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material. Panassié, Yann. The dissertation author was the sole investigator and author of this

material.

Chapter 3, in part, is currently being prepared for submission for publication of the
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ABSTRACT OF THE DISSERTATION

Essays in Environmental and Behavioral Economics

by

Yann Panassié

Doctor of Philosophy in Economics

University of California San Diego, 2018

Professor Richard Carson, Chair

This dissertation studies questions in environmental economics by exploring the mecha-

nisms through which government and private decisions interact in the transportation and housing

markets. These have important environmental and distributional consequences in terms of mitiga-

tion of and adaptation to climate change. In Chapter 1, I compare new vehicle sales in the United

States and Canada to determine whether updated EPA fuel economy labels introduced in 2012

succeeded in altering consumers’ new vehicle purchase choices. I find small savings in gasoline

consumption through a 1.5 percentage point increase in small car market shares, a corresponding

decrease in SUV shares, and a 6% increase in the valuation of small SUVs’ fuel economies. In

Chapter 2, I study gasoline price volatility in California by estimating the gasoline price elasticity
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of demand for driving, and show that this parameter is both highly inelastic and likely to vary over

time. Chapter 3 focuses on the impacts of hurricanes on the Florida housing market. I show that

hurricanes cause an equilibrium increase in home prices and a concurrent decrease in transaction

probability, lasting up to three years. With supplementary evidence from demographic trends,

I conclude that the main driver of these dynamics is a negative transitory shock to the housing

supply in the aftermath of hurricanes as homes recover from physical damages. I further observe

that new homeowners have higher incomes, resulting in a permanent shift in the demographic

composition of disaster-prone areas, and suggesting important implications about the expected

costs and distributional impacts of future federal disaster relief spending.
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Chapter 1

The EPA Matters: Evidence from

the 2013 Update to Fuel Economy

Labels

1.1 Introduction

The US Environmental Protection Agency (EPA) redesigned the mandatory fuel economy

labels which are affixed to a side window of all new vehicles for sale on dealer lots, starting with

all 2013 model-year vehicles. In addition to the information already provided by the previous

labels, the update included fuel cost saving or spending over five years relative to the average

new vehicle,1 and more prominently displayed the combined miles per gallon (mpg) figure. The

redesign also added emissions ratings, as well as estimated fuel consumption in gallons per 100

miles because, as noted by the EPA, “unlike mpg, consumption relates directly to the amount of

fuel used, and thus to fuel expenditures.” Figures A1 and A2 respectively provide examples (from

1Under assumptions of 15,000 miles driven per year and a yearly-revised gasoline price ($3.70 in 2013).
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hypothetical vehicles) of the labels used between 2008 and 2012, and the updated labels applied

to all new vehicles since model-year 2013. The EPA cites multiple reasons for the redesign,

including that “shoppers will have more information [...] to help save money on fuel and cut

down on harmful pollution.” It also sought to provide information specialized by vehicle types

to reflect the growing prevalence of hybrid, fully electric, and other alternative fuel vehicles

(see Figure A3), as well as to satisfy a new government requirement to include greenhouse gas

emissions and smog pollution ratings. Some authors in the labeling literature, however, caution

us about the potential drawbacks of cluttering information on consumer good labels. Chaffee

and McLeod (1973), for example, finds that increasing the amount of information on a label may

make processing any of it much more difficult to consumers, which, according to the nutrition

labeling literature, can in turn result in people ignoring the labels altogether (Teisl and Roe 1998).

It is also worth noting that in 2016, Canada’s own fuel economy label (Figure A4) was updated

to one that visually resembles the EPA’s 2013 revision, but with gasoline consumption in liters

per 100 km taking a more prominent position than the mpg fuel economy figure, and no relative

savings estimate like the one found on the new US label.

My objective in this paper is to evaluate whether the new EPA labels have succeeded in

altering consumers’ behavior in the form of their aggregated purchase decisions, both through

changes in their valuation of fuel economy within different segments of vehicles, and through

the valuation of fuel economy implied by relative changes in the market shares of segments

themselves. The rest of the paper is organized as follows. Section 1.2 briefly discusses the

existing fuel economy literature, Section 1.3 describes the data I use in the analysis, Section 1.4

introduces the difference-in-differences identification strategy, Section 1.5 estimates the results

and interprets the key findings, and Section 1.6 concludes.
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1.2 The Fuel Economy Literature

A rich literature about consumer demand for fuel economy goes back at least four decades

and has important implications regarding the effectiveness of gasoline taxes, CAFE standards,

and other tools used to achieve more fuel efficient vehicle fleets. This literature can be divided

into two broad categories, with one group of studies using vehicle market share data over time,

and the other using individual choice data. Studies of the US market share of vehicles over time

often model the supply side, usually as an oligopolistic market which must take into account

the effects of both CAFE standards and the price of gasoline. Building on the conditional

logit model in McFadden (1973), Berry et al. (1995) contributes an important instrumental

variable approach to address the endogeneity issue by using characteristics of other vehicles

from the same manufacturer or segment to predict prices, within-segment market shares, and

other possibly endogenous characteristics. BLP explicitly aggregates consumer preferences into

a parametric market demand system and combines this with cost function and pricing behavior

assumptions to generate equilibrium prices and quantities. Klier and Linn (2012) further develops

the instrumental variable methodology by using the characteristics of same-make vehicles with

shared engine platforms across different segments as instruments for prices and other endogenous

characteristics. On the less parametric side of the literature, Busse et al. (2013) looks for evidence

of consumer myopia about future fuel costs using both individual level and aggregate vehicle

choice data, and interpret the results of equilibrium prices and market shares responding to

gasoline price changes as almost complete lack of myopia.

Yet as carefully documented in a literature review by Greene (2010), after four decades of

research, there is still little consensus on whether consumers correctly, over-, or under-value fuel

cost savings when making vehicle purchasing decisions. Studies are about evenly divided with

no discernable pattern or trend and widely varying estimates,2 and many authors conclude that

consumers’ preferences for fuel economy are heterogeneous. Central to the debate is the issue of

2See Figure A5.
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the standard neoclassical assumption that consumers trade off the present cost of more expensive,

more fuel efficient alternatives against discounted future fuel costs. One might expect this to be an

unlikely calculation for all consumers to actually make because it requires specific assumptions

about expected fuel prices and total miles driven over the vehicle’s life, and a discount rate.

Alternatively, some people may simply be unable (or unwilling to spend the time) to figure out

how to compute fuel savings. In-depth interviews with representative California households leads

Turrentine and Kurani (2007) to conclude that not only do households not systematically analyze

fuel expenditures or track them over time, but that even the presumably most mathematically

capable ones make large errors in estimating fuel costs over time despite being explicitly given

all the necessary information to make the calculations.

Many consumers are perhaps unlikely to realize that fuel costs nonlinearly depend on the

mpg level.3 In fact, Larrick and Soll (2008) finds that people perceive fuel savings to increase

linearly with miles per gallon, leading them to both under-value differences in mpg at low mpg

levels and overvalue mpg at relatively higher levels (Figure A6). The scenario in the study’s lab

experiment features a hypothetical vehicle worth $20,000 and rated at 15 mpg. Participants are

asked for their willingness to pay (the mean of which is connected by the blue line in the figure)

for the vehicle at different mpg levels assuming that they will drive 10,000 miles per year for

10 years, and that the price of gas is constant at $2.80. The yellow curve shows the vehicle’s

actual value under the given assumptions after accounting for the fuel savings associated with

the mpg level specified by the horizontal axis. The phenomenon of this linear valuation of mpg

by consumers is termed “MPG Illusion” by the authors, and is further documented by Allcott

(2013), which finds evidence of illusion in nationally representative vehicle ownership and fuel

expenditures survey data. Allcott’s simulations additionally imply that this may have an important

effect on market shares.
3The dependence is inversely proportional to mpg, and directly proportional to fuel price.
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1.3 Data

In this paper, I primarily rely on data from Ward’s Auto Infobank between 2009 and 2015.

In particular, Ward’s reports total monthly US and Canadian sales of new cars and light trucks4

by make and model (e.g. Volkswagen Golf), but not by trim level (e.g. Volkswagen Golf TSI

S). Ward’s does, however, collect an exhaustive set of specifications at the trim level, as well

as track the distribution of engines installed by model-year. Because fuel efficiency, price, and

other characteristics can vary considerably by trim, I use this engines installation data to create

a more precise measure of average vehicle characteristics for each model whose engines data

are available.5 While this procedure does not yield an exact trim match because more than one

trim level is often associated with each model-engine, fuel economy (and other characteristics of

interest) tend to vary most substantially with different engine installations. A 2010 Honda Accord

Sedan, for example, achieves 23/33 or 23/34 mpg (EPA city/highway estimates) in all its trims

sharing a 2.4 liter 4-cylinder engine, while both iterations of the car with a 3.5 liter 6-cylinder are

rated at 20/30 mpg. Horsepower and torque are essentially the same in all 4-cylinder trims, exactly

the same in both 6-cylinder versions (and appreciably higher than the 4-cylinders), and the only

significant differences across different trims sharing an engine are the base prices, which range

from about $22,000 to $28,000 for the 4-cylinders, and $28,000 and $30,000 for the 6-cylinders.

Such specification variation is representative of the typical car model, which tends to have one to

three different engines for two to fewer than ten unique trims in the majority of vehicles, similar

fuel economy and horsepower numbers across trims sharing an engine, but some price variation

between trims with the same engine. In all cases, I assign the entire mass of each of a model’s

possible engine installations to the model’s cheapest trim which features that engine.

For each year, I first match models’ engine installations to the specifications data, and

then take a sales-weighted average of the specifications from each matched trim of a model to

4Light trucks include all SUVs, vans, and trucks with a gross vehicle weight under 14,000 pounds.
5This covers almost all models, and the few that aren’t available are still included in all analyses at their base

trims.
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construct average characteristics by model.6 I then merge these data with the monthly sales

data, and subsequently match the joined sales and specifications to files classifying models into

twenty-seven classes (e.g. lower small car, large pickup, etc.), which I aggregate into eleven

mutually exclusive segments as determined by size, price range, horsepower, and sometimes more

subjective measures such as body style and functionality. Five segments belong to cars: small,

midsize, large, luxury, and sport, while the remaining six are small, midsize, large, and luxury

SUVs, trucks, and vans. Finally, I create a combined fuel economy measure for every model in

each month using the same method as the EPA, which is given by the weighted harmonic mean

of its estimated city (55% weight) and highway (45% weight) fuel economies in mpg.7

The following summary statistics briefly describe some important features of the US data.

Small cars are unsurprisingly the cheapest, with average offerings ranging from about $16,000 in

2009 to $18,000 in 2015, while luxury cars are the most expensive and sell from an average of

$47,500 in 2009 to about $55,000 in 2015. Because fuel costs are such a smaller percentage of

total vehicle expenditures for luxury car and SUV buyers, who are also likely to be wealthier,

we should expect this segment’s sensitivity to fuel economy and gasoline prices to be lesser.

Midsized cars have the most hybrid models until 2012 (then at 10 vehicles with hybrid engine

variants), but are then surpassed by the number of hybrid or fully electric offerings of luxury

cars, which reaches 12 by 2013. Midsized hybrid vehicles, however, are both notably more fuel

efficient on average and have much higher sales volumes than their luxury cousins. In general,

fuel economy is inversely related to vehicle weight and engine output, and mean horsepower does

not rise much over the seven years of data in any segment except for trucks, and large and sports

cars. As seen in Figures 1.1, 1.2, and A7, fuel economy is generally increasing over the data

period. But as illustrated by Figure 1.10, any trend for fuel economy to be increasing relatively

faster than horsepower over time has been of rare occurrence. Given their lower weights and

6Weights are given by the percentage of vehicles sold within a model featuring each possible engine.
7Averaging is always performed in terms of fuel consumption (i.e. gallons per mile) to obtain the correct

sales-weighted fuel economies within models or segments.
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typically smaller engines, we should on average expect smaller vehicles to be more fuel efficient

than larger ones. Figures 1.1 and 1.2 below consider the sales-weighted average fuel economies

of cars and other vehicles respectively. One of the most surprising features of this data is that
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Figure 1.1: US sales-weighted fuel economy by car segment

midsized SUVs are more efficient than small ones in four out of seven years. Examining this

puzzle more closely reveals an even greater one: their fuel consumptions are nearly even despite

midsized SUVs on (weighted) average being about 5 to 15% heavier and having 10 to 20%

more powerful engines. Digging even deeper, however, informs us that a much higher share of

small SUV models are vehicles with emphasis on off-road capabilities (e.g. the Jeep Wrangler),

and include characteristics, such as four-wheel drive, which often come at the expense of fuel

economy. Furthermore, the share of midsized SUVs sold with hybrid drivetrains is over 3 times

as large as that of small SUVs, but this contributes less to their remarkably close fuel economies

because hybrids only make up 1% of midsized SUV sales. Finally, note the interesting divide

around 25 mpg between small and midsized cars, and vehicles from all other segments. While
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Figure 1.2: US sales-weighted fuel economy by light truck segment

this threshold should probably not be used as a precise behavioral parameter for fuel economy

valuation in any econometric model, it can still be seen as a reference for predicting what we could

expect to observe in the event that people generally behave in the way documented in Larrick

and Soll (2008): as shown by relative slopes in Figure 1.3, a 1 to 10% range of discount rates

proves inconclusive about whether small improvements in fuel economy are under- or over-valued

between 19 and 25 mpg, but it does appear to be consistently over-valued for improvements above

25, and significantly so over 33 mpg. Therefore, labels correcting such perceptions could actually

result in an unintended reduction in the efficiency valuation of small or midsized car buyers.

1.4 Identification

The identification strategy I rely on in this paper is a treatment-intensity difference-in-

differences (DID) with Canada as the control group, and where segment market shares and
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Figure 1.3: “MPG Illusion” revisited

segment sales-weighted average fuel consumption are the left hand side variables. The main

advantage of this approach is that it allows me to nonparametrically estimate the effect of the

labels on US consumers’ purchase choices from two markets relying on nearly identical supply

environments, with almost every model-engine pair available in the US also existing in Canada

(sometimes under a different nameplate). In particular, this allows me to avoid the sometimes

tenuous assumptions required in modeling the supply side of the market, as well as to ignore the

well-studied but still debated impacts of CAFE standards.

Because I only observe a single treated and control group for each segment, it is especially

important that there be no other significant policies during the same time period affecting the

American and Canadian auto industries differently as this would confound my estimates. One

of the most noteworthy of such possible policies from the past decade began in 2006, when the

US started offering federal tax rebates of up to $7,500 for hybrids and other fuel efficient, low

emissions vehicles. States, and even some cities have added their own incentives, up to a high of

9



$6,000 in Colorado in 2016, and the federal program was renewed in 2010 for plug-in hybrids

and fully electric vehicles, with a gradual phaseout period per manufacturer after the sales quarter

of its 200,000th credit-eligible vehicle. In turn, Canada introduced its Vehicle Efficiency Initiative

in 2007, offering rebates of up to C$2,000—as well taxes of C$4,000 for a few of the most

inefficient vehicles—and the most populous provinces (Ontario, Quebec, and British Columbia)

also enacted their own programs, with incentives reaching as high as C$14,000 in Ontario for

electric vehicles in 2017. Trucks have notably been exempt from Canada’s federal inefficiency

tax, which is believed to have induced some Canadians to substitute towards them and away from

large SUVs. Since the extensive margin for these incentives occurred both before the period of

analysis and around the same time in the two countries, any differences in how their respective

auto industries may have been affected would have hopefully been largely set by 2009, such that

whichever subsidies prevailed between then and 2015 would not induce any significant biases.

Measuring their precise impact on alternative energy vehicle sales is an endeavor beyond the

scope of this paper, but Section 1.5.3 provides suggestive evidence that these incentives have had

very little differential effect on the market shares of American hybrid and electric vehicles versus

that of their Canadian counterparts.

Moreover, the US enacted the Car Allowance Rebate System (“Cash for Clunkers”) in

the summer of 2009, and while the recession officially ended in the second quarter of that year

in both the US and Canada, the latter may have recovered somewhat more quickly.8 Analysis

will therefore be performed both including and excluding the year 2009 from the sample. Finally,

In 2015—the last year of the data period—Natural Resources Canada revised its fuel economy

testing procedure to mirror the five-cycle test introduced by the EPA in 2008, producing perhaps

the most serious threat to my identification strategy, and so results will also be presented omitting

8Figure A8 shows yearly total vehicle sales in the neighboring countries.
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this year. The econometric specification I use in the first two results subsections is as follows:

yist = γst +αsDi +δsTist + εist (DID)

where i are the two countries, s indexes over segments, and t over months of sample, γst are

segment-specific time effects, and Di is an indicator for the US. The dependent variable is

either each segment’s monthly share of total sales in its country or the country-segment-month’s

sales-weighted average new vehicle fuel consumption, and Tist is a US treatment intensity index

measuring the approximate fraction of vehicles sold in each segment-month which feature the

revised EPA labels.

Additionally, the average monthly prices of regular unleaded gasoline in the US and

Canada will be included in analogous models to account for their potential effects on market

shares and segment-average fuel consumption. My preferred specifications, however, will be

those estimated on the 2010-2014 trimmed samples that do not control for gas prices. This is in

part because it is not necessarily clear how to allow Canada’s gas price to influence its market for

new vehicles relative to the effects of the US price in its own market. Some issues to consider, for

example, include whether to use continuously-updated or period-averaged exchange rates, real

or nominal prices, or whether to rely on growth rates, and if so, this raises yet another question

about when prices should be normalized to each other. In light of the evidence suggesting

that many consumers do not explicitly track or estimate their fuel expenditures, I will view

the effect of fluctuating gas prices on automobile purchasing decisions not only as a real cost

of ownership factor, but also as a behavioral parameter. As such, I will present results based

on differences in the growth rates of nominal prices, and normalize them at the month which

minimizes the sum of squared differences in the levels of nominal prices over the 2010 to 2014

period, October 2011 (see Figure A9). But it is important to note that results will differ very

little by whether or not gas prices are controlled for regardless of which of version of the prices
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I use. While differences in covariate levels between treatment and control groups matter when

constraining a covariate to have the same effect in both groups, the Canadian time series are all

highly correlated with their American counterparts irrespective of the assumptions under which

they are respectively generated, and any normalization absorbs the majority of the difference

in levels. Finally, allowing the price of gas to affect segment shares separately in the US and

Canada sidesteps the normalization issue and point estimates again look very similar, but doing

this comes at the expense of power: with only one country in treatment and control group each,

estimation of the additional parameters reduces precision for most of the others in the model.

1.5 Results

1.5.1 Market Shares

I first explore the impacts of the labels on segment market shares. Table 1.1, provides

some preliminary analysis by estimating the difference-in-differences coefficients δs on a broader

definition of vehicle segmentation that aggregates all cars and all SUVs into two overall segments.

We can immediately see that trimming the first and last years from the sample has a significant

effect on the estimates. Unless otherwise specified, all parameter interpretation is henceforth

done in terms of the third and fourth columns of the results tables in the text because of the

identification issues outlined in the previous section. The SUV coefficient exhibits the best

evidence of an effect, suggesting that overall SUV shares decreased by over 1.5 percentage points,

and the corresponding increases in shares appear to be split between cars and trucks. Coefficients

from flexible difference-in-differences specifications allowing each year to have its own intercept

in segment market share are plotted below in panels (a), (b), (c), and (d) of Figure 1.4 respectively

for small cars, small and large SUVs, and trucks9 both to evaluate the parallel trends assumptions,

and to examine any possible heterogeneity across segments in market share response timing. 2011

9See Figure A12 for other segments.
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is the omitted year, and note that 2012 is always only partially treated and with different intensities

depending on the segment in the sense that the earliest months of the year generally see no 2013

labels, the middle months begin having a few new model-year vehicles in most segments, and are

therefore partially treated, while the final months experience the majority of the introduction of

new model-years, and so approach being fully treated. Figure A13 depicts the distribution of the

introduction of the new model-year 2013 vehicles and their accompanying labels across time.

Table 1.1: Gross segmentation market share difference-in-differences

Full Sample w/ Gas Price 2010-2014 w/ Gas Price
US × Car × Treat 1.70∗∗ 2.07∗∗∗ 0.75 0.81

(2.43) (3.01) (0.95) (0.99)

US × SUV × Treat -2.09∗∗∗ -2.27∗∗∗ -1.73∗∗∗ -1.81∗∗∗

(-4.25) (-4.50) (-2.99) (-3.44)

US × Truck × Treat 0.38 0.11 0.86∗∗ 0.98∗

(0.96) (0.23) (2.32) (1.94)

US × Van × Treat 0.02 0.08 0.10 0.04
(0.08) (0.22) (0.44) (0.17)

Observations 672 672 480 480
Within-R2 0.82 0.83 0.87 0.87
SE Clusters 42 42 30 30
Notes: t statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Coefficient estimates in percentage points. Standard errors are clustered in country by 4-month
blocks to allow for both within and across-segment serial correlation in errors within country-
trimester. The effect of gas prices on segment shares is controlled for in the 2nd and 4th columns.

The parallel trends assumption not only holds for all four segments considered in the text, but for

all other segments as well. Small cars begin to exhibit increases in share of over 1 percentage

point by 2013, and eventually a much larger increase by 2015, confirming that it is prudent to

focus on results omitting that year. Meanwhile small and large SUVs both experience statistically

significant reductions in shares of around 1 and 0.5 percentage points respectively by 2012, which

persist until 2015. Lastly, trucks do not show much evidence of an increase in shares following

the introduction of the new labels, but rather that they experienced a relative dip in 2010, before
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Figure 1.4: Market share flexible difference-in-differences

the update. Table 1.2 now returns to the treatment intensity difference-in-differences specification

given in the previous section and presents estimates of the δs coefficients for all car and SUV

segments.10 The small cars estimate confirms that their share increased by nearly 1.5 percentage

points due to the labels, small SUV shares decreased by about 1 percentage point, and large SUV

shares dropped by a half percentage point. Other statistically significant coefficients suggest that

large and luxury cars may have lost 0.3 percentage points of market share each because of the

labels, while luxury SUVs may have lost as much as 0.4 percentage points of share, but statistical

significance for these findings only appears when controlling for gasoline prices. The reported

measure of fit is the R2 within the segment-specific monthly mean shares (γst) because while

10The truck and van coefficients and their associated standard errors are mechanically identical to those from Table
1.1.
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these alone allow for the model to fit very well, its performance in terms of the US-Canada share

differential and the treatment effect is of particular interest.

Given the evidence that parallel trends held for all segments, including in 2009, hypo-

thetical differential effects of the recession on the US and Canada seem to be less of a source of

potential bias than the latter’s model-year 2015 revision of its fuel economy testing procedure.

Table A1 reports results including 2009 and omitting only 2015 from the analysis, and finds

that the effect of increased truck shares is both more than halved, and no longer statistically

significant. Examining the evolution of Canadian and American monthly truck shares11 reveals

that their difference is especially volatile from early 2009 to mid 2010, with a global trough in

August 2009—the most active of the two months of the Cash for Clunkers program—surounded

by global peaks in the 2009 months immediately preceding and following it, as well as a series of

local lows in the first half of 2010. Omitting the year 2009 thus resulted in artificially low US

truck shares in the pre-2013 label period by ignoring the intratemporal substitution that is most

likely occuring as a result of Cash for Clunkers, and the estimates from Table A1 confirm that this

was driving at least half of the magnitude of the trucks estimates reported in the last two columns

of Table 1.2. Nevertheless, in the spirit of providing the most conservative point estimate for the

effect of the change in labeling regimes, the calculation of yearly fuel savings undertaken in the

conclusion will assume the full relative increase in US truck shares found in the trimmed sample

column of the table from the text.

The nature of my identification strategy allows me to estimate by how much segment

shares grew or fell after all sorting, but not to empirically evaluate exactly how buyers are sorting

into new segments because of the labels. Many paths could be consistent with the results presented

in this section, but I will briefly describe what I believe to be the most likely one. Some would-be

SUV buyers (midsized, large, and luxury) could have instead opted to purchase trucks. Other

potential large SUV buyers switched to midsized SUVs, and some potential midsized SUV buyers

11See Figure A10.
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Table 1.2: Market share difference-in-differences

Full Sample w/ Gas Price 2010-2014 w/ Gas Price
US × Small × Treat 3.07∗∗∗ 3.19∗∗∗ 1.44∗∗ 1.54∗∗

(4.11) (4.01) (2.33) (2.33)

US ×Midsize × Treat -0.59∗ -0.35 -0.42 -0.25
(-1.73) (-1.16) (-1.01) (-0.72)

US × Large × Treat -0.45∗∗∗ -0.50∗∗∗ -0.19 -0.32∗∗

(-3.16) (-3.56) (-1.35) (-2.27)

US × Luxury × Treat -0.55∗∗∗ -0.52∗∗ -0.20 -0.31∗∗

(-2.86) (-2.40) (-1.51) (-2.47)

US × Sport × Treat 0.16 0.18 0.08 0.07
(1.33) (1.33) (0.62) (0.49)

US × Small SUV × Treat -0.89∗∗∗ -1.11∗∗∗ -1.00∗∗∗ -1.16∗∗∗

(-4.81) (-6.21) (-5.72) (-6.76)

US ×Midsize SUV × Treat -0.11 -0.06 -0.00 0.16
(-0.33) (-0.17) (-0.00) (0.42)

US × Large SUV × Treat -0.64∗∗∗ -0.64∗∗∗ -0.50∗∗∗ -0.51∗∗∗

(-4.49) (-3.90) (-3.45) (-3.35)

US × Luxury SUV × Treat -0.45∗∗∗ -0.50∗∗∗ -0.28 -0.38∗∗

(-2.98) (-3.22) (-1.48) (-2.10)

US × Truck × Treat 0.38 0.11 0.86∗∗ 0.98∗

(0.96) (0.23) (2.31) (1.94)

US × Van × Treat 0.02 0.08 0.10 0.04
(0.08) (0.22) (0.44) (0.17)

Observations 1848 1848 1320 1320
Within-R2 0.96 0.96 0.97 0.97
SE Clusters 42 42 30 30
Notes: t statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Coefficient estimates in percentage points. Standard errors are clustered in country by 4-month
blocks to allow for both within and across-segment serial correlation in errors within country-
trimester. The effect of gas prices on segment shares is controlled for in the 2nd and 4th columns.
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instead went with small SUVs, decreasing the shares of large SUVs while holding level that of

midsized SUVs as the segment both gained and lost buyers. Finally, people who may have chosen

small SUVs were probably the ones induced to switch to small cars instead after being nudged by

the labels into realizing that the former are actually significantly more inefficient than the latter.

1.5.2 Fuel Consumption

I now turn to the results on fuel economy itself, beginning as in the previous section with

coefficients from fully flexible difference-in-differences models plotted in panels (a), (b), (c), and

(d) of Figure 1.5 for small cars, small and large SUVs, and trucks respectively.12 Evidence about

the parallel trends assumption is now mixed as I find that it holds in some segments, notably in

midsized and large cars, and small and large SUVs, but not in others (small cars, luxury cars and

SUVs, and trucks). This means that the segment-average fuel consumption estimates will only be

able to be interpreted causally for the former group of segments, and all others should be treated

with more caution.

The δs coefficients from the consumption (DID) specification are reported in Table 1.3

with estimates scaled to gallons consumed per 100 miles (gals/100 miles), and they indicate

that the labels resulted in increases of 0.05 gals/100 miles, and 0.06 to 0.08 gals/100 miles for

midsized cars and large SUVs respectively, whereas fuel consumption decreased by 0.05 gals/100

miles for large cars, and dropped as much as 0.25 gals/100 miles in small SUVs. Since midsized

cars are quite efficient (on average only being bested by small cars—see Figure 1.1), a modest

decline in efficiency is actually consistent with the mpg illusion prediction that fuel economy may

be overvalued for some of the more efficient vehicles. The large and highly significant coefficient

on small SUVs suggests that the labels succeeded in pushing buyers towards the more efficient

models. Again, this is consistent with the illusion proposition that fuel economy is undervalued

among relatively inefficient vehicles as small SUVs reach a sales-weighted average well below

12Estimates for other segments can be found in Figure A14.
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Figure 1.5: Fuel consumption flexible difference-in-differences

25 mpg in every year (Figure 1.2).

The only coefficient which, at first glance, may seem inconsistent with fuel economy

being undervalued at low levels is that on large SUVs, which implies that they became nearly

0.1 gallon per 100 miles more inefficient because of the labels. Recalling the result from the

previous section, however, that large SUVs lost about 0.5 percentage points of market share, this

increase in average consumption is actually not surprising because people being induced to switch

to more fuel efficient vehicles by the labels cared more about fuel economy than those who did

not switch. They would have therefore been likely to choose some of the more fuel efficient

large SUVs had they not instead purchased from another segment13—thus worsening observed

13Which almost necessarily has better fuel economy on average because large SUVs, being among the heaviest
vehicles, are close to the most inefficient (second only to trucks, and about level with vans).
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Table 1.3: Fuel consumption difference-in-differences

Full Sample w/ Gas Price 2010-2014 w/ Gas Price
US × Small × Treat -0.01∗ -0.01 -0.02∗ -0.01

(-1.71) (-1.43) (-2.03) (-1.53)

US ×Midsize × Treat 0.07∗∗∗ 0.06∗∗∗ 0.05∗∗ 0.05∗∗

(3.82) (3.37) (2.36) (2.15)

US × Large × Treat -0.05∗∗∗ -0.05∗∗∗ -0.05∗∗ -0.05∗∗

(-3.27) (-3.26) (-2.07) (-2.38)

US × Luxury × Treat -0.03∗ -0.04∗∗∗ -0.05∗∗∗ -0.07∗∗∗

(-1.97) (-2.74) (-3.26) (-3.97)

US × Sport × Treat -0.13∗ -0.18∗∗∗ -0.01 -0.04
(-1.83) (-2.71) (-0.27) (-0.69)

US × Small SUV × Treat -0.23∗∗∗ -0.24∗∗∗ -0.25∗∗∗ -0.26∗∗∗

(-6.13) (-5.45) (-5.05) (-4.44)

US ×Midsize SUV × Treat -0.00 -0.00 0.01 0.01
(-0.42) (-0.38) (1.04) (0.64)

US × Large SUV × Treat 0.04 0.03 0.08∗∗ 0.06∗∗

(1.29) (1.12) (2.26) (2.28)

US × Luxury SUV × Treat 0.04∗∗ 0.05∗∗∗ 0.05∗ 0.07∗∗∗

(2.55) (2.99) (1.97) (3.73)

US × Truck × Treat -0.06∗∗∗ -0.09∗∗∗ -0.07∗∗∗ -0.08∗∗∗

(-3.12) (-6.09) (-3.35) (-3.75)

US × Van × Treat -0.09∗∗ -0.06∗∗ -0.01 -0.01
(-2.38) (-2.22) (-0.62) (-0.81)

Observations 1848 1848 1320 1320
Within-R2 0.67 0.73 0.70 0.72
SE Clusters 42 42 30 30
Notes: t statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Coefficients in gallons per 100 miles. Standard errors are clustered in country by 4-month blocks to
allow for both within and across-segment serial correlation in errors within country-trimester. The
effect of gas prices on segment-average fuel consumption is controlled for in the 2nd and 4th columns
and is found to be negative for most segments, or statistically indistinguishable from 0 otherwise.
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large SUV average fuel consumption by changing segments. Interpreting the results relative to

baseline utilizations, they correspond to around 1% increases in consumption each for midsized

cars and large SUVs, and respectively 1 and 6% reductions for large cars and small SUVs. While

statistically significant, the labels’ impacts on large car and SUV fuel utilizations will actually

contribute very little to the changes in economy-wide consumption I estimate in Section 1.6. This

is both because these effects are quite small relative to utilizations, and because between 2012

and 2015, large cars and SUVs only made up about 2 and 5% of US vehicle sales respectively.

Of the segments for which the parallel trends assumption failed, all appear to have

experienced small decreases in average fuel utilization post treatment, except for luxury SUVs

whose consumption seems to have gone up slightly. Turning to Figure A14 in the Appendix,

however, reveals that this increase occurred almost entirely in 2011, when no 2013 model-year

luxury SUVs could have been sold—by law, new model-years can be introduced as early as

January of the previous year, but no earlier—and the change can therefore not be attributed to the

2013 fuel economy labels. Finally, note that as in the shares specifications, the standard errors

estimated in Table 1.3 are clustered by country by 4 months periods, but there is less reason to

worry about the errors in the fuel consumption models being correlated across segments, and this

fact can be used to extend the clustering’s time dimension in order to allow for the potential serial

correlation in the errors to last longer. This issue is explored in Appendix Table A2, which finds

little evidence of changes in parameter statistical significance after expanding the clusters to last

two years.

1.5.3 Hybrid and Electric Vehicle Incentives

In this section, I address the potentially confounding impacts of the different hybrid and

electric vehicle subsidies introduced by US states and Canadian provinces over the sample period.
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Figure 1.6: Flexible difference-in-differences: hybrid shares by segment

All results presented here are restricted to non-sports-car14 models whose only engine offerings

are hybrid or electric variants, which represent between 70 and 72% of all US hybrid and electric

sales across the 7 years in the sample. These consist of the Honda Insight, Toyota Prius c, and Fiat

500e15 for small cars, the Prius, Ford C-Max, and Nissan Leaf midsized cars, and the Chevrolet

Volt, Lexus CT, and Tesla Model S luxury cars.16 The restriction to these vehicles is necessary

because for models with both gasoline-only and hybrid engine options, sales of the hybrid variants

can only be inferred from the US engines production data, which would bias estimates of US-

Canada differences in hybrid shares towards the null. As a first pass, Figure 1.6 plots yearly

flexible difference-in-difference estimates of the sums of the hybrid models’ market shares by

segment. There are no discernable differences in market shares between 2009, 2010, and 2011 for

14Some sports cars like the Porsche 918 Spyder only feature a hybrid engine, but are prohibitively expensive
performance-oriented vehicles with accordingly low sales, and little in common with mainstream hybrids.

15Ward’s reports 500e sales independently from those of its Fiat 500 internal combustion engine cousin.
16The Fiat 500e, Nissan Leaf, and Tesla Model S are fully electric vehicles, but I sometimes use the term “hybrid”

to refer to both hybrid and electric cars.
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small and midsized hybrids, and no luxury hybrid-engine-only models in 2009 or 2010. Relative

decreases in shares begin to appear by 2012 for the former two segments, but no discernable

pattern emerges for the latter. Excluding 2015 from interpretation as before, the differences that

do emerge relative to 2011 are very small, topping out at (a non-statistically-significant) -0.3

percentage points for midsized hybrids in 2014, hinting that the magnitude of changes in hybrid

shares is likely of second order relative to the estimates from the previous sections. In order to

more precisely bound the possible effects of incentives on shares, I now consider two types of

difference-in-differences specifications.

The first is a placebo-style analysis where I separately focus on trimmed samples on both

sides of the 2013 label introduction. I allow a possible treatment to begin—and persist for the

remainder of the trimmed periods—at every month of 2010 on the pre-2013 label sample, and

in the five months between September 2013 and January 2014 for the post label sample. The

coefficients estimated from this exercise are plotted in the left and right panels of Figures 1.7 and

1.8 below for small and midsized hybrids respectively.17 The reason why the left panels estimate

more than twice as many coefficients as the right ones is purely empirical: we’ve seen plenty

of evidence suggesting that Canada’s revised testing methods have had significant impacts on

its auto industry and so the year 2015 was dropped from the post sample, leaving me with less

data than in the pre sample—which retained 2009 as parallel trends in market shares have held

consistently.18 The range of estimates indicates that any differences in tax incentives between the

US and Canada can only account for a magnitude of about 0.07 percentage points for the sum of

small hybrid shares, and at most 0.2 for midsized hybrids, albeit rarely with statistical significance

for either segment. Note that the latter effect’s direction is reversed across the two samples, which

is by no means surprising as it is entirely plausible that on aggregate, new hybrid incentives were

relatively more generous in the US until around 2012 before gradually falling behind the latest

17See Figure A15 in the Appendix for luxury hybrids.
18Specifically, I exclude every month after partial treatment begins in March 2012 on the left side; on the right

side, every month before most labels have been introduced in September 2012, as well the year 2015 are dropped.
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Figure 1.7: Small hybrid incentives difference-in-differences
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Figure 1.8: Midsize hybrid incentives difference-in-differences
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Canadian subsidies sometime after that. The post sample placebo estimates showed hybrid shares

from all three segments decreasing by an additional 0.1 percentage points had 2015 been included,

but this bears no relevance to any of the results as none of the fuel savings calculations in the

concluding section rely on specifications estimated on data that includes this year.

Armed with an idea of the magnitude of the effect of potentially differential incentives,

we can now turn to the figures’ middle panels: these plot coefficients from the second type of

specification in which the sample restriction returns to the usual 2010 to 2014 range, providing

estimates of the combined effects on segment summed hybrid shares of the 2013 labels and

differences in the two countries’ hybrid tax policies. Each of the 11 estimates is again based on

an equation with a different treatment starting date corresponding to every month between March

2012 and January 2013,19 and we can conclude that relative to their Canadian counterparts, US

hybrids may have experienced small decreases in share, of about 0.08 to 0.12 percentage points

and 0.15 to 0.27 percentage points for small and midsized hybrids respectively (while luxury

hybrid shares remained even).

In summary, even if we believed that the entirety of the changes in hybrid and electric

shares were attributable to differential incentives for these vehicles, the evidence presented

in this subsection has shown that the bias this would induce on the market share estimates

documented in Table 1.2 would likely be negligible. For small cars, the more consistently

negative coefficients would even imply that their share could have increased slightly more without

such differences. Furthemore, while Table 1.3 showed that midsized car fuel consumption

increased by a statistically significant 0.05 miles per 100 gallons, the decline in midsized hybrids’

shares that could be attributed to tax incentives can only account for around 5 to 10% of this

rise—or have attenuated it by a similar amount if relative midsized hybrid shares instead rose

by 0.2 percentage points, as the left and right panels of Figure 1.8 together proved inconclusive

about the direction of the incentives’ effect.
19See Figure A13 for the 2013 model-year diffusion rate informing my choice of treatment starting months.
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1.5.4 An Alternative Modeling Detour

The wealth of vehicle characteristics available in the Ward’s data enables me to experiment

with some more parametric specifications that could theoretically allow for a more precise estima-

tion of post-labels changes in within-segment fuel consumption preferences after controlling for

other vehicle attributes. One of the simplest such specifications that can be looked at is a linear

probability model of the form:

Share jt = αsgpm jt +X ′jtβs + τst + ε jt (Base)

+δsTjt×gpm jt (Full)

where j indexes over individual models of vehicles, Tjt is now a model-specific label introduction

indicator, X jt is a vector of control characteristics including manufacturer suggested retail price,

the horsepower to curbweight ratio, and a model availability measure constructed from the data,

and τst are segment-specific time effects. The time effects allow each segment by month of sample

to have its own intercept, enabling mean segment shares to vary over time with any relevant

factors (observed or not) like gasoline prices, the introduction of competing models, the impact

of the labels on segment shares themselves, etc. All coefficients are segment-subscripted and

thus interacted by segment indicators, allowing not only the control variables, but also both the

baseline and post-treatment components of fuel economy to affect different segments’ market

shares differently. This is the critical aspect of this specification. First, it enables the identification

of changes in average fuel economy valuation in every segment from the introduction of each

vehicle-specific 2013 label. Second, it allows each segment to have its own valuation for all of

the observed characteristics in order to reflect the heterogeneity of consumer preferences across

segments; we might expect, for example, that increases in fuel economy or horsepower are valued

asymmetrically in purchases of small versus those of sports cars, or that relative prices predict

midsized and luxury car shares differently.
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The equations are estimated separately on the US and Canadian data in order to consider

an alternative against which to compare any changes in the evolution of US fuel economy

preferences; note that this implies some parallel trends assumptions also need to be satisfied in

this context. Estimates of the αs and δs coefficients from the (Base) and (Full) specifications are

reported in the first four columns of Appendix Table A3, but these results of course suffer from

the well-known endogeneity issues addressed in different ways by the literature. One popular

method used to tackle this endogeneity, vehicle fixed effects, could work well if vehicle fuel

economy relative to monthly segment-means varied significantly across model-years (within

models). But the baseline consumption statistical zeros in some of the largest segments by sales

(small and midsized cars, and trucks) after their inclusion in the next four columns of Table A3

do not bode well. The zeros imply that a substantial amount of the predictive variation in fuel

efficiency comes from its valuation across vehicle models, and too much variation is absorbed by

these fixed effects to consider the strategy any further.20

Another possible approach introduced by Berry et al. (1995) consists in the two-stage least

squares estimation of the following specification implied by a nested logit model of consumer

choices (with “BLP” instruments as described further below):

ln(share jt)− ln(share0t) = αsgpm jt +X ′jtβs +σln
(

share jt

sharest

)
+ ε jt (Nested logit)

where share0t is the market share of the outside good (used vehicles, motorcycles, etc.), share jt
sharest

is the within-segment market share of model j, and σ is the within-segment correlation in

preferences which relaxes (across, but not within segments) the independence of irrelevant

alternatives assumption imposed by the standard logit model. I do not observe outside good sales,

however, and I therefore modify this specification by including a month of sample fixed effect,

20Employing different functional forms, like taking the logs of variables, does not help alleviate the issue.
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which will not only absorb this variable, but also allow for mean shares to vary over time:

ln(share jt) = τt +αsgpm jt +X ′jtβs +σln
(

share jt

sharest

)
+ ε jt (NL base)

+δsTjt×gpm jt (NL full)

In these models, the endogeneity will be explicitly addressed by instrumenting for fuel consump-

tion, price, the horsepower to weight ratio, and within-segment market share with the segment

by month of sample and make by month of sample means of all these variables but the latter;

each vehicle’s own characteristics are always excluded from the constructions of these means.

Note that segment-specific time effects cannot be added as was done in the linear probability

specifications because their inclusion would prevent the identification of the within-segment cor-

relation parameter σ, reimposing the independence of irrelevant alternatives across segments—an

assumption which is difficult to defend. Results are reported in Table A4, where the first four

columns correspond to the (NL base) and (NL full) equations estimated first on the US, and

then on Canada, and the last four substitute the month of sample fixed effects from these models

with a more aggressive set of make by month of sample fixed effects which enable different

companies to gain or lose average market share over time. These results are even more difficult to

take seriously than those from the linear probability models: not only are most estimates quite

sensitive to the choice of fixed effects, but many base coefficients are statistically positive despite

the instrumental strategy, which would imply negative valuations of fuel economy if we actually

believed that the endogeneity had properly been addressed.

In short, the considerable sensitivity of the results discussed in this subsection to modeling

assumptions seems to suggest that if we hope to successfully use parametric methods in market

share specifications to tackle further fuel economy questions, we may need to focus on developing

new tools. These would need to be better equipped to handle the many endogenous characteristics

that are often observable to researchers, but which, using current parametric approaches, cannot
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be relied on in this context to improve estimates’ precision as proposed by theory.

1.6 Conclusion and the Role of CAFE Standards

Recall that new vehicle fuel economy was steadily increasing throughout the Ward’s data

period, and this is in large part attributable to CAFE standards. Following the National Highway

Traffic Safety Administration’s 2006 attempts at reform, the 2007 Energy Independence and

Security Act signed by President George W. Bush required new CAFE standards beginning in

2011, with an increased fuel economy requirement by 2020 to at least 35 mpg for all passenger and

non-passenger vehicles, and increases to the maximum feasible average fuel economy standard

for each model-year fleet between 2021 and 2030. Figure 1.9 provides the history of CAFE

standards versus achieved efficiency (not pictured are 2012 forecasts of the standards through

2025, which reach 55.3 and 39.3 mpg for cars and all other light duty vehicles respectively).21

The time series portray that while fuel economy has increased significantly over the past decade,

periods of steadily improving fuel economy have mostly been accompanied by quickly ramping

up CAFE standards.22 The twenty year period between the mid 80s and the mid 2000s saw both

stagnant CAFE standards and new vehicle fuel economy, but this is not to say that the efficiency

of engines has not steadily progressed throughout this time. Fuel economy is inversely related to

engine output and vehicle weight, yet Figure 1.10 shows that the former has seen horsepower

booms of 65 and over 95% in cars and light trucks respectively between 1985 and 2005, and the

latter more modest increases of 13 and 25% respectively, all while fuel economy itself improved

by only 8 and 4% during the same period of flat standards. To the extent that the consumer

21All CAFE fuel economies in this section are not only CAFE credit-adjusted, but also based on pre-2008 model-
year EPA testing revisions for higher accelerations and speeds, air conditioning use, and cold-engine driving in
stop-and-go traffic, hence the sizable differences in levels with fuel economies based on Ward’s data (e.g. in Figure
A7).

22Figure A16 adds the demand side factors affecting realized fleet fuel economy, vehicle miles traveled (VMT)
and gasoline prices.
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Figure 1.9: CAFE standards and fuel economy (1978-2020)

preferences23 driving this allocation of technological progress persist today and that gas prices

remain low, labels successfully conveying all the relevant information are not likely to be enough

to generate sustained improvements in new fleet fuel economy.

I conclude by estimating the fuel savings engendered by the redesigned labels, relying on

the statistically significant coefficients from my preferred specifications which are found in the

third columns of Tables 1.2 and 1.3. Specifically, I consider that small car shares increased by 1.4

percentage points, small and large SUV shares fell by 1 and 0.5 percentage points respectively,

truck shares increased by 0.8 percentage points,24 large and luxury car shares each decreased

by 0.2 percentage points, and luxury SUV shares dropped by 0.3 percentage points. Regarding

the last three segments, the rationale is based on the evidence from most specifications that

they experienced small but statistically significant reductions in shares. As for the consumption

estimates, I use the ones from segments which respected the parallel trends assumption, namely

23And whatever they are perceived to be by manufacturers.
24See discussion about the sensitivity of the truck share estimates towards the end of Section 1.5.1.
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Figure 1.10: Efficiency gains allocation over time (EPA (2016))

that small SUV and large car fuel consumptions respectively improved by 0.25 and 0.05 gallons

per 100 miles, while those of midsized cars and large SUVs worsened by 0.05 and 0.08 gallons

per 100 miles.

An additional assumption about new vehicle miles traveled is required, and I rely on

Department of Transportation estimates that American vehicles were driven an average of around

12 thousand miles a year between 2012 and 2015, imposing that new vehicles be used equivalently

to the overall fleet average—an especially conservative assumption since they are in fact known

to be driven more than older vehicles. Yearly fuel savings calculated under these assumptions,

as well as the absence of a rebound effect, are produced in Figure 1.11 below. Because of the

relatively large market share of midsized cars, the majority of the gains obtained by the improved

small SUV fuel economy turn out to be offset by the much smaller loss in average midsized

car efficiency, and foregone consumption thus almost entirely results from consumers switching

across segments. Cumulative savings from the labels’ gradual introduction in 2012 through 2015

add up to nearly 150 million gallons of gasoline, a quantity which, while an order of magnitude

below the flow of fuel estimated to have been saved by CAFE standards (around a billion gallons
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Figure 1.11: Estimated yearly gas consumption avoided by 2013 EPA labels

per year from each mpg increase in the standards25) is a pretty significant achievement for a

virtually costless intervention. However, compared to the average of 391.4 million gallons of

finished motor gasoline which were consumed daily in the United States in 2017, these savings

are relatively small.26

The results presented in this paper have shown that the EPA’s 2013 labels, redesigned

to improve the delivery of relevant cost and environmental information, have helped produce a

more fuel efficient fleet of new vehicles by affecting some consumers’ purchasing decisions. But

other tools likely need to continue being used to achieve further gains, and CAFE standards have

been criticized by the literature for contributing to the growth of SUVs—these have always been

subject to looser standards, which are now even further differentiated by vehicle “footprints”, or

wheelbase by track width. Most economists agree that raising gasoline taxes to correct pollution

25See for example Goldberg (1998), Kleit (2004), or Austin and Dinan (2005).
26Source: Energy Information Administration.
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externalities is much closer than standards to being a first-best alternative,27 and the literature

should perhaps strive to more strongly emphasize that increased taxes can be made revenue

neutral (via lump sum redistribution, for example) to help some politicians overcome their tax

allergies.

27See van Benthem and Reynaert (2015): https://www.economist.com/blogs/freeexchange/2015/07/
reducing-carbon-emissions.
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Chapter 2

A Cautionary Tale on Estimating

the Short Run Gasoline Price

Elasticity of Demand for Driving

2.1 Introduction

A literature estimating the price elasticity of gasoline demand goes back to at least 1969,

when Heien finds it to be -0.3 in the short run, and -0.7 in the long run in the United States. As data

grew better and the econometric methods used to produce new estimates became more advanced,

authors began testing more intricate hypotheses about its evolution and potential heterogeneities.

Dahl (1982) was one of the first papers to look for evidence of differential gasoline demand

elasticities, deriving a short-run estimate of around -0.2 across diverse countries. This figure was

found to be stable between 1970 and 1978 across a wide range of incomes and gasoline prices,1

and did not vary with the direction of price changes. More recently, Hughes et al. (2008) finds

1Including the price swings caused by the 1973 to 1974 oil embargo.
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evidence of a significant shift in the short-run demand elasticity in the US, with estimates from

monthly time series data between 1975 and 1980 ranging from -0.34 to -0.21, while the same

models yield a much more inelastic -0.08 to -0.03 range from 2001 to 2006.

In a meta-analysis of the literature, Espey (1998) concludes that while the short-run

elasticity appears to be declining over time, the long-run elasticity may have actually increased.

The author notes that this result might at first seem contradictory, but posits that as gasoline

prices rose during the 1970s and people made some initial adjustments in driving habits, there

were fewer options for further short-run responses to price changes. However, as automobile fuel

efficiency technology improved between the late 1970s and mid 1980s, long-run responses to

price changes could now be achieved by purchasing more fuel-efficient vehicles. Espey observes

that panel data tend to produce more elastic short-run estimates, but finds that within the US, data

periodicity and geography do not have a unilateral effect on researchers’ estimates. She infers

that there are no significant differences between aggregate and per capita models. In contrast,

Levin et al. (2017), relying on microdata from gas station sales, cautions that while monthly or

state level aggregation seems to result in limited bias, country or yearly aggregation does produce

significantly too inelastic estimates relative to what it finds based on the individual transactions.

The short-run gasoline demand elasticity can be approximated by a decomposition into a

driving intensity component, and a within-household vehicle choice component for those with

multiple vehicles to choose from.2 Previous work has focused on driving demand as an entity

of interest. Gillingham (2014), for example, uses a sample of vehicles registered in California

between 2001 and 2003, and subsequently given a smog check between 2005 and 2009, and

estimates a medium-run vehicle miles traveled (VMT) elasticity of -0.22. As part of an effort

to calculate an optimal gasoline tax, Lin and Prince (2009) reports a California VMT elasticity

of -0.07 in the short run between 1970 and 2007. These figures, however, are quite sensitive to

sampling and modeling assumptions.

2Vehicle purchase choice is usually only considered relevant in the long run.
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In this paper, we first seek to contribute to the literature by attempting to use shocks to

California’s supply of gasoline resulting from unplanned refinery shutdowns. Because California

must sell reformulated gasoline different from that of most other states,3 the idea is that the

ensuing supply disruption can be used to identify a short-run gasoline demand elasticity. When

this fails because of substitution towards other refineries’ output, inventories, and imports of

refined gasoline from other states and even countries,4 we instead employ an econometric model

isolating macroeconomic sources of shocks to VMT demand. Our results suffer from some

of the same sensitivity to modeling choices as much of the previous literature, but we provide

evidence that the short-run gasoline price elasticity of demand for VMT varies over time in both

magnitude and volatility, possibly according to the level of gas prices. The remainder of the paper

is organized as follows. In Section 2.2, we describe the data and present the identification strategy,

Section 2.3 provides our models’ estimates, and we conclude in Section 2.4.

2.2 Data and Econometric Framework

We rely on monthly data on vehicle miles of travel on California highways between 1996

and 2017 from Caltrans, monthly gas price data from the Energy Information Administration

(EIA), and monthly California-level macroeconomic data on employment and wages from the

Bureau of Labor Statistics. Figure 2.1 plots VMT and gas prices, and Figure 2.2 shows the

relationship between VMT and the macroeconomic covariates in levels. Our strategy is to isolate

the elasticity of demand by using the macroeconomic covariates to control for demand shocks,

presumably constraining the remaining variation in prices to result from shocks to the supply of

gasoline—and thus allowing the coefficient on price to capture the elasticity of demand. Because

VMT exhibit a clear seasonal pattern from differential demand throughout the calendar year, our

3It must contain 10% ethanol as oxygenate.
4Critically, gasoline sales figures are known to be imprecise, contributing to the difficulty in measuring the

magnitude of potential disruptions.
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Figure 2.1: California VMT and real gasoline price. Sources: California Department of
Transportation and Energy Information Administration

models include calendar-month fixed effects. We first estimate:

log(V MTt) = αm +ηlog(Pricet)+β1log(Employedt)+β2log(Unemployedt)+ εt (2.1)

where V MTt are vehicle miles traveled on California freeways and highways in month of sample

t, Pricet is the average price of gasoline in California in month t, Employedt and Unemployedt

are respectively the employment and unemployment levels in the state in month t, αm are the

month fixed effects intended to capture the seasonal variation in demand for driving, and εt is the

idiosyncratic error term. We then consider another set of models where we allow for the elasticity

to vary over time (yearly, as indicated by the y subscript on the elasticity coefficient):

log(V MTt) = αm +ηylog(Pricet)+β1log(Employedt)+β2log(Unemployedt)+ εt (2.2)
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Figure 2.2: California VMT and macroeconomic covariates. Sources: California Department
of Transportation and Bureau of Labor Statistics.

2.3 Results

Results from estimation of equation 2.1 on the full sample are reported in the first column

of Table 2.1. The elasticity of demand estimate is -0.01. We also want to include average earnings

as an additional control because of its potential to be another important source of demand shocks.

However, since we only have access to average nonfarm real income in California between 2001

and 2017,5 we first reestimate equation 2.1 on the subsample from these years to examine the

possible difference introduced by omitting the first five years. Results are very comparable, as

shown in the second column of Table 2.1 including an updated elasticity of -0.03. We then

augment our model with the log of real average weekly earnings, whose little variation does

not seem to contribute any information beyond that already contained in the other covariates.

5Data on total nonfarm labor force income between 2001 to 2006 are missing, but imputed based on this variable’s
relationship with incomes across a subset of industries (manufacturing, durable goods, nondurable goods, and film)
for which data are available back to 2001. Between 2007 and 2017, the correlation these jointly exhibit with total
nonfarm average earnings in a reduced form model is 0.96.
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Table 2.1: Fixed elasticity model estimates

Base model 2001-2017 period Income control

log(Price) -0.01 -0.03 -0.02
(0.02) (0.02) (0.02)

log(Employed) 1.2∗∗∗ 0.9∗∗∗ 0.9∗∗∗

(0.06) (0.1) (0.1)

log(Unemployed) 0.03 -0.0003 0.00002
(0.02) (0.02) (0.02)

log(Real income) 0.02
(0.2)

Month FEs Yes Yes Yes
Observations 264 204 204
R2 0.89 0.84 0.84
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: Dependent variable is log(VMT), and sixty-month lag Newey-West standard
errors are reported in parentheses.

Estimates are reported in the third column, where we now observe an elasticity of -0.02. We

account for heteroskedasticity and serial correlation throughout with Newey-West standard

errors.6 The elasticity coefficients are never statistically significantly different from 0, suggesting

that these models are not capturing our coefficient of interest well enough.

Next, we estimate equation 2.2 and plot the resulting elasticity history along with 95%

confidence intervals in Figure 2.3, while Figure 2.4 depicts the coefficients yielded by the model

augmented with the income measure. These series indicate that the elasticity may indeed be

varying over time, but the wide confidence intervals do not allow us to precisely test any of the

specific hypotheses about its evolution we were initially interested in evaluating. We finally

compare the residuals from the fixed and yearly-varying elasticity models in Figures 2.5 and 2.6

for the models without and with average earnings, respectively. The residuals from the equations

6With an aggressive lag length set to sixty months, although we find that there is almost no difference in standard
error estimates when increasing lag length beyond twelve months.
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Figure 2.3: Yearly VMT demand elasticity estimates

where we allow the elasticity to vary yearly feature much less autocorrelation, highlighting the

importance of accounting for the elasticity’s dynamics when attempting to estimate it—or that

some important variables are simply missing from the equation. Furthermore, these residuals

series exhibit a couple of noteworthy patterns. First, they converge in the late 1990s as well

as after 2015, when gasoline prices are relatively low. Second, their variances tend to increase

around the same time, suggesting that lower gas prices may result in a wider range of short-run

driving adjustments than higher prices, despite the use of a log-log specification intended to

capture responses not to level, but to proportional changes in the price of gasoline.

2.4 Conclusion

In this paper, we contribute to a literature estimating the gasoline price elasticity of demand

for driving. This parameter is of high interest to policy makers considering the effectiveness

of taxes and other tools intended to curb both greenhouse gas emissions and traffic congestion.
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Figure 2.4: Yearly VMT demand elasticity estimates from model with income covariate

It is also an important component in attempting to understand how we might be able to limit

large gasoline price spikes such as those experienced most dramatically in California, but also

in the US in general. We find significant variation in California’s VMT elasticity over time, but

much like the existing literature, do not have direct evidence for which factors may underlie this

variation. We conclude that more work is needed to improve our grasp of the highly studied but

still not fully understood parameter, and the variables that might affect it.
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Chapter 3

How Hurricanes Sweep Up Housing

Markets: Evidence from Florida

3.1 Introduction

North Atlantic tropical cyclones, also known as hurricanes, are extreme weather events

affecting populations living along the Atlantic seaboard and the Gulf of Mexico in the United

States, in addition to populations in the Caribbean, Central America, and occasionally the

northeastern Atlantic seaboard of South America. They generate extreme winds and flooding,

which can impose devastating damages to homes and businesses in the vast areas their paths

travel. Since the 1970s, climate scientists have observed an intensification of these cyclones, a

pattern which is predicted to continue into the second half of this century (IPCC 2013). It is

therefore important to study their economic impacts.

While figures depicting direct property losses and fatalities are readily available, it is

much more difficult to estimate economy-wide impacts and make long-run projections. In order to

credibly approach the latter, it is crucial to understand the mediating forces of market interactions
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and institutional responses in a large economic entity. In this paper, we study these dynamics in

the housing market—often the sector most directly affected by hurricanes—using microeconomic

data on Florida home transactions.

Following the seminal work by Rosen (1974), an extensive environmental economics

literature has used hedonic regression coefficients to estimate the marginal willingness to pay

for nonmarket goods.1 Most previous studies on housing market responses to hurricanes follow

this tradition and focus on their role in conveying risk information to households.2 Using quasi-

experimental designs, this literature has established a causal link between hurricanes and people’s

valuations for homes through changes in perceived flood risks. However, very little is known

about the overall adjustments in the housing market in response to the physical damages of

hurricanes and their long-term consequences.

In this paper, we demonstrate that a conjectured, but so far largely unexplored channel

through which the housing market responds is a large supply adjustment, as indicated by changes

in equilibrium prices and realized transactions. Our research design uses the exogenous variation

generated by the randomness of hurricane paths, coupled with the fineness of our housing micro-

dataset. We find two sets of main results. First, we establish that home prices spike in the thirty-six

months following a hurricane event, in the entire market, as well as in the subset of homes which

are sold both before and after the event. Second, we show that the transaction probability of

homes in exposed areas falls by a comparable amount and over the same time period. These

findings are consistent with the evidence3 that hurricanes lead to significant physical damages to

and destruction of part of the housing stock, thereby temporarily contracting available supply,

reducing sales, and in turn driving up prices.

But what are the implications of this shift in the market’s equilibrium? We answer this

1See Kuminoff et al. (2013) for a recent review.
2These studies typically examine differential price changes for houses located in or outside of a flood zone

following a hurricane. Examples include Bin and Polasky (2004), Hallstrom and Smith (2005), Bin and Landry
(2013), and Gibson et al. (2017).

3See, for example, https://www.wsj.com/articles/hurricane-irma-destroyed-25-of-homes-in-florida-keys.
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question by matching our housing transactions dataset to data on mortgage applications, which

proves to be representative of the entire market, and show that the incomes of buyers who purchase

homes (with a mortgage) following a hurricane event increase nearly identically to the rise in

home prices we document. Since on average, we observe no subsequent fall in either prices or

buyer income below their pre-hurricane levels in any of the eleven years following a disaster,

we argue that hurricane-exposed neighborhoods experience permanent increases in wealth, to

the extent that entering higher income households are accompanied by relatively more valuable

assets. As it has been well established that disaster damages rise with income levels, this has

important implications for the costs and distributional impacts of future disaster relief spending.

This paper contributes to a recent literature that estimates the impacts of hurricanes on a

variety of economic outcomes. These include flood insurance take-up (Gallagher 2014), demand

for groceries (Gagnon and Lopez-Salido 2014), home improvement decisions (McCoy and Zhao

2018), household finance (Bleemer and Van der Klaauw 2017; Gallagher and Hartley 2017),

location and employment choices (Deryugina et al. 2018), firm and labor market performance

(Belasen and Polachek 2009; Seetharam 2018), migration patterns (Boustan et al. 2017), economic

growth (Hsiang and Jina 2014; Strobl 2011), and government spending (Deryugina 2017). Our

analysis of the housing market not only adds an important outcome to this existing set, but also

complements previous results on mortgage payback and migration to shed light on how market

and institutional processes contribute to post-hurricane demographic adjustments. Our research

design is very similar to these studies in two major aspects. First, the identification primarily

relies on the exogeneity of the location and timing of natural disasters. Second, we are able to

consider the full dynamics of our outcome variables, providing evidence of the parallel trends

assumption required by our identification strategy.

This paper is also closely related to the literature on the impact of natural disasters on the

housing market. The repeated sales strategy behind our price results is particularly similar to that

in Hallstrom and Smith (2005), Bin and Polasky (2004), Bin et al. (2008), and Gibson et al. (2017).
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An important distinction, however, lies in the selection of the sample, and hence the interpretation

of the results. By avoiding directly-affected locations, these studies make a deliberate effort to

interpret the hedonic coefficients as flood risk premiums. We pursue the opposite approach by

obtaining estimates that can be interpreted as changes in the market equilibrium. Our results are

qualitatively similar to those of Murphy and Strobl (2009), which also finds a hurricane-induced

upward shift in equilibrium prices. Our transaction-level data, however, enable us to provide

crucial evidence regarding changes in equilibrium sales and buyer incomes, allowing us to better

understand mechanisms and policy implications.

The remainder of the paper is organized as follows. Section 3.2 describes our data and the

procedures we use to define hurricane exposure, Section 3.3 presents our identification strategy,

Section 3.4 provides the estimates from our models, and Section 3.5 interprets our findings and

concludes.

3.2 Data

3.2.1 Housing Transactions

We obtained Florida housing transaction data between 2000 and 2016 from Zillow, which

reports around 95% of housing market transactions over this time period. We match the Zillow

data to county tax assessments performed between 2013 and 2016, which Zillow also provided

us and includes an essential set of hedonic characteristics for most homes, as well as richer

collections of variables for smaller subsets of them. We only retain transactions for which the

most important of these hedonic characteristics are available, including timing of the transaction

and geographic coordinates,4 and use census shape files to associate a census tract and county

to each observation under both transaction time census county-tract regime and 2000 census

county-tract regime. The latter will allow us to employ a set of time invariant fixed effects in our

4Respectively year and month, and latitude and longitude.
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Figure 3.1: Florida housing market sales and composition

models, while we use the former to match the Zillow data for all home purchasers for whom a

mortgage is reported by Zillow (i.e. borrowers) to data we obtained from the Home Mortgage

Disclosure Act. Figure 3.1 plots yearly aggregate Florida sales, and sales shares by housing type.

Figure B2 shows these series for the subset of all Zillow borrowers. Note that borrower home

type shares are very similar to those of all buyers, with the exception of condo shares, which are

inferior in the borrowers-only sample both in the early 2000s, and after 2007. This difference is

accounted for by a higher single family residence share in the full sample for these periods. Next,

Figure 3.2 presents monthly median prices by housing type for all transactions (see Figure B3 for

borrowers only). Again, the trends and relationships in the two series are strikingly similar, with

the exception of condo prices in early 2000 and post-2007, which appear to be relatively higher

in the borrowers sample. Combined with both the differential condo sales shares and a dip in the

share of homes sold with mortgages over these time periods, these patterns seem to suggest that

loans for condos in the lower tail of the price distribution are the most likely types of loans to be
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foregone when relatively fewer mortgages are issued by financial institutions. Finally, the most

dominant trends depicted in these figures is the housing market collapse beginning in 2006, and

subsequent recovery from around 2010.
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Figure 3.2: Florida housing market prices

3.2.2 Home Mortgage Disclosure Act

The Home Mortgage Disclosure Act (HMDA), enacted by Congress in late 1975, requires

all large financial institutions5 to submit all of their home lending activity every year to the

Federal Financial Institutions Examination Council, which makes it publicly available in an effort

to improve home financing market transparency. These large institutions must report the date,

property location, and amount of each loan application, its purpose (purchase, improvement, or

refinancing), and applicant demographic characteristics including annual income, gender, and

ethnicity. We merge the subset of successful loan applications for purchases from HMDA to

5According to a yearly revised threshold, which is currently set at $45 million in assets.
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the universe of Florida borrowers from Zillow by following the matching procedure described

in Bayer et al. (2016). Matches are created based on the timing of each transaction and the

location of the home,6 in addition to the loan amount and lender name. The use of this latter

variable implies an imperfect merge as some lenders make multiple loans of the same amount

in a single census tract every year, and we drop all such matches, as we cannot infer which of

the various buyer demographic characteristics should be joined to these multiple transactions.

Furthermore, because lender names may be recorded differently in our two datasets, the quality of

some pairings will be lower than others. We therefore only keep matches according to a threshold

of the Jaccard similarity index7 above which we observed it to produce the correct pairing in large

random subsamples chosen from every year in our data, with special attention paid to matches

just above candidate thresholds. A final issue arises when a single HMDA record can be joined

to more than one transaction in Zillow, and we drop all such observations as well. The full

procedure ultimately leaves us with just over half of the original Zillow borrowers data, with no

significant yearly variation in pairing success, which will enable us to look at the evolution of

borrower demographic characteristics following hurricane events, as well as to consider possibly

differential borrower price sensitivity.

3.2.3 Hurricane History and Measurement

Most Florida census tracts experience at least one hurricane event between 1992 and

2017.8 Around 90% of tracts are hit once or more, affecting a similar share of Florida’s population.

Figure 3.3 shows the distribution of the number of hurricane events each tract experienced in

the 1992 to 2017 period, where a tract is defined as hit if its population-weighted centroid was

ever within reach of the 64 nautical miles per hour (about 119 kilometers per hour) wind speed

6Respectively year and census tract, as these are the finest timing and geographic variables available in HMDA.
7Produced by an algorithm that compares the elements of two sets, in this case the strings containing the lenders’

names from both datasets, and returns a similarity score indicating the extent of the overlap between their elements.
8We focus on hurricanes after 1990 because the previous ones to have crossed Florida, hurricanes Elena and Kate

in 1985, occurred a distant sixteen years before the beginning of our housing transaction data period.
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Figure 3.3: Florida exposure to hurricanes by census tract, 1992-2017

threshold that differentiates hurricanes from tropical storms. We obtained maximum sustained

wind speed and 64 nautical miles per hour speed radii around each hurricane from the Regional

and Mesoscale Meteorology Branch (RAMMB), where data for each hurricane are measured

every six hours (at midnight, 6AM, noon, and 6PM). Because distance between measurements

varies and can reach upwards of a hundred kilometers, we supplement the RAMMB estimates

with our own calculations of the closest the center of each hurricane traveled to every tract

centroid,9 and then interpolate speed and radii at the coordinates where these minimum distances

are found using linear weights from the two nearest observed measurements.10 We further apply

9Assuming a linear path between hurricane-track-point observations.
10The smallest distances to coordinates along the hurricane’s path turn out to be between the two closest track-

points in most cases, but we compute minimum distances along paths between any neighboring coordinates of the five
nearest observed track-points, as this minimum distance is not necessarily found between the nearest two observed

50



this procedure to obtain speed and radii interpolations for the nearest each hurricane traveled to

every home transacted in our sample.

Next, we use an econometric model leveraging the nonlinear but strictly decreasing

relationship between wind speed and its associated maximal reach radius, which we observe in

the RAMMB data for 34, 50, and 64 nautical miles per hour (kn) wind speeds, to predict a radius

for category 3 threshold wind speeds of 96kn. Our model could have also relied on minimum

pressure and maximum wind speed, but we instead choose to employ a set of fixed effects, within

which these two variables cannot be identified, as follows:

log(Maxradiussht) = αht +β1Speed +β2Speed2 + εsht (3.1)

where αht are hurricane-track-point fixed effects and Speed (s) takes one of the three speed

values for which RAMMB reports maximal reach radii. The relationship between a wind speed

threshold and its associated maximal radius is very well captured by this model as suggested

by its estimation’s R2 of 0.93 (0.90 within track-point fixed effects). Full results are reported in

Table B1.

Armed with estimates of this relationship, we extrapolate maximum radii predictions

for 96kn wind speeds when such speeds are actually reached, and finally verify the consistency

of our predictions by comparing them to the radius of the maximum speed reached in these

hurricane-track-points, which the RAMMB data also contain. In particular, because radius is

strictly decreasing in wind speed, our imputed radius should always be greater than (or equal

to) the radius associated with the 96kn and above maximum speed reached in an observed

measurement. Our model’s prediction satisfies this condition for over 90% of imputations, and

is within rounding error (all RAMMB radii measurements are rounded to the nearest 5 nautical

miles) for 10 of the 13 extrapolations for which it fails. In these 13 cases, we replace the model’s

coordinates—which may not even be neighbors. We then retain min{set of calculated minimum distances, minimum
observed distance} since an observed reading itself could also be closest, because of hurricane track curvature.
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predicted maximal radius for 96kn speeds with the wider observed radius of the maximum speed

reached. We finally apply our interpolation scheme to predict 96kn maximal radii for the location

nearest a tract centroid (or house in our sample) along a hurricane’s path. Figure 3.4 shows the

distribution of the number times census tracts were affected by category 3 wind speeds and above,

according to whether a census tract population centroid was within reach of such speeds. Note

that many fewer tracts (only about 15%) were ever exposed to 96kn wind speeds than to the 64kn

hurricane speed threshold.
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3.2.4 Hurricane Exposure

To determine whether a home in our sample was exposed to a hurricane between 1992

and 2017, we rely on the interpolated speed and radii estimates associated with the coordinates of

the closest point along a hurricane’s path, as described in Section 3.2.3. Similarly to the tract hit

definition, we consider a home to have been exposed if it was within reach of a 64kn wind speed

radius when the hurricane was nearest. Any home outside the reach of this radius, or for which

the wind speed at its smallest distance to the hurricane’s path was less than 64kn, is therefore

considered unaffected. Tables B2 and B3 report the percentage of housing transactions in our

data affected by each hurricane event in one year increments, respectively before and after each

hurricane, where year -1 refers to twelve months before a hurricane, year 0 the first twelve months

after, year 1 the next twelve months, and so forth. The last row reports cumulative treatment in

each event time year, and note that this percentage is less than or equal to the sum of individual

hurricane treatments because transacted homes may have been hit by multiple hurricanes in an

event year, usually when such hurricanes occurred in the same calendar year. Because we’re

interested in exploring possible heterogeneity in housing market response to different hurricane

intensities, we define indicators for exposure to category 3 hurricanes by considering exposure to

our imputed 96kn wind speeds.11 Tables B4 and B5 show transacted home percentage affected

by category 3 or greater wind speeds. Tables B6 through B9 report parallel percentages using

the census tract population-weighted centroid definition of treatment, which are similar, but

mechanically cannot exhibit as much variation in exposure.

These tables all illustrate that the seventeen-year width of our repeated cross-section

constrains the length of pre and post hurricane indicators we can include in our models while

maintaining the interpretation of our findings to result from exposure to an average hurricane in

our sample, as opposed to exposure to a small, specific subset of hurricanes. Including indicators

11We use the category 3 speed threshold both to be in line with previous literature, and because we do not believe
the difference between the categories 1 and 2 thresholds is sufficient to produce measurable differences in outcomes.
Category 4 wind speeds, on the other hand, almost never reach Florida shores over our hurricane time period.
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for event years -10 to -7, for example, would coerce the identification of these pre-trends to come

from (future) exposure to only two hurricanes, raising serious representativeness concerns, not to

mention the added challenge of effectively controlling for unobservable time-varying differences

between treated and untreated entities when treatment saturation is so low that few observations

are driving the entirety of treatment effect identification.

3.3 Econometric Framework

We are primarily interested in how hurricanes affect the equilibrium prices in Florida’s

local housing markets. We model the dynamics of housing prices relative to hurricane events as

follows:

log(Priceihmy) =
10

∑
τ=−6

βτHurrτ
imy +HouseChariy +δht +δhm +δhcy + εihmy (3.2)

where i denotes an individual transaction, h denotes house type,12 m is the month, and y the year

of the transaction, and t and c are respectively the census tract and county in which the transaction

occurred.13 The unit of analysis is an individual transaction. log(Priceihmy) is the log of the

price of transaction i, taking place in month m of year y. Hurrτ
imy is a set of indicators specifying

whether the transacted house was affected by a hurricane τ years before (negative τs indicate a

post-transaction hurricane, τ = 0 refers to transactions in the first twelve months after a hurricane,

τ = 1 the next twelve months, and so on). HouseChari is a set of house characteristics commonly

used in hedonic models, including structural age, effective age14, number of stories and number

of bathrooms. We control for the latter two characteristics flexibly using a set of value bins.

12We define six main house types based on land use classification in county tax assessments. They include single
family residential (68.3%), condominium (21.7%), townhouse (6.83%), residential-multifamily (2.61%), vacation
home (0.14%) and miscellaneous (0.4%).

13Census tracts and counties are defined according to the 2000 census throughout to maintain geographic consis-
tency across time.

14The time (in years) since the house last saw a major remodel.
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We also account for both fixed and time-varying regional differences in housing attributes

and local amenities through a rich set of geographic and temporal fixed effects. δht are type-

by-tract fixed effects, which eliminate cross-sectional correlations in the likelihood of being

hit by a hurricane and time-invariant local amenities, such as being close to the coast. δhm are

type-by-month fixed effects, controlling for the seasonality in both home prices and the timing

of hurricanes. Since the financial crisis took place during our sample period and significantly

impacted both the prices and the number of home sales, we also believe it is crucial to account

for its heterogeneous effects across markets. We do this by including type-by-county-by-year

fixed effects (δhcy) to control for changing macroeconomic conditions at the county level.

The key variables of interest are the hurricane indicators, whose construction was detailed

in Section 3.2.4. The identification of the causal effect of hurricanes on the housing market relies

on the exogeneity of storm paths and timing. Specifically, the identifying assumption is that,

conditional on the set of controls, these indicators are orthogonal to any idiosyncratic shock (εihmy)

impacting our three transaction outcomes of interest (here prices, and later sale probabilities, and

new homeowner incomes).

We estimate this model on the full sample, the borrower sample, and the HMDA sample.

Their estimates represent the average effects on housing prices, which could result from two

mechanisms:

1. (Supply) Hurricanes can disrupt the stock of housing in affected areas through destruction,

and the potential associated time spent rebuilding.

2. (Demand) Hurricanes might directly change the valuation of houses in both impacted and

neighboring areas.

To further our understanding of these mechanisms, we estimate several variants of equation

(3.2). First, we replace the tract fixed effects with parcel-level ones. This approach restricts

the identifying variation to price changes from repeated sales of the same home, allowing us to
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capture the equilibrium price effects holding all characteristics fixed, observable or not. Second,

we will later change the outcome variable to estimate the effects of hurricanes on the incomes

of average HMDA borrowers. This will shed light on any systematic shifts in new homeowners’

economic profiles.

To investigate the extensive-margin responses directly, we also estimate the impact of

hurricanes on the probability of transaction using the following model:

1(Transacted)py =
10

∑
τ=−6

βτHurrτ
py +HouseCharpy +δp +δhcy + εpy. (3.3)

where p, h, y, and c denote parcel, housing type, year, and county as before. The unit of analysis,

however, is now a parcel-year. 1(Transacted)py is an indicator of whether a transaction record

exists for parcel p in year y. The variables of interest are still the hurricane indicators, but they

are now defined relative to the observation year. Time-varying characteristics of the house on

the parcel, such as age and effective age, are also included. Because the threat to identification

is similar to that in the previous model, we also include month and county-year fixed effects,

in addition to the parcel fixed effects which will ensure that the price comparison is performed

within-home. Furthermore, we redefine years to begin in August and end in July, because

August is the earliest month in which any home from our sample could have been transacted

immediately following a hurricane event. As such, we ensure that the year 0 hurricane event

indicator for homes in our sample which were not actually transacted in a given year includes

most homes which experienced hurricane winds preceding the roughly twelve-month period in

which it was not transacted. The estimate of the event time 0 indicator would have otherwise

been severely attenuated, as all pre-hurricane season non-transactions of the calendar year would

have contributed to the time 0 indicator despite the hurricane occurring after these months.15

15Some hurricanes in our sample occur as late as October. This still implies that some non-transactions will occur
in the same “year” as a hurricane which affected the home, and thus have their event time 0 indicator set to 1, despite
the hurricane strike happening after the non-sale. Given our choice of August to begin the year, this mechanical issue
can only affect transactions occurring in the three months preceding hurricane Wilma (October 2005) or the two
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Additionally, only the remaining two- to four-month period of each calendar year following the

hurricane season could have contributed to event year 0 treatment otherwise, while the subsequent

months would have been included in the year 1 indicator despite these non-transactions occurring

possibly less than three months after a hurricane.

We estimate this transaction probability model both overall and separately on the three

main parcel types—single family residences, condominia, and townhouses. For each type, we

construct a panel of all parcels that have been transacted during the sample period, and treat

all parcel-year observations without a transaction record as having no transaction, unless the

house had not yet been built, in which case we omit the observation. This approach introduces

measurement error if there are unreported transactions. It can even lead to biased estimates if

the missing pattern is endogenous to or correlated with hurricane events. In our analysis, we

take into account detectable patterns of missing records in a few county-years by omitting these

entire counties from our sample. Whether we omit the entire sales histories or only the missing

years of data for these counties does not yield any distinguishable differences in results, as their

combined sales account for less than 1% of total sales in the period in which no data are missing

(2005-2016).

3.4 Results

3.4.1 Post-Hurricane Price Dynamics

The event time indicator coefficients from estimation of equation (3.2) are plotted along

with their 95% confidence intervals in Figure 3.5, and full results are reported in the first column

months predecing Frances and Jeanne (both dissipating in September 2004). The ensuing bias towards 0 this implies
on our estimate of the time 0 indicator is small and predictable, which is why we prefer it to the other alternative of
beginning the year even later and contaminating both the year -1 event indicator with homes which were actually
exposed to hurricanes prior to non-transaction and the year 0 indicator which should have instead been turned on, but
was not. While our approach does remove a few observations from contributing to the identification of the -1 event
time indicator, it is not contaminated since a future hurricane cannot have a causal effect on any of our outcomes in
the year before it hits, thanks to the unpredictability of its path.
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Figure 3.5: Hurricane effects on house prices – full sample

of Table B10.16 The standard errors we rely on to construct the confidence intervals were clustered

to allow for correlation in the idiosyncratic shocks to the prices of all transactions occurring in

the same county, over the entire width of our repeated cross-section. None of the estimates for

pre-hurricane transaction indicators are statistically different from 0, supporting our choice of

the fixed effects we employ to control for preexisting differences in average census tract prices,

pricing seasonality, as well as the county level time-varying differences in prices. Our event time

0 and 1 indicator estimates suggest that hurricanes result in increases in home prices of 5% in

the first and 10% in the second twelve-month periods after the strike. The point estimate for the

event time 2 indicator signals that the surge in prices ends sometime over the third post-hurricane

twelve-month period, as the estimated increase relative to unaffected homes drops to 2%, and is

no longer statistically significant. All later event time indicators are small, and not statistically

16Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors
and do not reflect the position of Zillow Group.
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Figure 3.6: Heterogeneous effects of differential hurricane intensity – full sample

distinguishable from 0.16

Because we want to explore the heterogeneous effects of differential wind speed exposure,

we next redefine our event time indicators in terms of the 64 to 95, and 96 and above thresholds

differentiating categories 1 and 2 from category 3 and above hurricanes, and re-estimate equation

(3.2). The results from this exercise are plotted in Figure 3.6. Note the similarity of the category 1

and 2 only estimates to those of the effects of any hurricane intensity winds from Figure 3.5, likely

driven by the very large overlap between hit definitions. The category 3 and above coefficient

estimates, on the other hand, rely on the variation depicted in Tables B4 and B5, and suffer

from much wider confidence intervals as a result of the significantly lower treatment saturation.

At most 1% of homes are ever sold from areas affected by category 3 and above wind speeds

in any year before or after a hurricane, as such wind speeds rarely affected Florida over our

16Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors
and do not reflect the position of Zillow Group.
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sample period (recall Figure 3.4, with the caveat that it depicts tract-wide and not individual home

category 3 hurricane exposure). It will therefore be difficult for our model to identify differential

responses by hurricane wind speed thresholds.

3.4.2 Dynamics of Repeated Transaction Sales Prices

One possible interpretation of the finding of increased sales prices in the immediate

couple of years following a hurricane is that they resulted from a shift in the distribution of the

hurricane resistance, quality or general desirability of transacted homes, without actually affecting

any individual home’s price. In order to investigate this possibility, we re-estimate our price

models with the inclusion of parcel fixed effects, and restrict the sample to only include homes

which were transacted at least once both before and after a hurricane. We find that the patterns

documented in Section 3.4.1 are closely reproduced, as shown by the results in Figures 3.7, B4,

and the second column of Table B10. These suggest that while there may indeed be a change in

the characteristics of those homes which are transacted after a hurricane event (a shift towards

more wind and flood resistant structures, for example), the actual homes sold in the first two to

three years after being hit themselves appreciated relative to when they were sold outside of this

post-hurricane window. Our point estimates imply that these homes on average sold at 5% higher

prices in the twelve months immediately following the hurricane, as much as 14% in the next

twelve months, and 8% in the third twelve months. In order to better understand the mechanisms

behind this finding, we now turn towards potential hurricane-induced changes in the probability

of home transaction.16

16Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors
and do not reflect the position of Zillow Group.

60

http://www.zillow.com/ztrax


-.1

0

.1

.2

Lo
g 

P
ric

e

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Event Time Years

Parcel, Month, and County-Year FEs

Figure 3.7: Hurricane effects on house prices – repeated sales

3.4.3 Dynamics of Transaction Probability

Hurricanes may influence the probability of home transaction in potentially competing

ways. First, the extreme winds and severe flooding they generate can destroy or cause sufficient

damages to buildings, making them very difficult to sell. This would result in a post-disaster

inward supply shift, as it takes time for these would-be sellers to seek insurance payments or

financial assistance from FEMA and rebuild their homes. Second, as a direct consequence of

home destruction, affected homeowners may seek to temporarily rent other housing (or possibly

buy) in unaffected neighboring communities, increasing demand in the rental market, which

could in turn put upward pressure on demand in the purchasing market. Finally, hurricanes

could affect demand for housing, not only in the immediately affected areas, but possibly at a

broader geographic level, as a combination of information from directly affected friends and

family members, and national media coverage update potential buyers’ beliefs regarding either

the probability of hurricane exposure in the region, or the effects of the realization of a hurricane
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event on impacted homes. We first attempt to rule out a migration-driven demand shock by

examining population trends around hurricane years in affected and unaffected counties. Figure

B1 shows that there is no evidence of migration into or out of Florida counties, whether or not

they were recently impacted by a hurricane.16
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Figure 3.8: Hurricane effects on transaction probability by parcel type

A large majority of affected homeowners seek post-hurricane financial relief in the form

of insurance payment or FEMA assistance (see for example, Deryugina et al. 2018; Gallagher and

Hartley 2017; Hoople 2013; Michel-Kerjan 2010; Kutz and Ryan 2006). This process requires

otherwise potential sellers to wait for assessment of the damages to be performed, which could

16Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors
and do not reflect the position of Zillow Group.
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take weeks, in addition to spending months rebuilding or repairing their homes, if they choose to

do so, before attempting to sell it. In order to further explore this issue, we look for adjustments

to the equilibrium transaction probability of homes which were recently affected by a hurricane

event. To accomplish this, we reshape our full Florida dataset such that each observation is now a

parcel-year with an associated indicator for whether or not a transaction occurred in that year, as

described in Section 3.3.16

We first estimate our transaction probability model on the full sample of homes and

provide results in panel (a) of Figure 3.8 (as well as in the third column of Table B10). Baseline

probability of transaction is around 10%. Despite not being statistically different from 0 at

the 5% significance level, our estimates do not allow us to reject outcomes ranging from a

-3 percentage point decrease in transaction probability to a 1 percentage point increase across

different post-hurricane years. Because such wide standard errors could suggest the presence of

heterogeneity of the effect among affected homes, we proceed to estimating the model for single

family residences, condominia, and townhouses separately. The null can still not be rejected in

any event time period for single family residences (panel (b)), which make up around 70% of all

housing market transactions. In contrast, we do observe a change in transaction probability for the

latter two types of homes. Condominia (panel (c)), which usually represent 20% of transactions,

are nearly 4 percentage points less likely to be transacted in the first twelve months post-hurricane,

2 percentage points in the following twelve months, and around 1 percentage point within both

three and four years of the hurricane, while their sales may rebound by 1 percentage point for a

couple of the ensuing years. Townhouses (panel (d)) make up the smallest share of the market at

under 10%, and experience a possible drop of 3 percentage points in the first twelve months, and

lose a statistically significant 4 percentage points in the next. Taken together, these results imply

a 1 percentage point decrease in transaction probability in the entire market, or, given the 10%

16Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors
and do not reflect the position of Zillow Group.
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baseline, a 10% fall in equilibrium sales in the first full year after a hurricane. After the second

year, the implied drop in sales corresponds to around 8% of the market, and it is limited to 2%

in the third and fourth. In conjunction with the increase in prices we documented in Sections

3.4.1 and 3.4.2, this fall in transactions is consistent with a supply shock, likely resulting from the

damage to the housing stock caused by hurricanes.16
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Figure 3.9: Hurricane effects on house prices – HMDA sample

3.4.4 Changes in New Homeowner Characteristics

Armed with a better understanding of the equilibrium shifts in transaction probability

and prices occurring in the housing market following hurricane events, we now focus on the

potential implications of these changes on hurricane-battered communities. We will concentrate

on the evolution of income in the sample of borrowers obtained from the Zillow-HMDA matching

16Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors
and do not reflect the position of Zillow Group.
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Figure 3.10: Hurricane effects on buyer income – HMDA sample

procedure, but we begin by estimating equation (3.2) on the subsample of all Zillow borrowers,

and show, through the results plotted in Figures B5 and B6, that they exhibit a hurricane price

response closely resembling that of our estimates on the full sample. Next, we repeat this

exercise on the Zillow-HMDA matched sample of borrowers to demonstrate that these estimates,

reproduced in Figures 3.9 and B7 are again very comparable to both sets of estimates derived

from the borrowers-only and full Zillow samples. We finally turn to the effect of hurricanes on

the composition of the income distribution of new buyers, and find, perhaps unsurprisingly, a

similar pattern in post-hurricane average incomes as in prices: incomes increase by around 4% in

the first twelve months, nearly 7% in the second twelve months, and revert to a 4% rise in the

third (and seventh) twelve months before returning to their pre-hurricane means in later event

time periods.16 Because these point estimates are nearly identical to the price shifts we observe in

16Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors
and do not reflect the position of Zillow Group.
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the comparable HMDA-Zillow sample, it is natural to hypothesize that new buyer incomes move

almost exactly in accordance with housing market prices. Using this hypothesis to extrapolate

income estimates to the full Florida sample therefore suggests increases of 5, and over 10% in

post-hurricane average buyer income, respectively for the first and second twelve months after

exposure. Note that the income shift observed in these periods is permanent, in the sense that

there is no later period income reversion below the average incomes of buyers from unaffected

areas. This implies that the mean of the income distribution of hurricane-exposed neighborhoods

is permanently higher post-disaster.

3.5 Conclusion

We find remarkably little evidence of any price adjustments to tropical cyclones beyond

the response to the supply shock which our analysis of equilibrium transaction probabilities and

prices carefully identifies. One potential explanation for this conclusion is that home buyers are

very well informed about the risk of hurricane exposure and averse neither to the risk, nor to

magnitude of damages inflicted in the realization of an event. Another possible interpretation

is that while there is a behavioral response on the demand side of the market, it is dwarfed by

the effect of the supply shock imposed by a hurricane event. This could result from a couple of

potentially complimentary mechanisms. First, the stock of sellable houses on the market after a

hurricane could drop so much that it results in an overwhelmingly large shock to supply, relative

to any change in demand. Another channel could also be contributing to the dominance of this

supply shock by increasing the value of the existing housing stock. Rebuilding after a hurricane

might imply investing only in cosmetic improvements in an effort to signal that a home was not

affected as severely as potential buyers might have expected. Reconstruction could also try to

better account for the possibility of future events through investments in more wind and flooding
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resistant structures and materials.17 Either or a combination of both types of improvements

likely results in an increase in owners’ expected valuations of their homes, raising prices at every

quantity level along the supply curve: another contribution to the negative supply shock.

Finally, we return to the shift in average income we observed to discuss its potential

implications. Recall that thanks to our within-parcel results, we know that not only do home

prices increase in the years immediately following hurricane events, but also that the prices

of the specific homes which were sold in their aftermaths appreciate relative to their non post-

hurricane period sales. Coupled with the evidence we find that the average income of new buyers

increases similarly over the same period, without later dropping below their original pre-hurricane

averages, these findings depict a permanently richer demographic inhabiting hurricane-affected

communities following a disaster. To the extent that such a demographic brings along more

expensive assets, and spurs more economic development in these areas, this could result in more

expensive future hurricane damage claims to disaster relief organizations, notably including

publicly funded FEMA.

17This is very probable for Florida owners of older homes who rebuild them, as a 2018 report on new residential
building codes and enforcement systems by the Insurance Institute for Business & Home Safety gave Florida a rating
of 95/100, the highest score among all the states it evaluated.
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Figure A1: 2008 fuel economy label. Source: EPA

Figure A2: 2013 gasoline engine vehicle fuel economy label. Source: EPA
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Figure A3: 2013 hybrid engine vehicle fuel economy label. Source: EPA

Figure A4: Canadian fuel economy label in use until 2015. Source: Natural Resources Canada

71



Figure A5: Distribution of valuations, Greene (2010). Reference is a 7% discount rate.

Figure A6: “MPG Illusion”, from Larrick and Soll (2008). Reprinted with permission from
AAAS.
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Figure A12: Market share flexible difference-in-differences
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Figure A14: Fuel consumption flexible difference-in-differences
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Table A1: Market share difference-in-differences (2010-2014 and 2009-2014)

2010-2014 w/ Gas Price 2009-2014 w/ Gas Price
US × Small × Treat 1.44∗∗ 1.54∗∗ 2.38∗∗∗ 2.41∗∗∗

(2.33) (2.33) (3.24) (3.72)

US ×Midsize × Treat -0.42 -0.25 -0.36 -0.36
(-1.01) (-0.72) (-0.95) (-0.99)

US × Large × Treat -0.19 -0.32∗∗ -0.32∗∗ -0.32∗∗∗

(-1.35) (-2.27) (-2.34) (-2.73)

US × Luxury × Treat -0.20 -0.31∗∗ -0.29 -0.29
(-1.51) (-2.47) (-1.63) (-1.61)

US × Sport × Treat 0.08 0.07 0.15 0.15
(0.62) (0.49) (1.07) (1.08)

US × Small SUV × Treat -1.00∗∗∗ -1.16∗∗∗ -1.11∗∗∗ -1.14∗∗∗

(-5.72) (-6.76) (-5.76) (-7.13)

US ×Midsize SUV × Treat -0.00 0.16 -0.08 -0.08
(-0.00) (0.42) (-0.22) (-0.22)

US × Large SUV × Treat -0.50∗∗∗ -0.51∗∗∗ -0.58∗∗∗ -0.57∗∗∗

(-3.45) (-3.35) (-3.75) (-3.66)

US × Luxury SUV × Treat -0.28 -0.38∗∗ -0.38∗∗ -0.38∗∗

(-1.48) (-2.10) (-2.19) (-2.24)

US × Truck × Treat 0.86∗∗ 0.98∗ 0.38 0.33
(2.31) (1.94) (0.83) (0.88)

Observations 1320 1320 1584 1584
Within-R2 0.97 0.97 0.96 0.96
SE Clusters 30 30 36 36
Notes: t statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Coefficient estimates in percentage points. Standard errors are clustered in country by 4-month
blocks to allow for both within and across-segment serial correlation in errors within country-
trimester. The effect of gas prices on segment shares is controlled for in the 2nd and 4th columns.
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Table A2: Fuel consumption difference-in-differences, country×segment×2-year clustered SEs

Full Sample w/ Gas Price 2010-2014 w/ Gas Price
US × Small × Treat -0.01 -0.01 -0.02∗ -0.01

(-1.19) (-1.03) (-1.93) (-1.59)

US ×Midsize × Treat 0.07∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(2.97) (2.80) (2.88) (2.81)

US × Large × Treat -0.05∗∗ -0.05∗∗ -0.05 -0.05∗

(-2.36) (-2.56) (-1.51) (-1.77)

US × Luxury × Treat -0.03 -0.04∗∗∗ -0.05∗∗ -0.07∗∗∗

(-1.53) (-7.35) (-2.46) (-3.70)

US × Sport × Treat -0.13 -0.18∗ -0.01 -0.04
(-1.12) (-1.88) (-0.20) (-0.70)

US × Small SUV × Treat -0.23∗∗∗ -0.24∗∗∗ -0.25∗∗∗ -0.26∗∗∗

(-6.53) (-8.43) (-4.99) (-7.15)

US ×Midsize SUV × Treat -0.00 -0.00 0.01 0.01
(-0.30) (-0.27) (1.01) (0.63)

US × Large SUV × Treat 0.04 0.03 0.08∗∗ 0.06∗∗∗

(0.95) (0.84) (2.63) (3.95)

US × Luxury SUV × Treat 0.04∗ 0.05∗∗∗ 0.05 0.07∗∗

(1.88) (2.92) (1.32) (2.41)

US × Truck × Treat -0.06 -0.09∗∗∗ -0.07∗∗ -0.08∗∗∗

(-1.64) (-4.91) (-2.13) (-2.83)

US × Van × Treat -0.09 -0.06 -0.01 -0.01
(-1.36) (-1.17) (-1.11) (-0.96)

Observations 1848 1848 1320 1320
Within-R2 0.67 0.73 0.70 0.72
SE Clusters 88 88 66 66
Notes: t statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Coefficient estimates in gallons per 100 miles. Standard errors are clustered in country by segment by
2-year blocks to allow for biennial serial correlation in errors within each country-segment. The effect
of gas prices on segment-average fuel consumption is controlled for in the 2nd and 4th columns, and is
found to be negative for most segments, or statistically indistinguishable from 0 otherwise.
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Table A3: Market share linear probability models

US Base US Full Can Base Can Full US Base US Full Can Base Can Full
Small × Fuel Consumption -0.09 -0.09 -0.53∗∗∗ -0.48∗∗∗ -0.11 -0.11 -0.09 -0.09

(-0.95) (-0.95) (-2.98) (-2.79) (-0.88) (-0.89) (-0.91) (-0.91)

Midsize × Fuel Consumption -0.30∗∗ -0.33∗∗∗ -0.19∗∗∗ -0.17∗∗∗ -0.11 -0.11 0.07 0.07
(-2.52) (-2.88) (-4.23) (-3.94) (-1.32) (-1.32) (1.31) (1.50)

Large × Fuel Consumption -0.03 -0.04 0.01 0.00 -0.36∗∗∗ -0.40∗∗∗ -0.11∗∗∗ -0.14∗∗∗
(-0.47) (-0.62) (0.41) (0.00) (-4.29) (-5.13) (-2.96) (-3.95)

Luxury × Fuel Consumption -0.02 -0.02 0.00 0.01 -0.05∗∗ -0.05∗∗ -0.02 -0.02
(-1.48) (-1.50) (0.35) (0.59) (-2.43) (-2.46) (-1.14) (-1.18)

Sport × Fuel Consumption 0.05∗∗∗ 0.05∗∗ 0.01 0.01 -0.02∗∗ -0.02∗∗ -0.03∗∗∗ -0.03∗∗∗
(2.62) (2.33) (0.85) (0.57) (-2.40) (-2.57) (-2.92) (-2.98)

Small SUV × Fuel Consumption 0.16∗∗∗ 0.16∗∗∗ 0.08 0.07 -0.08 -0.09 -0.70∗∗∗ -0.70∗∗∗
(3.06) (3.09) (1.24) (1.03) (-0.45) (-0.50) (-2.99) (-2.96)

Midsize SUV × Fuel Consumption -0.36∗∗∗ -0.38∗∗∗ -0.47∗∗∗ -0.49∗∗∗ -0.32∗∗∗ -0.32∗∗∗ -0.49∗∗∗ -0.49∗∗∗
(-4.84) (-5.20) (-5.07) (-5.18) (-4.73) (-4.95) (-4.61) (-4.66)

Large SUV × Fuel Consumption -0.18∗∗∗ -0.19∗∗∗ -0.07∗∗∗ -0.07∗∗∗ -0.06∗∗ -0.06∗∗ -0.02 -0.03∗
(-6.72) (-6.89) (-4.37) (-4.43) (-2.36) (-2.40) (-1.53) (-1.71)

Luxury SUV × Fuel Consumption -0.08∗∗∗ -0.08∗∗∗ -0.05∗∗∗ -0.05∗∗∗ -0.02∗∗ -0.02∗∗ -0.03∗∗∗ -0.03∗∗∗
(-4.20) (-3.97) (-3.15) (-3.12) (-2.20) (-2.20) (-3.52) (-3.54)

Truck × Fuel Consumption -0.19 -0.19 -0.20 -0.18 0.05 0.05 0.10∗ 0.11∗
(-1.57) (-1.46) (-1.30) (-1.15) (1.62) (1.60) (1.80) (1.84)

Van × Fuel Consumption -0.03 -0.05 0.09 0.06 0.07 0.07 0.01 0.03
(-0.59) (-0.88) (1.28) (0.74) (1.16) (1.23) (0.08) (0.35)

Small × Fuel Consumption × Post 0.00 -0.12 0.01 -0.01
(0.06) (-1.44) (1.11) (-0.49)

Midsize × Fuel Consumption × Post 0.05 -0.03∗ 0.00 -0.02∗∗
(0.83) (-1.65) (0.09) (-2.12)

Large × Fuel Consumption × Post 0.02∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗
(2.16) (2.61) (4.13) (2.07)

Luxury × Fuel Consumption × Post 0.00 -0.00 0.00 0.00
(0.25) (-0.65) (0.98) (0.77)

Sport × Fuel Consumption × Post 0.01 0.01 0.00 0.00∗
(1.22) (1.47) (1.17) (1.68)

Small SUV × Fuel Consumption × Post -0.01 0.04∗ 0.00 -0.00
(-0.88) (1.73) (0.63) (-0.65)

Midsize SUV × Fuel Consumption × Post 0.07∗∗ 0.05 0.02∗∗∗ -0.00
(2.21) (1.10) (2.97) (-0.25)

Large SUV × Fuel Consumption × Post 0.01 0.00 0.00 0.01∗∗
(1.10) (0.25) (0.53) (1.97)

Luxury SUV × Fuel Consumption × Post -0.00 -0.00 0.00 -0.00
(-0.03) (-0.01) (0.46) (-0.61)

Truck × Fuel Consumption × Post -0.02 -0.08 -0.00 0.01∗
(-0.31) (-0.91) (-0.36) (1.68)

Van × Fuel Consumption × Post 0.04 0.08∗ -0.00 -0.01
(1.42) (1.73) (-0.57) (-1.53)

Observations 14352 14352 14232 14232 14352 14352 14232 14232
Within-R2 0.18 0.18 0.28 0.29 0.06 0.07 0.10 0.10
Vehicle Fixed Effects Yes Yes Yes Yes

Notes: t statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Dependent variable (share) in percentage points, consumption in gals/100 miles. All models include segment by month of sample fixed effects
and control for vehicle availability and interactions of segment by price and power/weight. SEs clustered by segment-month and model-year.
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Table A4: Market share nested logit models with BLP instruments

US Base US Full Can Base Can Full US Base US Full Can Base Can Full
Small × Fuel Consumption 0.09 0.07 0.39∗∗∗ 0.30∗∗∗ -0.14 -0.14∗ 0.26∗ 0.08

(1.60) (1.41) (3.90) (3.05) (-1.54) (-1.71) (1.93) (0.69)

Midsize × Fuel Consumption 0.19∗∗∗ 0.08 0.06 0.04 0.03 -0.01 -0.02 -0.09
(3.21) (1.46) (0.80) (0.65) (0.48) (-0.18) (-0.21) (-1.21)

Large × Fuel Consumption 0.21∗∗ 0.14∗∗ 0.25∗ 0.11 0.19∗∗ 0.10 0.51∗∗ 0.15
(2.34) (2.16) (1.79) (1.40) (2.10) (1.35) (2.44) (0.96)

Luxury × Fuel Consumption 0.11∗∗∗ 0.07∗∗∗ 0.13∗∗∗ 0.11∗∗∗ 0.07 -0.03 0.23∗∗∗ 0.00
(2.84) (3.55) (2.90) (3.40) (0.95) (-0.42) (2.65) (0.05)

Sport × Fuel Consumption -0.23∗∗∗ -0.20∗∗∗ -0.31∗∗∗ -0.27∗∗∗ -0.26∗∗∗ -0.26∗∗∗ -0.22∗∗∗ -0.29∗∗∗
(-6.25) (-7.46) (-5.32) (-7.00) (-4.32) (-4.36) (-2.70) (-3.76)

Small SUV × Fuel Consumption -0.06 -0.02 -0.13∗∗ -0.06∗ -0.17∗∗ -0.15∗ -0.13∗ -0.13∗∗
(-1.11) (-0.39) (-2.50) (-1.78) (-2.30) (-1.79) (-1.83) (-2.01)

Midsize SUV × Fuel Consumption -0.17∗∗∗ -0.13∗ -0.08 -0.02 -0.30∗∗∗ -0.33∗∗∗ -0.12 -0.12
(-2.71) (-1.94) (-0.94) (-0.24) (-3.70) (-3.15) (-1.19) (-1.04)

Large SUV × Fuel Consumption 0.20∗∗ 0.19∗∗ -0.02 0.14 0.08 0.03 -0.04 0.08
(2.40) (2.43) (-0.17) (1.33) (1.00) (0.38) (-0.34) (0.71)

Luxury SUV × Fuel Consumption -0.07∗∗∗ 0.00 -0.12∗∗∗ -0.01 -0.21∗∗∗ -0.19∗∗∗ -0.13∗ -0.05
(-3.13) (0.05) (-3.30) (-0.25) (-3.56) (-2.96) (-1.73) (-0.64)

Truck × Fuel Consumption 0.14∗∗∗ 0.17∗∗∗ 0.14∗∗ 0.21∗∗∗ 0.05 -0.00 0.11 0.14∗
(4.00) (4.63) (2.25) (3.49) (0.77) (-0.00) (1.41) (1.83)

Van × Fuel Consumption 0.00 0.02 -0.04 -0.02 -0.05 -0.10∗∗ 0.02 -0.02
(0.10) (1.05) (-0.94) (-0.56) (-1.41) (-2.13) (0.36) (-0.51)

Small × Fuel Consumption × Post -0.02∗∗ -0.05∗∗∗ 0.00 -0.05∗
(-2.01) (-3.16) (0.09) (-1.90)

Midsize × Fuel Consumption × Post -0.05∗∗∗ -0.04∗∗ -0.01 -0.03
(-3.89) (-2.36) (-0.40) (-1.07)

Large × Fuel Consumption × Post -0.05∗∗∗ -0.09∗∗∗ -0.03 -0.09∗∗∗
(-4.36) (-4.28) (-1.51) (-2.96)

Luxury × Fuel Consumption × Post -0.04∗∗∗ -0.05∗∗∗ -0.02 -0.04∗
(-4.79) (-4.10) (-1.31) (-1.86)

Sport × Fuel Consumption × Post -0.01 -0.02 0.00 -0.01
(-1.64) (-1.14) (0.23) (-0.54)

Small SUV × Fuel Consumption × Post -0.02∗ -0.01 0.01 0.00
(-1.72) (-0.78) (0.29) (0.03)

Midsize SUV × Fuel Consumption × Post -0.02∗ -0.02 0.00 -0.01
(-1.74) (-1.35) (0.02) (-0.77)

Large SUV × Fuel Consumption × Post -0.02∗∗ -0.00 -0.01 -0.00
(-2.39) (-0.10) (-0.80) (-0.13)

Luxury SUV × Fuel Consumption × Post 0.00 0.01 0.01 0.03
(0.03) (1.22) (0.76) (1.33)

Truck × Fuel Consumption × Post -0.01 -0.02 0.01 -0.01
(-1.56) (-1.46) (0.67) (-0.56)

Van × Fuel Consumption × Post -0.03∗∗∗ -0.04∗∗∗ -0.01 -0.03∗
(-5.19) (-3.72) (-0.96) (-1.75)

Within-R2 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98
Month of Sample Fixed Effects Yes Yes Yes Yes
Make by Month of Sample Fixed Effects Yes Yes Yes Yes

Notes: t statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Numbers of observations suppressed for space but similar to Table A3.
Dependent variable is log(share), and consumption in gals/100 miles. Specifications instrument for within-segment share and interactions of
segment by consumption, price, and power/weight with segment-year and make-year means. SEs clustered by segment-month and model-year.
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Figure B1: Florida population by county aggregation. Red dashed lines denote hurricane years
in which at least 1/3 of hit county populations were affected (including Miami-Dade) according
to the census tract hit definition, with the exception of Andrew in 1992, which affected all of
Miami-Dade, but respectively only 17% and 5% of the other large and small county populations.
Orange dashed lines represent all other hurricane years. The 1995 and 1998 hurricanes only
affected populations in the group of small counties (around 18% in both years). Source: Authors’
calculations based on data from the US Census Bureau.
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Figure B2: Florida borrowers market sales and composition
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Figure B3: Florida borrowers market prices and sales share
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Figure B4: Heterogeneous effects of differential hurricane intensity – repeated sales
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Figure B5: hurricane effects on house prices – borrower sample
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Figure B6: Heterogeneous effects of differential hurricane intensity – borrower sample
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Figure B7: Heterogeneous price effects of differential hurricane intensity – HMDA sample
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Figure B8: Heterogeneous income effects of differential hurricane intensity – HMDA sample

Table B1: Wind speed and maximal reach radius model

log(Maxradius)

Speed -0.0224∗∗∗

(0.004)

Speed2 -0.0002∗∗∗

(0.00004)

Hurricane-track-point FEs Yes
N 1188
R2 0.93
Within-R2 0.90
Notes: Standard errors in parentheses (clustered at the hurricane-track-point level).
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B2: Percentage of houses sold from hit areas by hurricane, years pre

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Andrew92 . . . . . . . . . .
Opal95 . . . . . . . . . .
Earl98 . . . . . . . . . .
Georges98 . . . . . . . . . .
Irene99 . . . . . . . . . .
Charley04 . . . . . 1.3 2.0 2.1 2.3 2.5
Frances04 . . . . . 1.0 1.4 1.6 1.8 2.1
Jeanne04 . . . . . 1.1 1.4 1.6 1.8 1.9
Ivan04 . . . . . 0.1 0.1 0.2 0.2 0.2
Dennis05 . . . . 0.1 0.1 0.1 0.1 0.2 0.2
Katrina05 . . . . 0.5 0.8 0.8 0.8 0.9 1.0
Wilma05 . . . . 2.6 3.1 3.4 3.8 4.1 4.6
Hermine16 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1
Matthew16 0.6 0.5 0.5 0.6 0.6 0.7 0.9 1.0 1.0 0.7
Irene17 1.1 1.3 1.6 1.7 1.7 2.0 2.1 2.3 1.9 0.3

Total 1.8 1.8 2.2 2.3 5.0 8.5 10.2 11.3 11.8 10.9
Notes: House hit definition described in Section 3.2.4. Periods denote hurricane event
years not covered by the 2000-2016 sample.

Table B3: Percentage of houses sold from hit areas by hurricane, years post

0 1 2 3 4 5 6 7 8 9 10

Andrew92 . . . . . . . 1.0 1.5 1.4 1.4
Opal95 . . . . 0.2 0.3 0.3 0.4 0.4 0.4 0.3
Earl98 . 0.2 0.3 0.3 0.4 0.4 0.4 0.3 0.2 0.2 0.2
Georges98 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Irene99 2.8 3.4 3.6 4.0 4.2 4.6 3.7 2.4 1.6 1.8 2.5
Charley04 2.5 2.1 1.4 0.9 0.9 1.4 1.5 1.5 1.8 1.8 1.9
Frances04 2.3 2.0 1.3 0.8 0.9 1.2 1.1 1.2 1.5 1.6 1.7
Jeanne04 2.0 1.5 1.0 0.7 0.7 1.0 1.1 1.1 1.3 1.4 1.4
Ivan04 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Dennis05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Katrina05 0.9 0.6 0.4 0.3 0.6 0.6 0.6 0.7 0.7 0.7 0.6
Wilma05 3.4 2.2 1.5 1.8 2.5 2.6 2.6 3.0 3.1 3.1 2.3
Hermine16 0.0 . . . . . . . . . .
Matthew16 0.1 . . . . . . . . . .
Irene17 . . . . . . . . . . .

Total 11.7 10.3 8.4 8.1 9.3 10.7 9.9 10.2 10.5 10.8 10.7
Notes: House hit definition defined in Section 3.2.4. Periods denote hurricane event years not
covered by the 2000-2016 sample.
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Table B4: Percentage of houses sold from category-3-speed hit areas by hurricane, years pre

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Andrew92 . . . . . . . . . .
Opal95 . . . . . . . . . .
Earl98 . . . . . . . . . .
Georges98 . . . . . . . . . .
Irene99 . . . . . . . . . .
Charley04 . . . . . . . . . .
Frances04 . . . . . 0.0 0.1 0.1 0.1 0.1
Jeanne04 . . . . . 0.1 0.1 0.2 0.3 0.2
Ivan04 . . . . . 0.0 0.0 0.0 0.0 0.0
Dennis05 . . . . . . . . . .
Katrina05 . . . . . . . . . .
Wilma05 . . . . 0.3 0.3 0.4 0.4 0.4 0.4
Hermine16 . . . . . . . . . .
Matthew16 . . . . . . . . . .
Irene17 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0

Total 0.1 0.1 0.2 0.2 0.5 0.6 0.8 0.9 0.9 0.8
Notes: House hit definition described in Section 3.2.4. Periods denote hurricanes
not reaching category 3 speeds in Florida or event years not covered by sample.

Table B5: Percentage of houses sold from category-3-speed hit areas by hurricane, years post

0 1 2 3 4 5 6 7 8 9 10

Andrew92 . . . . . . . 0.3 0.5 0.4 0.4
Opal95 . . . . . . . . . . .
Earl98 . . . . . . . . . . .
Georges98 . . . . . . . . . . .
Irene99 . . . . . . . . . . .
Charley04 . . . . . . . . . . .
Frances04 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1
Jeanne04 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
Ivan04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dennis05 . . . . . . . . . . .
Katrina05 . . . . . . . . . . .
Wilma05 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.2
Hermine16 . . . . . . . . . . .
Matthew16 . . . . . . . . . . .
Irene17 . . . . . . . . . . .

Total 0.7 0.5 0.3 0.3 0.4 0.4 0.4 0.8 1.0 1.0 0.9
Notes: House hit definition described in Section 3.2.4. Periods denote hurricanes not
reaching category 3 speeds in Florida or event years not covered by sample.
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Table B6: Percentage of hit tracts by hurricane, years pre

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Andrew92 . . . . . . . . . .
Opal95 . . . . . . . . . .
Earl98 . . . . . . . . . .
Georges98 . . . . . . . . . .
Irene99 . . . . . . . . . .
Charley04 . . . . . 1.0 1.5 1.5 1.5 1.5
Frances04 . . . . . 1.0 1.5 1.5 1.5 1.5
Jeanne04 . . . . . 0.9 1.2 1.2 1.2 1.2
Ivan04 . . . . . 0.1 0.2 0.2 0.2 0.2
Dennis05 . . . . 0.1 0.1 0.1 0.1 0.1 0.1
Katrina05 . . . . 0.4 0.7 0.7 0.7 0.7 0.7
Wilma05 . . . . 2.1 2.5 2.5 2.5 2.5 2.5
Hermine16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Matthew16 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Irene17 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 0.7

Total 3.0 3.0 3.0 3.0 5.2 8.0 9.0 9.0 9.0 7.5
Notes: Census tract hit definition characterized in Section 3.2.3. Periods denote
hurricane event years not covered by the 2000-2016 sample.

Table B7: Percentage of hit tracts by hurricane, years post

0 1 2 3 4 5 6 7 8 9 10

Andrew92 . . . . . . . 0.8 1.1 1.1 1.1
Opal95 . . . . 0.2 0.3 0.3 0.3 0.3 0.3 0.3
Earl98 . 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Georges98 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Irene99 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Charley04 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Frances04 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Jeanne04 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Ivan04 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Dennis05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Katrina05 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Wilma05 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Hermine16 0.0 . . . . . . . . . .
Matthew16 0.2 . . . . . . . . . .
Irene17 . . . . . . . . . . .

Total 8.7 9.2 9.3 9.3 9.5 9.6 9.6 10.3 10.7 10.7 10.7
Notes: Census tract hit definition characterized in Section 3.2.3. Periods denote hurricane
event years not covered by the 2000-2016 sample.
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Table B8: Percentage of category-3-speed hit tracts by hurricane, years pre

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Andrew92 . . . . . . . . . .
Opal95 . . . . . . . . . .
Earl98 . . . . . . . . . .
Georges98 . . . . . . . . . .
Irene99 . . . . . . . . . .
Charley04 . . . . . . . . . .
Frances04 . . . . . 0.0 0.0 0.0 0.0 0.0
Jeanne04 . . . . . 0.1 0.1 0.1 0.1 0.1
Ivan04 . . . . . 0.0 0.0 0.0 0.0 0.0
Dennis05 . . . . . . . . . .
Katrina05 . . . . . . . . . .
Wilma05 . . . . 0.2 0.3 0.3 0.3 0.3 0.3
Hermine16 . . . . . . . . . .
Matthew16 . . . . . . . . . .
Irene17 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0

Total 0.1 0.1 0.1 0.1 0.4 0.5 0.5 0.5 0.5 0.4
Notes: Tract hit definition described in Section 3.2.3. Periods denote hurricanes
not reaching category 3 speeds in Florida or event years not covered by sample.

Table B9: Percentage of category-3-speed hit tracts by hurricane, years post

0 1 2 3 4 5 6 7 8 9 10

Andrew92 . . . . . . . 0.3 0.4 0.4 0.4
Opal95 . . . . . . . . . . .
Earl98 . . . . . . . . . . .
Georges98 . . . . . . . . . . .
Irene99 . . . . . . . . . . .
Charley04 . . . . . . . . . . .
Frances04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jeanne04 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Ivan04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dennis05 . . . . . . . . . . .
Katrina05 . . . . . . . . . . .
Wilma05 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Hermine16 . . . . . . . . . . .
Matthew16 . . . . . . . . . . .
Irene17 . . . . . . . . . . .

Total 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.7 0.8 0.8 0.8
Notes: Census tract hit definition described in Section 3.2.3. Periods denote hurricanes not
not reaching category 3 speeds or event years not covered by sample.
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Table B10: Main price and transaction probability model results

Full sample prices Repeated sales prices Transaction probability

Age 0.0002 -13.8 156788.2
(0.0005) (31302.4) (260689.2)

Effective age -0.006∗∗∗ -0.002∗∗ -0.001∗∗∗

(0.0010) (0.001) (0.0004)
Event time year =

-6 0.008 -0.02 -0.006∗

(0.03) (0.04) (0.003)

-5 0.02 -0.02 -0.006∗

(0.04) (0.05) (0.003)

-4 -0.01 -0.02 -0.006∗∗

(0.02) (0.05) (0.003)

-3 -0.09 -0.03 -0.007∗∗

(0.06) (0.04) (0.003)

-2 -0.04 -0.03 -0.008∗∗

(0.03) (0.03) (0.004)

0 0.05∗∗ 0.05 -0.02∗

(0.02) (0.04) (0.008)

1 0.1∗∗∗ 0.1∗∗∗ -0.007
(0.03) (0.03) (0.006)

2 0.02 0.08∗∗∗ -0.007∗

(0.03) (0.03) (0.004)

3 0.01 0.03 -0.004
(0.02) (0.03) (0.004)

4 0.0004 0.01 0.0006
(0.03) (0.03) (0.004)

5 0.01 0.04 -0.004
(0.03) (0.03) (0.003)

6 0.02 0.06∗ 0.00003
(0.03) (0.04) (0.004)

7 0.02 0.05∗∗ -0.003
(0.02) (0.02) (0.003)

8 0.05∗ 0.06∗∗∗ -0.003
(0.03) (0.01) (0.003)

9 -0.02 0.05∗∗∗ -0.0008
(0.04) (0.02) (0.003)

10 0.02 0.05∗∗ 0.0002
(0.02) (0.02) (0.002)

County-year-type and month-type FEs Yes Yes Yes
Parcel FEs Yes Yes
Tract FEs Yes
Floors and bathrooms bins Yes
N 7918062 1338384 31941428
R2 0.53 0.78 0.09

Notes: Standard errors in parentheses (clustered at the county level). ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Dependent variable is log(price) in the first two columns, and a (yearly) transaction indicator in the third.
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