
UC Riverside
UC Riverside Previously Published Works

Title
AlignGraph: algorithm for secondary de novo genome assembly guided by closely related
references

Permalink
https://escholarship.org/uc/item/875037pj

Journal
Bioinformatics, 30(12)

ISSN
1367-4803

Authors
Bao, Ergude
Jiang, Tao
Girke, Thomas

Publication Date
2014-06-15

DOI
10.1093/bioinformatics/btu291

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/875037pj
https://escholarship.org
http://www.cdlib.org/

BIOINFORMATICS Vol. 00 no. 00 2011
Pages 1–9

AlignGraph: algorithm for secondary de novo genome
assembly guided by closely related references
Ergude Bao 1, Tao Jiang 1 and Thomas Girke 2∗

1Department of Computer Science and Engineering, 2Department of Botany and Plant Sciences,
University of California, Riverside, California 92521
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: De novo assemblies of genomes remain one of the
most challenging applications in next generation sequencing. Usually,
their results are incomplete and fragmented into hundreds of contigs.
Repeats in genome sequences and sequencing errors are the main
reasons for these complications. With the rapidly growing number
of sequenced genomes, it is now feasible to improve genome
assemblies by guiding them with genomes from related species.
Results: Here we introduce AlignGraph, an algorithm for extending
and joining de novo assembled contigs or scaffolds guided by
closely related reference genomes. It aligns paired-end (PE) reads
and pre-assembled contigs or scaffolds to a close reference. From
the obtained alignments, it builds a novel data structure, called
the paired-end multi-positional de Bruijn graph. The incorporated
positional information from the alignments and PE reads allows to
extend the initial assemblies, while avoiding incorrect extensions
and early terminations. In our performance tests, AlignGraph was
able to substantially improve the contigs and scaffolds from several
assemblers. For instance, 26.1-79.4% of the contigs of Arabidopsis
thaliana and human could be extended, resulting in improvements
of common assembly metrics, such as an increase of the N50 of
the extendable contigs by 81.2-172.2% and 1.8-44.6%, respectively.
In another test, AlignGraph was able to improve the assembly of a
published genome (Arabidopsis strain Landsberg) by increasing the
N50 of its extendable scaffolds by 104.4%. These results demonstrate
AlignGraph’s efficiency in improving genome assemblies by taking
advantage of closely related references.
Availability: The AlignGraph software can be downloaded for free
from this site: https://github.com/baoe/AlignGraph.
Contact: thomas.girke@ucr.edu

1 INTRODUCTION
Recent advances in next generation sequencing (NGS) have made
it possible to sequence new genomes at a fraction of the time
and cost required only a few years ago. These improvements
allow now experimental scientists to integrate genome sequencing
approaches into their daily research. In the absence of a close
reference genome, whole-genome shotgun NGS sequencing is the
most common approach where a de novo assembly algorithm is
used to join reads into longer continuous contigs and scaffolds.

∗to whom correspondence should be addressed

Most NGS de novo assemblers create an overlap or de Bruijn
graph representing the connections among the reads and output
the paths in the graph as assembled contigs. Examples of these
algorithms include Edena (Hernandez et al. 2008), Velvet (Zerbino
and Birney 2008), ABySS (Simpson et al. 2009), ALLPATHS-LG
(Gnerre et al. 2011), SOAPdenovo (Li et al. 2010; Luo et al. 2012),
MaSuRCA (Zimin et al. 2013), CABOG (Miller et al. 2008), Euler-
USR (Chaisson et al. 2009), and IDBA (Peng et al. 2010). This
de novo sequencing approach fundamentally differs from genome
resequencing approaches, where the NGS reads are not assembled
but aligned against a very similar reference genome using a variant
tolerant short read alignment algorithm (Ossowski et al. 2008).
The sequence of the target genome can then be inferred from
the mismatches and indels observed in the alignment results. De
novo assemblies tend to be computationally much more challenging
than alignment-based approaches. Additional limitations include:
(i) the assembly results are often fragmented into large numbers
of contigs; (ii) the coverage of the genome by the assembled
contigs/scaffolds is commonly incomplete; and (iii) the frequency
of falsely assembled contigs can be high, due to chimeric joins.
The most important reasons for these complications are usually
sequencing errors, repeat sequences in the target genome, non-
uniform sequencing depth, and limited read length of NGS data.
These error sources result in false positive, incomplete and branched
paths in the assembly graph, and thus greatly limit the lengths
and completeness of the final contigs (Zerbino and Birney 2008;
Chaisson and Pevzner 2008; Peng et al. 2010). Combining both de
novo assembly and alignment-based approaches presents a powerful
alternative when a closely related reference genome sequence is
available, but its genetic differences relative to the target genome
are too pronounced to resolve them with an alignment approach
alone (Schneeberger et al. 2011; Phillippy et al. 2008; Schatz
et al. 2013). In this case, one can first assemble the reads into
contigs and then align them together with the reads to the reference.
The much longer contigs facilitate the identification of complex
rearrangements, while the read alignments are useful for detecting
smaller variations in regions that are not covered by contigs. Due
to the rapidly increasing number of reference genomes becoming
available for most organism groups, this reference-guided assembly
approach will soon become the default option for many genome
sequencing projects. Compared to de novo assemblies, reference-
guided assemblies have many advantages. First, the alignments of
the contigs and reads against the close reference provide valuable

c© Oxford University Press 2011. 1

Bao et al

proximity information that can be used to extend contigs with
additional reads and to join contigs even if they overlap only by a
few nucleotides. Second, the proximity information in the alignment
can also be used to orient and order contigs along the reference to
build a scaffold map of the entire assembly. Third, the alignment
map can be used to evaluate the quality of contigs and pinpoint
potential mis-assemblies.

Previous studies on reference-guided assemblies include the
AMOScmp software (Pop et al. 2004a), an add-on tool for the
ARACHNE assembler (Gnerre et al. 2009), and custom workflows
largely based on existing assembly software (e.g. Schneeberger et al.
2011). The first two were designed primarily for Sanger reads, while
the latter has been used for NGS genome assembly. Downstream
of the primary assembly, scaffolding algorithms, such as RACA
(Kim et al. 2013), can be used that order and orient pre-assembled
contigs to a connection map by incorporating additional sequence
information from mate pair or paired-end (PE) reads and/or from
closely related genomes (Pop et al. 2004b; Boetzer et al. 2011;
Dayarian et al. 2010; Gao et al. 2011; Salmela et al. 2011; Gritsenko
et al. 2012). The resulting scaffolds contain often gaps, which are
unresolved sequence areas between the original contigs. Dedicated
gap filling algorithms can be used to partially fill these gaps (Boetzer
and Pirovano 2012; Luo et al. 2012; Tsai et al. 2010). More
recently, components of reference-based strategies have also been
incorporated into some of the de novo assembly suites themselves
such as the cheat mode option of ALLPATHS-LG (Gnerre et al.
2011) and IDBA-hybrid (unpublished).

This study proposes a novel algorithm, called AlignGraph, for
improving the lengths and completeness of contigs or scaffolds
by reassembling them with help provided by a reference genome
of a closely related organism. In contrast to existing reference-
assisted methods, AlignGraph is a secondary assembly algorithm
that loads the alignment information of PE reads and pre-assembled
contigs/scaffolds against the reference into a novel assembly graph,
called the PE multi-positional de Bruijn graph, that we specifically
designed for facilitating secondary assemblies. By traversing this
graph, the contigs or scaffolds of the primary assembly can be
extended and joined.

AlignGraph’s functionalities are unique by solving several
challenges in improving assembly results. As a de Bruijn graph-
based method it solves limitations typical for many heuristic
extension methods that are often used in the de novo assembly
area (Warren et al. 2007; Jeck et al. 2007; Dohm et al. 2007). For
instance, if there are multiple solutions how to extend a contig,
then finding the correct one can be challenging with most heuristic
methods. Those ambiguous solutions, that correspond to branched
paths in the de Bruijn graph, are usually caused by repetitive
sequences in genomes, and frequently lead to early terminations
of the contig extension process. The de Bruijn graph method is
often more efficient in finding the correct solution here, because the
contextual information, required for resolving these ambiguities, is
maintained in the graph (Zerbino and Birney 2008; Chaisson and
Pevzner 2008). This issue is not as pronounced in assemblies with
much longer Sanger reads, as those are much more likely to span
non-repetitive regions with repetitive regions in between (Gnerre
et al. 2009). Thus, it is particularly important to address this problem
in assemblies with short reads. In comparison to the conventional de
Bruijn graph, our PE multi-positional de Bruijn graph has several
additional advantages. First, many branched paths can be eliminated

directly in the graph with help of the additional PE read and
alignment information. This simplifies the identification of correct
paths. Second, many false positive paths, caused by sequencing
errors, can be eliminated by correcting erroneous reads with correct
reads that align to the same position in the reference genome. Third,
guided by the alignment information to the reference genome, the
PE multi-positional de Bruijn graph is less affected by regionally
low read coverage that often gives rise to incomplete paths in the
conventional de Bruijn graph. As a result, many incorrect extensions
and early terminations can be avoided.

2 METHODS

2.1 AlignGraph Algorithm
This section describes the AlignGraph algorithm. Its workflow can be
divided into the following three major steps. Figure 1B illustrates these steps
with an example.

(i) Alignment maps. The PE reads are aligned against both the pre-assembled
contigs and the close reference genome; and the contigs are aligned
against the reference.

(ii) Contig reassembly. The alignment mapping results are used to construct a
positional variant of the de Bruijn graph, called the PE multi-positional
de Bruijn graph.

(iii) Graph traversal. The resulting graph is edited and traversed to obtain
extended contigs.

Throughout the text, the source genome of the PE reads and the pre-
assembled contigs is referred to as the target genome, whereas the genome
of the closely related species for guiding the contig improvement steps is
referred to as the reference genome. For simplicity, the following description
of AlignGraph refers mostly to contigs, but it also applies to scaffolds
containing a limited amount gaps.

Prerequisites. Prior to the above steps, the user is expected to generate
genomic PE reads for the target genome of interest and to assemble them
with a de novo NGS genome assembler. Since most genome assemblers
perform better with PE than single end data, AlignGraph also depends on this
sequence type. A major advantage of AlignGraph is its design to work with
most genome assemblers, but the quality of the initial de novo assembled
contigs is expected to impact the final results (see 3.2). For optimal results,
it is also important to follow the recommendations of the chosen de novo
assembler with respect to insert length of the sequencing library, minimum
coverage of the target genome with PE reads and other recommendations.
If scaffolds are inputted, it is usually beneficial to fill them with a gap
filling algorithm prior to processing them with AlignGraph (e.g. Boetzer
and Pirovano 2012). Another requirement for AlignGraph is the availability
of a closely related reference genome sequence. Nearly complete reference
genomes of high quality will yield the best results, but partially sequenced
genomes can be used as well. Based on our experience, AlignGraph can
make solid improvements when at least 50% of the PE reads can be aligned
to the reference genome using the alignment protocol outlined below.

(i) Alignment maps. In the initial preprocessing step of AlignGraph, the
PE reads, used for the de novo assembly in the Prerequisite section, are
aligned to the contigs and to the reference genome, and the contigs are also
aligned to the reference genome. Aligning the reads to the contigs simplifies
their alignments to the reference by guiding them with the much longer
contigs as backbone (see below). Generating reliable alignments among the
PE reads and the contigs is relatively straightforward, because both are from
the same genetic background, thus requiring a low level of variant tolerance
in the alignments. Aligning the contigs to the reference genome demands a
higher level of variant tolerance. However, due to the relatively large length
of the contigs, their alignments to the reference can also be done reliably, as
long as the evolutionary distance between the target and reference genome is

2

... ...

...

...

...

...

...

...

c1 c2 c3

c1

c2 c3

e1 e2... ...

c1

c2

c3

e1

Reads Contigs

...

...

...

...

(1) De novo

assembler

e2

(B)

... ...

(2) AlignGraph

Genome-Contigs-

PE Reads

PE multi-positional de

Bruijn graph

Extended/joined

contigs

(i)

(ii)

(iii)

(A)

c1 c2 c3

(2) AlignGraph

Extended/joined contigs

...

...

c1

c2 c3

Fig. 1: Overview of the AlignGraph algorithm. The outline on the top (A) shows AlignGraph in the context of common genome assembly workflows, and the
one on the bottom (B) illustrates its three main processing steps. (A) In step 1, the PE reads from a target genome are assembled by a de novo assembler into
contigs (here c1, c2 and c3). Subsequently (step 2), the contigs can be extended (blue) and joined by AlignGraph (e1 and e2). (B) The workflow of AlignGraph
consists of three main steps. (i) the PE reads are aligned to the reference genome and to the contigs, and the contigs are also aligned to the reference genome.
(ii) the PE multi-positional de Bruijn graph is built from the alignment results, where the red and blue subpaths correspond to the aligned contigs and sequences
from PE reads, respectively. (iii) the extended and/or joined contigs (here e1 and e2) are generated by traversing the graph.

not too large. The current implementation of AlignGraph uses Bowtie2 and
BLAT for these two alignment steps, respectively (Langmead and Salzberg
2012; Kent 2002). In contrast to this, aligning the relatively short PE
reads to the reference genome is a much more challenging task, due to the
difficulty of generating reliable short alignments containing larger numbers
of mismatches and gaps. This problem does not apply to the reads aligning
to the contigs since their alignment positions to the reference genome can be
inferred from the more robust contig alignments. For the PE read to reference
genome alignment, it is important to choose a highly variant tolerant short
read aligner that is able to reliably align most of the short reads to their true
source locations in the reference genome while minimizing the number of
false positive read placements. Clearly, the latter would negatively impact
the precision performance of AlignGraph by leading to chimeric joins in
the downstream contig extension steps. Although a wide range of short read
aligners has been developed over the past years (Li and Homer 2010), none
of them has been specifically designed or optimized for aligning short reads
against reference genomes with sequence differences more pronounced than
those observed among genomes within the same species. To minimize the
above challenges, we have chosen for this critical step the highly tunable
Bowtie2 aligner with parameter settings that we optimized for aligning PE
reads from a target genome to a reference genome sharing variable degrees
of sequence similarity. The use of PE read alignments in this step is also
important, because the additional sequence information, provided by the
second read in a PE, increases the specificity of the alignment process
compared to single end reads, and thus reduces the number of false read
placements. To account for rearrangements among the two genomes, we
use for the alignments of the PE reads against the reference genome more
relaxed insert length variation settings than in the alignments against the
contigs (details are below).

(ii) Contig reassembly with PE multi-positional de Bruijn graph.
The core functionality of AlignGraph is the extension of the contigs by re-
assembling them using the alignment results obtained in the previous step.
To achieve this efficiently, we build from the alignment maps a variant of the
de Bruijn graph, here called the paired-end multi-positional de Bruijn graph.
This method combines the PE de Bruijn graph (Medvedev et al. 2011) and

Table 1. Problems the PE multi-positional de Bruijn graph solves in
comparison to the conventional de Bruijn graph.

Problem Consequence Solution

Repeat sequences Branched paths Distinguishes paths for repetitive
regions by incorporating PE read
and alignment position information

Sequencing errors False positive paths Corrects paths from erroneous
reads with correct reads aligned
to the same position

Low sequencing Incomplete paths Builds paths from reads of low
depth sequencing depth with reference

support

the positional de Bruijn graph (Ronen et al. 2012) where we incorporate
both PE read information and alignment positions into the graph (Pevzner
et al. 2001). The former was designed to generate more complete contigs
in de novo assemblies, and the latter to correct contig errors in secondary
assemblies. Our approach solves several problems in improving assembly
results that we briefly discussed in the Introduction (see also Table 1). The
following describes our modified de Bruijn graph in more details, where
we first introduce important concepts of conventional de Bruijn graph-based
assembly methods.

Background
The most widely used method for genome assemblies from short reads is
the de Bruijn graph method (Pevzner et al. 2001). A de Bruijn graph is
a directed graph: two connected nodes represent k + 1 bases where the
first node represents the first k bases and the second node the second k
bases (called k-mer). To construct a de Bruijn graph, l − k + 1 connected
nodes are constructed from each read of length l and two nodes from
different reads are joined if they share the same k-mers. In theory, this
graph contains all information required to reconstruct the full sequence of the
underlying genome by traversing it properly. However, such an ideal result

3

Bao et al

… (CGTG, 112) (GTGT, 113) (TGTT, 114) (GTTA, 115) (TTAT, 116) (TATA, 117) (ATAC, 118) (TACA, -1)

(ACAA, -1) (CAAC, -1) (AACG, -1) (ACGT, -1) (GTGA, -1) (TGAT, -1) (GATA, -1) …

CGTG

CGTG ATAC …… TAGT GACA TAGT …

ATAC

… CGTG ATAC CGTG … TAGT GACA TAGT …

A C A’ E G E’

A B E G E’

A’

C

112 212

(A)

Positional

de Bruijn

graph

Target

genome

Reference

genome

Contig

ATAC

C’

GACA

G’

ATAC

C’

TT

C

AA

D H

H

GG

GG

AA

D

(C)

Multi-

positional

de Bruijn

graph

0

CGT, 6, 112 GTG, 7, 113

TGA, 8, 114 GAT, 9, 115 ATA, 10, 118 TAC, 11, 119

ATA, 0, 118TAC, 1, 119ACA, 2, 120CAA, 3, 121AAC, 4, 912ACG, 5, 913

TT

B

CC

F

CC

F

… (CGTG, 6, 112) (GTGT, -1, 113) (TGTT, -1, 114) (GTTA, -1, 115) (TTAT, -1, 116) (TATA, -1, 117)

(ATAC, 0, 118) (TACA, 1, 119) (ACAA, 2, 120) (CAAC, 3, 121) (AACG, 4, 912) (ACGT, 5, 913)

(GTGA, 7, 113) (TGAT, 8, 114) (GATA, 9, 115) (ATAC, 10, 118) …

TGT, -1, 114 GTT, -1, 115 TTA, -1, 116 TAT, -1, 117

(D)

PE multi-

positional

de Bruijn

graph

CGT, 112 GTG, 113 TGT, 114 GTT, 115 TTA, 116 TAT, 117

CGT, 6, 112, 212 GTG, 7, 113, 213

TGA, 8, 114, 214

GAT, 9, 115, 215ATA, 10, 118, 218TAC, 11, 119, 219

ATA, 0, 118, 218TAC, 1, 119, 219ACA, 2, 120, 220CAA, 3, 121, 221

AAC, 4, 912, 222 ACG, 5, 913, 223

… (CGTG, 6, 112, 212) (GTGT, -1, 113, 213) (TGTT, -1, 114, 214) (GTTA, -1, 115, 215) (TTAT, -1, 116, 216)

(TATA, -1, 117, 217) (ATAC, 0, 118, 218) (TACA, 1, 119, 219) (ACAA, 2, 120, 220) (CAAC, 3, 121, 221)

(AACG, 4, 912, 222) (ACGT, 5, 913, 223) (CGTG, 6, 112, 224) (GTGA, 7, 113, 213) (TGAT, 8, 114, 214)

 (GATA, 9, 115, 215) (ATAC, 10, 118, 218) …

TGT, -1, 114, 214 GTT, -1, 115, 215 TTA, -1, 116, 216

TAT, -1, 117, 217

CGT, 6, 112, 224 GTG, 7, 113, 213

…

ATA, 118TAC, 119

… (CGTG, 112) (GTGT, 113) (TGTT, 114) (GTTA, 115) (TTAT, 116) (TATA, 117) (ATAC, 118) (TACA, 119)

(ACAA, 120) (CAAC, 121) (AACG, 912) (ACGT, 913) (GTGA, 113) (TGAT, 114) (GATA, 115) …
(B)

Positional

de Bruijn

graph using

contig to

guide read

alignment
CGT, 112 GTG, 113 TGT, 114 GTT, 115 TTA, 116 TAT, 117

ATA, 118TAC, 119

912

ACA, 120CAA, 121AAC, 912ACG, 913

TGA, 114 GAT, 115

... ...

... ...

......

... ...

Fig. 2: Advantages of the PE multi-positional de Bruijn graph compared to the positional de Bruijn graph. In the target genome given on the topA andA′, C
and C′, E and E′, G and G′ are repetitive regions. Each PE read of length 2× 4bp is sequenced with one pair from region ABCDA′C′ and the other from
the corresponding position of region EFGHE′G′ (the pair from EFGHE′G′ is omitted for simplicity). In comparison to the target genome, the reference
genome has a repeat-free region ABC similar to ABCDA′C′ and a region EFGHE′ similar to EFGHE′G′. The reads from region ABCDA′C′ are
assembled with a de novo assembler into a contig starting from CDA′C′, but regions A and B are not assembled due to low sequencing depth, repeats or
other problems. When aligning the contig to the reference genome, the repetitive regions C and C′ are both aligned to C in the reference genome and the
insertion D is assigned to the end of the reference. In (A) reads are aligned directly to the reference genome to build the initial positional de Bruijn graph; and
in (B)-(D) the reads are aligned to the pre-assembled contigs and then aligned to the reference to build first the extended positional de Bruijn graph and then the
PE multi-positional de Bruijn graph. (A) The initial positional de Bruijn graph is built here with 3-mers. Some reads cannot be aligned to the reference genome
due to sequence differences in the target genome as indicated here by 3-mers with -1 as alignment position. The repetitive regionsA andA′ (or C and C′) are
collapsed into one path in red in the graph. (B) The initial positional de Bruijn graph is constructed with help from the read-to-contig alignment information.
The read-to-reference genome alignment information yields a more complete positional de Bruijn graph, but the repetitive regions A and A′ (or C and C′)
are still collapsed resulting in branch points. (C) An extended positional de Bruijn graph is built by incorporating into each 3-mer the read alignment position
to the contig. As a result of this operation, the repetitive regions C and C′ can be distinguished into two paths where the 3-mers have different alignment
positions in the contig, but A and A′ are still collapsed. (D) The PE multi-positional de Bruijn graph is constructed by incorporating into each 3-mer their PE
read alignment positions to the reference genome (the right 3 bases and its alignment position to the contig is omitted here). With this information the repeats
A and A′ can be distinguished into two paths as the 3-mers have different PE alignment positions in the reference genome. The final graph contains only one
single path allowing to output an extended contig corresponding to the region ABCDA′C′ in the target genome.

4

is usually hard to obtain, because the de Bruijn graph frequently contains
many false positive, incomplete and branched paths, especially when the
read quality is low or the target genome is repeat rich. The false positive and
incomplete paths are due to false positive k-mers with sequencing errors
and missing k-mers from regions of low sequencing depth, respectively.
The branched paths are caused by joins of k-mers from repetitive regions.
Several variations of the de Bruijn graph have been proposed to solve these
limitations, especially the branched paths, while preserving all of its genome
information (Medvedev et al. 2011; Ronen et al. 2012; Peng et al. 2010). The
paired-end de Bruijn graph (Medvedev et al. 2011) is built from PE reads,
where each k-mer contains k bases from the left pair plus its corresponding
k bases from the right pair. In contrast to this, the positional de Bruijn graph
(Ronen et al. 2012) incorporates read alignment information by including
in each k-mer the k bases plus its alignment position. With the additional
information assigned to the k-mers, k-mers from repetitive regions can often
be distinguished, and thus the number of branches in the graph can be
reduced. In addition, because the positional de Bruijn graph is built from read
alignments, false positive and incomplete paths can be largely avoided. We
emphasize that the PE de Bruijn graph requires the left pair forward-strand
read and the right pair reverse-strand read or vice versa, but it is difficult to
know their orientation. This problem can be resolved, if the PE de Bruijn
graph is built from aligned reads, where their orientation can be obtained
from the alignments.

PE multi-positional de Bruijn graph
We derive the paired-end multi-positional de Bruijn graph as a combination
of the PE de Bruijn graph and the positional de Bruijn graph. Each k-mer
of the PE multi-positional de Bruijn graph is composed of three left/right
element pairs: the k bases of each the left and the right read pair (called
left or right k bases), the alignment position of each the left and the right k
bases to the contigs, and the alignment position of each the left and the right
k bases to the reference genome. Two k-mers can be joined if they have
similar k bases and close alignment positions within the constraints defined
in the formulas below. Formally, let s be the k bases from the left read pair
and s′ the corresponding k bases from the right read pair, then the k-mer of
PE multi-positional de Bruijn graph is a 6-tuple (s, s′, c, g, c′, g′), where c
is the alignment position of s to the contigs, g is the alignment position of
s to the reference genome, c′ is the alignment position of s′ to the contigs,
and g′ is the alignment position of s′ to the reference genome. Two k-mers
(si, s′i, ci, gi, c

′
i, g
′
i) and (sj , s′i, cj , gj , c′j , g′j) can be joined if constrains

(1)-(6) are met:

mismatch(si, sj) < δ (1)

mismatch(s′i, s
′
j) < δ (2)

|ci − cj | < ε or ci = −1 or cj = −1 (3)

|gi − gj | < ε (4)

|c′i − c′j | < ε+ 2D or c′i = −1 or c′j = −1 (5)

|g′i − g′j | < ε+ 2D (6)

where δ and ε are small numbers with the default values 5 and 25,
respectively, and D is the variability of the insert length I of the PE reads.
The variability D is equal to max{Iu − I, I − Il} where Iu and Il are the
upper and lower limits of I , respectively. The variables in the above formulas
are explained below.

δ: To join two k-mers and tolerate sequencing errors, we allow a small
number of mismatches δ between si and sj and between s′i and s′j in
(1) and (2), respectively.

ε: We allow a small shift ε between each pair of alignment positions in (3)-
(6), because the same k bases si and sj (or s′i and s′j) from different
reads may align to different but close positions in the contigs or genome
as discussed in Ronen et al. (2012).

2D: We allow a shift 2D of s′i and s′j ’s alignment positions to the contigs
in (5) and to the reference genome in (6). The maximum and minimum
alignment distances between a read pair are I − l+D and I − l−D,
respectively, where l is the read length, assuming the same read length
for both members in a pair. Thus, the maximum alignment distance of
two right reads with left reads aligned at the same position is (I − l +
D)−(I−l−D) = 2D. This distance is equal to the distance between
any two k-mers from the same position in the right read pairs, so the
maximum distance between s′i and s′j will be 2D.

−1: si and sj (or s′i and s′j) can be joined if one or both of them are
aligned directly to the reference genome rather than guided by the de
novo contigs. In those cases, we assign -1 as alignment position to the
contigs. This is important because we allow contig extensions only if
the alignable and unalignable bases to contigs can be joined.

It is important to guarantee that each k-mer corresponding to an insertion
of a read alignment has a position in the reference genome. To achieve this,
we append the inserted k-mer to the end of the genome sequence. In our
implementation of the PE multi-positional de Bruijn graph, we first load
iteratively sections of the reference genome into memory. Then we perform
the following operation. We test for each k-mer in each aligned read at
genome position g, if there is already a k-mer at g and whether the new k-mer
can be joined with it. If so then we join the two k-mers; otherwise we attach
the new k-mer to position g. The connection between two k-mers is recorded
by using pointers and the read coverage for each k-mer is stored along with it.
Figure 2 illustrates the main advantages of the PE multi-positional de Bruijn
graph compared to the positional de Bruijn graph with several examples (see
also Table 1). This includes the contig-guided PE read alignment against the
reference genome resulting in a larger number of alignable reads, and thus
a more complete de Bruijn graph (Figure 2B); as well as the reduction of
branched paths in the graph by distinguishing reads from different repetitive
regions (Figures 2C and 2D). For space reasons, the advantages over the
conventional de Bruijn graph in reducing false positive and incomplete paths
are not shown.

(iii) Graph traversal returns extended contigs. To remove errors, the
de Bruijn graph needs to be edited prior to its traversal. The three major
types of errors are tips, bubbles and erroneous connections (Zerbino and
Birney 2008; Chaisson and Pevzner 2008; Peng et al. 2010). Most of them
are caused by errors in the reads. A tip is a short path with a dead end,
while a bubble consists of two short paths sharing the same start and end
nodes. The formation of tips and bubbles is relatively rare, mainly because k-
mers with< δ mismatches are joined. The remaining errors can be removed
by applying a coverage cut-off filter similar to the strategies employed by
most de novo assemblers. Due to the additional information encoded in
the modified de Bruijn graph, one can use here a relatively small coverage
threshold. After these error removal steps, the PE multi-positional de Bruijn
graph is traversed, using a broad-first strategy, to generate the final contigs.
Each traversal stops at a branch position and an extended contig is returned.
After returning the extended contigs, the remaining unextended contigs
(identical with initial de novo contigs) are provided to the user in a separate
file. Finally, contigs with sufficient PE read connections and a path between
them can be joined. Occasionally, those connections can be missed by the
above filtering step because of too low read coverage in local areas of the
connecting path.

2.2 Software implementation
AlignGraph is implemented in C++ for Linux operating systems. Its
expected input includes the PE reads, the pre-assembled de novo contigs, and
the reference genome. Its output includes the extended contigs as well as the
remaining non-extended contigs. AlignGraph runs the alignment steps with
BLAT and Bowtie2 automatically, but both need to be installed on a system.
AlignGraph’s run time is currently 23-48 minutes per million aligned reads
and its memory usage stays below 34-45 GB even for very large read sets

5

Bao et al

and genomes. These requirements are much more moderate than those of
most de novo assemblers (Luo et al. 2012).

3 EVALUATION
3.1 Experimental design
Background. To evaluate AlignGraph’s efficiency in improving
genome assemblies, we performed a series of systematic
performance tests. For this, we assembled publicly available
genomic PE read sets from two organisms of variable genome
complexity with six widely used de novo assemblers, extended
the resulting contigs with AlignGraph, and then evaluated the
improvements with a set of standard metrics for comparing
assembly results (Table 2). In these tests it was important to choose
the NGS read samples from organisms where the genome sequence
of both the target genome and a close reference genome are known.
This way one can evaluate the completeness and correctness of
the results against a true result rather than one that is unknown or
only partially known. To also assure the improvements obtained by
AlignGraph, are not simply the result of insufficient optimizations
of the upstream de novo assembly, we included in some cases
pre-assembled contig and scaffold sets that are widely accepted
by the community as benchmark data sets for evaluating assembly
software. Today’s requirements for assembling genomes from NGS
were met by choosing read samples with ≥75bp and paired-end read
information. In total we performed assembly tests on the following
three sample sets.

3.1.1 A. thaliana sample. The first sample set was from the
model organism A. thaliana, which is a flowering plant with a
compact genome of 130Mb in size. The PE read set, chosen
for this test, is from a genomic Illumina NGS library with a
read length of 2x 75 bp. As de novo assemblers, we included
in this test Velvet and ABySS, which we chose here as software
representatives performing well on single library data, and because
of their good sensitivity and precision performance (Lin et al.
2011). The VelvetOptimiser tool was used to optimize the parameter
settings for the Velvet assembly. ABySS was run with the same k-
mer length as Velvet, while the remaining parameters were set to
their defaults. To extend the preassembled contigs with AlignGraph,
we used in one test the A. thaliana target genome as ideal reference,
and in another test we used the publicly available genome sequence
from the related A. lyrata species as reference (Table 12a). The latter
was chosen, because it constitutes a more challenging reference
genome for testing AlignGraph’s performance in improving genome
assemblies than the references used in the other tests below. This is
the case for the following reasons (Hu et al. 2011): A. lyrata and A.
thaliana diverged over 10 million years ago; their genomes differ
by many regional rearrangements; the sequence similarity in the
common regions of their genomes is only 80%; and the A. lyrata
genome sequence is still incomplete and fragmented into many
scaffolds.

3.1.2 Human sample from GAGE. The second sample set is from
the community project GAGE (Genome Assembly Gold-Standard
Evaluations), from which we selected the human chromosome
14 sample (Salzberg et al. 2012). Its Illumina sequences consists
of PE reads with a length of 76-101 bp from three different
libraries. To assure in this test a high quality of the initial de novo

contigs, we did not assemble them ourself. Instead, we downloaded
the pre-assembled contig sets provided by the GAGE project for
the four assemblers that ranked highest in the benchmark tests
by Salzberg et al. (2012) in assemblies from multiple genome
libraries with variable insert lengths. Those included ALLPATHS-
LG, SOAPdenovo, MaSuRCA and CABOG. As reference sequence
for guiding AlignGraph, we used in these tests the chimpanzee
genome. Only for ALLPATH-LG in its cheat mode, we reassembled
the contigs ourselves, because this assembler exhibits a better
sensitivity and precision performance when providing a closely
related reference genome. Here it was important to compare the
performance of ALLPATHS-LG with AlignGraph when both are
guided by the same reference genome.

In addition to contigs, we evaluated AlignGraph’s performance in
improving the scaffold sets provided by the GAGE project for the
same human sample set. Prior to their reassembly with AlignGraph,
we reduced the number of unresolved sequence regions (gaps filled
with ambiguous N bases) in the scaffolds by applying the GapFiller
algorithm, which is currently one of the most efficient gap filling
methods (Boetzer and Pirovano 2012).

3.1.3 Published genome. In addition to the tests above, we were
interested in evaluating to what extent AlignGraph can improve
the genome sequence generated with another reference assisted
assembly approach. For this test, we chose the published genome
sequence from Landsberg erecta (Ler-1; Schneeberger et al. 2011).
The latter is a strain of A. thaliana with too severe differences in its
genome to resolve its sequence with a simple resequencing approach
alone where the A. thaliana genome could serve as reference.
Thus, Schneeberger et al. (2011) assembled its genome with a
reference assisted pipeline approach that included ALLPATHS-LG
and several refinement steps.

3.1.4 Data sources. The genome sequences used in the above
tests were downloaded from the following community sites: A.
thaliana from TAIR, A. lyrata from JGI, Landsberg erecta from
1001 Genomes, and human and chimpanzee from Ensembl. From
the GAGE site, we downloaded the PE read sets, and the pre-
assembled contigs and scaffolds for the human chromosome 14
sample (Salzberg et al. 2012). The PE read sets from A. thaliana
and Landsberg erecta were downloaded from NCBI’s Sequence
Read Archive (SRA) and the 1001 Genome site, respectively. The
A. thaliana read set contained 32 million 2 × 75 bp PE reads
(accession: SRR073127), the human read set contained 61 million 2
× 75-101 bp PE reads, and the Ler-1 read set contained 65 million
2 × 101 bp PE reads.

3.1.5 Performance Measurements. Most of the performance
measures used by this study are adapted from the GAGE project
(Salzberg et al. 2012). To evaluate the completeness of the contigs,
we aligned them to the target genome with BLAT. If a contig
could not be aligned as a single global alignment, then it was
split according to the local alignment results into the smallest
possible number of sub-contigs. The resulting contigs are called
true contigs. The precision measures include the number of
misassemblies per million base pairs (MPMB) and the average
identity between contigs and target genome. There are two types
of misassemblies: misjoin errors and unjoin errors. Misjoin errors
result in chimeric contigs. Their number can be calculated as the

6

Table 2. Performance Evaluation of AlignGraph. (a) Genomic PE reads from A. thaliana were assembled with Velvet and ABySS. The resulting contigs were
extended with AlignGraph using as reference the genome sequence from A. lyrata, and as ideal reference genome the one from A. thaliana (A.th.). (b-d) The
subsequent panels contain assembly results for the human chromosome 14 sample from the GAGE project where the chimpanzee genome served as reference.
(b) Contig assembly results are given for the de novo assemblers ALLPATHS-LG, ALLPATHS-LGc (in cheat mode), SOAPdenovo, MaSuRCA and CABOG.
(c) Scaffolded assembly results are given for SOAPdenovo, MaSuRCA and CABOG. The results are organized row-wise as follows: the number of initial
contigs obtained by each de novo assembler1, the ‘extendable’ subset of the initial contigs that AlignGraph was able to improve2, and the extension results
obtained with AlignGraph3. The additional columns give the number of contigs4, N50 values5, the length coverage of the genome by contigs6, the average7

and maximum8 length of the contigs, the number of misassemblies per million base pairs (MPMB)9, and the average identity among the true contigs and the
target genome10. More details on these performance criteria are provided in the Performance Measurements section.

Upstream Contig set N Contigs4 N505 Coverage6 Average Maximum MPMB9 Average
assembler length7 length8 identity10

(a) Contigs of A. thaliana genome
Velvet All1 30,037 3,536 82,399,610 2,817 27,792 383.1 95.4%

Extendable2 7,839 4,138 25,356,693 3,247 27,398 310.0 97.6%
Extendable + AlignGraph3 5,319 7,720 29,673,314 5,474 49,623 186.5 91.7%
Extendable (A.th.) 23,852 3,608 68,367,186 2,888 27,792 350.2 96.8%
Extendable + AlignGraph (A.th.) 15,227 9,820 88,043,266 5,869 89,056 177.8 91.5%

ABySS All 30,972 2,567 69,337,135 2,263 29,760 463.5 97.3%
Extendable 10,643 2,794 26,082,265 2,435 16,343 412.6 98.8%
Extendable + AlignGraph 7,823 5,369 32,905,260 4,094 25,353 247.6 92.2%
Extendable (A.th.) 24,410 2,608 56,371,241 2,299 29,760 438.1 98.4%
Extendable + AlignGraph (A.th.) 18,559 6,466 81,540,651 4,389 77,823 236.5 91.7%

(b) Contigs of Human chromosome 14
ALLPATHS-LG All 4,383 38,590 83,847,514 19,249 240,764 53.1 98.9%

Extendable 1,636 38,699 33,993,990 20,216 200,495 50.3 98.8%
Extendable + AlignGraph 778 73,858 34,604,800 43,510 304,548 23.6 96.6%

ALLPATHS-LGc All 3,856 43,856 83,858,469 21,857 275,446 46.5 99.3%
Extendable 1,318 45,288 30,605,770 23,319 275,446 43.4 99.5%
Extendable + AlignGraph 640 82,046 33,514,214 50,484 391,100 20.2 96.2%

SOAPdenovo All 10,865 16,867 80,114,725 7,823 147,494 135.1 94.9%
Extendable 5,592 17,581 45,725,655 8,263 141,981 124.3 96.3%
Extendable + AlignGraph 3,442 33,311 53,069,539 15,415 221,608 66.8 93.9%

MaSuRCA All 19,034 5,768 75,491,835 3,869 53,837 280.7 98.9%
Extendable 9,479 6,096 39,836,321 4,171 51,249 255.4 99.2%
Extendable + AlignGraph 5,661 11,704 44,821,180 7,787 69,327 130.8 96.7%

CABOG All 3,118 46,523 84,988,860 27,472 296,888 37.1 97.3%
Extendable 1,665 45,669 46,089,218 27,301 296,888 36.9 98.7%
Extendable + AlignGraph 684 104,171 49,215,105 71,466 344,910 14.5 96.6%

(c) Scaffolds of Human chromosome 14
SOAPdenovo All 3,902 391,693 85,414,648 24,839 1,852,152 40.8 82.9%

Extendable 881 379,370 32,599,249 38,800 1,019,659 26.0 84.2%
Extendable + AlignGraph 748 528,039 39,195,931 53,744 1,907,306 19.2 80.6%

MaSuRCA All 721 584,807 65,429,147 68,083 2,943,966 11.1 57.2%
Extendable 122 255,926 4,865,797 40,830 520,370 27.5 89.4%
Extendable + AlignGraph 90 303,139 7,060,400 77,917 1,263,099 14.0 87.5%

CABOG All 471 387,876 81,163,384 176,980 1,944,475 5.8 91.9%
Extendable 131 327,656 24,909,270 189,898 1,905,529 5.3 98.0%
Extendable + AlignGraph 62 840,450 30,407,969 464,475 2,043,930 2.3 90.7%

number of splits necessary to obtain the true contigs. Unjoin errors
result in incomplete contigs that can be approximated by the number
of contigs before the splits. Thus, MPMB = em+eu

L
× 106, where

em and eu are the numbers of misjoin errros and unjoin errors,
respectively, and L is the accumulative length of the contigs. The
average identity between true contigs and the target genome is
calculated as

∑
n ti×li∑

n li
where ti is the identity for contig i and li

is the length of contig i (0 < i ≤ n). In this formula, the identity
ti of the true contigs i is calculated as the number of aligned bases
over the length of the alignment. The sensitivity measures include
the N50 value and the coverage of the true contigs. The former is the
contig size at 50% of the total number of contig bases, and the latter
is the total number of genome bases covered by the contigs. Two
additional measures are the average length and maximum length of
the true contigs.

3.2 Results
3.2.1 Extension of A. thaliana contigs. The performance test
results for the A. thaliana data set are given in Table 2a. In
comparison to the initial contig sets assembled by Velvet or ABySS,
AlignGraph extends 26.1-34.4% of them when it is guided with
the A. lyrata genome as reference. The resulting set of extended
contigs contains 26.5-32.1% less sequences, because AlignGraph
has joined many of the initial contigs. This leads to improvements of
the N50, coverage, average contig length, maximum contig length
and MPMB values for the extendable contig set by 86.6-92.2%,
17.0-26.2%, 68.1-68.6%, 55.1-81.1% and 39.8-40.0%, respectively.
As expected the average identity drops slightly (5.9-6.6%), because
with increased length of the assembled sequences, internal sequence
variations accumulate and complicate the alignment of the extended
contigs against the target genome. A similar trend can be seen

7

Bao et al

in the below results for the much longer scaffolds where the
average identity is always lower for all of the tested assemblers
(Table 2c). Overall the assembly results of AlignGraph contain
for all three sample sets (3.2.1-3.2.3) a comparable number of
sequence variations to the target genomes as the results of de
novo assemblers (data not shown). This indicates a high sequence
quality of the reassembled contigs. When guiding AlignGraph
with the ideal reference genome (A. thaliana), 78.8-79.4% of the
initial contigs can be extended and the extension results contain
24.0-36.2% less contigs. The corresponding improvements of the
N50, coverage, average contig length, maximum contig length
and MPMB values are 147.9-172.2%, 28.8-44.6%, 90.9-103.2%,
161.5-220.4% and 46.0-49.2%, respectively. These results indicate
that AlignGraph is able to substantially improve the assemblies
for the de novo assemblers Velvet and ABySS. The usage of a
perfect reference genome improves the results in a more pronounced
manner. However, even when a suboptimal and evolutionary distinct
reference genome is used, as the one from A. lyrata (see 3.1.1),
AlignGraph can lead to considerable improvements.

3.2.2 Extension of human contigs and scaffolds from GAGE. The
test results for the human chromosome 14 contigs are given in Table
2b. Of the contigs assembled by ALLPATHS-LG, 37.3% of them
can be extended and the extension result contains 52.4% less contigs
due to the joins generated by AlignGraph. These improvements
are more pronounced than in the above experiment with A. lyrata
as reference, because the genomes of human and chimpanzee
share a much higher sequence similarity than the genomes of A.
thaliana and A. lyrata. The N50, coverage, average contig length,
maximum contig length and MPMB values for the extendable contig
set consistently improve by 90.9%, 1.8%, 115.2%, 51.9% and
53.1%, respectively. Similar results could be obtained with the
other de novo assemblers SOAPdenovo, MaSuRCA and CABOG.
After AlignGraph processing their extendable contigs improved
for the same five evaluation metrics by 89.5-128.1%, 6.8-16.1%,
86.6-161.8%, 16.2-56.1% and 46.3-60.7%, respectively. If the
ALLPATHS-LG is run in its cheat mode by guiding it with the
same reference genome as AlignGraph, then both the sensitivity
and precision measures of the ALLPATHS-LGc contigs improve
compared to the assembly without a reference. Nevertheless,
AlignGraph is still able to extend 34.2% of the ALLPATHS-LGc
contigs and the extension results contain 51.4% less contigs, while
the five evaluation metrics improve by 81.2%, 9.5%, 116.5%, 42.0%
and 53.5%, respectively. These improvements indicate that the
reference-assisted improvements provided by AlignGraph are more
efficient than the ones used by ALLPATHS-LG’s in its cheat mode
at the contig assembly stage.

AlignGraph’s performance results on the scaffolds from the same
human chromosome 14 dataset are given in Table 2c. The scaffold
sets from SOAPdenovo, MaSuRCA and CABOG contain much
smaller numbers of sequences than their corresponding contig sets.
Nevertheless, AlignGraph is able to extend 16.9-27.8% of them and
the extended sets contain 15.1-52.7% fewer but longer and more
complete scaffolds. This results in improvements of the above five
evaluation metrics by 18.4-156.5%, 20.2-45.1%, 38.5-144.6%, 7.3-
142.7% and 26.2-49.1%, respectively. The MPMB values for the
scaffolds are generally smaller than for the contigs, because the
scaffolds are much longer and have much fewer unjoin errors than
the corresponding contigs. The scaffolds results of ALLPATHS-LG

Table 3. Improvements to Published Genome. The published scaffolds from
Landsberg erecta were extended with AlignGraph using the A. thaliana
genome as reference. The rows and columns are arranged the same way as
in Table 2, but several columns are missing here, because it is not possible to
compute the corresponding performance measures in a meaningful manner
without having access to a ‘true’ target genome sequence. In addition, we
report here the total number of bases in the contigs1.

Contig set N N50 N total Average Maximum
Contigs bases1 length length

All 1676 341625 112,581,547 67,172 2,930,102
Extendable 549 388,367 55,611,539 101,296 1,716,958
Extendable+AlignGraph 552 793,894 64,015,527 115,970 2,103,349

(not shown in Table 2) are more complete than those of the other de
novo assemblers, and AlignGraph was not able to further improve
them.

3.2.3 Improvements to published genome. The test results for
the published Landsberg erecta genome are shown in Table 3.
The initial scaffold set used in this test consisted of 1,676
sequences. AlignGraph extended 32.8% of these scaffolds. The
extension results contain in this case a slightly larger number of
sequences, because the reference-assisted assembly pipeline, used
by Schneeberger et al. (2011) to generated the initial genome
sequence, has already established most of the possible joins. Thus,
the remaining room for improvements is restricted to scaffold
extensions where AlignGraph improves the N50, number of total
bases, average contig length and maximum length values for
the extendable scaffolds by 104.4%, 15.1%, 14.5% and 22.5%,
respectively. These improvements demonstrate AlignGraph’s
usefulness in improving published genome sequences, even for
those that have been carefully curated by their authors.

In summary, the above performance tests demonstrate AlignGraph’s
efficiency in improving the results of a variety of de novo assemblers
and species with variable genome complexity by taking advantage
of closely related reference genomes.

4 CONCLUSIONS AND FUTURE WORK
This study introduces a novel de Bruijn graph-based algorithm
for improving de novo genome assemblies guided by sequence
information from a closely related species. The chosen PE
multi-positional de Bruijn graph approach provides an elegant
and efficient solution to this problem. Our performance results
demonstrate that the implemented AlignGraph software is
able to improve the results of a wide range of de novo
assemblers for complex genomes even with relatively diverse and
suboptimal guide sequences as reference. Moreover, our results
demonstrate AlignGraph’s usefulness for improving unfinished
genome assemblies. Another advantage is that AlignGraph can be
used in combination with most existing de novo assemblers. In the
future, we will expand AlignGraph in the following areas: (i) we
will provide support for additional variant-aware alignment tools
for both PE read and contig data, such as GSNAP and GMAP,
respectively; (ii) de novo assembly functionality will be added to

8

AlignGraph to further optimize assemblies at many stages of the
reference-assisted workflow; (iii) utilities will be incorporated for
detecting and resolving misassemblies, and (iv) the processing of
scaffolds with very large gaps will be improved.

ACKNOWLEDGEMENT
We acknowledge the support of the core facilities at the Institute for
Integrative Genome Biology (IIGB) at UC Riverside.
Funding: This work was supported by grants from the USDA
National Institute for Food and Agriculture [NIFA-2010-65106-
20675 to T.G.] and the National Science Foundation [ABI-0957099
to T.G., IOB-0420152 to T.G., MCB-1021969 to T.G., IIS-0711129
to T.J.].

REFERENCES
Boetzer, M. and Pirovano, W. (2012). Toward almost closed genomes with gapfiller.

Genome biology, 13(6), R56.
Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D., and Pirovano, W. (2011).

Scaffolding pre-assembled contigs using sspace. Bioinformatics, 27(4), 578–579.
Chaisson, M. J. and Pevzner, P. A. (2008). Short read fragment assembly of bacterial

genomes. Genome research, 18(2), 324–330.
Chaisson, M. J., Brinza, D., and Pevzner, P. A. (2009). De novo fragment assembly

with short mate-paired reads: Does the read length matter? Genome research, 19(2),
336–346.

Dayarian, A., Michael, T. P., and Sengupta, A. M. (2010). Sopra: Scaffolding algorithm
for paired reads via statistical optimization. BMC bioinformatics, 11(1), 345.

Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2007). Sharcgs, a fast and
highly accurate short-read assembly algorithm for de novo genomic sequencing.
Genome research, 17(11), 1697–1706.

Gao, S., Sung, W.-K., and Nagarajan, N. (2011). Opera: reconstructing optimal
genomic scaffolds with high-throughput paired-end sequences. Journal of
Computational Biology, 18(11), 1681–1691.

Gnerre, S., Lander, E. S., Lindblad-Toh, K., Jaffe, D. B., et al. (2009). Assisted
assembly: how to improve a de novo genome assembly by using related species.
Genome Biol, 10(8), R88.

Gnerre, S., MacCallum, I., Przybylski, D., Ribeiro, F. J., Burton, J. N., Walker,
B. J., Sharpe, T., Hall, G., Shea, T. P., Sykes, S., et al. (2011). High-quality
draft assemblies of mammalian genomes from massively parallel sequence data.
Proceedings of the National Academy of Sciences, 108(4), 1513–1518.

Gritsenko, A. A., Nijkamp, J. F., Reinders, M. J., and de Ridder, D. (2012).
Grass: a generic algorithm for scaffolding next-generation sequencing assemblies.
Bioinformatics, 28(11), 1429–1437.

Hernandez, D., François, P., Farinelli, L., Østerås, M., and Schrenzel, J. (2008). De
novo bacterial genome sequencing: millions of very short reads assembled on a
desktop computer. Genome research, 18(5), 802–809.

Hu, T. T., Pattyn, P., Bakker, E. G., Cao, J., Cheng, J. F., Clark, R. M., Fahlgren, N.,
Fawcett, J. A., Grimwood, J., Gundlach, H., Haberer, G., Hollister, J. D., Ossowski,
S., Ottilar, R. P., Salamov, A. A., Schneeberger, K., Spannagl, M., Wang, X., Yang,
L., Nasrallah, M. E., Bergelson, J., Carrington, J. C., Gaut, B. S., Schmutz, J.,
Mayer, K. F., Van de Peer, Y., Grigoriev, I. V., Nordborg, M., Weigel, D., and Guo,
Y. L. (2011). The arabidopsis lyrata genome sequence and the basis of rapid genome
size change. Nat Genet, 43(5), 476–481.

Jeck, W. R., Reinhardt, J. A., Baltrus, D. A., Hickenbotham, M. T., Magrini, V., Mardis,
E. R., Dangl, J. L., and Jones, C. D. (2007). Extending assembly of short dna
sequences to handle error. Bioinformatics, 23(21), 2942–2944.

Kent, W. (2002). Blatthe blast-like alignment tool. Genome research, 12(4), 656–664.

Kim, J., Larkin, D. M., Cai, Q., Zhang, Y., Ge, R.-L., Auvil, L., Capitanu, B., Zhang,
G., Lewin, H. A., Ma, J., et al. (2013). Reference-assisted chromosome assembly.
Proceedings of the National Academy of Sciences, 110(5), 1785–1790.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2.
Nature methods, 9(4), 357–359.

Li, H. and Homer, N. (2010). A survey of sequence alignment algorithms for next-
generation sequencing. Briefings in bioinformatics, 11(5), 473–483.

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G.,
Kristiansen, K., et al. (2010). De novo assembly of human genomes with massively

parallel short read sequencing. Genome research, 20(2), 265–272.
Lin, Y., Li, J., Shen, H., Zhang, L., Papasian, C. J., et al. (2011). Comparative

studies of de novo assembly tools for next-generation sequencing technologies.
Bioinformatics, 27(15), 2031–2037.

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y.,
et al. (2012). Soapdenovo2: an empirically improved memory-efficient short-read
de novo assembler. GigaScience, 1(1), 18.

Medvedev, P., Pham, S., Chaisson, M., Tesler, G., and Pevzner, P. (2011). Paired de
bruijn graphs: a novel approach for incorporating mate pair information into genome
assemblers. Journal of Computational Biology, 18(11), 1625–1634.

Miller, J. R., Delcher, A. L., Koren, S., Venter, E., Walenz, B. P., Brownley, A.,
Johnson, J., Li, K., Mobarry, C., and Sutton, G. (2008). Aggressive assembly of
pyrosequencing reads with mates. Bioinformatics, 24(24), 2818–2824.

Ossowski, S., Schneeberger, K., Clark, R. M., Lanz, C., Warthmann, N., and Weigel,
D. (2008). Sequencing of natural strains of Arabidopsis thaliana with short reads.
Genome Res, 18(12), 2024–2033.

Peng, Y., Leung, H., Yiu, S., and Chin, F. (2010). Idba–a practical iterative de bruijn
graph de novo assembler. In Research in Computational Molecular Biology, pages
426–440. Springer.

Pevzner, P., Tang, H., and Waterman, M. (2001). An eulerian path approach to dna
fragment assembly. Proceedings of the National Academy of Sciences, 98(17), 9748.

Phillippy, A. M., Schatz, M. C., and Pop, M. (2008). Genome assembly forensics:
finding the elusive mis-assembly. Genome Biol, 9(3).

Pop, M., Phillippy, A., Delcher, A. L., and Salzberg, S. L. (2004a). Comparative
genome assembly. Briefings in bioinformatics, 5(3), 237–248.

Pop, M., Kosack, D. S., and Salzberg, S. L. (2004b). Hierarchical scaffolding with
bambus. Genome research, 14(1), 149–159.

Ronen, R., Boucher, C., Chitsaz, H., and Pevzner, P. (2012). Sequel: improving the
accuracy of genome assemblies. Bioinformatics, 28(12), i188–i196.

Salmela, L., Mäkinen, V., Välimäki, N., Ylinen, J., and Ukkonen, E. (2011). Fast
scaffolding with small independent mixed integer programs. Bioinformatics, 27(23),
3259–3265.

Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen,
T. J., Schatz, M. C., Delcher, A. L., Roberts, M., et al. (2012). Gage: A critical
evaluation of genome assemblies and assembly algorithms. Genome Research,
22(3), 557–567.

Schatz, M. C., Phillippy, A. M., Sommer, D. D., Delcher, A. L., Puiu, D., Narzisi, G.,
Salzberg, S. L., and Pop, M. (2013). Hawkeye and AMOS: visualizing and assessing
the quality of genome assemblies. Brief Bioinform, 14(2), 213–224.

Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz, C., Smith,
L. M., Cao, J., Fitz, J., Warthmann, N., et al. (2011). Reference-guided assembly of
four diverse arabidopsis thaliana genomes. Proceedings of the National Academy of
Sciences, 108(25), 10249–10254.

Simpson, J., Wong, K., Jackman, S., Schein, J., Jones, S., and Birol, İ. (2009). Abyss:
a parallel assembler for short read sequence data. Genome research, 19(6), 1117–
1123.

Tsai, I. J., Otto, T. D., and Berriman, M. (2010). Method improving draft assemblies
by iterative mapping and assembly of short reads to eliminate gaps.

Warren, R. L., Sutton, G. G., Jones, S. J., and Holt, R. A. (2007). Assembling millions
of short dna sequences using ssake. Bioinformatics, 23(4), 500–501.

Zerbino, D. and Birney, E. (2008). Velvet: algorithms for de novo short read assembly
using de bruijn graphs. Genome research, 18(5), 821–829.

Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., and Yorke, J. A.
(2013). The masurca genome assembler. Bioinformatics, 29(21), 2669–2677.

9

