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Abstract—Hyperspectral video sequences (HVSs) are well 

suited for gas plume detection. The high spectral resolution allows 
the detection of chemical clouds even when they are optically thin. 
Processing this new type of video sequences is challenging and 
requires advanced image and video analysis algorithms. In this 
paper, we propose a novel method for gas plume detection 
recorded in HVSs. Based on the assumption that the background 
is stationary and the gas plume is moving, the proposed method 
separates the background from the gas plume via a low-rank and 
sparse decomposition. Furthermore, taking into consideration 
that the gas plume is continuous in both spatial and temporal 
dimensions, we include total variation regularization in the 
constrained minimization problem, which we solve using the 
augmented Lagrangian multiplier method. After applying the 
above process to each extracted feature, a novel fusion strategy is 
proposed to combine the information into a final detection result. 
Experimental results using real data sets indicate that the 
proposed method achieves very promising gas plume detection 
performance. 

 
 

Index Terms—Hyperspectral video sequences, detection, low-
rank, sparse, total variation. 
 

I. INTRODUCTION 
YPERSPECTRAL imaging has been used in a number of 
applications such as land-use or land-cover mapping, 

forest inventory, or urban-area monitoring [1-4]. However, 
hyperspectral video sequences (HVSs) are much less common 
due to their large data size. Thanks to the dramatic 
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improvements of sensor technologies, HVSs are currently being 
developed, opening the door to new research avenues and 
application, involving critical new methodological 
developments [5-8]. 

Standoff detection of chemical gas plume is necessary to 
environmental monitoring, emergency response, chemical 
warfare threat mitigation and earth sciences [9]. However, this 
task still remains a challenging problem as conventional RGB 
images are not able to capture the potentially invisible gas 
plume. For example, a wide range of chemical gases have 
distinctive spectral signatures in the long-wave infrared (IR) 
(LWIR) region, requiring high resolution in the electromagnetic 
spectrum for detection. Another approach for plume detection 
utilizes temporal information by capturing multiple images. 
HVSs reveal the spectral properties of the scene and record its 
evolution over time at the cost of processing a large data 
hypercube [10-13].  

Some prior work has been done on gas plume detection in 
recent years. The existing works can be classified into three 
categories. The first category is methods based on anomaly 
detection. In [14-16], the Automatic Matched Subspace 
Detector (AMSD) was used to detect gas plumes and the Clutter 
Matched Filter (CMF) was used to develop gas plume detection 
algorithms [17-18]. Both the AMSD and CMF detectors can 
detect gas plumes against a complex background, in which 
single pixel false alarms are eliminated by post processing 
techniques. Thus, these methods are widely used in 
hyperspectral image (HSI). But in HVS, these methods can only 
be applied frame by frame and the post processing technique 
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might be different in different scenes. The second category 
performs clustering of spectral data to separate the plume from 
the background [8, 19-20]. These methods often exhibit more 
spatial continuity. In an earlier paper [8], it was shown that 
principal component analysis applied to each frame resulting in 
temporal flicker for the video, requiring a Midway equalization 
procedure.  The later works [19,20] are able to perform graph-
based clustering across several video frames, without this effect.    
The third category is to extend the traditional object tracking 
algorithms to HVS. The mean shift tracker is applied in [21]. In 
[22], the position of the plume is first estimated, using the 
temporal redundancy between two consecutive frames. Then a 
Binary Partition Tree (BPT) is built and pruned according to the 
previous estimation. By this way, the temporal continuity of 
HVS is discovered. However, the spectral characteristic of HVS 
is not fully used, because these methods work with only a few 
features of HVS.  

In this paper, we propose a method to process HVS for the 
detection of a chemical gas plume diffusing in the atmosphere. 
We assume that the gas plume is the only moving object and the 
background of different frames is assumed to remain almost 
constant. Some change is allowed such as variation caused by 
illumination change or periodic motion of dynamic textures. 
Thus it is reasonable to assume the background information is 
low dimensional. Even in a static shot, there may be noise 
corrupting the background, but the proper low-dimensional 
approximation will remove this. Moreover, the gas plume is a 
moving object which we assume moves independently of the 
background. It includes spectral changes that cannot be 
incorporated into the low-dimensional model of background. 
These gas plume pixels are treated as outliers in the low-
dimensional model. As the gas plume occupies only a small 
fraction of the image pixels, it can be treated as a sparse 
contribution. We assume finally that the gas plume forms a 
spatially and temporally connected set of pixels. Based on these 
assumptions, we use a low-rank plus sparse matrix 
decomposition to separate the background from the gas plume. 
In addition, the total variation (TV) regularization for video can 

explicitly describe the gas plume continuity in both the spatial 
and temporal directions. In traditional moving object detection 
methods [23-28], one column of the matrix is the vectorized 
image of a frame, hence only one 2-D matrix is required to 
represent the video. However, in HVS, there are hundreds of 
bands. And one 2-D matrix becomes unwieldly large in order 
to cover all the information contained in HVS.  

To overcome this problem, we propose a novel fusion 
strategy called MaxD. After first performing detection in each 
band, it takes the maximum value of the detected gas plume part 
across different features. In this way, we utilize all the useful 
information contained in different features. The experiments on 
real gas plume diffusing hyperspectral videos demonstrate that 
our proposed model can achieve higher detection accuracies in 
gas plume detection compared with the methods which only use 
one principal component feature. Experimental results also 
show that, the proposed method particularly performs well for 
target detection in noisy HVS with changing object outline. 
Thus our method is well suited to gas plume detection in HVS 
since the imaging quality in long-wave infrared wavelength is 
lower than in other wavelength. 

Although the combination of the TV regularization and low-
rank decomposition has been exploited in conventional video 
object detection [29-31], it is the first time to use the low-rank 
decomposition based method in hyperspectral video. The 
advantage of hyperspectral video is the abundant spectral 
information that can provide us more information about the gas 
plume. In this paper, the TV regularized low-rank 
decomposition method is used as an initial step to extract the 
gas plume’s information from one spectral component or 
combination. Then a further step is conducted which fuses the 
detection results of all the spectral information. In addition, 
both the sparse and TV constraints are imposed on the gas 
plume part according to the characteristic of gas plume. 
However, different regularization combinations are imposed on 
the foreground since the moving objects in [30, 31] are different 
from the gas plume. 

For illustrative purposes, Fig. 1 shows the flowchart of the 
proposed detection algorithm using a diagram. The main 
contributions of this paper can be therefore summarized as 
follows: 

(1) We propose a new framework of gas plume detection in 
HVS different from the conventional approaches found in the 
literature. First, a low rank plus sparse decomposition with total 
variation regularization is employed to produce each feature’s 
detection result. We then use the MaxD fusion strategy to 
combine different features’ detection results into an effective 
and efficient algorithm to solve the problem. 

(2) Taking into consideration that, the gas plume is a small 
cluster and moves continuously between neighboring frames, 
we naturally incorporate the space and time connectivity by 
introducing total variation regularization. 

(3) HVS contain many bands which have important spectral 
information. The proposed fusion strategy in the decision 
process allows to better use the information of different features.  

The rest of this paper is organized as follows. In Section II, 
the details of the proposed gas plume detection method based 

 

Fig. 1.  Diagram showing the flowchart of the proposed detection algorithm. 
First, PCA is used to reduce the dimension. Then the same principal component 
of each frame form a matrix which can be decomposed into the background and 
gas plume part by LRSTV.  Finally, the detection results of different principal 
components are fused together using MaxD strategy. 
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on low-rank, sparse and total variation model (GPD-LRSTV) is 
described. In Section III, experiments with real data are 
described and analyzed followed by conclusions in Section IV 

II. PROPOSED GAS PLUME DETECTION METHOD 

A. Problem Formulation 
In the HVS a gas plume arises in a given frame and moves 

during the sequence. Our goal is to separate the moving gas 
plume from the background. Background modeling or 
subtraction from video sequences is a popular approach to 
detect activity in a scene which finds its application in video 
surveillance from static cameras [28]. However, background 
estimation is complicated by the presence of a moving object, 
as well as variability in the background itself. Because 
background components in different frames are highly 
correlated, it is reasonable to assume that this variability is low-
rank. In addition the foreground gas plume is spatially localized 
and sparse. Due to these properties, robust principal component 
analysis (RPCA) [32] is widely used for moving object 
detection. In traditional video, however, each frame is 
composed of one band which is vectorized as column of a 
matrix. Unlike these traditional videos, HVS have hundreds of 
bands in each frame, and it is very computational complex to 
put the whole frame in a column. Thus in the first step, a one-
band image is extracted at each frame. The extracted one-band 
image will be detailed in Section II-C. Suppose we are given a 
HVS including  frames, and each frame can be seen as a 3-D 
tensor of size , where ,  and  are the 
number of rows, columns and bands of each frame, 
respectively. Then the vectorized one-band images are stacked 
as columns of a matrix . This matrix can be 
expressed as the sum of a low-rank matrix modeling the 
background and a sparse error matrix representing the gas 
plume in the scene as follows: 

 

                          (1) 

 
where  represents the background matrix and 

 represents the sparse error matrix.  is a positive 
parameter controlling sparsity. Unfortunately, (1) is a highly 
nonconvex optimization problem and no efficient solution is 
known. A tractable optimization problem can be obtained by 
relaxing (1), replacing the -norm with -norm and the rank 

norm with the nuclear norm  where  is 

the  singular value of . This yields the following convex 
surrogate: 

 

                               (2) 

 
Candes et al. [33] proved that the underlying low-rank matrix 
 and the underlying sparse matrix  can be exactly 

recovered with high probability. 
The original work of RPCA in [32] proposed iterative 

thresholding methods with low complexity, but their 
convergence is generally very slow. Then various algorithms 
have been developed for specific problems. Two of the most 
popular techniques are the Proximal Gradient (PG) method and 
the Augmented Lagrangian Method (ALM), both of which are 
applicable to a variety of convex problems. The accelerated 
proximal gradient (APG) methods proposed by Lin et al. [34] 
are faster and generally more accurate. The ALM [35] achieves 
state-of-the-art performance in terms of both speed and 
accuracy to the best of our knowledge. Moreover, the inexact 
ALM proposed in [35] requires significantly fewer partial 
singular value decomposition (SVD). Other methods [23-25] 
have also been proposed in the Bayesian setting. Improved 
models have been proposed by introducing regularizations such 
as adaptive graph term [36], structured sparse term [37]. 
Further, non-convex formulations of the original problem are 
introduced by using the Schatten-  norm [38] or a non-convex 
rank approximation [39]. 

 

B. Total variation regularized low-rank sparse 
decomposition 

In our HVS, the gas plume is continuously present in the 
scene in both spatial and temporal dimensions. Classical object 
detection methods use Markov dependencies to introduce this 
property by adding spatial and temporal priors [24-25]. The 
approximate solution to these problems can be obtained by 
either Markov chain Monte Carlo (MCMC) [40] analysis or 
with variational Bayesian (VB) methods [41]. In this paper, TV 
regularization over space-time is investigated to enforce spatial 
smoothness and temporal consistency. In particular, the 
following optimization problem is proposed:  

 

                   (3) 

 
where  is the TV-norm and  is a coefficient for the 
strength of that term.  Before explaining the TV-norm, we first 
define the notation that will be used. 

The sparse error matrix  can be represented as a 3-D tensor  
, and we use  to indicate the 

intensity of position  at frame t. To simplify the 

numerical computation, we stack all the entries of  into a 
column vector  according to 
lexicographic order, where  represents the vectorization 
operator. 

Then we denote , , and  as the first-
order forward finite-difference operators along the horizontal, 
vertical and temporal directions, respectively. The definitions 
of each operator are

,

T
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, and

 with periodic 
boundary conditions [42]. 

The TV-norm  can either be defined as the 
anisotropic TV-norm [43] 

 
(4) 

 
or the isotropic TV-norm 
 

,(5) 

 
where  denotes the  element of the argument and 

 are constants used for greater flexibility in 
controlling the forward difference along each direction. The 
anisotropic TV-norm will lead to piecewise smooth solutions 
with defined horizontal and vertical edges in the sparse error 
image. The isotropic TV-norm tends to produce defined and 
smooth edges in all directions. 

Due to excellent performance suppressing discontinuous 
changes generally regarded as noises, TV regularization has 
been widely used for image and video denoising [44-46]. 

Denoting , 

is the  norm of vector , and  is the  norm of 

vector . Thus we can use  and  to 

represent  and , respectively. 

 

C. Algorithm  
To solve problem (3), the alternating direction method 

(ADM) [34] is applied. We first introduce an auxiliary variable 
to split the energy: 
 

                  (6) 

 
The augmented Lagrangian function of problem (6) is  
 

   (7) 

 
where  and  are the Lagrange multiplier matrices,  is a 

positive penalty scalar,  denotes the matrix or Frobenius 

inner product, and  represents the Frobenius norm. The 
proposed algorithms consists in updating the variables , , 
and  repeatedly, by minimizing  with other variables fixed 
as well as updating the dual variable  and . With some 
algebra, the updating schemes can be stated as follows. 

 

        (8) 

(9) 

      (10) 

 
where (8) and (9) can be efficiently computed via the singular 
value thresholding (for ) and the soft thresholding operator 
(for ).  

Then the Lagrange multipliers are updated by
 and . 

For the sake of simplicity, the subscript  is omitted and 
problem (10) can be rewritten as follows: 

 

,  (11) 

 
where  represents either the  or  norm. Here we have 

used the fact that the Frobenius norm of  is the 2-

norm of , i.e., 

.  

To solve the subproblem (11), another auxiliary variable 
 is introduced to split this energy. Thus we have 

 

    (12) 

 

Denote . Then the augmented Lagrangian 

function of (12) is 
 

   (13) 
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where  is the penalty parameter associated with the quadratic 

penalty term  and  is the Lagange 
multiplier. Again, we use the alternating direction method to 
iteratively solve the problem. 

Updating  with other terms fixed 
 

 (14) 

 

Setting the derivation of the objective function to zero, we 
have 

 
           (15) 

 
Then, the solution of (14) is found by considering the normal 

equation: 
 

             (16) 
 
Traditionally, the optimal solution can be simply obtained by 

computing the Moore-Penrose pseudo-inverse of 
. However, this approach is computationally expensive due to 
the large matrix size. Due to its block-circulant structure, it can 
be diagonalized by the 3-D-DFT matrix [43]. Hence, (16) has 
the following solution 

 

      

       (17) 
 

where  denotes the 3-D Fourier transform operator,  is 
the element-wise square and the division is element-wise. The 
denominator can be precalculated as it remains constant. 

Updating  with the other terms fixed 
 

  

(18) 
 
For , the solution is 
 

                    (19) 

 
where  is the shrinkage operator whose definition on 

scalars is . To extend the 
shrinkage operator to vectors and matrix, it is applied element-
wise. 

For , we first denote 

, , and  

(analogous definitions for  and ). The solution in this 
case is given by  

 

,                (20) 

 

where , and  is a small 
constant. Here the multiplication and division are component-
wise operations. 
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Algorithm 1 Algorithm for LRSTV  
Input: data matrix , parameters ,  

Initialize 1: , , , 

 , , , ， ,  . 

1. while  do 

2. Update variable : 

 
where  is the singular value thresholding operator[47]. 
3. Update variable  : 

 

4. Update variable : 
Solve problem:  

 

Initialize 2:  , , , ,  

compute the matrices , , ,  

set , ,  
While not converged do 
4.1. Update  via (16) 

4.2. Update  

 via either (18) for the anisotropic total variation 
 or (19) for the isotropic one 
4.3. Update multiplier via (20) 
4.4. Update  via (21) 
4.5 Check convergence 
   If  then 

break 
end if 

4.6. . 

Output: optimal solution   

Reshape to its 2-D matrix shape  
5: Update the out loop Lagrange multipliers as follows: 

 

6: Update  as follows: 

 
7: . 
8: end while 
Output: an optimal solution . 
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After solving each sub-problem, we update the dual variable 
 

                        (21) 
 
As mentioned in [42], the method of multipliers can achieve 

a faster rate of convergence by adapting the following 
parameter  update scheme: 

 

    (22) 

 
Here we set . After obtaining the optimal , the 

solution of (10) is obtained by reshaping vector  back into 
the 2-D matrix variable . 

The complete algorithm being proposed to solve (3) is 
summarized in Algorithm 1. 

 

D. MaxD strategy for HVS gas plume 
In HVS, there are potentially hundreds of spectral bands. 

However, in the LRSTV model only one-band video sequence 
is processed to separate the gas plume from the background. In 
order to make full use of the abundant spectral information, a 
preprocess step is conducted to produce the one-band video 
sequence before detection. The one-band video sequence 
should contain the sufficient information from the HVS. Band 
selection and feature extraction are two common technologies 
for preprocessing. In gas plume detection, the corresponding 
bands that reveal the most information of a specific kind of gas 
are different, so the band selection method is applied when the 
gas’s prior information is known. The selected band should be 
determined by the detected gas, but in this paper, the prior 
information of the detected gas is unknown, thus band selection 
method cannot be treated as a common way in preprocess in 
regard of different gases. Besides, due to the existence of 
Earth’s surface emission, atmospheric absorbance, and sensor 
noise, the captured HVS have limited quality. The band 
selection method is not appropriate as it directly selects the one-

band video sequence from the lower quality raw HVS data. To 
get a high-quality video sequence and design a common 
method, a feature extraction method--principal component 
analysis (PCA) is applied in this paper. PCA is the most popular 
linear feature extraction method, which can keep the most 
information in the few components in terms of variance. Due to 
the low complexity and the absence of parameters, PCA is 
competitive for the purpose of classification and target 
detection of hyperspectral data [48]. 

Exploring multiple features in remote sensing images has 
been well studied for image classification or scene 
classification [49-52]. In this paper, for each frame of the HVS, 
PCA is performed and the first  components are kept. By 
performing PCA, the principal components act as a type of 
spectral filter where each component represents a particular 
chemical spectrum in the image. To obtain a -dimensional 
representation of the data, each pixel is projected onto these  
principal components. A natural strategy of gas plume detection 
is to extract one feature which provides the best contrast 
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Algorithm 2 Algorithm for GPD-LRSTV 
Input: hyperspectral video sequence, parameters , ,   
1. Using PCA to extract the first  principal components in every frame 
2. For  

2.1. Form matrix  where the  column is the vectorized  
 principal component of the  frame. 

2.2. Normalize  as follows  

 

2.3. solve the following problem using Algorithm 1 

 End for  
5. Compute the final moving object part , subject to: 

 

Output: an optimal solution   
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(a)                                                  (b) 

    
(c)                                                  (d) 

    
(e)                                                  (f) 

Fig. 2.  HVS-aa12, frame 14 (a) ground truth, the red pixels represents the gas 
plume, then the resulted gas plume part using the (b) 1st (c) 2nd (d) 3rd (e) 4th 
(f) 5th principal component  Note that, for better comparison, all the gas plume 
images are scale to [0 1]. (b) and (f) are close to the ground truth which means 
the 1st and 5th principal components have high contrast between gas plume 
and background in frame 14. 
 

    
(a)                                                  (b) 

    
(c)                                                  (d) 

    
(e)                                                  (f) 

Fig. 3.  HVS-aa12, frame 22 (a) ground truth, the red pixels represent the gas 
plume, then the resulted gas plume part using the (b) 1st (c) 2nd (d) 3rd (e) 4th 
(f) 5th principal component.  Note that, for better comparison, all the gas plume 
images are scale to [0 1]. (d) is close to the ground truth which means the 3rd 
principal component has high contrast between gas plume and background in 
frame 22. 
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between plume and background in each frame, then the 
extracted feature can be used as the input data matrix  of 
Algorithm 1. However, it is hard to decide which component 
has the best contrast between gas plume and background. 
Moreover, some parts of the gas plume are obvious in one 
principal component and some other plume parts will be 
obvious in other components. For example, Fig.2 (b)-(f) shows 
the resulted gas plume part using different principal 
components from frame 14, HVS-aa12. Details of HVS aa12 
are presented in Section III-A. Compared to the ground truth 
map Fig.2 (a), the 1st and 5th principal components have better 
detection results than the other 3 components. In Fig.3 (b)-(f), 
the gas plume part using different principal components of 
frame 22 HVS aa12 are shown. The 3rd principal component is 
the best among the first five principal components. For different 
frames, the best feature for detection may not be the same. Thus 
it is unreasonable to use only one feature to represent the 
hyperpsectral image for gas plume detection. To detect the gas 
plume with high probability in each frame, we propose a more 
robust method by combining all the features. In the first step, 
PCA is performed frame by frame to extract the first  
principal components. Then the  principal component of all 
frames are combined to form a matrix  where each column 
is each frame’s  feature. For fair comparison, all matrices 

 are normalized by ，

where  represents the maximum entry of the matrix 

. Each matrix  is then decomposed into the background 
part  and the plume part  using (3) with the same 
parameters  and . As different principal components are 
different projections of the original features, the resulting 
moving objects of different principal components have 
different ability to reveal the gas plume. To combine all the 
information, the plume detection is  where each entry is the 
maximum value of all  at the same coordinate, which can be 
written as 

 
(23) 

 

Here  represents the absolute value of the  row and 

 column entry of matrix . In this way, gas plume detected 
by different principal components is kept. For principal 
components which have low contrast between background and 
gas plume, the corresponding moving object part  will be 
small, and it will not affect the final result as only the maximum 
value will be stored. Moreover, although this strategy is 
sensitive to noise, the TV regularization has removed the noise 
in prior steps. In [10], a Midway method for histogram 
equalization is used to reduce flicker between frames. Whereas 
in our method, the flicker between frames will not affect the 
final detection because we normalize all the principal 
components matrix  and the low rank matrix is able to 
describe the flicker between frames. Thus the sparse error 
matrix will not affect by the flicker which only shows the gas 
plume. 

The maximum value detection strategy is noted as MaxD and 
the main steps for the GPD-LRSTV algorithm are shown in 
Algorithm 2. 

 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
In this section, we provide experimental results for our gas 

plume detection algorithm with real data sets. From different 
perspectives, we adopt two evaluation criteria. Because the gas 
plume can be seen as the anomaly in each frame, we can use the 
receiver operating characteristic curve (ROC) to measure the 
performance of the methods. A better detector would lie nearer 
to the upper-leftmost corner and result in a larger area under the 
curve [53]. As more than one frame has to be compared, the 
area under the ROC curve (AUC) of each frame is calculated 
for comparison. A bigger AUC statistic represents a better 
performance. For quantitative evaluation, we measure the 
accuracy of gas plume detection by comparing our result with 
the ground truth [54]. We can evaluate the results using 
precision and recall, which are defined as 

             (24) 

where TP, FP, TN, and FN are the numbers of true positives, 

X
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TP TPprecision= ,     recall= .
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Fig. 4.  First principal component of 12 consecutive frames of a hyperspectral 
sequence 
  

  
(a)                                                  (b) 

  
(c)                                                  (d) 

 
(e) 

Fig. 5.  (a) First principal component of frame 18, HVS aa13. And the detected 
result over the first principal component using (b) IALM (c) DECOLOR (d) 
NRA (e) the proposed LRSTV method  
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false positives, true negatives, and false negatives, respectively. 
To analyze the performance, we use the measure  

                 (25) 

The higher the measure, the more accurate the detection. 
In all the experiments, the final detection map is obtained by the 
thresholding the sparse matrix. The threshold is not known in 
prior, and we only compare the mentioned methods. For fair 

F-
precision recallF-measure  =  2 .
precision+recall

×
×

F-

 
Fig. 6.  Detection results of GPD-IALM, GPD-DECOLOR, GPD-NRA, and GPD-LRSTV on the HVS-aa13 sequence. First column is the false color images of 
frame (9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28), respectively. Second column is the ground truth. Third column and fifth column display the results obtained by 
GPD-IALM and GPD-NRA, which did not consider the spatial and temporal continuity. The fourth column shows the results of GPD-DECOLOR. There still 
exists noise in these images calculated by GPD-DECOLOR. The sixth column is the results of GPD-LRSTV which achieves the best results especially in the last 
row. 
 

 TABLE I. AUC STATISTIC FOR DIFFERENT FRAMES FOR HVS-AA13 

Frame Number 9 10 12 14 16 18 20 22 24 26 28 Average 

GPD-IALM 0.8599 0.9886 0.9911 0.9922 0.9884 0.9441 0.8579 0.9021 0.9662 0.8724 0.6214 0.9077 

GPD-DECOLOR 0.8758 0.9894 0.9932 0.9945 0.9922 0.9591 0.8896 0.9389 0.9781 0.9112 0.6748 0.9270 

GPD-NRA 0.8360 0.9744 0.9885 0.9830 0.9762 0.9110 0.8569 0.8464 0.9251 0.8253 0.5562 0.8799 

GPD-LRSTV 0.9996 0.9997 0.9995 0.9995 0.9996 0.997 0.9801 0.9936 0.9969 0.9956 0.9439 0.9914 

GPD-LRSTV(a) 0.9811 0.9997 0.9994 0.9995 0.9996 0.9946 0.9765 0.9918 0.9958 0.9857 0.7654 0.9717 

 
TABLE II. F-measure STATISTIC FOR DIFFERENT FRAMES FOR HVS-AA13 

Frame Number 9 10 12 14 16 18 20 22 24 26 28 Average 

GPD-IALM 0.1977 0.7251 0.7476 0.8188 0.8062 0.6789 0.4823 0.5559 0.6669 0.3462 0.0920 0.5561 

GPD-DECOLOR 0.2105 0.7167 0.7222 0.7992 0.7937 0.6955 0.5198 0.6014 0.7203 0.4515 0.1157 0.5770 

GPD-NRA 0.1652 0.3951 0.7234 0.7090 0.7121 0.5527 0.4250 0.4259 0.4580 0.2315 0.0751 0.4430 

GPD-LRSTV 0.8693 0.9144 0.9014 0.9107 0.9435 0.8770 0.7388 0.7962 0.8654 0.7777 0.5589 0.8321 

GPD-LRSTV(a) 0.8486 0.9262 0.8998 0.9209 0.9417 0.8824 0.7453 0.7860 0.8809 0.7810 0.2154 0.8026 
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comparison, we take the threshold that gives the maximal F-
measure with the ground-truth in all methods, thus comparing 
all methods’ best F-measures. 

The parameters  are set to (1, 1, 0.1) empirically. 
For the parameters  and , detailed discussions are 

presented in Part C, Section III. In our experiments, we adopt 
the isotropic TV, that is to say, . The number of 
features extracted by PCA is p=5 which we find keeps most of 
the information in the original HVS. ( ,  ,  )h v tg g g

l b

(2,1)q =

 
Fig. 7.  Visual results of GPD-IALM, GPD-DECOLOR, GPD-NRA, and GPD-LRSTV on HVS-aa12 sequence. First column is the false color images of frame 
(11, 12, 14, 16, 18, 20, 22, 24, 26, 28,30), respectively. Second column is the ground truth. Third and fifth columns display the results obtained by GPD-IALM 
and GPD-NRA, which did not consider the spatial and temporal smoothness. The fourth column shows the results of GPD-DECOLOR. There also exists noise 
in these images calculated by GPD-DECOLOR. The sixth column is the results of GPD-LRSTV. It achieves the best results among the compared methods. 

 
TABLE III. AUC STATISTICS FOR DIFFERENT FRAMES FOR HVS-AA12 

Frame Number 11 12 14 16 18 20 22 24 26 28 30 Average 

GPD-IALM 0.9898 0.9968 0.9762 0.9938 0.9192 0.8901 0.8768 0.8758 0.8536 0.9051 0.9022 0.9254 

GPD-DECOLOR 0.9897 0.9973 0.9681 0.9985 0.9712 0.9369 0.9211 0.9125 0.8860 0.9439 0.9168 0.9493 

GPD-NRA 0.8808 0.9579 0.8996 0.9616 0.8722 0.8535 0.8356 0.7782 0.7396 0.7424 0.7776 0.8454 

GPD-LRSTV 0.9984 0.9983 0.9966 0.9984 0.9777 0.9920 0.9901 0.9862 0.9879 0.9949 0.9281 0.9862 

GPD-LRSTV(a) 0.9958 0.9982 0.9936 0.9909 0.9553 0.9772 0.9768 0.9793 0.9875 0.9893 0.9067 0.9773 
 

TABLE IV. F-measure STATISTICS FOR DIFFERENT FRAMES FOR HVS-AA12 
Frame Number 11 12 14 16 18 20 22 24 26 28 30 Average 

GPD-IALM 0.8935 0.8830 0.8011 0.8881 0.7543 0.7291 0.7377 0.7173 0.6790 0.6975 0.6169 0.7634 

GPD-DECOLOR 0.9140 0.8860 0.8197 0.9401 0.8652 0.8439 0.8483 0.8113 0.7493 0.8040 0.6911 0.8339 

GPD-NRA 0.2358 0.5772 0.4093 0.7792 0.6786 0.6116 0.6211 0.5376 0.4509 0.3810 0.3511 0.5121 

GPD-LRSTV 0.9214 0.8729 0.8866 0.9156 0.8823 0.9442 0.9252 0.9065 0.9178 0.9105 0.6612 0.8858 

GPD-LRSTV(a) 0.9200 0.8708 0.8784 0.9226 0.8921 0.9247 0.9394 0.8982 0.9105 0.8746 0.7059 0.8852 
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A. Data sets description 
The first two hyperspectral data sets used in our experiments  

were provided by the Applied Physics Laboratory at Johns 
Hopkins University. They consist of video sequences recorded 
during the release of chemical plumes at the Dugway Proving 
Ground. The videos were captured by three different long wave 
infrared spectrometers placed at different locations to track the 
release of known chemicals. The cameras were about 1.25 miles 
away from each release at an elevation of about 1300 feet. The 
sensors captured one data cube every five seconds consisting of 
measurements at wavelengths in the long wave infrared 
(LWIR) portion of the electromagnetic spectrum.  

Fig. 4 features 12 consecutive frames of a hyperspectral 
sequence, provided by the Applied Physics Laboratory at Johns 
Hopkins University 1 . They have been acquired by the US 
Defense Threat Reduction Agency and the National Science 
Foundation. Since the original data have several hundreds of 
spectral bands, the actual visualization of the data is not a 
straightforward task. For illustrative purpose, we simply plot 
here the first principal component of each picture. The exhibits 
somewhat low contrast and low signal to noise ratio. 
Monitoring of the plume could be seen as a standard computer 
vision task of detection, segmentation and object tracking, 
however this is actually much more challenging for the 
following reasons:  

- The plume is not a solid object. It is impacted by significant 
modifications of its shape between each frame, even though 
there is some temporal continuity that we want to use. The 
tracking must take this into account.  

- The plume is not opaque. One can see the background 
information through it and it has very diffuse edges. 
Consequently, standard segmentation is not a sufficient 
approach for the analysis of the data, while this should anyway 
be considered as a first step. 

- As previously mentioned, due to the high dimensionality of 
the data, many traditional image analysis methods will not 
work. 

 

1  The images are of dimension 128 × 320 × 129, where the last dimension 
indicates the number of channels, each depicting a particular frequency from 
7,820 nm to 11,700 nm, spaced 30 nm apart. The sets of images were taken 
from videos captured by three long wave infrared (LWIR) spectrometers, each 

Furthermore, in order to evaluate the extensibility and 
effectiveness of our proposed detection method on traditional 
moving objects, we perform the experiments on a third data set, 
which is a sequence of 30 frame hyperspectral video of a static 
scene with a moving box sliding from the right side of the image 
to the middle of the image. In each frame, 33 bands are sensed 
covering the range from 430 to 720nm at 10nm resolution, so 
the size of each frame is 480×752×33. It is originally used to 
testify the restoration accuracy of a hyperspectral video of 
dynamic scenes from a few measured multispectral bands per 
frame [55].  

 

B. Detection Results 
The first data set studied is the HVS-aa13 map. It has a total 

of 31, with 20 containing the gas plume. Along with the HVS 
data, 11 frames of gas plume ground truth are provided to 
evaluate the performance. Qualitative and quantitative results 
of our methods on this data set are given. 

First, to demonstrate the superiority of the introduced TV 
regularization, we compare our results with inexact Augmented 
Lagrange Multiplier (IALM) [35], DECOLOR [26] and 
nonconvex rank approximation (NRA)[39] methods. The 
IALM and NRA separate the background and gas plumes 
without considering the spatial and temporal smoothness. 
DECOLOR adopts the nonconvex sparsity penalty and Markov 
random field (MRF) to detect outliers which prefers the regions 
that are relatively dense and contiguous. As the DECOLOR 
directly gives the foreground mask without tuning thresholds, it 
cannot be used to compute the AUC statistics and applied in the 
MaxD progress. We employ the difference between the original 
video and the background part as the detection result. Fig.5. (a) 
shows the 18th frame’s first principal component and Fig. 5. 
(b)- Fig. 5. (e) show the foreground part of the IALM, 
DECOLOR, NRA, and LRSTV methods, respectively. To 
better show the differences between these different methods, we 
normalize the foreground part dividing by their corresponding 
maximum value as shown in Fig. 5. (b)- (d). The detected gas 

placed at a different location about 2 km away from the release of plume at an 
elevation of around 1300 feet. One hyperspectral image is captured every five 
seconds. The size of each frame is reduced to 128 × 320 × 5 after PCA 
dimensional reduction. 

  
(a)                                                                                        (b) 

Fig. 8.  (a) AUC statistics for methods using different principal component and GPD-LRSTV of HVS-aa12 (b) F-measure statistics for methods using different 
principal components and LRSTV-MaxD of HVS-aa12. The PCn-LRSTV (n=1,2,3,4,5) denote LRSTV using the 1st, 2nd, 3rd, 4th, 5th PC respectively. 
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plume of LRSTV is obvious and smooth, and there is no noise 
in the background positions as shown in Fig. 5. (d). This 
indicates the denoising effect of the introduced TV 
regularization. 

Next, we use the above three methods to detect the 
foreground part in Algorithm 2. We denote the resulting 
methods using IALM, DECOLOR, NRA, and LRSTV as GPD-
IALM, GPD-DECOLOR, GPD-NRA, and GPD-LRSTV, 
respectively. The final results are shown in Fig. 6. We see that 
the results are noisy except for GPD-LRSTV which is clean, 
similar to the ground truth. Since the gas plume dissipates, it is 
hard to detect by the 28th frame shown in the last row. Here, 
the results of GPD-IALM,GPD-DECOLOR, and GPD-NRA 

are rather poor. Because of the spatial and temporal continuity 
constraint enforced by TV regularization, our method can still 
recover the faded plume. GPD-LRSTV enforces continuity 
along the temporal dimension which penalizes rapid change 
between consecutive frames. To provide an objective 
comparison, the AUC and F-measure values of these frames are 
given in TABLE I and TABLE II. The anisotropic TV-norm is 
also considered for comparison. We use GPD-LRSTV(a) to 
denote the method using anisotropic norm. We can see that the 
proposed GPD-LRSTV achieves the best numerical results of 
every frame in terms of both AUC and F-measure statistics. 
GPD-LRSTV(a) achieves a similar result with GPD-LRSTV 
which indicates the anisotropic TV-norm and isotropic TV-

 
Fig. 9 Visual results of GPD-IALM, GPD-DECOLOR, GPD-NRA, and GPD-LRSTV on HVS-MB sequence. First column is the false color images of frame (1, 
4, 7, 10, 13, 16, 19, 22, 25, 28), respectively. Second column is the ground truth. Third column displays the results obtained by GPD-IALM, which did not consider 
the spatial and temporal smoothness. The forth column shows the results of GPD-DECOLOR. The fifth column is the results of GPD-NRA. The sixth column is 
the results of GPD-LRSTV.  
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norm have the similar effect in the gas plume detection. 
The second data is the HVS-aa12 sequence. As with HVS-

aa13 sequence, it has 31 frames and 20 frames with a gas plume 
present. The results are shown in Fig. 7. We find that GPD- 
IALM and GPD-NRA detect most of the gas plume, but many 
isolated background pixels are detected as well. The GPD-
DECOLOR algorithm produces fewer incorrectly detected 
pixels. The GPD-LRSTV does not have this problem and the 
detected gas plume is continuous. The numerical results shown 
in Table III and Table IV prove the effectiveness of the 
proposed GPD-LRSTV.  

To verify the efficiency of the proposed MaxD strategy, the 
detected results using a single principal component are 
compared with the proposed GPD-LRSTV. We use the PC1-
LRSTV to represent the method with p=1, taking the first 
principal component with analogous definitions for other 
principal components. Fig. 8. (a)-(b) show the AUC and F-
measure statistics of the methods using different principal 

components and the full GPD-LRSTV method using five 
components. It can be seen that in frame 11, 12 and 14, PC1-
LRSTV (LRSTV using the first PC) achieves good results, and 
in the following frames PC3-LRSTV (LRSTV using the third 
PC) achieves good results. However, GPD-LRSTV generally 
achieves the best results in every frame. This demonstrates that 
the gas plume may not be detected by one single principal 
component, but by taking the maximum value of the principal 
components’ results we can obtain a robust detection result in 
every frame.  

Then, we apply our proposed method on the third data set. 
The results are shown in Fig. 9. In this video, the moving object 
has fixed shape and size in all frames and the differences 
between moving object and background is clearer than the gas 
plume videos. Thus the detection task is easier in this 
hyperspectral video sequence. From Fig. 9, it can be seen that 
all methods can detect the moving box and give a complete 
outline. This is because the scene is simpler and the original 
RPCA model can detect the moving object very well. TABLE 
V and VI shows the AUC and F-measure statistics for HVS-
MB. GPD-DECOLOR gained the best performance as 
DECOLOR had been proven to be effective in object detection 
where the object keeps the same outline and has obvious 
differences with the background. Besides, in HVS-MB dataset, 
there is less noise in the scene due to the high imaging quality 
in 430nm-710nm wavelength. It is reasonable that GPD-
DECOLOR achieved the best results in HVS-MB. However, 
we can still see that the result of GPD-LRSTV is contiguous in 
spatial direction and has less background part being detected as 
moving object.  

We concluded that our proposed GPD-LRSTV method 
achieves very competitive detection results on all the tested 
HVS datasets. Moreover, the TV regularization can eliminate 
the noise errors, thus leading to the best detection accuracy 
while processing the HVS with low signal to noise ratio. 

 

C. Sensitivity to the regularization parameters 
The proposed method involves two important regularization 

parameters:  and . Ideally, we desire a robust method to l b

TABLE V. AUC STATISTICS FOR DIFFERENT FRAMES FOR HVS-MB 

Frame Number 1 4 7 10 13 16 19 22 25 28 Average 

GPD-IALM 0.9288 0.9229 0.9092 0.9107 0.8941 0.9036 0.9083 0.8951 0.9128 0.9106 0.9096 

GPD-DECOLOR 0.9932 0.9941 0.9965 0.9957 0.9969 0.9968 0.9974 0.9965 0.9958 0.9929 0. 9956 

GPD-NRA 0.9381 0.9395 0.9572 0.9616 0.9465 0.9512 0.9413 0.9515 0.9569 0.9141 0. 9458 

GPD-LRSTV 0.9816 0.9812 0.9859 0.9883 0.9916 0.9931 0.9951 0.9926 0.9858 0.9801 0.9876 

 
TABLE VI. F-measure STATISTICS FOR DIFFERENT FRAMES FOR HVS-MB 

Frame Number 1 4 7 10 13 16 19 22 25 28 Average 

GPD-IALM 0.6913 0.6694 0.6343 0.6301 0.6340 0.6314 0.6325 0.6359 0.6478 0.6569 0.6464 

GPD-DECOLOR 0.8096 0.8483 0.8900 0.8781 0.8981 0.8888 0.9016 0.9047 0.8783 0.8071 0.8705 

GPD-NRA 0.5057 0.5077 0.5856 0.6147 0.5209 0.5978 0.5605 0.5824 0.6205 0.4433 0.5539 

GPD-LRSTV 0.6828 0.6908 0.7172 0.7602 0.8233 0.8615 0.8798 0.8444 0.7843 0.7012 0.7746 

 
 

  
(a)                                                    (b) 

 Fig. 10  Joint consideration of  and  for HVS-aa12 (a) AUC statistics  (b) 
F-measure statistics  
 

 

  
(a)                                                    (b) 

 Fig. 11  Joint consideration of  and  for HVS-aa13 (a) AUC statistics  (b) 
F-measure statistics  
  

b l

b l
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select them using MAP estimation. Due to the computational 
complexity, we do not use a robust estimation method here. Fig. 
10 illustrates the obtained AUC and F-measure of HVS-aa12 
when jointly taking the two regularization parameters into 
consideration. To add to this, for each pair  we sum the F-
measure of the 11 frames for which we have ground truth in the 
considered data set.  is chosen from {0, 0.0005, 0.0001, 
0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004} and  is chosen 
from {0.01, 0.02, 0.03, 0.04,0.05, 0.06}. When , (3) 
degenerates to the RPCA problem which can be solved by 
IALM. The previous experiment has shown that the proposed 
GPD-LRSTV is superior to GPD-IALM which advocates 
including the advance of TV regularization. From Fig. 10- 11, 
we can see that for  the detection results are inferior to the 
results obtained for . This confirms that gas plume takes 
a small part of the whole image scene, hence the foreground 
matrix is sparse. For the aa12 sequence, GPD-LRSTV achieves 
a high F-measure when  and 

. In our experiments, we set , 
. Analogous to HVS-aa12, the best sets for HVS-aa13 

is  and  as shown in Fig. 
10. For this HVS, we set , .  

 

D. Convergence analysis 
In this section, we evaluate the convergence of LRSTV, as it 

is an iterative algorithm. LRSTV is applied on the first principal 
component of HVS-aa13 data set. The residual  
and objective function value at each iteration are computed. The 
curves of residual and objective function value versus the 
number of iterations are plotted in Fig. 12, where we can clearly 
see that LRSTV convergences quickly. 

 

E. Computational Complexity 
The computation costs of the gas plume detection methods 

have also been compared. Detailed results are presented in 
Table VII. The algorithms are tested on a computer with a 64-b 
quad-core Intel Xeon CPU 3.33-GHz processor under Windows 
7. GPD-IALM, GPD-NRA and the proposed method are 
implemented in MATLAB while the core part of GPD-
DECOLOR is implemented in C++.  So we can infer that the 
methods with temporal-spatial regularization (GPD-
DECOLOR, GPD-LRSTV) cost more execution time than 
original RPCA methods (GPD-IALM, GPD-NRA).  In the 
future, we will explore parallel implementations of our 
proposed method on GPUs to accelerate the execution of the 
algorithm, which is important for the application of our 
proposed method. 

  

IV. CONCLUSIONS AND FUTURE RESEARCH LINES 
In this paper, a novel hypserspectral video sequence for gas 

plume detection framework named GPD-LRSTV is proposed. 
It is based on the assumption that the background in different 
frames is reasonably stable and the moving object changes 
gradually in both space and time. We have formulated the 
variational gas plume detection problem and introduced spatial 
and temporal continuity with total variation regularization. 
Because there may exist hundreds of bands in a HVS, it is hard 
to extract a single band or feature to use for the LRSTV model. 
Thus we adopt a novel strategy which takes the maximum value 
over each principal component’s detection result. This way, we 
obtain a robust detection for every frame. Our results on three 
hyperspectral video sequences demonstrate the advantage of 
GPD-LRSTV.  

The proposed method works well when the background is 
static. The case of dynamic background is for future work. 
Another important aspect deserving future research is the 
computational complexity of the proposed method. In this 
regard, we are currently developing efficient implementations 
using high performance computing architectures such as 
commodity graphics processing units (GPUs). 

l
b

0b =

=0l
0l >

[0.0005,  0.002]l Î
[0.03,  0.05]b Î 0.001l =
0.04b =

[0.001,  0.002]l Î [0.01,  0.02]b Î
0.002l = 0.02b =

|| ||FX A E- -

  
(a)                                                                                                                      (b) 

 Fig. 12. Convergence analysis of LRSTV algorithm on the first principal component of HVS-aa13 data set. 
 

TABLE VII EXECUTION TIMES (IN SECONDS) IN GAS PLUME DETECTION 
Data Set GPD-IALM GPD-DECOLOR GPD-NRA GPD-LRSTV 

HVS-aa12 22.6573 78.8775 141.1002 824.5067 
HVS-aa13 21.3319 63.0487 140.2612 827.6779 
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