation method. The proposed
algorithm is based on a generalized SV D-based balancing scheme such that the dominant
subspace of the approximate gramian product can be obtained in avery efficient way with-
out explicitly forming the gramians. The novelty of the new method is that we can keep the
similar computing costs of the single gramian method. Experimental results on a number
of published benchmarks show that the proposed method is much more accurate than the

single gramian method with similar computing costs.

Solution 2: double second-order gramians approximation

While positive-real balanced truncation methods[42] can preserve passivity without posing
any constrains on theinternal structure of the state-space, this generality isless appreciated
for RLC reduction, where special internal structure is available to preserve passivity less
expensively. Also less appreciated is that structure information inherent to RLCK circuits
such as symmetry, positive semi-definiteness and sparsity, cannot be preserved.

Aswe know, alinear circuit can be equivalently formulated in the form of afirst-order
system or a second-order system. In fact, it is better to formulate an RLC circuit as a
second-order system. One reason is that all matrices in NA are not only positive semi-
definite but also symmetric, which makesit easy to preserve structure information inherent

to RLC circuits like reciprocity [48]. Another reason isthat while the inductance matrix in



MNA isusually very large and dense, the susceptance matrix in NA is diagonally dominant
and can be sparsified by a simpletruncation method without disrupting the positive definite-
ness [53]. However, in the past severa years, while second-order moment-matching based
approaches have been successfully developed from ENOR [48] to SAPOR [53], second-
order TBR-type methods still remain an open problem. In this study,

In this study, we propose a novel model order reduction approach, SBPOR (Second-
order Balanced truncation for Passive Order Reduction), which is the first second-order
balanced truncation method proposed for passive reduction of RLCK circuits. By exploit-
ing the specia structure information in the circuit formulation, second-order Gramians are
defined based on a symmetric first-order realization in descriptor from. Asaresult, SBPOR
can perform the traditional balancing with passivity-preserving congruency transformation
at the cost of solving one generalized Lyapunov equation. Owing to the second-order
formulation, SBPOR also preserves the structure information inherent to RLCK circuits.
We further propose, SOGA ( Second-Order Gramian Approximation version of SBPOR),
to mitigate high computational cost of solving Lyapunov equation. Experimental results
demonstrate that SBPOR and SOGA are globally more accurate than the Krylov subspace

based approaches.

1.3.2 Carathéodory extension and wavefor m shaping

Krylov subspace methods can no preserve passivity for general systems. In order to pre-
serve passivity for system with arbitrary internal structure, the positive realness of the trans-
fer function of reduced system should be enforced. Toward thisgoal, algorithms[42] based
on positive-real balanced truncation were presented to compute guaranteed passive reduced

models of controllable accuracy. However, those methods are too expensive to directly ap-



ply to large-scale problems due to the cubic cost.

In this study, we present a novel rational interpolation based reduction framework for
reducing the dynamic systems described in any internal structure. The new method is based
on the Carathéodory extension, which ensures the interpolating function is passive without
any restriction on the circuit structure. It has similar moment matching properties and
similar computational cost as the Krylov subspace based reduction methods. Experimen-
tal results demonstrate that the proposed method can be orders of magnitude faster than
the positive-real balanced truncation approach for reducing general structure systems with
comparable and even better results.

In addition, we propose a new approach to enforcing the passivity of areduced system
of general passive linear time invariant circuits. Instead of making the reduced models
passive for infinite frequencies, the new method works on the signal waveform driving
reduced models. It slightly shapesthe waveforms of the signal such that the resulting signal
spectra are band limited to the frequency range in which the reduced system is passive. As
aresult, the reduced models only need to be band-limited passive (also called conditionally

passive), which can be achieved much easier than traditional passivity for areduced system.

1.3.3 Decentralized framewor k

Unfortunately, the efficiency of model order reduction degrades as the number of ports
increases. The reason for the degradation is fundamental and does not depend on any par-
ticular reduction algorithm [18]. For Krylov-subspace based algorithms, the cost associated
with model computationisdirectly proportional to the number of inputs, i.e. to the number
of columnsin the transfer function matrix. For example, in the PRIMA algorithm [40], if

only two (block) moments are to be matched at each port, and the network has 1000 ports,



the resulting reduced model will have 2000 states. Similarly, in the TBR agorithm, for
systems with many inputs, many states may be needed because of the high dimension of
the controllable subspace.

There has been significant effort devoted to mitigating this difficulty recently, which
has led to two classes of approaches. The first class takes advantage of the information of
input signal. An extended Krylov subspace (EKS) method was proposed [55], which con-
structs a transformation matrix based on the dynamics of the circuit as well as the source
excitations. More recently, an approximated truncated balanced realizations (TBR) proce-
dure was proposed [49, 44] to obtain compact reduced models by exploiting the correlation
information of input signals. However, since the modeling process depends on the input
signal, once the pattern of input signal has been changed, the model needs to be rebuilt.
More important, they become less useful when input information is unavailable a priori.
The second type of approaches [16, 18, 35, 34] are based on the SVD of matrix-valued
transfer function. The pioneering work is SYDMOR method [16, 18], which exploits the
fact that the matrix transfer function may be numerically low rank. However, since a full
matrix-valued transfer functionisrarely low rank, it is still hard to obtain a compact model.

The reason for the degradation is that existing approaches are based on a centralized
framework, where each input-output pair isimplicitly assumed to be equally interacted and
the matrix-valued transfer function has to be assumed to be fully populated. In this paper, a
decentralized model order reduction scheme s proposed, where a multi-input multi-output
(MIMO) system isdecoupled into anumber of subsystemsand each subsystem corresponds
to one output and several dominant inputs. The decoupling process is based on the rela
tive gain array (RGA), which measures the degree of interaction of each input-output pair.

Our experimental results on a number of interconnect circuits show that most of the input-



output interactions are usually insignificant, which can lead to extremely compact models
even for systems with massive ports. The reduction scheme is very amenable for paral-
lel computing and localized ssimulation as each decoupled subsystem can be reduced and

simulated independently.

1.4 Contribution of thisthesis

The next Chapter provides an in-depth overview of the model reduction methods for linear
dynamic system. The rest of the dissertation contains the following major contributions:

Chapter 3 and 4 are dedicated to mitigating the existing problem 1 of Krylov subspace
methods. In the Chapter 3, we generalize the simultaneous diagonalization algorithm for
first-order balanced truncation to overcome the high computing costs. In the Chapter 4,
we propose a second-order balanced truncation technique (and its approximate version) to
preserve both passivity and structure information inherent to circuit formulation.

Chapter 5 and 6 are dedicated to mitigating the existing problem 2 of Krylov subspace
methods. In the Chapter 5, we present a MOR technique based on the Carathéodory ex-
tension, which has similar computational cost as the Krylov subspace based methods but
ensures the passivity of reduced model without any restriction on the internal structure of
state-space equation. In the Chapter 6, we propose the concept of conditional passivity and
amethod to generate band-limited passive reduced models.

A solution of existing problem 3 is presented in Chapter 7. To make the existing MOR
methods applicable to interconnects with massive ports, a decentralized MOR scheme is
proposed, where a multi-input multi-output (MIMO) system is decoupled into a number of

subsystemsin terms of outputs. The decoupling process is based on the relative gain array

10



(RGA), which measures the degree of interaction of each input-output pair. The reduction
schemeisvery amenablefor localized simulation and parallel computing as each decoupled
subsystem can be reduced and simulated independently.

Conclusion ends the dissertation.

11



Chapter 2

Model order reduction techniques for

dynamical systems

2.1 Modd order reduction in a nutshell

2.1.1 Dynamic system models
The behavior of linear time-invariant (LTI) systems in many engineering problems can be

described by state-space equations in descriptor form (E, A, B, C, D)

Ei(t) = Axz(t)+ Bu(t) 2.1)

y(t) = Cx(t)+ Du(t)

where E;A € R™", B € R"?, C' € RP*", D € RP*P, x(t) € R", u(t),y(t) € RP.

When £ equals identity matrix I, the state-space equations become the standard form

12



(A, B,C, D)
z(t) = Ax(t) + Bult
(t) (t) (t) 22)
y(t) = Cx(t) + Du(t)
In fact, many LTI systems can also be described by a set of second-order differential equa-

tions (M, D, K, B,C)

M(t) + Dq(t) + Kq(t) = Bu(t)

y(t) = Cq(t)

(2.3)

where M, D, K € R™*", B € R"*?,C € RP*"u(t),y(t) € RP, q(t) € R". The behavior
of the systems can be completely characterized by the state-space equations. However, in
some cases, we are only interested in the input-output behavior. In such cases, transfer
functions are needed. The transfer function associated with the first-order system (2.1) in

the Laplace domain is given by

H(s)=C(sE—A)'B (2.4)

which becomes

H(s)=C(s — A)'B (2.5)

for astandard system (2.2). For the second-order model (2.3), the transfer function is given

by
H(s)=C(Ms*+ Ds+ K)™'B (2.6)

13



2.1.2 Passivity

Passivity is an important property of many physical systems. Passive systems can not
produce energy internally. When modeling passive systems, non-passive reduced models
may generate unbounded responses in transient simulation. For linear dynamic system,
passivity requiresthetransfer functionsto be positive-real when theinput and output signals
are port voltages and currents. For scattering-parameter (s-parameter) systems, passivity

requires bounded-real for s-parameter matrices.

Necessary and sufficient condition

The system is passive if and only if its transfer function H(s) is positive real [6], which

means
(1) H(s) isanayticfor Re(s) >0
(2) H(s) = H(3) fors € C (2.7)
(3) H(s) + H(s)™ > 0for Re(s) >0

where H denotescomplex conjugate, ¥ denotes Hermitian (complex conjugate and trans-

pose), and > 0 denotes positive semi-definiteness in a matrix context.

Sufficient condition

Given a dynamic system model, if the system matrices are positive semi-definite and the

input matrix and output matrix equal, then the state-space model is in a passive form [27,
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40, 48]:

for first-order model (2.1), A, E are positive semi-definiteand B = C7

for second-order model (2.3), M, D, K are positive semi-definiteand B = ¢7  (2.8)

In such a passive form, the transfer function will be positive-real, which means the system
ispassive. This sufficient condition isimportant because RLCK circuits can be formulated
into such a passive form. Since the passive form can be inherited by the reduced model via

an orthogonal projection, passivity can be easily preserved [27, 40, 48, 19, 53, 44, 60].

2.1.3 Modd order reduction

The complexity of the system can be characterized by the size, n, of themodel. In electrical
engineering, civil engineering, or aeronautics, the size, n, is often very, even prohibitively,
large that many analysis and design problems can not be solved within a reasonable com-
puting time. Model order reduction is the technique to solve this problem by constructing
areduced model H,.(s) of sizer < n

Ei(t) = Aux(t) + Bou(t) (2.9)

y(t) = Crx(t) + Du(t)

where E,., A, € R"™*", B, € R™*P, C,. € RP*", D € RP*?, z(t) € R", u(t),y(t) € RP, for

the first-order moddl (2.1), or

M,q(t) + Dyq(t) + K, [ q(t) = Bru(t)

(2.10)
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where M,., D,, K, € R™",B, € R™*?, C. € RP*", u(t),y(t) € RP, q(t) € R", for the
second-order model (2.3).

Such a low order system will have approximately the same output y as the original
system to the input « of interest. The transfer functions are often used as a metric for
approximation. If || H(s)—H,.(s)|| < e insomeappropriate norm, for some given allowable
error e and frequency range of interest s, the reduced model is accepted as accurate.

In addition, it is important to preserve system properties like stability and passivity in
model order reduction. Given apassive system, we hope the reduced systemis also passive.
Otherwise, the reduced system may cause nonphysical behavior when it is ssmulated with
other subsystems evenif it is stable.

Currently, most model order reduction methods are projection based. Given two pro-

jection matrices W, Ve R"*", for thefirst-order model (2.9), we have

E,=WTEV A, =WTAV B,=WTB C,=CV (2.11)

and for the second-order model (2.10), we have

M. =WTMV D,=WTDV K,=WTKV B,=WTB C,=cv (212

where W isthe |eft projector and V' isthe right projector.

Typicaly, W and V' span useful subspaces. Different choices of W and V" will result in
different model reduction approaches (Krylov subspace based methods, balanced trunca-
tion methods, etc). If W £ V, the projection is an oblique (Petrov-Galerkin) projection. If
W =V, the projection is an orthogonal (Galerkin) projection. Usually, oblique projection

is better in terms of accuracy as both subspaces are used (e.g. PVL [17] and TBR [38]).
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However, orthogonal projection is widely used in practice because it can be used to pre-
serve important properties like passivity for systems with special state-space formulation

(e.g.PRIMA [40] and PMTBR [44]).

2.2 Krylov subspace methods (moment-matching)

2.2.1 Moments

Given a state-space model in descriptor form (E, A, B, C, D) in (2.1), the transfer func-
tion moments H (©)(sy), HM(sy), .. ., at the frequency point s, are defined as termsin the

Taylor series of the transfer function H (s) near the point s
H(s) = H9(s9) + HWY (s50)(s — 50) + H® (50)(s5 — 50)> + ... (2.13)

The moments are directly related to the matrices of derivatives of the transfer function:

1 d*

H(k)(SO) = E@H(S)’swo

(2.14)

and for the state-spacemodel (F, A, B, C, D) in (2.1), we can take the derivative of transfer
function

H®(s0) = C((A = soE) "E)*(A - sE)"'B (2.15)
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2.2.2 Two-sided Krylov subspace method

The Krylov subspace K, (A, R) generated by a matrix .4 and matrix R, of order m, isthe

space spanned by the set of vectors (R, AR, A*R, ..., A" 'R). Given

Kin((soE — A)7'E, (soE — A)"'B) C colsp(V) (2.16)

and

K ((soE — A)TET (soF — A)~TCT) C colsp(W) (2.17)

, if thereduced system H,.(s) isobtained by an obliqueprojection (WTEV, WT AV, WT B, CV, D),
then we have

H® (s0) = H®(s0),k=0,...,2m (2.18)

where H,.(s,) denotes mth moments of the transfer function of the reduced system. This
method is called two-sided Krylov subspace method and W and V' can be constructed by

numerical algorithmslike Lanczos [17] or two-sided Arnoldli.

2.2.3 One-sided Krylov subspace method

Another implementation is to use only one Krylov subspace V' and the reduced system
H,.(s) is obtained by an orthogona projection (W EV, WT AV, WT B, CV, D). Then we
have

H® (s0) = H®(s0),k=0,...,m (2.19)

This method is called one-sided Krylov subspace method and V' can be constructed by

Arnoldli algorithm. Compared with two sided case, one sided Krylov subspace method is
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less accurate. However, if the state-space model isin a passive form [27, 40], one sided

Krylov subspace can be relied to preserve passivity.

2.3 Balanced truncation methods

In this section, we review the classical balanced truncation methods developed in the con-

trol community for general dynamic systems.

2.3.1 Lyapunov balancing

Lyapunov balancing was introduced to the system and control society by [38]. Given a
stable minimal linear timeinvariant (LT1) systemin standard state-spaceform (A, B, C, D)

in (2.2), the controllability gramian X and observability gramian Y are asfollows

X = fooo eA"BBTeA Tdr Y = fooo ATTOTCeA dr (2.20)

It is easy to verify that they are the unique symmetric positive definite solutions to the

Lyapunov equations

AX + XAT + BBT =0
(2.21)
ATY + YA+ CTC =0
The controllability and observability gramians X and Y arerelated to the energy demanded

to control and observe the system.
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Controllability

Given any state zq at t = 0, if the system is controllable, there is a signal (t) with the

smallest energy (measured by L, norm)

Ju(t)ll, = \/ | wruo (222)

which could drive the system from zero initial condition at t = —oo to xy. Assuming

x(—00) = 0, the zero-state response is

x(t) :/ ANy (r)dr (2.23)

The controllability gramian X is connected to the solution of the minimum L, norm prob-

lem
MMy Ly [—o00,0] || U(T 2
eLa[-o0,0) [u()[l5 (2.2
subject to z(0) = fi)oo e~ ATu(r)dr = x
The solution to this problem is
0 -1
u(t) = BTe A" ( / eATBBTeATTdT) 2o = BTe A X1y (2.25)
So the minimal energy needed to reach x is
lu(®)]l5 = 25 X "o (2.26)

Now the optimization problem becomes a quadratic form, which means the size of the

eigenvalues of X describes how much input energy is needed to control the associated state
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eigenvector. In other words, if x is picked as one of the eigenvectors of X, the energy
needed in the input will be exactly the inverse of the corresponding eigenvalue. As aresult,

the largest eigenvalue will correspond to the state easiest to control.

Observability

Observability shares the similar definition of controllability. Given any state xy at t = 0,
we want to observe how much energy (measured by L, norm) there will be from the output
signal if the systemisreleased from x with zero input for ¢ > 0. The observability gramian

Y isrelated to the solution of the maximum L5 norm problem

2
MATyeLy00,+00] [Y(E)]]5

(2.27)
subject to z(0) = =
The zero-input response is
y(t) = Cx(t) = Cx(0)e™ (2.28)
The L, norm of the output signal when the system isreleased from z is
()5 = 2t (/000 eATtCTCeAtdt> Ty = 1 Yo (2.29)

which means the size of the eigenvalues of Y describes how much output energy is pro-
duced when the associated state eigenvector is in free evolution. In other words, if x is
picked as one of the eigenvectorsof Y, the energy observed in the output will be exactly the
corresponding eigenvalue. As aresult, the largest eigenvalue will correspond to the state

easiest to observe.

21



Balanced truncation

Given a dynamic system, the state-space representation is not unique. Any nonsingular
linear transformation x = 7'z can be applied to the system (A, B, C, D) to obtain a new

state-space representation (A, B, C, D)

(2.30)

where

A=T'AT B=T"'B C=0CT (2.31)

Such atransformation is known as a similarity transformation, which does not change the
input-output behavior of the system. It is easy to see both representations (A, B, C, D) and
(A, B, C, D) have the same transfer function H (s).

A balanced realization is a special state-space representation, where the controllability
and observability gramians are diagonal and equal. The balancing transformation can be

computed by calculating the eigenmodes of the gramian product XY

XY = TAT ! (2.32)

It can be seen that the eigenvetors of XY are the basis vectors that describe the balancing
transformation as follows. From (2.20) and (2.31), we obtain the following expressions for

the gramians of the transformed system

X=T'XTT, Y =TTYT (2.33)
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For abalanced system, werequire X = Y = &, where X isadiagonal matrix. From (2.33),

we can write

T'X =TT, YT =T"T% (2.34)

or

T'XYT = %2 (2.35)

which means the transformation 7", which balances the system, contains the eigenvectors
of the gramian product XY asits columns.

From the gramian expression (2.32) and (2.35), it can be seen that the the eigenvalues
\; contained in the diagonal matrix A are positive real numbers, and o; = \/)\; are known
as the Hankel singular values of the system. The eigenvectors of XY correspond to states
through which the input istransmitted to the output. The magnitudes of the Hankel singular
values describe the relative importance of these states and are independent of the particular
realization of the system. States corresponding to the small Hankel singular values are
difficult to control and difficult to observe. Such states are less involved in the energy
transfer from inputs to outputs.

Therefore, a general idea of balanced truncation is to transform the system into a bal-
anced form (4, B, C, D), where the states which are difficult to control are also difficult to
observe, and to discard the parts of the dynamics that correspond to those week states. We

may partition X into

, (2.36)
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and conformally partition the transformed matrices as

A= : B = . O =

An 12112 B, ~ [
12121 12122 By

c, Cy ] (2.37)

The reduced model of order r (A,., B,, C,., D) isobtained by taking ther x r,r x p, ¢ x r

leading blocks of A, B, C, respectively

Ar == 12111 Br == Bl Cr == él (238)

This truncation leads to a balanced reduced-order system (A,., B,., C,., D).
The most desirable property of TBR method is that the reduced model has bounded
error throughout all the frequency domain. Specifically, the error in the transfer function of

the order r approximation is bounded by [20]

1H(s) = Hy(s)| <2 ) o (2.39)

i=r+1

To summarize, the standard balanced truncation algorithm flow chart [30] is shown in

Fig. 2.1. An approach with improved numerical properties may be found in [47].

Balancing in descriptor form

Given a state-space model in descriptor form (E, A, B,C, D) in (2.1), if the matrix E is
singular, the system may not be proper. In this case, there are infinite eigenvalues and the

transfer function can be represented as a sum of proper transfer function and a matrix of
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ALGORITHM: STANDARD BALANCED TRUNCATION METHOD
Input: H : (A, B,C, D)

Output: H, : (A, B,,C,, D)

Compute X >0andY >0

Cholesky factorization X = L,L. andY = L,L}
Compute SVD UV = L] L,

A W NP

ComputeT = L,VE~?and T~ = S~2UT LT

o

Compute the balanced realizations A = T-'AT,B = T~'B,C = CT.

o

Truncate to form the reduced system (A, B,, C.., D)

Figure 2.1: Balanced truncation algorithm.

polynomials

G(s) = Gyls) + > Gis' (2.40)

where G,,(s) isamatrix of proper rational functions of s. The proper and polynomial parts
of the transfer function can be separated by the projection of the system onto deflating sub-
spaces of the pair (£, A) corresponding to finite and infinite eigenval ues, respectively [52].
The polynomial terms should be exactly preserved by the reduced system and the proper
rational term G,,(s), where E is nonsingular, can be reduced by classical balanced trunca-
tion.

Given the system in descriptor form with nonsingular £/, controllability and observabil-
ity gramians [54] can be computed by solving generalized Lyapunov equations

EXAT + AXET + BBT =0

(2.41)
ETYA+ ATYE +CTC =0
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Similarly, we want to find amatrix 7" to perform a similarity transformation to diagonalize
the product XY. After the similarity transformation, the system is balanced. We may

conformally partition the transformed matrices as

Ell Elg All 12112
T'ET = . . T1AT = . .
Egl EQQ A21 A22
(2.42)
B o
T'B=| (JT:{C1 02}
By

and (Ey1, Ay, By, Cy, D) isthe reduced order system. In fact, this reduction is mathemat-
icaly equivalent to performing balanced truncation on the system (E—'A, E~'B,C, D).
However, the computation steps are numerically better conditioned via generalized Lya-

punov equations.

Balancing from a projection point of view

Note that, an aternative interpretation of balanced truncation is to project the system onto
a subspace both easily controllable and easily observable, which is just the dominant
eigenspace of the matrix XY corresponding to the r largest eigenvalues. If we partition

Tand T !as

WT
T - T=|v ] @43

W
and substitute (2.43) into (2.42), then we have

En=WTEV: A, =WTAV, B,=W'B; C, =0V (2.44)
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which unifies the balancing and truncating operations into one projection step. Since the
left projector 1/ and right projector V' are not equal generally W = V, the projection is an

oblique projection.

Balancing a symmetric system

Given a state-space model in descriptor form (E, A, B,C, D) in (2.1), the state-space

model is symmetric if

E=AT E=FET B=(CT (2.45)

In this symmetric case, both Lyapunov equations (2.41) are the same and both gramiansare
equivalent Y = X. Since the gramian X is symmetric, it is orthogonally diagonalizable,

i.e, thereexistsT—! = T7 suchthat 77 XT = ¥. Then, we have

TTXXT =TT'XTTTXT = ¥? (2.46)

which means, in this symmetric case, the eigenspace of gramian product X X is exactly
the eigenspace of each gramian X . In this case, we only need to project onto the dominant
eigenspace of one gramian. Since either gramian is symmetric, the left projector W and
right projector V' are equal, W = V and the projection (2.44) becomes an orthogonal

projection

En=VTEV, A, =VTAV; B =VTB; C,=CV (2.47)

27



2.3.2 Riccati balancing

Lyapunov balancing preserves the stability of the system, but passivity might not be pre-
served. To keep the passivity properties of a system, Riccati balancing [13] is needed. If
asystem (A, B,C, D) is positive real (passive), it will satisfy the positive real (PR) equa-

tions[21]
AP+ PAT = —-B,Bf

PCT — B = —-B,Df (2.48)

—~D - D" =-DDf

where P = PT > 0. A dual pair of positive real equations are as follows

ATQ+ QA= -CTC,
QB —-CT =—-CTD, (2.49)

—D— DT =-pTD,

where Q = Q7 > 0. The above equations can be rewritten as a dua pair of Riccati
equations, and then solved for P and

AP + PAT 4+ (PCT — B)(D + DT)"{(CP — BT) =0
(2.50)

ATQ+ QA+ (QB—-CT(D+ D)"Y (BTQ-C)=0
Riccati balancing can now be achieved by substituting (P, @) with (X, Y") in the balanced
truncation algorithm. Since the reduced system also satisfies the (PR) equations, passivity
is preserved. Riccati balancing has been applied to interconnect reduction in the positive-
real TBR (PR-TBR) method [42].

Similar to Lyapunov balancing, Riccati balancing also has physical interpretationsin
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terms of energy. Let s(u(t), y(t)) be the supply function, which describes the rate at which
power is supplied to the system and typically is defined such that s(u(t), y(t)) > 0 implies
a positive amount of energy input, while s(u(t),y(t)) < 0 means energy is extracted from
the system back to the environment. When the system inputs and outputs are currents
or voltages, i.e.,, when the system transfer function represents impedance or admittance
matrices, we may use the supply function s(u(t), y(t)) = u(t)Ty(t).

The input energy gramian P is associated with the following optimization problem

inf ( / 0 s(u(t),y(t))dt) e (2.51)

—00

which minimize the amount of energy that must be injected into the system, in order to
control the system to state z( at time 0. In this setting, the sizes of the eigenvalues of
R describe how much energy is needed to control the associated state eigenvector. Small
eigenvalues of P impliesthat a large amount of energy is needed to reach the associated
mode.

Similarly, the output energy gramian () is associated with the following optimization

problem

sup (— /0 h s(u(t),y(t))dt) = 28 Qg (2.52)

which maximize the amount of energy which can be extracted from the system in free
evolution from z, a time 0. Also, the sizes of the eigenvalues of () describe how much
energy can be extracted from the system in free evolution. Small eigenvalues of ¢ implies

that a small amount of energy can be extracted from the associated model.
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For the positive-real case, the error bound is given by [10]

1H (s) = Hy(s)|| < Amaz(D + D) Y (13%02(1* , 12_(7J<}j>2

i=r+1 J=1

(2.53)

2.3.3 Second-order balancing

Consider a second-order LTI stable system (M, D, K, B,C) in (2.3) with A/ assumed
to be nonsingular, the general idea of reducing the second-order system is to transform
the second-order system into the equivalent first-order system, from which the balancing
matrices are obtained. The second-order gramians [37] were defined based on the first-
order realization in a standard state-space form (A, B, C) (2.2) with 2n-dimensiona state

2T = [¢T¢"], where

0 I 0
A= ; B= ;C:{p Q] (2.54)
~M~'K —M-'D M—'B
The first-order realization has the same input-output behavior as the second-order system.
Although afirst-order MOR approach, like classic balanced truncation [38], can be applied
to reduce (2.54), the reduced model is no longer a second-order. To perform the reduction
directly on the second-order equations (2.3), one needs to define gramians for second-order

systems. Similar to thefirst order gramian definition (2.24), the second order controllability

gramian definition is based on the following optimization problem [37]

minq(o)eRn,ueLQ [,OO’O] (fi)oo uT(t)u(t)dt>

subject to Mi(t) + D(t) + Kq(t) = Bu(t); ¢(0) = qo

(2.55)
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which minimizes the necessary energy to reach the given ¢, over al past inputs u €
Lo[—00,0] and initial ¢(0) € R™. First, we minimize the energy over al past inputs
u € Lo[—00, 0], the solution of which has been available based on the optimization problem

related to the first-order gramian (2.24)

0

Mingoye rr (MiNye Lo[—00,0] (/ uT(t)u(t)dt)) = mingoyern (13 X x0) (2.56)

If we compatibly partition the controllability gramian of the first-order realization (2.54) X
anditsinverse ¥ ! as

Rl R2 Rl R2
X = S g (2.57)

Rg Rg Rg R3
then we minimize the energy over initia ¢(0) € R™

R1 R2 qo
i ) (258)

mingoyern (To X 'x0) = ming,epn( { ar o
R} Rs | | do

By annihilating the gradient, we can obtain the minimum energy ¢l (R, — RoR3'RY)qo.

Since R, — RyR;'RY isthe Schur complement of R3, we have R, — RyR;'RT = R;*

and

mingoyer (15 X 'xo) = ¢f Ry qo (2.59)

So the optimum for the problem (2.55) is ¢ R; ' qo and thus the controllability gramian of

the second-order system is X, = R;. Similarly, the second-order observability gramian
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definition is based on the following optimization problem

MAaZ;0)eRr,yeLla[0,)] ( OOO yT(t)y(t)dt) (2.60)

subject to M j(t) + Dq(t) + Kq(t) = Bu(t), ¢(0) = qo

If we compatibly partition the observability gramian of the first-order realization (2.54) as

N1 Ny
Y= (2.61)

NI Ny

then the observability gramian of the second-order system is Y; = ;. The eigenvalues
of the gramian product X,Y; are invariant under a similarity transformation. Let W and
V' be the dominant left and right eigenvectors of the gramian product X,Y5. A reduced

second-order model can be obtained asfollows (M., D,., K., B, C,.) inwhich

M, =WTMV: D,=WTDV; K,=WTKV: B,=WTB; C,=CcV (262

However, in order to preserve the symmetry and stability of the original system, an orthog-

onal projection is performed in [37] asfollows

M,=VTMV; D,=VTDV; K,=VT'KV: B,=VT'B: C,=cV (263

where the equations are left multiplied by V' instead of 1. Unfortunately, since W # V' for
a non-symmetric system (2.54), the resulting gramian product X ;Y5 will not be balanced

and accuracy issacrificed. Infact, thisissue has been resolved [60], whichisto be presented
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in the following section, where second-order systems are in a symmetric form

M=MT, D=DT; K=KT; B=CT (2.64)

2.4 RLC circuit equations

RLC circuits are a specia class of dynamic systems. Corresponding circuit formulations
are dynamic system models with special internal structures. In this section, we present first

and second-order circuit formulations.

Second-order circuit formulation (C, G, T, B)

The nodal analysis(MNA) circuit equations are shown as follows

Co(t) + Go(t) + T [v(t) = Bi(t) (2.65)

y(t) = B o(t)
wherei(t), y(t) € RP areinput currents and output voltages; v(t) € R™ are nodal voltages;
G,C,T' € R™"™ are matrices of conductance, capacitance and susceptance respectively;
B € R™? istheinput matrix and itstranspose B? € RP*™ isthe output matrix. Animpor-
tant property in second order formulation is that the system matrices are both symmetric

and positive semi-definite

C=CT>0 G=GT>0 I'=IT>0 (2.66)

which means the formulation fulfills both the sufficient conditions of passivity (2.8) and

the symmetric conditions (2.64) for second-order systems.
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First-order passivecircuit formulation (C, G, )

The modified nodal analysis(MNA) circuit equations are shown as follows

Ci(t) = —Ga(t) + Bi(t)

(2.67)
y(t) = Brx(t)
where
C= G = B= (2.68)
0 L -ET 0 0
The matrices have the following properties:
C=CT>0 G+G">0 (2.69)

Hence the formulation isin a passive form described by the sufficient conditions of passiv-
ity (2.8). However, such aformulation is not in a symmetric form (2.45) because G is not

symmetric.

First-order symmetric circuit formulation (Cs, G5, B)

Itiseasy to seetheformulation(2.68) can berewritten into asymmetric formulation (Cs, G5, B)

Coi(t) = —Goa(t) + Bi(t)

(2.70)
y(t) = B x(t)
where
cC 0 G FE B
Cs = gs = B= (2.71)
0 —L ET 0 0



Since both G, and C, are symmetric, this formulation falls into the class of systemsin de-
scriptor form (2.1) with additional symmetric conditions (2.45). However, since G, and C,
are no longer positive semi-definite, the sufficient conditions of passivity (2.8) are violated.

It is easy to verify the formulations (2.67), (2.70) and (2.65), have the same transfer
function

H(s)=B"(Cs+G+T/s)'B (2.72)

Hence they are equivalent in terms of input-output behavior and either (2.67) or (2.70) can
be viewed as afirst-order realization of (2.65).

There is always a tradeoff in the first-order circuit formulation, either symmetric (im-
plying accuracy) or positive semi-definite (implying passivity). Both can be obtained si-
multaneously only when the circuits are RC/RL circuits, where the formulations (2.65),

(2.67),and (2.70) equal

Ci(t) = —Gu(t) + Bi(t) (2.73)

y(t) = BTo(t)

withC =CT >0and G = GT > 0.
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Chapter 3

Fast first-order balanced truncation via

double gramians approximation

The classical balanced truncation approaches [38, 30] produce nearly optimal models with
controllable a priori global error bound [20]. However, those classical methods are too
expensive to directly apply to large-scale problems due to the cubic cost to solve two
Lyapunov equations. There has been significant effort devoted to mitigate this difficulty
recently, which has led to two classes of approximate balanced truncation methods. The
first class is based on the approximate balancing by iterative low rank solution of Lya
punov equation [32, 33, 31, 62, 54]. The second class is based on the low rank gramian
approximation [43, 49, 44].

The low rank gramian approximation methods were proposed in [58, 43]. In [58], both
controllability and observability gramians are computed in a sampling based method and
eigendecomposition is performed on the product of the two gramians to compute the pro-
jection matrix, which is still very expensive. In [43], which is called the PMTBR method,

only controllability gramian is computed in a similar sampling way and the system is re-
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duced by projecting onto the approximate dominant controllable subspace only, which can
be obtained much more cheaply by using singular value decomposition (SVD). Although
no rigorous global error bounds exist as the classical method, those methods often produce
a better approximation over a wide frequency range than Krylov subspace methods at the
similar cost.

Asshownin [54], considering only one gramian can lead to large errors as both control-
lability and observability gramians and their corresponding subspaces can be quite different
for general interconnect circuits. Considering both gramians requires eigendecomposition
of the product of two gramians, whichisan x n matrix, where n isthe size of the problem.
Hence the resulting method will have the similar computational cost, which is O(n?), of
solving Lyapunov equations in the standard TBR method.

In this section, we propose a fast balanced truncation method where the system is bal-
anced in terms of two approximate gramians as achieved in the classical balanced trunca
tion method. The novelty of the new method is that we can keep the similar computing
costs of the single gramian method. The proposed agorithm is based on a generalized
SV D-based balancing scheme, which is the extension of the classical balanced truncation
method [30], where the balancing transformation is determined through the SVD of the
product of Cholesky factors of gramians without explicitly forming the gramian product.
In the proposed method, instead of Cholesky factors, different factors are applied such that
the dominant invariant subspace of the approximate gramian product can be obtained in
a very efficient way without explicitly forming the gramians. Experimental results on a
number of published benchmarks show that the proposed method is much more accurate

than the single gramian approximation method at the similar computing cost.
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3.1 Gramian approximation method

To mitigate high computing costs of classic BT methods for solving large problems in
VLSI design, gramian approximation methods have been proposed, where the approximate

dominant subspace of a gramian can be obtained in a very efficient way.

3.1.1 Gramian expression in frequency domain

Giventhe state-spacemodel (A, B, C, D), infrequency domain, the controllability gramian
X can be computed from the expression

+oo
X =2 / (jwI — A)"* BB (jwl — Ay " dw (3.2

T o

— 00

and the observability gramian Y can be computed from the expression

+oo
y = / (jwI — AT)YCTC(jwl — AT) Hdw (3.2)

T o

—0o0

where superscript H denotes Hermitian transpose.

3.1.2 Single gramian approximation

Willcox proposed the sampling-based method to compute the approximate gramians to
avoid the Lyapunov equations[58]. But the method can not avoid the expensive eigende-
composition of the gramian product. To mitigate this problem, Phillips proposed single
gramian approximation method (PMTBR) [44], where the approximate dominant subspace

of controllability gramian (3.1) can be obtained in avery efficient way.
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Specifically, let w;, be kth sampling point. If we define
2, = (jwrl — A)7'B (3.3)

then X can be approximated as

X = Zwkzckzg = ZCW2Z£{ (3.4

where Z. = [2¢,, Zeys - - - » 2] @A W adiagona matrix with diagonal entries Wy, = /w.
The weight w,, may come from a specific numerical quadrature method. In fact, we can set
wy, = 1. Since X is symmetric, it is orthogonally diagonalizable. If we perform the SVD
on

Z.=UxvVT (3.5)

then we have
2 0 Ut

X=zz"=UxU" = [ U, U, ] (3.6)

0 x2 Ut
where UTU = I. If the quadrature ruleis accurate, X will convergeto X and the dominant
eigenspace of X converges to the dominant eigenspace of X by perturbation analysis of

invariant subspaces. Asaresult, the dominant eigenvectors U; can be used asthe projection

matrix and the reduced model (A, B, C,., D) can be obtained as

A, =UTAU, B,=UTB C,=CU, (3.7)

Note that the method does not need to form the n x n gramian Z.ZH explicitly and neither
does it need to perform the eigenvalue decomposition at the cost of O(n?). Instead, it only

performsthe SVD onan x Np thin matrix Z, instead (Np < n).
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Given N sampling pointsand p inputs, the cost of SVD on matrix Z,,» n, iSO(n(Np)z).
In addition, it takes N matrix factorizations and Np matrix solves. The total cost is
O(n(Np)* + Nn® + Npn®) (typicaly, 1.1 < f < 1.5and 1 < « < 1.2 for circuits) [44],
which is dominated by O(Nn?) < O(n?).

Note that, the same procedure can be performed based on observability gramian (3.2)

aswell if we define z,, = (jwi — A7) 'CT and performan SVD on Z, = [z,,, . . ., 2oy ).

3.1.3 Existing problems

PMTBR only uses controllability gramian and it works well for symmetric systems where
both controllability and observability gramians are the same. But it may not work well for
genera unsymmetrical systems like RLC interconnect systems as shown in [54].

To consider two gramians, the most straightforward way is to compute X = Z,.Z1
andY = Z,Z" respectively and perform an eigendecomposition on the product XY [58].
However, the eigendecomposition has to be performed on an x n full matrix XY, which
still has the computational order of O(n?).

Another possible way is to use cross-gramian X <, which contains both controllabil-
ity and observability information in a single matrix. In the frequency domain, X ¢ is
expressed as

+o0
Xeg = QL / (jwI — A)T'BC(jwl — A)~'dw (38)
T J -

which can be approximated as X¢o¢ = 3 ze, 2l = Z.Z}'. Inthis case, we do not need to

compute X, Y, and XY. However, to determine the dominant subspace of X ¢, we still

need to perform an eigendecomposition on an x n full matrix 7. 2.
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3.2 New double gramian approximation method

In this section, we present the new double gramians approximation method.

3.2.1 Classical SVD-based balancing algorithm

In classical balanced truncation [38], the most straightforward way to determine the bal-
ancing transformation 7" is to perform an eigendecomposition of the gramian product XY
and T isthe invariant subspace.

However, in practice, an SVD-based method was proposed in [30], where the balanc-
ing transformation 7" is determined through computing the singular value decomposition
(SVD) of acertain product of matriceswithout explicitly forming the gramian product. The
algorithm isshownin Fig. 3.1.

In this agorithm, given the controllability gramian X > 0 and observability gramian
Y > 0, the Cholesky factors are computed first. Let L. and L, denote the lower triangular

Cholesky factors of the gramians X and Y/

X=LJLT Y=L,LT (3.9)

Then the singular value decomposition of the product of the Cholesky factors is computed
as

L. =uxv? (3.10)

where UTU = I and VTV = I. The balancing transformation 7" and 7! are given as

T=LVE V2 7 1=x-12yTLT (311)
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Therefore, instead of explicitly forming the gramian product X Y and performing an eigen-

CLASSICAL SVD-BASED BALANCING METHOD:
Input: H : (A, B,C, D)
Output: H, : (A, B,,C,, D)

Compute X >0andY >0

Cholesky factorization X = L.LT andY = L,LI

Compute SVD of UXV = LTL,

ComputeT = L VX~ V2and T = 51207 LT

Compute the balanced realizations A = T-'AT,B = T"'B,C = CT
Truncate to form the reduced system (A, B,, C,., D)

S0k wbhNPE

Figure 3.1: Classical SV D-based balancing method.

decomposition, the invariant subspace 7' can be determined in a less expensive and more

efficient way in the classical balanced truncation algorithm.

3.2.2 Generalized SVD-based balancing algorithm

In this paper, we propose a generalized SVD-based balancing scheme. In the classical
SVD-based balancing agorithm, the Cholesky factors are used. However, we show that
Cholesky factors are not the only choice to compute the balancing transformation. In fact,
there is no restriction on the structure of matrix factors at all. We first show the following

result:

Theorem 1 Assume the gramians X and Y can be factorized as

X=227" Y =277 (312

where Z. and Z, are matrix factors with arbitrary structure. Then the singular value de-
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composition of the product of the factors is computed as

7'z, =Uxv? (3.13)

where UTU = Tand VTV = 1.

In this case, the balancing transformation 7" and 7! are given as

T=2Ve? 71 =x-12yTzT (3.14)

Given (3.12) and (3.13), it can be shown that 7'~! is an inverse matrix of 7" in (3.14)

T-'T = (7YV2UTzZhY(Z.vx~1/?)
= SVUTN(ZEZ ) Vsl
= YAUT(UEvT) Ve
(3.15)
= SAUTU)S((VTV)ET2
— 2—1/222—1/2

= I

and 7" is exactly the invariant subspace of gramian product XY (2.35)

TIXYT = (S7V2UTZ0Y(XY)(Z.VE~1/?)
= (XVUTZINZ.2E)(2,2T) (2 V5T
= S V2T ZrZz )27 Z,) (27 Z,) V512
(3.16)
= YTV VEUTYUZVT)VE—1/2
= Nl2yynyn-1/2

— 2
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Therefore, the factors of gramians are no longer limited to Cholesky factors.

3.2.3 New double gramians approximation method

Now, we apply the proposed generalized SV D-based balancing algorithm for double grami-
ans approximation.
Let w;, be kth sampling point. If we define

2o, = (jwrl — A)7'B (3.17)

Zop = (Jwid — AT)_IC'T

then X and Y can be approximated as

X=Xz M =778
2 ok, (3.18)

Y = > zokzi = Z,ZH"
where Z, = [z, Zeys - - -5 Zen) @A Zo = [201, Zogs -+ s Zon] -
According to the generalized SVD-based balancing algorithm, Z. and 7, can be used
as the factors to compute the balancing transformation 7. We perform a singular value
decomposition on

z8z,. =uxvt (3.19)

Notice that, given NV sampling points and p inputs and ¢ outputs, Z. and Z, are n x
Np and n x Nq matrices, respectively, where Np < n and N¢ < n. Assume m =

maz(Np, Nq), the dimension of matrix Z1' Z. is smaller than m x m and the cost of SVD



isO(m?), which is much smaller than O(n?) when m < n. Then we have

0 Vi
ZOHZC = |: Ui U, :| (320)
0 X3 ||V
where U; and V; are dominant subspace corresponding to the first » largest singular values

Y1. Then the right projection matrix and |eft projection matrix are given by

T, = Z,Vix,"? T, =x;?urZT (3.21)

T, andT; aren xr and r x n matrices respectively, corresponding to the dominant invari-
ant subspace of the approximate gramian product XY . Thereduced model (A, B.,C.,D)

can be obtained as

A, =T,AT, B,=T,B C,=CT, (3.22)

The resulting double gramians approximation algorithm, called DGA, isgivenin Fig. 3.2.

Given N sampling points and p inputs and ¢ outputs, assume m = max(Np, Nq), the
cost of SVD on matrix Z1'Z, is O(m?) as analyzed before. In addition, it takes 2N matrix
factorizationsand pN + ¢N matrix solvesto obtain Z. and Z,, and O(pgn) to obtain Z*' Z,..

Thetotal cost is O(m? + 2Nn” + (p + q) Nn® + pgn) (typicaly, 1.1 < g < 1.5 and
1 < a < 1.2 for circuits). Asm < n, the cost is still dominated by O(2Nn?), which is
about twice the cost of single gramian approximation method PMTBR [44] but still in the
same growth order. In fact, the cost of DGA is less than twice the cost of PMTBR as the
cost of SVD processin DGA is O(m?), which is much less than O(n(Np)?) in PMTBR,
where Np < m and m < n.

Practically, we notice that PMTBR uses incremental QR on Z.. to find the project ma-
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trix. But it will have the same computational costs of SVD on Z... Incremental QR can be
used for the proposed method on Z! Z,. also.

We want to emphasize that although the proposed method is slower than the PMTBR
as DGA computes two approximate gramians, it does not mean that PMTBR will achieve
the same accuracy of the proposed method if both have the exactly same computing costs
(for instance PMTBR samples twice of the DGA method). The proposed method addresses

the fundamental problem of using only single gramians in the PMTBR-like method.

NEW DOUBLE GRAMIANS APPROXIMATION METHOD (DGA):
Input: H : (A, B,C, D)
Output: H, : (A, B,,C,, D)

Perform SVD on matrix Z, Z. = USV7”

Compute right projection matrix 7, and left projection matrix 7; as T, =
ZVis; 2 and TF = 572Ut Z7

Project onto the dominant invariant subspace of the approximate gramian
product A, = T)AT,, B, =T)B, C, = CT,

1. Select N sampling points z,(k = 1,2,..., N)

2. Compute Z, = [2e,, Zeys - - - » Zey ] Where z,, = (jwpl — A)™'B

3. COMpUte Z, = [Zo,, %oy, - - -+ 70y ] Where z, = (jwyl — AT)'CT
4,

5.

o

Figure 3.2: New double gramians approximation method (DGA).

3.2.4 Practical Implementation
Descriptor systems
A special classof dynamic systemsisthe RLC interconnect circuit described by state-space

eguations in descriptor form

Ci(t) = —Guz(t) + Bu(t) (3.23)
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In this case, the controllability gramian and observability gramian can be obtained from
generalized Lyapunov equations [54, 44] and the frequency domain expressions are [44]

X = [(jwC + G)'BBT (juC + G) Mdw 20

Y =L [MGwC + GT) ' LTL(jwC + GT) Hdw

Asaresult, z.,'sand z,,’sin Fig. 3.2 will be replaced by

2, = (jwC+ G)'B 2, = (jwiC + GT) ' LT (3.25)

Just as PMTBR, the complications present in applying standard balanced truncation to

problems with singular descriptor matrix C' vanish in the proposed method.

Passivity
Similar to classical balanced truncation [30], the proposed double gramians approximation
method does not preserve the passivity for general dynamical systems. But post-passivity-

enforcement process can be carried out to ensure the passivity [12, 54], which is out of

scope of this paper.

3.3 Experimental results

In this section, we present experimental results on four benchmark examples used in pub-
lished papers, which are NOT symmetric. The proposed double gramians approximation
method, called DGA, is compared with existing single gramian approximation method
PMTBR and Krylov subspace method PRIMA at the same reduced order. Note that, the

sampling points (total number and their locations) for both DGA and PMTBR are exactly

47



Table 3.1: Reduction CPU time comparison of PMTBR and DGA (seconds).

n 152 1520 | 150002
DGA | 0.014597 | 0.06298 | 8.810724
PMTBR | 0.008164 | 0.03228 | 5.070467

the same.

3.3.1 TwoRLClines

The first and second examples are RLC lines used in [54] (in Fig.2 and Fig.4). The two
RLC linesare of the same order 1502 but with different topologies. In both examples, input
signal u(t) is the voltage at the first node and output is the current flowing through the
voltage source. The state vector consists of node voltages, inductor currents, and currents
through the voltage source. The MNA formulation for the two lines results in two systems
(G,C, B, L) with unsymmetric matrices G. In both examples, the parameters are R =
0.1, L = 2,C = 15 and the reduced orders are set to be 10.

Theresultsfor thefirst and second RLC linesare shownin Fig. 3.3(above) and Fig. 3.3(below),
respectively. Clearly, we see that DGA is much more accurate that PMTBR and PRIMA in
both examples. The reason why PRIMA'’s results are quite off is that it approximates only
dominant controllable states [54]. We then compare the CPU time of DGA and PMTBR.
The reduction CPU times are shown in Table 3.1, where the n isthe order of the RLC line
and the reduced order is 10. From Table 3.1, we can see, the reduction time of DGA is
less than twice the reduction time of PMTBR. Thisis because DGA is much less expensive
than PMTBR in the SVD process although DGA has to take twice matrix factorizations

and solving.
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Figure 3.3: Comparison results on the two RLC line examples.
3.3.2 A transmission line model

The third example is a transmission line model from [32, 9], which is not symmetric and
has an order of 256. There are 2 inputsand 2 outputsin thismodel, which resultsina2 x 2
transfer matrix H (s). The reduced orders are 30.

Theresultsfor the diagonal terms 1 (s) and hosy(s) of H(s) areshowninFig. 3.4(above)
and Fig. 3.4(below), respectively. For this unsymmetric example, the proposed DGA
method produces the best wideband approximation again. PRIMA is very accurate in low

frequency range but not accurate beyond 10! rad/sec. DGA is much more accurate than
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Figure 3.4: Comparison result on the transmission line example.

3.3.3 Aninternational space station example

In addition to interconnect modeling, model reduction is being used to generate compact
modelsof variousdynamic systems[54]. Theforth exampleisastructural model of compo-
nent 1r (Russian service module) of the International Space Station from [9]. Thisexample
is aso not symmetric and has an order of 270. There are 3 inputs and 3 outputs in this

model, which resultsin a3 x 3 transfer matrix H(s). The reduced orders are 25.
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The results for the diagonal term K (s) and the off diagonal term hs,(s) are shownin
Fig. 3.5(above) and Fig. 3.5(below), respectively. The same conclusion can be drawn here.
PRIMA isonly accurate in low frequency range, which can match up to about 10 rad/sec
for hao(s) and about 1 rad/sec for hss(s). However, DGA still has the excellent wideband

accuracy and the performance is much better than PMTBR.
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Figure 3.5: Comparison result on the 1SS example.
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Chapter 4

Second-order balanced truncation for
passive order reduction of RLC circuits

and itsfast version

Model order reduction (MOR) is an efficient technique to reduce the circuit complexity
while producing a good approximation of the input-output behavior when an RLCK circuit
is formulated in the second-order form, inductance (or partial inductance) will be repre-
sented in its inverse form, which is called susceptance. Susceptance coupling are shown
to be more localized than inductance coupling and its matrix is diagonally dominant like
capacitance matrix [14]. Hence, susceptance matrix can be sparsified much easily without
loss of stability, which, however, is difficult in general for the inductance matrix [24]. The
new susceptance element (called ”K” element) can be stamped back into the circuit matrix
using the SPICE-compatible equivalent circuits [25]. Model order reduction techniques
for second-order systems, which are more suitable for reducing RLCK circuits, have been
developed in the past [48, 53].
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However, existing second-order MOR techniques are mainly based on Krylov-subspace
methods, which in genera have difficulties to generate reduced models with global ac-
curacy. Therefore, another approach, truncated balanced realization (TBR), or balanced
truncation (BT), which was originally developed in the control community [38], has been
studied intensively for interconnect reduction recently [42, 44, 49, 56, 57, 59]. The idea of
TBR method is to first transform an original system into a new coordinate such that each
state in this coordinate is equally controllable and observable before the consequent trun-
cation of the weak states. To perform the passive reduction, positive-real TBR (PR-TBR)
was applied in [42], which solves more expensive quadratic matrix equations. PR-TBR has
no constrains on the internal structure of the state-space equations. But it also does not
preserve any structure information inherent to RLCK circuits such as symmetry, positive
semi-definiteness and sparsity, during the reduction process. Another issueis that existing
balanced truncation techniques for interconnect reduction are first-order based and cannot
handle RLCK circuits formulated as second-order systems.

In the control literature [37], Meyer and Srinivasan introduced a second-order balanced
truncation method where second-order gramians are defined based on Moore's first-order
balanced truncation method. However, in order to preserve the stability of original system,
congruency transformation instead of similarity transformation is performed. As aresult,
the transformed system is not really balanced, which sacrifices the accuracy.

In this section, we propose a new balanced truncation method, SBPOR (Second-order
Balanced truncation for Passive Order Reduction), for passive reduction of RLCK circuits.
By exploiting the symmetric positive definiteness of the system matrices in the second-
order circuit formulation, the new approach resolves the issue existing in [37] by defining

second-order gramians based on a symmetric first-order realization. As aresult, balancing
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and reduction can be achieved via only congruency transformation without any accuracy
degradation. In contrast to thefirst-order balanced truncation approaches, SBPOR can also
preserve the structure information inherent to RLCK circuits and only needs to solve one
linear matrix equation instead of two quadratic matrix equations. Furthermore, to miti-
gate the high computational cost of solving Lyapunov equation, a Second-Order Gramian
Approximation version, SOGA, is proposed to generalize the existing first-order gramian

approximation technique PMTBR [44] to second-order systems.

4.1 TheSBPOR Algorithm

In this section, weintroduce the new second-order bal anced truncation method SBPOR and

its gramian approximation version.
4.1.1 Symmetricrealization in descriptor form

Consider a second-order LTI stable system

Mq(t) + Dq(t) + Kq(t) = Bu(t)

y(t) = Pq(t) + Qq(t)

(4.1)

whereu(t) € RP, y(t) € RY, q(t) € R", B € R"?, P,Q € R™™", M,D, K € R"™ with
M assumed to be nonsingular.

The general idea of reducing the second-order system is to transform the second-order
system first into the equivalent first-order system, from which the balancing matrices are
obtained. To this end, the second-order gramians in [37] were defined based on the first-

order redlization in a standard state-space form (2.1) with 2n-dimensional state 27 =
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[¢"¢"], where

~M'K —M7'D M™'B (4.2)

[

As mentioned before, RLCK circuits can be formulated in a second-order form (4.1)

with special structure M = C, D =G, K =1,P =0,Q = BT

Ci(t) + Ga(t) + Tq(t) = Bult)

y(t) = B3 q(t)

(4.3)

whereu(t), y(t) € RP areinput currents and output voltages; ¢(t) € R™ arenoda voltages;
G,C,T' e R™™arematrices of conductance, capacitance and susceptance respectively and
C=0T>0,G=GT>0,I' =TT > 0; B € R istheinput matrix and its transpose
BT ¢ RP*™ isthe output matrix. Note that C'is assumed to be invertible [37, 29].

The key idea in this paper is that instead of using the first-order realization (4.2), we
choose another first-order realization in descriptor form [29] with 2n-dimensional state
zt =1q",q"]

Ei(t) = Ax(t) + Bu(t) 44
y(t) = B a(t)

where

&= A= B = (4.5)
0 C I -G B

Note that, since C, G, T" are all symmetric, it follows A = A7, £ = £7, which means such

afirst-order realization is symmetric.
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Controllability and observability gramians in descriptor form can be computed from
a pair of generalized Lyapunov equations [49]. However, in this symmetric case, both

gramians are equal and only one equation is to be solved

EXAT + AXET +BBT =0 (4.6)

If we compatibly partition the gramians as

R S
X=Y= (4.7
ST F
then the second-order gramians are aso equal
Xo=Ys=R (4.8)

Since gramian is symmetric, R is orthogonally diagonaizable, i.e., there exists 7! =TT
such that

TT'RT =% (4.9)

As aresult, the second-order gramian product R R can be orthogonally diagonalized as

TT"RRT = (T*RT)(TTRT) = (%)? (4.10)

Note that the eigenspace of the gramian product is exactly the eigenspace of each gramian.
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If we partition the matricesin (4.9) as

Rlvl VQ}: (4.11)

where ¥; contains the first r largest eigenvalues of gramian R and V; are corresponding

eigenvectors, a reduced model can be obtained as follows

Crd(t) + Grg(t) + Trg(t) = Bruft)

y = B1.4(t)

(4.12)

where C, = V'CV,, G, = VTGV, T, = VTV;, B, = V' B. Thiskind of transforma-
tion isknown as congruency transformation, which preserves symmetry and definiteness of
matricessuchthat C,, = C* > 0,G, = GT > 0,T, =T'T > 0, implying the reduced-order
system has guaranteed stability, passivity, and reciprocity [53]. The basic agorithm flow

for SBPOR isgivenin Fig. 4.1.

4.1.2 Second-order gramian approximation

We al so propose a second-order gramian approximation technique to mitigate high compu-
tational cost. Practically, we find that I" can easily become singular, which will make both
Aand £ in (4.5) singular. To mitigate this problem, we propose a little different symmetric
realization. If we definex” = [Elq", 7], we have the following new redization:

Ci(t) = —Gu(t) + Bu(t) (4.13)

y(t) = B x(t)
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ALGORITHM 1: SBPOR
Input: C, G, T', B
Output: C.., G, I',., B,
1. Form the symmetric first-order realization in descriptor form (4.4)
2. Solve EXTAT + AXET 4+ BB =0for X
3. Partition X as:
R S
| 7]
4. Compute SVD of the second-order gramian:
1 0 1%
netvwl[ s [

5. Form the reduced model as
C, = VvlTC‘/la G, = %TG‘/la L. = %TFVYD B, = ‘flTB

Figure 4.1: The SBPOR algorithm.

where
—L7t 0 0 EZL_I 0

C= .G = ,B= (4.14)
0o C L' G B

Here E; istheincidence matrix for inductor matrix L in the modified nodal analysis (MNA)

formulationand T’ = E,L'E,Y. We remark that E;L~" will not have zero rows for a

physical system as Fq is actually avector of a branch vector potential [61]. So G will not

be singular, required by our new SOGA agorithm, for any physical system that has DC
paths to ground for any node.

Since C, G, L are al symmetric, such afirst-order realization is aso symmetric and the

second-order gramian measures the contribution of the node voltages ¢ = v with respect to

the transfer function.

For first-order system in descriptor form (4.13), the gramian X’ can be computed from
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the expression in frequency domain [49]

+oo
X = % / (jwC + G)'BBT (jwC + G) M dw (4.15)

(e 9]

Let w;, be kth sampling point over the frequency range of interests. If we define
2 = (jurC +G HB (4.16)
then X’ can be approximately computed as
X=—=> nz =2z" (4.17)

where Z is a matrix whose columns are z,. If we partition Z7 = { zi zi } and

compatibly partition the approximated gramian as

. kR S AV AV
X = = (4.18)

ST F ZyZH 7,78

then the approximated second-order gramian is F', which can be diagonalized as

F = 2,728 = (USV)(USV)T = U207 =
o 320 ur (4.19)
wal|F00
0 22| |0

Therefore, U; will be used to perform the reduction as in the SBPOR method. The SOGA

algorithmis presented in Fig. 4.2.
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ALGORITHM 2: SOGA
Input: C, G, T', B
Output: C.., G, I',., B,

1. Start from the symmetric first-order realization (4.13)

2. Do until satisfied:

3. Select afrequency points sy

4. Computez, = (s;,C + G)"'B

5. Form 2, = [21, 2, . . ., 2] and partition Z, = l Z; }

6. Compute the SVD of the matrix Z,. If the error is satisfactory, go to
Step 7. Otherwise, go to Step 2.

7. Form the projection matrix U; from the singular vectors of Z,, dropping
ones corresponding to small singular values below a desired tolerance,
and form the reduced model as

c,=U0rcv,,G, =UrGU, I, =UITU,, B, = UI'B

Figure 4.2: The SOGA agorithm.

4.2 Experimental results

In this section, we show examples that illustrate the effectiveness of proposed SBPOR

method and compare it with existing relevant MOR approaches.

4.2.1 Comparison with first-order TBR

Givenacircuitintheform (4.3), wefirst compare SBPOR with thefirst-order TBR method.
Note that the order ¢ in the reduced models reduced by SBPOR on (4.3) will correspond
to the order of 2¢ in the reduced models by the first-order TBR method performed on
equivalent first-order redlization (4.2). We choose a small circuit for the purpose of il-

lustration so that both impedances and real parts can be compared at al possible reduced
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orders. The RLCK circuit has 4 nodal voltages and thus has a dimension of 4 in a second-

order formulation. The equivalent first-order realization has adimension of 8. Asshownin

a
0 @ 05 0 : (b)o.s
Original Original
0.4 - = = SBPOR 50 0.4 = = = SBPOR |
“““““ -100
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o e
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Figure 4.3: Comparison with the first-order TBR method (performed on linearied first-
order system).

Fig. 4.3(a),(b),(c), SBPOR outperforms standard TBR at each reduced order (¢=1,2,3). This
can be explained from the ‘energy’ distribution of singular values as shown in Fig. 4.3(d),
where the second-order singular values decay much faster than the first-order ones. The
passivity of reduced models can be tested from the rea parts. As expected, SBPOR
can guarantee the passivity of reduced models while standard TBR cannot. As shown
in Fig. 4.3(a),(b),(c), only in Fig. 4.3(c), the real part of TBR reduced model is positive at

all frequencies and thus the reduced model is passive. Note that standard TBR applied to

61



the equivalent first-order realization(2.54) also results in a first-order reduced model and
thusis not a second-order MOR approach available. We just use it as a criterion to show

the accuracy of our new approach.

4.2.2 Comparison with SAPOR

In the second example, we want to compare our method with moment-matching based
second-order MOR approach SAPOR [53]. The exampleis an RLCK circuit, which has

100 nodal voltages. The reduced second-order model has a dimension of 2. As shown in

100 ; 10°
= Original

= = =SBPOR
80 ) ‘i SAPOR |

=
°>-

-
o
o

H
O‘

Absolute Error
.
O‘

Impedance
=R
O‘ O\
L &

H
O‘
&

H
O‘
5 =

-60 ! .
107 10" 10° 107 10°
Frequency Frequency

Figure 4.4: Comparison with Krylov-based second-order MOR method SAPOR [53].

Fig. 4.4(a), SBPOR is globally accurate at al frequencies while SAPOR has very good
local behavior around DC (the expansion point of SAPOR is 0.01 Hz) but behaves so bad
at other frequencies. The error is shown in Fig. 4.4(b), where the maximum absolute error

for SBPOR is about 10 but for SAPOR isamost 100.

4.2.3 Comparison with existing second-order TBR

In this part, we want to compare the new method, SBPOR, with existing technique [37] in

the control literature, which we name TBR2. The example is an RLCK circuit with 100
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nodal voltages and the reduced dimension is 10. In Fig. 4.5(a), we can see that SBPOR
outperforms TBR2 obviously. As shown in Fig. 4.5(b), the maximum absolute error for
SBPOR is smaller than 10 while it isamost 100 for TBR2. The reason is that the system

in TBR2 is not really balanced and thus the accuracy is sacrificed.

100 10°

- = Original ; ‘oo TBR2
g0l Lo TBR2 ) H . - = =SBPOR

- = = SBPOR 10

80

10° b

107

Impedance
Absolute Error

107 10" 107 107
Frequency Frequency

Figure 4.5: Comparison with the existing second-order TBR method [37].

4.2.4 Comparison of SOGA with SAPOR

Theoriginal model isan RLCK circuit with 1000 nodes in asecond-order formulation. The
reduced model has an order of 11 (¢ = 11). Asshownin Fig. 4.6, SOGA produces a better
approximation than SAPOR over a wide frequency band (the expansion point of SAPOR
is1 Hz). The computational cost of SOGA is amost the same as that of SAPOR given the
same reduction order. The reduction CPU times of several mesh-structured RLC examples

are shownin Table 4.1, where the n isthe number of nodes and the reduced order is 10.
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Figure 4.6: Accuracy comparison between SOGA and SAPOR.

Table 4.1: Reduction CPU time comparison of SOGA and SAPOR (seconds).

n=640 | n=1000 | Nn=2680 | n=4380
SOGA | 3257 | 6.875| 25.24| 602.63
SAPOR | 1438 | 3420 | 21.42| 580.57




Chapter 5

Positive-real rational interpolation based

reduction via Caratheodory extension

Model order reduction (MOR) by Krylov subspace methods have been proved to be an
efficient technique to reduce the complexity of interconnects [45, 17, 50, 40, 19]. For
passive reduction of the interconnect circuits, existing approaches, however, require that
the system must be formulated into the passive form, a state-space representation with
positive semi-definite system matrices and the same input and output mapping matrices.
The passivity is ensured by the congruency transformation, which can preserve the passive
form in the reduced model. Those restrictions are generally satisfied for interconnects
modeled as RLC circuits. However, many passive systems are not conveniently put into
such aform [42].

In fact, passivity ismore generally characterized by the positive realness of the transfer

function [6]. The system is passive if and only if its transfer function H (s) is positive
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real [6], which means

(1) H(s)isanalyticfor Re(s) >0
(2 H(s)=H(5)forseC

(3 H(s)+ H(s)® > 0for Re(s) >0

where H denotes complex conjugate, H * denotes Hermitian (complex conjugate and trans-
pose), and > 0 denotes positive semi-definiteness in a matrix context.

In order to preserve passivity for system with arbitrary internal structure, the positive
realness of the transfer function of reduced system should be enforced. Toward this goal,
several methods have been proposed in the past several years, which can be divided into
two categories.

The first class is represented by positive-real truncated balanced realization (PRTBR)
algorithms[42, 56] Those agorithmsare based on truncated balanced stochastic realization
developed in the control community [13, 21]. Different from classica TBR [38], Lur'e
eguations or algebraic Riccati equations are needed to be solved in those algorithmsinstead
of Lyapunov equations. However, their high computational cost O(n?) (n is the order of
the system to be reduced) makes them infeasible for large-scale systemsin practice.

More recently, the second class methods were proposed by Antoulas[2] and Sorensen [51].
The methods are based on an observation that if the transfer function of reduced model pre-
serves a subset of the spectral zeros of the original system and admits the same values as
the origina system inthe mirror points of the preserved spectral zeros, the transfer function
of reduced system isalso positivereal. However, to obtain spectral zeros or the correspond-
ing invariant subspace of the original system, generalized eigenvalue problem needs to be

solved, which is also very expensive for large-scale applications. In addition, it is not clear
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how to select spectral zeros to be preserved.

Over the last several years, a new theory of positive real analytic interpolation with
complexity constraint has been developed for both scalar and matrix interpolating function
(or interpolant for short) in discrete-time setting [8, 7, 15, 4, 3]. The problem isto interpo-
late prescribed values and successive derivatives on a given set of pointsin the unit disc by
means of a strictly positive real rational function in the unit disc. One special case is the
Carathéodory extension, which specifies the interpolation conditions at the origin up to a
number of derivatives.

Usually, there are an infinite number of interpolants fulfilling the interpolation condi-
tions, which are parameterized by the spectral zeros of the interpolants. Given a set of
gpectral zeros, the interpolant can be determined by an optimization problem. Actualy,
any interpolant satisfying the interpolation conditions with derivatives meets our needs
well, which means we do not need to preserve the spectral zeros of the original system. As
aresult, aspecial case, central or maximum entropy solution, isof particular interest to us,
which can be determined by solving alinear system of equationsinstead of the optimization
problem.

In this section, we propose a novel Carathéodory extension based model reduction
scheme. The new method, called CEMOR, can generate guaranteed passive reduced models
of dynamic systemswith arbitrary internal structure and formulations. The reduced model
will agree with the original model up to a number of moments at an expansion point. In
the proposed method, we first choose an expansion point and compute the moments of the
original system at that point asthe interpolation conditionswith derivatives. Then wetrans-
form the interpolation conditionsto the discrete-time domain, obtain the central solution of

Carathéodory extension, and transform the interpolant back to the continuous-time domain
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asthe reduced system. The proposed rational interpolation method is as efficient as Krylov
subspace methods but can generate guaranteed passive reduced models for systems with

arbitrary internal structure.

5.1 Carathéodory extension

In this section, we present the classical Carathéodory extension problem, which is derived

in discrete-time domain, and how it is related to our reduction problem.

5.1.1 Problem statement

Given a scalar sequence (wy, wy, . . ., wy,), the Carathéodory extension problem with de-
gree constraint amounts to determinating any function f(z) satisfying the following three
conditions:

(1) f(=) fulfillsthe interpolation constraints:

FM(0)
Kl

= wy(k=0,1,...,m) (5.1)

(2) f(2) is strictly positive red, i.e., f is analytic in the closed unit disc D, where
(D ={z:]2| <1}),and Ref(z) > 0fordl z € D,
(3) fisrational and the degree (degf(z)) < m.

There exists an interpolant for the interpolation problem with derivative constraints if
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and only if asymmetric Toeplitz matrix

2weg Wy ... Wy
w1 211}0 ..
P= (5.2
: - oy
W, wy  2wo

IS nonnegative definite.
Note that, if (wo, w1, ...,w,,) are the moments of a high order system in discrete-time
domain, f(z) can be the transfer function of areduced system of order m and the reduced

system must be passive as f(z) ispositive real.

5.1.2 Determination of interpolating function

The complete parameterization of the set of interpolating functions was developed by
Byrnes and Lindquist [8, 7] Assume that there exists a bijective (one-to-one and onto)

map between the set of pairs of real polynomials

{(a(z),5(2)) : deg(a(z)) < m,deg((z)) < m} (53

a(0) #0,5(0) #0

where
_ B(z)  Bot+ Pzt A ™
1) = afz)  agFarzd - ape™ (54)
and the set of real stable polynomials
{p(2) : deg(p(z)) = m, p(z) #0,Vz € D} (55)
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where

p(2) = po+ prz+ -+ pmz™ (5.6)

where deg() gives the degree of a polynomial. A stable polynomial here means that all
the roots are outside the unit circle (similar to the right-hand plane in the continuous-time

domain). In fact, ®(z), the spectral density of f(z), isgiven by

-1 —1
O(z) = f(2) + f(z71) = Ot(Z)ﬁ(Z Z);jgz )B(2)
(2)a(z71) (5.7)
_ p@p(z"Y)
a(z)a(z1)

The bijectivity implies that the roots of p(z), which are the zeros of spectral density, so-
called spectral zeros, are the characterizing factor. In other words, if a set of spectra
zeros is assigned, f(z) can be uniquely determined satisfying the three conditions at the
same time. Specifically, the computation of an interpolant f(z) from p(z) amounts to an

optimization problem min,es,, J, ()

Jy(a) = aT Pa — 2 < log(a(2)), p(2)p(= ") > (5.8)
where L
Qg
a=|: | eRmx (5.9)
Om

and «(z) should bein theregion S,,,:

Sy ={a(z) i+ a1z + -+ 2™ #0, ap > 0,Vz € D} (5.10)
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where < f(2),9(z) >= 5= [ f*(¢")g(e*)df defines the inner product of two functions
f(2) and g(z). If the coefficients are real, f*(2) = f(z7'), which is the case for our

problem.

5.1.3 Maximum entropy solution

Now, let us consider the central or maximum entropy solution, i.e. the specia case of
the problem in which all the spectral zeros are assigned at infinity. In this special case,
p(2)p(z~1) = 1, and hence < log(a(z)), p(z)p(z~') >= log(ap). Consequently, the

objective function becomes

Ji(a) = o Pa — 2log(ayp) (5.11)

Since the Toeplitz matrix P is positive definite, J; is strictly convex. Hence, there is at

most one minimum. To determine this possible minimum, set the gradient equal to zero to

obtain ) o ) )
2Wg Wi ... Wy oo 1/
w1 2’(1)0 (03] 0
vJi = — =0 (5.12)
. . . wq . .
Wy ... w1 2wl |ogm 0
which can be written as Pa = ealo, where e = [1,0,.. .,O]T. Note that, since oy =

ela = eTPflea—lo, we have

ag=VvelPle (5.13)

With o, a (defined in (5.9)) is the unique solution of alinear system of equations (5.12)

because P is positive definite.
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In fact, there is an alternative way to compute «(z), which is less expensive. Defining

Qi = Oéi/Oéo fori = 1,2,...,m, we obtain

2wy wy Wm—1| | ¥1 w1/ oy
w1 2U}0 . Y2 W9
w1 : : (5.14)
Wm—1 ... W1 2wy ©Om W,
- -5 - T -
_ 1
wo Wy ... wm] {1 V1 .. gpm} =

Hence, we obtain the well-known normal equation, which can be solved quickly using the
Leyinson algorithm [46] at the cost of O(m?).

Finally, given a(z), 5(z) can be solved by

()8 + a(z")8(2) = p(z)p(="") (5.15)

where p(z)p(z~1) = 1 due to the maximum entropy solution. Identifying coefficients of

the same power in z, we can come up with the following linear equations

oy g RUSPRYs 7oy Q) a1 ... am Bo 1
@l ... 0 0 a ... Qam-1 B 0

a. I e I D= (5.16)
am 0 - 0 0 - 0 o Bm 0

which can also be written as (H,, + 7,,)3 = e. Thefirst matrix H, inthe left-hand sideis
a Hankel matrix whose first column is o and whose elements are zero below the first anti-
diagonal. The second matrix 7, in the left-hand side is a Toeplitz matrix whose first row is

a and whose elements are zero below the diagonal. By solving the linear equations, 3(z)
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can be obtained from «(z) and we obtain the interpolant f(z), which can be the transfer

function of areduced model in the discrete-time domain.

5.2 New reduction method: CEMOR

We present the new model reduction method based on single-input single-output system
h(s). However, the results can be generalized to multi-input multi-output case as shownin
the next section. We first give overal flow of the algorithm and then present the important

stepsin detail.

5.2.1 Algorithm flow

In CEMOR, steps 1 to 3 compute the moments from the original circuits and perform the
scaling as required by the new method. Step 4 and Step 10 transform the information
between continuous and discrete-time domains. Steps 6 to 8 compute the reduced model

f(2) inthe discrete-time domain.

5.2.2 Frequency scaling

We choose a positive real expansion point o € R*. Typicaly, the point chosen in higher
dynamic frequency range will result in a more compact model. Now we normalize the

expansion point to 1 by frequency scaling

h(s)=D+C(sE—A)"'B=D+C(=(cE) - A)™'B (5.17)

S
o
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1.
2.

o o &~ W

10.
11.

ALGORITHM: CEMOR
Input: h: (E, A, B,C, D)
Output: h, : (E,, A, B,,C,.D,)

Choose an expansion point o € R

Perform frequency scaling to normalize the expansion point to 1
by (5.19)

Generate moments at normalized expansion point 1 by (5.21)
Transform moments to discrete-time domain by (5.25)
Compute Toeplitz matrix using (5.2)

Check P for nonnegative-definite property. If not, go back to step 1 with
anew expansion point o or go back to step 5 to get a Toeplitz matrix with
less moments

7. Solve (5.12) or (5.14) to obtain a.(z)

Solve (5.16) to obtain 3(z)
Redlize f(z) by any canonical form
Transform interpolant back to continuous-time domain by (5.28)

Perform reverse frequency scaling by (5.29)

Figure 5.1: The CEMOR agorithm flow.

which resultsin the following system with expansion point 6 = 1

h(3) =D+ C(3E - A)~'B

where s = s/o and

Scaling the expansion point to 1 will ensure a good numeral condition in the bilinear trans-

E =0oF

formation process.
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5.2.3 Moment generation and passive condition

Given the dynamic system (5.18) and the expansion point 6 = 1, defining

A=(A-GE)'"E R=—-(A-G6E)'B (5.20)

the moments at the expansion point have the following formula

mo=CR+D m;=CAR(>1) (5.21)

For the reduced model %,.(s), we require

(1) h,(s) fulfillsthe interpolation constraints:

b ()
k!

= mp(k=0,1,...,7) (5.22)

(2) h.(s) is strictly positive redl, i.e.,, h(s) is analytic in the right-hand plane {s :
Re(s) > 0} and Re(h,(s)) > 0fordl {s: Re(s) > 0},

(3) h,(s)isrational and deg(h..(s)) < r.

If h,.(s) satisfies the three conditions, it is the transfer function of the desired reduced

model, which is passive and accurate to the rth moment of the original transfer function.

5.2.4 Transformation to discrete-time domain

The Carathéodory extension problem considered in the previous section is assumed to find
the mapping f(z) from the unit disc onto the right haf-plane. In the continuous-time
domain, we need to find a transfer function h,.(s) from the right half-plane to right half-

plane. In this case, we need to transform the interpolation data (interpolation point and
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moments) from right-hand plane to unit disc first.
So we need a bilinear transformation, which maps the right-half plane {s : Re(s) > 0}
to theunit disc {z : |z| < 1} and maps interpolation point s = 1 to z = 0. The following

bilinear transformation will achieve this[4].

2(s) = % s(z) = % (5.23)
Under the bilinear transformation, we have f(z) = h,.(s(z)) and f(0) = h,.(1). Given

e _ o P (5.24)

for (k= 0,1,...,r), the derivatives f(*)(0) is related to the derivatives 2" (1) as follows

Wy = ™y
o o (5.25)
wp = 5 0 (Nmy (k= 14+ D) (0)" sO(0)
The coefficients (’j) are binomial coefficients, which fulfill the recursive formula
M =10=1,k
) =10=1.) 020
) =2200) +(Ha<i<k
Theterm s((0) is obtained by
sV(0) = 2(=1)11! (5.27)

Now we can use the Carathéodory extension method in the previous section to obtain f(z)
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fromwy, ..., w,.

5.2.5 Transformation back to continuous-time domain

Given the transfer function f(z), it can be realized by any canonical state-space form
(A, By, Cy, Dy). which can be transformed back to continuous-time domain by the fol-

lowing transformation derived from (5.23) [41]

A, =T —-ANI+ AN B.=-2(I+A,)"'B
( £ f) ( 1) By (5.29)
C, = Of(] + Af)fl D, = —Of(] + Af)lef + Df
So the reduced model isgiven by (E,., A,, B, C,, D,.), where
1
E, =—1I, (5.29)
g

isthe inverse process of the frequency scalingin (5.19).

5.2.6 Complexity analysis

Note that, the cost to generate moments is O(n®) which is similar to Krylov subspace
methods (o« depends on the sparsity of the syssemand 1 < a < 2 for most cases of
interest). The rest procedures only require O(r?3), where r is the order of reduced system.

Sincer << n, the cost isdominated by O(n®).
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5.3 Extensionto MIMO systems

Given a interpolation point z, = 0 and a set of m matrix-valued interpolation values
(Wo, W1, ..., W,,) C RP*P where IV, is assumed to be symmetric (nonsymmetric case
can be transformed to be symmetric as shown at the end of the section), the matrix-valued
Carathéodory extension problem with degree constraint amountsto determinating any func-

tion F'(z) of order r = mp fulfilling the interpolation constraints

%F(k)(o) — Wik =0,1,...,m) (5.30)

F(z) isdtrictly positivereal, i.e., F(z) isanalytic in the closed unit disc D and

Re(F(2)) = %(F(z) +FEY)T) >0 (5.31)

for al z € D. There exists an interpolant for the interpolation problem with derivative

congtraintsif and only if a symmetric block Toeplitz matrix

Wo + Wi wi . wr
Wi Wy + WOT .
- (5.32)
Wi, W Wo+WT

is nonnegative definite. In the MIMO case, the cost function (5.8) is generalized as

Jp(a) = trace(R'TIR) — 2 < log( det( R(2))), p(2)p(z~") > (5.33)
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where

R=|:|c¢ Rr(m+1)xp (5.34)

and R, is assumed to be upper triangular matrix. Ry, ..., R, are coefficients of the p x p
matrix polynomial

R(z)=Ro+ Riz+ -+ R,2" (5.35)

which is the generalization of a(z) in scalar case. Similarly, asfor central solution, where

p(2)p(z~1) = 1, the objective function becomes

Ji(a) = trace(R'TIR) — 2log(det(Ry)) (5.36)

Setting the gradient of .J; equal to zero, we obtain

IR = ER, " (5.37)

whereE = [I,0,...,0]". Notethat, since Ry = ETR = ETII"'ER;”, we have

RoRY =E'II'E (5.38)

By performing Cholesky factorization, we can obtain R. With Ry, R isthe unique solution
of alinear system of equations (5.37) because I1 is positive definite. Similar to the scalar
case (5.14), the coefficients of R(z) can also be solved by a matrix-version of the Levinson

algorithm.
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The spectral density of F'(z) can be factorized as follows

P(2)=F2)+F(H=V(EHV(2) (5.39)

which is the generalization of (5.7) in scalar case. V(z) = p(z)R(z)~! is the spectral
factor of ®(z). For maximum-entropy solution, we have p(z) = 1 and V(z) = R(z)7},

which can be realized by canonical form. Given any minimal realization of V' (z)

V(z) = 2C,(I — zA,) "' B, + D, (5.40)

thereisaunique F'(z) satisfying (5.39) [3]

F(z) =22(B*XA, + DI'C,)(I — 24,)"'B, + B XB, + D' D, (5.41)

where X isthe unique solution to the Lyapunov equation

ATXA, - X+CI'C, =0 (5.42)

Note that instead of O(n?), the cost of the Lyapunov equation here is O((mp)?), whichis
not expensive because pm < n.

For nonsymmetric W, perform SVD on W, as W, = USZ" and transform W; to W,
by W, = UTW;Z such that T, is symmetric. After obtaining the interpolant F(z) from

W;, the interpolant F(z) from W; can be obtained as F'(z) = UF (2)Z7 .
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54 Experimental results

The proposed method has been implemented in Matlab 7.0 and tested on an Intel quad-
core workstation with 16GB memory. The example is from [51], which isan RLC ladder
network of order n = 201. The state variables are as follows: In general, n is odd and
x9;_1 1Sthe voltage across capacitor C; fori = 1,2,..., (n + 1)/2, while z; isthe current
through inductor L, for i = 1,2,...,(n — 1)/2. Two resistors R; and R, are placed at
either end of the ladder as shownin Fig. 5.2. for an order n = 5 example. Theinput isthe
voltage source ant the output is the port current. All the capacitors and inductors have unit
vale while R, = 1/2, R, = 1/5. For general model of order n, the state-space equation

has the following form

-2 1 0 0 0 0
-1 0 1 0 0 0
0 -1 0 0 0 0
A: 7_B:
(5.43)
0 0 0 ... 0 1 0
0 0 0 ... -1 =5 2
C=1000 ...0 —2},D=1

As in [51], the reduced order is also chosen to be 20 and the expansion point is 1H z.

Figure 5.2: RLC ladder of order 5
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The performance is compared with positive-real TBR (PRTBR) reduced model of the same
order. Asshownin Fig. 5.3, CEMOR is much more accurate than PRTBR in the frequency
range of interest from 0.01 H z to 10H z. Although PRTBR is more accurate beyond 10H z,
the error for CEMOR is less than —100dB beyond 10H z , which can be ignored. In
fact, compared with the results shown in [51], CEMOR is also better than the methods via
interpolation of spectral zeros[51] in this example.

We remark that PRTBR in theory has global error bound and can be applied to sys-
tem with any internal structure as the positive real property is explicitly enforced in the
Lur’ eequations. But practically, in addition to the high cost, this method has very stringent
demands on the numerical condition of system matrices and are tricky to implement in a
stable way [44]. As aresult, the performance in practice may not be as good as expected.
CEMOR can be viewed as a PRIMA-like reduction technique for general structure sys-
tems. It is extremely efficient and much less demanding on the numerical condition of the

examples at the cost of lacking the global error bound.
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Figure 5.3: Freguency responses.

Finally, we compare the CPU time of CEMOR and PRTBR. The reduction CPU times

are shown in Table 5.1, where the . is the order of the ladder and the reduced order is 20.
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Table 5.1: Reduction CPU time comparison of CEMOR and PRTBR (seconds).

n| CEMOR | PRTBR | Speedup
201 | 0.438 3.844 8.776
401 | 0.687 31.688 | 46.125
1001 | 3556 | 560988 | 157.745
2001 | 7.031 | 11717.136 | 1666.494

From Table 5.1, we can see, PRTBR isvery slow and infeasible for large-scal e applications
while CEMOR is very efficient. The speedup will go up for larger circuits. Actually for

circuits larger than 4K, PRTBR can't finish in reasonable time.

83



Chapter 6

Passive modeling of interconnects by

wavefor m shaping

Although projection based MOR methods are very successful, their applicationsare mainly
limited to RLC circuits. Many high-speed circuits, like RF surface acoustic wave (SAW)
filters, spira inductors, high-speed transmission lines, are still modeled by using measured
data (like Scattering parameters) due to many high frequency effects and the fregency de-
pendency of circuit parameters. Another issue with projection based MOR methods is that
they become very inefficient for reducing circuits with many terminals in terms of both
computational costs and reduced model sizes[26]. The main reason for lost efficiency lies
in the fact that with more terminals, more transfer functions are needed to compute and
more poles will be used for each increased order of block moments, which is not necessary
as polese are system information and should not depend on the terminals.

For generating general-purpose compact models from many measured and simulated
data, fitting methods based on least square rational approximation in frequency domain are

still widely used [23]. One critical issue in such a modeling processisto preserve the pas-
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sivity of the original system in the reduced models. Existing approaches like PRIME [39]
enforce the passivity by physically realizing each pole/residue (conjugate pole pair) term
in the fractional form using Foster’s synthesis method. If a pole/residue term can't bereal-
ized, it isdiscarded. Asaresult, PRIME can lead to very large errors. The latest approach
to this general passivity enforcement problem is based on the convex programming (CP)
approach by using the state-space representation of the system [12]. The passivity is en-
forced by using semi-definite constraints during a semi-definite (convex) optimization. But
the CP based method suffers very high computational costs and can optimize circuits with
less than about 20 poles and 20 terminals in a typical computation setting (on latest Intel
Pentium 4 CPU with 1GB memory).

In this section, we propose a new passivity enforcement approach for general purpose
modeling of passive linear circuits. Our new method is based on the observation that most
of interconnect circuits like clock trees, substrate, packing, RF passives, and transmission
lines are lossy and their frequency responses behave like a band-pass or low-pass filter
in general. As aresult, the models for those passive systems need not to be passive for
all frequencies, as required by traditional passivity enforcement methods. Practically they
need only to be passive for a limited bandwidth in which most of the signal energy is
concentrated.

Instead of making the reduced models passive for al frequencies, the new method
works on the signals going into the reduced models to enforce the passivity. The idea
is to dlightly shape the waveforms of the signals such that the resulting spectra are ban-
dlimited to the frequency range in which the reduced system is passive. As aresult, the
reduced models only need to be band-limited passive, which we call conditionally passive

in this paper and can be achieved much easier than traditional passivity for areduced sys-
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tem. We propose two approaches to band-limit (shape) the waveforms. The first method
is based on frequency domain fast Fourier transform (FFT) and inverse FFT to explicitly
shape the waveforms. The second method is based on insertion of passive low-pass filters
(LPF) into the reduced models to implicitly shape the waveforms. For the second method,
we analyze the delay and distortion effectsintroduced by using low-passfilters and propose
methods to mitigate the delay effects. Experimental results on several interconnect circuits

demonstrate the effectiveness of the proposed methods.

6.1 Conditional passivity and conditional positive-realness

In this section, we analyze the relationship of a system’s transient responses and its input
signals in terms of passivity. We show that a non-passive system can still behave like a
passive system when itsinput signals are band-limited. Such systems can be defined as the
conditionally passive and its network functions are conditionally positive-real.

Passivity is an important property of many physical systems. A passive network does
not generate energy. If the reduced order model (ROM) loses its passivity, it may lead to
unbounded responses in transient simulation, which means new energy has been generated
in this network.

Fig. 6.1 shows atransient simulation result of a non-passive circuit under a sinusoidal
excitation.

O. Brune [6] has proved that the admittance and impedance matrix of an electrical
circuit consisting of an interconnection of afinite number of positive R, positive C, positive

L, and transformers are passive if and only if their rational functions are positive real. A
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Transient Simulation of a Non—passive Circuit
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Figure 6.1: Transient response of a non-passive circit.

network with admittance matrix function Y (s) is said to be positivereal iff

(1) Y(s)isanaytic, for Re(s) > 0
(2) Y(s)=Y(5),for Re(s) >0

) Y(s)+Y(s)>0,for Re(s) >0

Condition (1) means that there are no unstable poles (poles lying on right-half-plane
(RHP) in s-domain). Condition (2) refers to system that has real response. And condition
(3) is equivalent to the real part of Y (s) having a positive semi-definite matrix at all fre-
quencies. In other words, the real parts of all the eigenvalues of the H (s) must be equal
to or larger than zero. But condition (3) is difficult to satisfy asit requires the checking of
frequency responses from DC to infinity.

We know for a passive system, its admittance matrix Y'(s) needs to be positive real
(Re{Y (s)} ispositive definite) for all frequencies. However, when the Y (s) is not positive
real for some frequency ranges, will the system always exhibit non-passive behavior in the
time domain as shown in Fig. 6.1? Actually the answer depends on the spectrum (energy)

of the input signal. If the input signal is band-limited to the frequency range where the
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reduced model is positive real, then the system will still behave passively as the original
system.

This can be illustrated by the following example. Fig. 6.2 shows the frequency re-
sponses of aRLC circuit and itsreduced model. The two circuits match well below 15Ghz.
Above 60Ghz, the real part of the transfer function of the reduced model becomes negative
as shown in Fig. 6.2(a), which means the system becomes non passive. When a sinusoidal
input signal of 10Ghz is applied to both systems, we get the exact responses in the time
domain as shown in Fig. 6.3. However, if we apply a sinusoidal signal of 60Ghz, the
time-domain responses of the original system and the reduced system will be dramatically
different as shown in Fig. 6.4. The response of the reduced system actually explodes.

«10° Comparison of the Real Part Response Comparison of the Magnitude Response
8 T T T T T T T T

Real Part

4 6 é 10 4 6 é 10
Frequency (Hz) x10%° Frequency (Hz) x10%°
(@) (b)

Figure 6.2: Frequency responses of areduced model and its original RC circuit.

We note that many ideal input signals like Dirac delta function 6(¢), unit step function
u(t) =1,t > 0,u(t) = 0,t < 0, and unit ramp function f(t) = ¢,t > 0, f(t) = 0,t < 0,
have an infinite spectrum of frequencies. For example, for Dirac delta function, L(4(t)) =
1, where L(X') means taking the Laplace transform of function X. So (¢) has a constant
spectrum for all frequencies and it can easily make any non-passive system to exhibit the

non-passive behavior as shownin [28]. The Laplace transform of unit step function and unit
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Figure 6.3: Transient responses of areduced model and its original RC circuit.

ramp functionis1/s and 1/s? respectively. When those signals are applied to a non-passive
system, non-passive behavior can be easily observed as shown in [40].

However, such ideal signals do not exist in the real world. Most of the active transis-
tors, passive interconnects, RF passive components, and transmission lines exhibit limited
bandwidth due to unavoidable capacitive loss, which implies that signal generated by and
propagated through those systemswill bear limited bandwidth. This situation will become
worse as we move to the deep sub 100nm technology. So for realistic signals, we can build
a reduced system which is only passive for the given frequency range and the resulting
system will still be passive as far as the simulation is concerned. For this purpose, we
introduce the conditional passivity and conditional positive-rea ness.

A network with admittance matrix function Y (s) is said to be conditionally positive
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Figure 6.4: Transient responses of areduced model and its original RC circuit.

real iff

(cprl) Y(s)isandytic, for Re(s) > 0
(cpr2) Y(s) = Y(5),for Re(s) >0 0 < Im(s) < 27 finas

(cpr3) Y(s)+Y(s)” >0,for Re(s) >0

In other words, Y (s) will be positive real for the given frequency range [0, f,.az)-

The main benefit for a reduced system to be conditionally passive is that conditional
passivity can be much easier to achieve than strict passivity. Many existing frequency
domain rational fitting methods [23, 36] can be used to do this with much more scalable
computational costs than the convex programming method [12]. On the other hand, we put
more constraints on the signals driving the conditionally passive systems. we need to make

sure that the signal spectrum is band limited such that its bandwidth is within the positive
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real bandwidth of the reduced system. In the following section, we present two methods to

achieve this requirement.

6.2 Passivity enforcement by waveform shaping

In this section, we discuss two methods to band-limit asignal by slightly shaping its wave-
form. Note that based on the Fourier transform, if asignal isfinitein time, its spectrum ex-
tends to infinity frequency, and if its bandwidth isfinite, its duration isinfinite in time. For
a practical non-periodic time-limited signal like switching currents in the signal lines due
to transistor switching, one can never band limit such a signal from a strictly mathematical
point of view. But practically we can make the out-of-band frequency energy sufficiently
small compared to the in-band frequency energy such that the out-of-band energy will not

stimulate the non-passive behavior of the system.

6.2.1 FFT and IFFT based waveform shaping

Thefirst method is based on the fast Fourier transform (FFT) and inverse fast Fourier trans-
form (IFFT). The ideais to first transform the original transient signal into the frequency
domain. Sincein FFT (or discrete Fourier transform, DFT), we treat the non-periodic sig-
nal asaperiodic signal, the resulting signal’s spectrum becomes discrete. Then we truncate
those frequencies beyond f,,...., which is given. After this, we perform the inverse FFT on
the truncated spectrum to get the time domain waveform of the shaped signal (we only take
the waveform in one period). The whole processisillustrated in Fig. 6.5 and the algorithm
isoutlined in Fig. 6.6.

Fig. 6.7(@)and Fig. 6.7(b) show aramp signal and its spectrum. The shaped waveform
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Transform

Figure 6.5: The algorithm flow of FFT and IFFT based waveform shaping.

FFT_IFFT_WAVEFORMSHAPING( ) {
Sample input datawith F;
Fast Fourier Transform
Xo(k) = N 2o (w7
Spectrum Truncation
lf fk: < fmaac or fk > Fs - fma;m
X1(k) = Xo(k);
lf fmaac < fk < Fs - fma;m
Inverse Fast Fourier Transform
21() = (1/N) S0, X (k)ywydD*;
return vector: x; of length IV;

}

Figure 6.6: The algorithm of FFT and IFFT based waveform shaping.

with the cut-off frequency f,... = 10Ghz and the corresponding truncated spectrum are
shown in Fig. 6.7(c) and Fig. 6.7(d). The shaped waveform with the cut-off frequency
fmaz = 2Ghz and the corresponding truncated spectrum are shown in Fig. 6.7(e) and
Fig. 6.7(f). In general, the spectrum truncation does not change significantly the waveform
characteristics like delay and slew etc. As we truncate high frequency components, the
shaped waveform shows some undershoots and overshoots in Fig. 6.7(e). Those small
undershoots and overshoots do not affect delay and timing of the shaped waveform when
it propagates through the reduced model. If we truncate the spectrum at a higher frequency

such as 10GHz, we find that the resulting waveform is almost the same as the original
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one, which is shown in Fig. 6.7(c). This demonstrates that if the cutoff frequency is high
enough, the distortion caused by truncating can be tolerated.

The drawback of the explicit waveform shaping method using FFT and IFFT is that
it takes extra computational costs to process the signals. The computational costs are

O(nlogy(n)), where n is the number of sampling points.
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Figure 6.7: A ramp signal shaped at different frequencies.
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6.2.2 Low-passfilter based waveform shaping

The second method is based on the implicit waveform shaping by adding passive low-pass
filters between the input signal and the reduced system as shown in Fig. 6.8. In this way,
we guarantee that the signals through the reduced system are band-limited.

Notice if we have a few input terminals (as for many interconnect circuits like clock

trees or clock meshes), adding afew filters at those terminals will not increase the sizes of

the reduced models significantly.
R
I nput Reduced Model . Output
R
N\
Passive Low pass filters Conditional Passive Model

Figure 6.8: Low passfilter based waveform shaping.

Since the filter can be passively realized by LC ladder, it can be combined with the
reduced model to function as a passive model. Therefore, we can conveniently use this
new model in current simulation software such as Spice.

However, we need to |ook at several issues associated with this method beforewe useit.
First, thelow-passfilter can also distort the input signals as different frequency components
may be delayed differently. Second, the introduction of low-passfilter can introduce delay.

In the following, we discuss methods to mitigate those two problems.

Mitigation of distortion problems

The phase function and the resulting group delay function of a filter have profound time

domain ramifications as they have a direct effect on the waveform shape of the output
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signals. Asaresult, we choose Bessel filter family due to its good time domain property. A
Bessdl filter hasalinear phase characteristic over the pass-band of thefilter, whichimpliesa
constant time delay over the pass-band of thefilter (see Fig. 6.9) so that the phase distortion
in the filtering process can be avoided. From Fig. 6.9(a), we can see a constant time delay
from DC to the normalized frequency 1 when the order (n) of filter is higher than 3. In
addition, its step response exhibits negligible overshoot and ringing.

Group—delay Characteristic Magnitude Response

50

Group delay, sec
Magnitude [dB]

; ; ; ; ; _350 ; ; ; ;

0 05 1 15 2 25 3 0 2 4 6 8 10

Normalized Frequency Normalized Frequency
(@)

Figure 6.9: Group-delay characteristic and magnitude response for different order Bessel filters (normal-
ized frequency).

However, agradual roll-off (longer decay range) is the price we have to pay for agood
time domain property. Fortunately, we can compromise it by increasing the order of the
filter (see Fig. 6.9(b)) at the cost of larger reduced models. Another way is to increase the
passive frequency range so that the filter has sufficient reduction of spectrum (again at the

cost of larger reduced models).

Mitigation of delay problems

Another issuewe haveto take into consideration isthe time delay caused by thefilter. Three

factors can influence the time delay: the prototype, the order, and the cutoff frequency of
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a filter. Among them, the cutoff frequency is the dominant factor because the delay is

inversely proportional to the cutoff frequency of afilter.

Normalized Delay

Actual Delay = Actual Corner Frequency (fc)

(6.1)

For example, for the eighth order Bessdl filter, the normalized delay is 2.703s. If the
cutoff frequency is as high as 20GHz, the actual delay could be as small as0.135ns.

Hence, if the cutoff frequency is sufficiently high, the group delay caused by the filter
can be made sufficiently small compared to the delay of the original circuit so that such a

delay can be ignored.

6.3 Experimental results

In this section, we present some experimental results on two interconnect circuits from
our industry partner. All the experimental results are conducted on a computer with AMD
Athlon(64) 3800+ 2.41Ghz CPU and 500MB DDR memory. The conditional passivity is
achieved by using the minimum sguare fitting method on the required transfer functions
with poles computed from projection based methods like PRIMA. Thisfitting method can
make the reduced models accurate to the given maximum frequency and ensure the passiv-
ity of the models in the given frequency range.

The first example is a RC circuit with 210 nodes and 3 terminals. In this experiment,
we use a steep square waveform as the input signal, as shown in Fig. 6.10(a). We apply
thissignal to the original model, the reduced model, and the L PF (low-passfilter) based re-
duced model. The output waveforms of these three models are shown in Fig. 6.10(b)(c)(d),

respectively.
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The reduced model is conditionally passive: the passivity of the model can only be
preserved at the frequency range from DC to 15GHz. Since a steep square waveform
contains high frequency components beyond this range, we can observe the erratic time-
domain behavior caused by energy generated at high frequencies, as shown in Fig. 6.10(c).

However, by eliminating those high frequency components by LPF, the output wave-
form of the LPF based reduced model (Fig. 6.10(d)) matches the output waveform of the
original model (Fig. 6.10(b)) with little discrepancy. Therefore, the LPF based reduced
model can function as a passive model at all frequencies.

In addition, we compare the qualities of Bessel LPF based reduced model and Ellipse
LPF based reduced model in Fig. 6.11. The Fig. 6.11(a) and Fig. 6.11(b) show the tran-
sient responses from the original circuit due to the square input waveform. Fig. 6.11(c)
and Fig. 6.11(d) show the transient responses from Bessel L PF based reduced model while
Fig. 6.11(e) and Fig. 6.11(f) are the transient responses from Ellipse based reduced mod-
els using the same filter order. So the results clearly show that the Bessel LPF reduced
model is superior to the Ellipse based models. As shown in (Fig. 6.11(d)(f)), Bessel LPF
based reduced model can effectively avoid the overshoots and ringings. This result further
demonstrates the rational of our choice for Bessel LPF over other types of L PFs.

The second example is a RC circuit (168 nodes) with 132 terminals (14 drivers and
118 receivers). Thiscircuit does not have much to reduce due to large number of terminals
compared to the number of nodes. But it serve as an exampl e that the convex programming
method fails to optimize due to the large terminal count. Still we use fitting method to
do the frequency domain reduction and make the reduced models accurate to 50Ghz. We
use a steep square waveform as shown in Fig. 6.12(a) as the inputs. We apply this signal

to the origina model, the reduced model, and the LPF based reduced model. The output
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waveforms of these three models are shown in Fig. 6.12(b)(c)(d), respectively.

By eiminating high frequency components by LPF. The results are similar: output
waveformsfrom the L PF based reduced model (Fig. 6.12(d)) match well the original model
(Fig. 6.12(b)). But the simple reduced models lead to erratic time-domain behavior due to
its non-passivity at high frequencies as shown in Fig. 6.12(c).

The experimental results also show that the output of L PF based reduced model exhibits
less ringing than the output of original model. Thisis because theringing is caused by high
frequency components of input signal and many of those components are eliminated by
LPF in the reduced model. If the those ringings are of interests, we can observe more of

them by increasing the frequency range of the reduced models.
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Figure 6.10: The comparison of responses of different modelsin time domain for the first example.
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Figure 6.12: The comparison of responses of different modelsin time domain for second example.
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Chapter 7

Decentralized model order reduction of

linear networkswith massive ports

The efficiency of model order reduction degrades as the number of ports increases. The
reason for the degradation is fundamental and does not depend on any particular reduc-
tion algorithm [18]. For Krylov-subspace based algorithms, the cost associated with model
computation is directly proportional to the number of inputs, i.e. to the number of columns
in the transfer function matrix. For example, in the PRIMA agorithm [40], if only two
(block) moments are to be matched at each port, and the network has 1000 ports, the result-
ing reduced model will have 2000 states. Similarly, inthe TBR agorithm, for systemswith
many inputs, many states may be needed because of the high dimension of the controllable
subspace.

In this section, we propose a decentralized model order reduction scheme where a
whole MIMO circuit is decoupled into a number of MISO circuits based on the input-
output interactions and each circuit is reduced individually. The decoupling process is

guided using the relative gain array (RGA) [5], which measures the degree of interaction
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of each input-output pair. Our method is based on the observation that for an output ter-
minal, not all the input terminals are relevant, and this relevance is determined by their
relative gains. Asaresult, an MIMO system can be naturally partitioned into many M1SO
systems and the traditional passivity-preserving model order reduction can be performed
on these MISO systems. The new reduction algorithm, termed DeMOR, can perform very

efficient reduction on MIMO systems.

7.1 Measurement of interaction

Relative Gain Array (RGA) is a matrix of interaction measures for all possible single-
input single-output (SISO) pairingsin an MIMO LTI system [5]. This concept has found
widespread utility in process control, and as a system robustness measure. The RGA thus
indicates the preferable variable pairings in a decentralized control system based on inter-
action considerations.

For asystem H (s) with p inputsand p outputs, there will be p x p relative gain elements

)\11 )\12 P /\lp
)\21 )\22 P /\Qp
A= (7.1)
L )‘pl )‘p2 /\pp ]

and the relative gains between an output y; and an input «; are given by

N — Jid lu _ (Ayi/ Auy) |u
Togly (Dyi/Duy) |,

(7.2)

where g;; isthe gain of the respective transfer function £;;. A simple 2 x 2 coupled system
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isshowninFig. 7.1.

Uy 91 Y1
i
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Figure 7.1: A coupled 2 x 2 system.

First, assume that all inputs except «; remain constant, a step change in input w; of
magnitude Aw; will produce a change Ay; in output ;. Thus, the gain between u; and y;
when the other inputs are kept constant is given by

9ijl, = A‘%\
VALY AUJ‘ u

(7.3)

which can be viewed as an open loop gain with respect to other inputs.

Second, when keeping all the outputs except y,; constant, a step change in input u,; of
magnitude Aw; will result in another change in y;. In this process, other outputs will also
be affected due to cross-coupling. In order to keep them constant, we need to adjust other
inputs correspondingly, which will also contribute to the change in ;. The gain under the

new set of conditionsis denoted by

Ay;

which can be viewed as a closed loop gain with respect to other inputs.
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Although the above gains are between the same pair of variables, they may have differ-
ent val ues because they have been obtained under different conditions. If interaction exists,
the change in y; due to achangein u; for the two cases (when other inputs and when other

outputs are kept constant), will be different. Theratio,

\ij = il (7.5)
9isly
defines the relative gain between the output y; and input u,;.

There are two extreme cases. firdt, if \;; = 0, y; iSNOT influenced by «; at all; second,
if \;; = 1, closed loop gain is equal to open loop gain, which means the interaction from
other inputsis zero and y; isinfluenced by u; ONLY.

In fact, by taking the absolute value of each RGA element and taking the inverse for
those larger than 1, the scaled elements will fall into the range of [0, 1]

Aij = [Ail([Ai] < 1)

(7.6)

)\ij = p\liﬂ(’)‘ij‘ > 1)

The larger the scaled number is, the more important the corresponding input will be. Usu-
aly, most input-output pairs are magnitude-wise insignificant and their corresponding val-
ues are close to zero. For a given output i, the contribution of each input can be easily
compared and those inputs can be arranged in a descending order in terms of their contri-
bution. Usually, one output is only predominately influenced by a small number of inputs
only.

The steady-state relative gain array of the system H(s) at DC can be computed as
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follows

A(H) = H(0)oH(0)™ " (7.7)

where o denotes element-by-element multiplication (often called the Hadamard or Schur
product), and H~7 is the transpose of 7 ~!. For systems with non-square tranfer matrix,

we can use peudoinverse instead

A(H) = H(0)o(H(0)")" (7.9)

7.2 Decentralized model order reduction

Aninterconnect circuit can be formulated as the following state-space form using modified

nodal analysis (MNA)
Ci(t) = —Guz(t) + Bu(t) 79
y(t) = Lfx(t)
where C, G € R™*", B, L € R™*?, and in which z(t) isthe state vector, and «(t) and y(¢)
represent the input and output, respectively. Typicaly, we have p < n. Model reduction
algorithms seek to produce a smaller system

Ci(t) = —Gi(t)+ Bu(t) 710

gty = L)

whereC,G € R™", B, L, e R"™?. Order r ismuch smaller than the original order n, i.e.

r < n, but the output y(¢) and (t) are approximately equal for inputsw(t) of interest.
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For the interconnect circuit in (7.9), the transfer functionis

H(s)=L"(Cs+G)'B (7.12)

and the steady-state gain H(0) isthe DC gain H p¢

Hpo = L"G™'B (7.12)

The RGA can be computed as

A(H) = HDcoHDC_T (713)

with RGA, we can decompose the whole system into a set of subsystems, each of which
corresponds to one outpuit.
For the ith decentralized model, the projection matrices V; is constructed so that the

columns span a spatial dominant Krylov subspace K ,,(A, R;), where

A= (G+sC)"'C R;=(G+sC)"'B (7.14)

In this approach, instead of al the inputs, B; is only composed of the dominant inputs

corresponding to the ith output. The ith reduced model is obtained by

C;=VICV,,G; =V GV;,B;=VB,L; = V'L (7.15)

Note that, for ith reduced model, only the ith output (the output corresponding to the :th

row of the output matrix L) isvalid.
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In this projection framework, although more emphasis has been placed on energy trans-
fers from dominant inputs, the energy transfers from other inputs are still coarsely pre-
served. Different from existing Krylov subspace methods, where only principle compo-
nents in terms of frequency is considered, the new method tales into consideration princi-
pa componentsin terms of both frequency (temporal) and spatial information to reduce the

system complexity. The DeMOR algorithm is shown in Fig. 7.2. When modeling passive

DECEMTRALIZED MODEL ORDER REDUCTION (DEMOR):
Input: H : (G,C, B, L)

Output: ﬁl : (GZ,CZ,BZ,EZ>(’L =1,... ,p)

Solve GM = B for M,

Compute Hpe = LT M,

Compute relative gain array A(H) = HpcoHpe ™"

Scale the RGA valuesto the range of [0, 1]

Set the threshold e

For outputi (i = 1,...,p)
Determine the corresponding dominant input matrix B;
Model order reduction using PRIMA to obtain H;
éi = ‘/;TC‘/ia él = ‘/;TG‘/;a BZ = ‘/iTB7 El = ‘/ZTL
where colspan(V;) = K, ((G + sC)7*C, (G + sC)™'B;)

Sk wbdpE

Figure 7.2: Decemtralized model order reduction (DeMOR).

systems which cannot produce energy internally, it is desired that the reduced models aso
be passive. Otherwise, the reduced models may cause nonphysical behavior when used in
later simulations, such as by generating energy at high frequencies that causes erratic or
unstable time-domain behavior. Now we show such nonphysical behavior can be avoided
in each DeMOR reduced model.

For example, for the ith reduced model, we have

C;i+Cr>0 G;+G'>0 L; =B, (7.16)



Therefore, the ith reduced model is provably passive [40], which means nonphysical be-
havior will not be observed in any output of the ith reduced model when used in later
simulations. Since the output to be used in the :th reduced model in DeMOR is just one
of such outputs (the :th output), there will be no nonphysical behavior in simulations with

DeMOR reduced models.

7.3 Localized modeling schemefor power grid analysis

Fast analysis of power grid networks has been a challenging problem for many years. The
huge size renders circuit simulation inefficient and the large number of inputs further limits
the application of existing Krylov-subspace macromodeling algorithms. However, strong
locality has been observed that two nodes geometrically far have very small electrical im-
pact on each other because of the exponential attenuation. However, no systematic ap-
proaches have been proposed to exploit such locality.

In this section, we propose a novel modeling and simulation scheme, which can au-
tomatically identify the dominant inputs for a given observed node in a power grid net-
work. This enables us to build extremely compact models by projecting the system onto
the locally dominant Krylov subspace corresponding to those dominant inputs only. The
resulting ssimulation can be very fast with the compact models if we only need to view the
responses of a few nodes under many different inputs. Experimental results show that the
proposed method can have at least 100X speedup over SPICE-like simulationson a number

of large power grid networks up to 1M nodes.
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7.3.1 Locality of an RC mesh

We first show that RC meshes modeling power grid networks have strong local property.
The locality of RC mesh can be evaluated from the relative gain array. Givena21 x 21 RC
mesh, each node is viewed as an input and the relative gains from each node to the central
node coordinate (11, 11) are plotted in Fig. 7.3. It is easy to see the nodes closer to the
central node will have moreimpact. In addition, the node is only predominately influenced
by a small number of inputs nearby, which validates the observation in [11]. As aresult,
RGA is avalid locality indicator to identify the most dominant inputs for a given output.
With locality, we build alocally dominant reduction subspace (to be explained below) for a
few observing nodes of interest, regardless of the size of the network, the number of inputs,

and the patterns of input signals.

So Lk N w » o«

w

Figure 7.3: Locality illustration of an RC mesh.

7.3.2 Localized compact modelsat DC and wide frequency range

A localized model of a power grid network can be formulated as follows

Co(t) = —Gu(t) + Bi(t)

y(t) = LTo()

(7.17)
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where C, G € R™*™ are capacitance and conductance matrices respectively, B € R"*? is
the input matrix, v(t) € R™ and i(t) € RP are the node voltage vector and input current
vector.

Note that L, € R™*? isthe output matrix corresponding to ¢ nodes we are measuring.
In our problem, we are only interested in afew nodes. The corresponding transfer function
is

H(s)=LI(Cs+G)'B (7.18)

and the steady-state gain H(0) becomesthe DC gain H p¢

Hpe = LYG™'B (7.19)

In this case, Hp¢ is not a square matrix, then pseudoinverse of H7%., (H%,.)" isused to
compute the RGA

A(H) = Hpco(Hpc" )" (7.20)

Now, we show that the RGA evaluated at DC (s = 0) issufficient for other frequencies.
Thereason isthat a power grid network can be deemed as a cascaded |ow-pass RC filter and
for the low-passfilter, the attenuation of high frequency componentsis much faster than the
attenuation of low frequency components, which means high frequency components tend
to be more |ocalized and a decision based on DC is conservative. So the results of RGA at
DC are actudly valid for all the frequency range for those RC networks.

InFig. 7.4, we show that asthe frequency increases (DC (top), 1G(middle), 100G (bottom)),

RGA values become more locally concentrated around a few nodes for each output node.
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Figure 7.4: RGA computed at different frequencies.

7.3.3 Locally dominant Krylov subspace method

For thelocalized model, the projection matrix Vy,,,; 1S constructed so that the columns span

aKrylov subspace K, (A, Riom:), Where

A= GilC? Rdomi = Gileomi (721)

In our approach, instead of all the inputs, Bg,,; is only composed of a small number of

dominant inputs corresponding to those outputs of interest. This leads to the newly pro-
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posed locally dominant Krylov subspace reduction:

CNtoc = VZWC'V omi s é oc — Vj;szv omi
foe 7 Tdomit Doty Trloe T Fdomi T (7.22)

Bioe = Vi By Lioe = Vi Lo
where colspan(Viom:) € K (A, Raom:)- If we areinterested in anumber of nodes, then the
system is projected onto a subspace which is the union of the locally dominant subspaces
of those nodes. We remark that if the nodes of interests are limited to one local region,
the order of reduced model may not increase even if more nodes are to be measured. The
reason is that those nodes share many inputs (thus their subspaces). The proposed locally
dominant Krylov subspace algorithmis shownin Fig. 7.5.

Our new method can be viewed by exploiting both temporal and spatial information
to reduce the system complexity. Existing Krylov-subspace methods only take into con-
sideration frequency (thus temporal) information. A reduction can be achieved because
the frequency components are not viewed as equally important and only the dominant fre-
guency subspace is preserved. However, those methodsfail to consider spatial information
and al the inputs are implicitly assumed to be equally important and fully preserved. In
fact, if we focus on afew nodes or alocal region, most inputs are insignificant owning to
strong locality. As a result, the new approach can generate much more compact models

than the existing temporal-only reduction methods.

7.3.4 Computational complexity analysis

For an RC circuit of order n and with p ports, it will take O(n”) to compute the DC moment
Hpe asmatrix G isvery sparsein general, where, typically, 1 < 3 < 1.5 foran x n sparse

matrix.
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THE NEW LOCALLY DOMINANT KRYLOV SUBSPACE SIMULATION ALGO-
RITHM:

Input: G, C, B, u(t), set of observation nodes

Output: transient waveform at the observation nodes

Solve GM, = B for M, (DC moment)

Compute Hpe = L," M,

Compute RGA A(H)=Hpco(Hpo) T

Scale the RGA values to the range of [0, 1] and arrange them in a de-
scending order in terms of the contribution to each output

For those outputs of interests, determine the corresponding dominant in-
put matrix By,,; based on RGA

6. Compute localized reduced models by projection

7. Compute transient response on the reduced models for u(t)

WP

o

Figure 7.5: The locally dominant Krylov subspace simulation method for power grid net-
work analysis.

The computation of pseudoinverseis based on the singular value decomposition (SVD)
of the matrix Hp', which is a p x ¢ matrix, where ¢ is the number of nodes we are
interested in. Since we are only interested in a small number of nodes, we have ¢ < p and
the cost is O(¢?p). Assume that p < n asthisisthe typical case, the reduction processis
still dominated by O(n”).

Thelocalized model will take about O (nr?-+rn“+n”) to reduce using Krylov-subspace
method, where r is the reduced order and 1 < o < 1.2 for sparse matrices. n” isthe same
cost as the computation of the DC moment. The transient simulation of the reduced system
takes about O(r? + r?m) where m is the number of time stepsin time domain.

Since the reduced order r is a very small number, the total cost is still dominated by
O(n”), whichis one DC solution of the original network. The reduced mode!s can be used

for many inputs without further solving the network again.
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7.3.5 Partitionsof input signalsfor RGA computation

To efficient compute RGA values for an RC mesh network, we find that we will be better
off if we can compute RGA for current source inputs only (without voltage source inputs)
as the two types of the signals are quite different in terms of magnitude.

Given a power grid network, as shown in Fig. 7.6, there are a small number of voltage
sources and ahuge number of current sources. The voltages suppliesare DC with a constant
value and the current sources are pulse currents generated when the gates are switching.

Assume that we are interested in a particular node, the voltage responses at that node

can be decomposed into two parts owning to superposition:

V= ‘/voltage + churrent (723)

where the first part is the responses of DC voltage sources, which is static, and the second
part is the responses of independent current sources, whichisdynamic. And the power grid
network can be decomposed into two parts correspondingly, which are shown in Fig. 7.7

and Fig. 7.8.

N
3 L
NS
Figure 7.6: Power grid model
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NN
Figure 7.8: Power grid model: dynamic part

Vioitage 1S Static and it can be easily obtained viaone DC analysis as shown in Fig. 7.7
because the number of voltage inputs is small and the conductance matrix is sparse. To
compute the RGA, we only use the dynamic part shown in Fig. 7.8, which can give better

indication of the RGA among all the current inputs.

7.4 Experimental results

The proposed method has been implemented in Matlab 7.0 and tested on an Intel quad-core

workstation with 16GB memory.
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The first example is a simple RC mesh (R = 12 and C' = 1pf) with 1600 nodes. We
verify the reduction accuracy in the time domain and frequency domain. 33 current sources
are applied to the circuit, each of which generates a series of pulses of unit magnitude. The
voltage responses at those input nodes are to be observed. The RGA value is shown in
Fig. 7.9. We can see that the most input-output pairs are magnitude-wise insignificant and

their corresponding values are close to zero.

Figure 7.9: Degree of interaction measured by RGA.

First, we take a look at the transient responses at port 1. From Fig. 7.10, we see that
port 1 isonly dominately interacted with itself. The RGA values of other inputs are lower
than the threshold value, 0.1. In this case, a reduced model of order 7 can match the
original output well (we only build one reduced model for port 1). The results of PRIMA,
SVDMOR, and DeMOR are shown in Fig. 7.10 by using the same order. We notice that
SVDMOR dose not work well. The reason isthat DC matrix hasfull rank, which isusually
the case for a complete matrix-valued transfer function. The frequency response at port 1
fromall inputs (i.e. | >_%_, 1;(s)[) isalso shown in Fig. 7.10 (the bottom one).

Now, we take a look at another port, the port 12, which is in the center of the circuit.
From the RGA values for port 12, there are three dominant inputs: input 8, input 12, and

input 16. A reduced model of order 12 is needed for a good match, where four moments
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Figure 7.10: Relative gains (top), time-domain (middle) and frequency-domain responses
at port 1 (bottom) for an RC circuit.

of the corresponding inputs are matched. The reduction results of PRIMA, SVDMOR, and
DeMOR are compared in Fig. 7.11.

DeMOR is quite suitable for analyzing a number of nodes in a local region. We can
perform the RGA analysis for all those nodes and find their dominant inputs. Typically,
those nodes to be observed may share a very small number of dominant inputs, which is
the case for power grid networks where input sources are not attached to every node to be
observed.

In the second example, we have a power grid network with 10000 nodes and 1000 even

distributed current sources. Now we are interested in the transient responses for 500 nodes
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Figure 7.11: Relative gains (top), time-domain (middle) and frequency-domain responses
at port 12 (bottom) for an RC circuit.

inalocal region. Theresults of RGA of the circuit are shown in Fig. 7.12. We can see, the
distribution of those nodesin terms of dominant inputs are very concentrated, which means
a large number of nodes share only a small number of dominant inputs. For each node,
we choose the most dominant input. Since many inputs are shared, the redundant ones are
eliminated. Asaresult, 25 representative inputs are identified for the 500 nodes and only
2 moments are matched for each input, which results in a reduced model of order 50. The
transient responses of the 500 nodes, however, can be well approximated by the localized
reduced model.

Fig. 7.13 showsthetransient responses at one of the 500 nodes. Given the same reduced
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Chapter 8

Conclusion

In this thesis, we have proposed several non-Krylov subspace model order reduction tech-
niques to mitigate three existing problems of Krylov subspace methods.

First, Krylov subspace methods can not generate models as compact as desired. To
mitigate this problem, we have proposed two solutions based on fast balanced truncation
via gramian approximation at the similar cost as the Krylov subspace methods. Different
from existing single gramian approximation, our methods take into consideration of both
gramians, which results in compact models with global accuracy. The first-order solution
is very accurate for general structure systems and the second-order solution can preserve
both passivity and structure information inherent to RLC circuit formulation.

Second, Kryov subspace methods are lack of passivity guarantees for general struc-
ture systems. In this study, a novel rational interpolation has been proposed to generate
guaranteed passive reduced models for general structure dynamic systems. The proposed
method is based on the maximum entropy solution of Carathéodory extension problem,
which is as efficient as Krylov subspace methods with similar moment-matching property.

Experimental results have demonstrated that CEMOR can be orders of magnitude faster
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than the positive-real TBR approach for reducing general structure systems with compara-
ble accurate reduced models. We have aso proposed the concept of conditional passivity
and amethod to generate frequency band-limited passive reduced models. Such relaxation
makes the circuit passive modeling work much easy using fitting based methods for general
structure systems.

Finally, Kryov subspace methods degrade dramatically as the number of inputsisin-
creased. In this study, we have proposed a novel approach resolve the long-standing prob-
lem of model order reduction of linear networks with many ports. The new method, termed
DeMOR, adopts a decentralized reduction scheme, where a whole MIMO circuit is de-
coupled into a number of MISO circuits based on the input-output interactions and the
order of each circuit is reduced separately. But different from existing approaches, a ter-
minal reduction processis carried out with the aid of the relative gain array (RGA), which
measures the degree of interaction of each input-output pair. As a result, efficient passive
reduction of each subsystems become possible and so does the whole system. The pro-
posed method is suitable for resistance-dominant interconnects like on-chip power grid,
substrate planes. DeMOR can lead to extremely compact models for those systems with
massive ports compared with the traditional MOR methods. Experimental results have

demonstrated the advantage of the proposed method compared to existing approaches.
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