
UCLA
UCLA Previously Published Works

Title
How Well Do Automated Linking Methods Perform? Lessons from U.S. Historical Data.

Permalink
https://escholarship.org/uc/item/8737510q

Journal
Journal of Economic Literature, 58(4)

ISSN
0022-0515

Authors
Bailey, Martha
Cole, Connor
Henderson, Morgan
et al.

Publication Date
2020-12-01

DOI
10.1257/jel.20191526
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8737510q
https://escholarship.org/uc/item/8737510q#author
https://escholarship.org
http://www.cdlib.org/


How Well Do Automated Linking Methods Perform? Lessons 
from U.S. Historical Data

Martha Bailey1,2, Connor Cole1, Morgan Henderson1, Catherine Massey1

1University of Michigan

2National Bureau of Economic Research

Abstract

This paper reviews the literature in historical record linkage in the U.S. and examines the 

performance of widely-used record linking algorithms and common variations in their 

assumptions. We use two high-quality, hand-linked datasets and one synthetic ground truth to 

examine the direct effects of linking algorithms on data quality. We find that (1) no algorithm 

(including hand-linking) consistently produces representative samples; (2) 15 to 37 percent of 

links chosen by widely-used algorithms are classified as errors by trained human reviewers; and 

(3) false links are systematically related to baseline sample characteristics, showing that some 

algorithms may induce systematic measurement error into analyses. A case study shows that the 

combined effects of (1)-(3) attenuate estimates of the intergenerational income elasticity by up to 

20 percent, and common variations in algorithm assumptions result in greater attenuation. As 

current practice moves to automate linking and increase link rates, these results highlight the 

important potential consequences of linking errors on inferences with linked data. We conclude 

with constructive suggestions for reducing linking errors and directions for future research.

New large-scale linked data are revolutionizing empirical social science. Record linkage is 

increasingly popular as a tool to create or enhance data for observational studies, 

randomized control trials, and lab and field experiments. Examples abound across subfields 

in economics, including health economics and medicine, industrial organization, 

development economics, criminal justice, political economy, macroeconomics, and 

economic history. In addition, current U.S. data infrastructure projects are linking national 

surveys, administrative data, and research samples to recently digitized historical records, 

such as the full-count 1880 (Ruggles et al. 2015, Ruggles 2006) and 1940 U.S. Censuses 

(the first Census to ask about education and wage income).1 These newly available “big 

data” have the potential to break new ground on old questions and open entirely novel areas 

of inquiry.

1Many on-going initiatives link the 1940 U.S. Census to other datasets. The Census Bureau plans to link the 1940 Census to current 
administrative and Census data (Census Longitudinal Infrastructure Project, CLIP) and the Minnesota Population Center plans to link 
it to other historical censuses. The Panel Survey of Income Dynamics and the Health and Retirement Survey are linking their 
respondents to the 1940 Census. The Longitudinal, Intergenerational Family Electronic Micro-Database Project (LIFE-M) is linking 
vital records to the 1940 Census (Bailey 2018). Supplementing these public infrastructure projects, entrepreneurial researchers have 
also combined large datasets. See, for example, Abramitzky, Boustan, and Eriksson (2012a), Abramitzky, Boustan, and Eriksson 
(2013), Abramitzky, Boustan, and Eriksson (2014), Boustan, Kahn, and Rhode (2012), Mill (2013), Mill and Stein (2016), Hornbeck 
and Naidu (2014), Aizer et al. (2016), Bleakley and Ferrie (2013, 2017, 2016), Nix and Qian (2015), Collins and Wanamaker (2014, 
2015, 2016), and Eli, Salisbury, and Shertzer (2018) . This paper discusses many of the linking approaches used in these papers.
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Machine-linking methods are critical to these projects, especially those linking U.S. 

Censuses. But outside of protected data enclaves, little is known about how machine 

algorithms influence data quality and inference, due both to false matches (Type I errors) 

and missed matches (Type II errors).2 This gap in knowledge reflects the lack of “ground 

truth” data. Although some diagnostic exercises are suggestive, they typically rely on 

selected samples (genealogy), non-U.S. samples (Goeken et al. 2017, Christen and Goiser 

2007, Eriksson 2016), or rich administrative data unavailable to most researchers (Scheuren 

and Winkler 1993, Winkler 2006, Massey 2017, Abowd 2017). Uncertainty about the quality 

of machine-linked data limits their value to social science and also the development of 

methods to improve them.

This paper reviews the literature in historical record linkage in the U.S. and evaluates the 

effects of different linking algorithms on data quality. Unlike contemporary data, historical 

data are public and contain identifiable information, allowing us to be fully transparent about 

our samples and assumptions in assessing algorithm performance. Our samples include the 

Longitudinal Intergenerational Family Electronic Micro-database’s (LIFE-M) sample of 

birth certificates linked to the 1940 Census (Bailey 2018) as well as a sample of Union 

Army veterans which the Early Indicators Project linked to the 1900 Census (Costa et al. 

2017).

Even well-trained human linkers and genealogists make errors, so we also build a synthetic 

ground truth to validate our findings. The synthetic ground truth deliberately introduces 

common errors in recording, transcription and digitization of historical data. Although this 

synthetic ground truth is an imperfect representation of the more complicated errors in 

original records, the dataset’s construction means that there is complete certainty about the 

correct links. In all cases, the synthetic data produce very similar findings to the hand-linked 

records.

The results highlight how widely-used linking algorithms affect data quality and illustrate 

how different assumptions impact performance. First, we find that no linking method 

produces samples that are consistently representative of the linkable population, and the 

ways in which the data are not representative differ by algorithm. Second, widely used 

automated-linking algorithms produce large numbers of links that well-trained humans 

classify as incorrect, with rates ranging from 15 to 37 percent. Similar results in synthetic 

ground truth suggest that links rejected in human review are likely Type I errors. Third, false 

links produced by different algorithms tend to be strongly associated with baseline sample 

characteristics, suggesting that linking algorithms could induce systematic measurement 

error into analyses. In addition, the systematic measurement error varies across algorithms 

and records, suggesting that any bias may be difficult to predict and correct.

Our analysis also investigates how algorithm assumptions impact data quality, including 

phonetic name cleaning, linking more common names, and using methods to resolve ties. 

We find that common uses of spelling standardization in deterministic algorithms tend to 

increase both Type I errors, from 16 to 60 percent, as well as Type II errors. Linking more 

2“Ground truth” is defined as data obtained by direct observation of the true link.
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common names dramatically increases Type I errors although Type II errors fall. Lastly, 

including records with exact ties on name, age, and birth place (often used in conjunction 

with simple probability weights) increases error rates by an additional 55 to 79 percent.

After characterizing the theoretical implications of linking errors using a within-between 

decomposition framework, we link the same fathers and sons to the 1940 Census using 

different algorithms and examine the resulting estimates of intergenerational mobility. We 

find that some linking algorithms attenuate intergenerational income elasticity estimates by 

up to 20 percent. Frequently used variations in assumptions, such as including more 

common names and phonetic name cleaning, result in attenuation of more than 30 percent. 

Eliminating false matches, however, renders intergenerational income elasticities from 

different algorithms statistically indistinguishable. In our case study, false links appear to 

have a larger impact on inferences than sample composition—a finding that cautions against 

recent efforts to increase match rates at the expense of precision.

We conclude with easy-to-implement recommendations for improving machine linking and 

inference with linked samples. In particular, we recommend reweighting to address sample 

non-representativeness and using multiple linking algorithms and supervised learning 

methods (with training data) to identify and reduce false links, break ties for multiple 

matches, and better train machine algorithms.

I. The Evolution of U.S. Historical Record Linkage

Record linkage has been a mainstay of social science for over 80 years. The earliest methods 

used painstaking manual searches to link hand-written manuscripts, and recent 

developments in digitized records, computational speed, and probabilistic linking techniques 

have expanded the possibilities for automated, or machine-based, record linkage. We briefly 

summarize this early literature, focusing on the components of this history that laid the 

groundwork for current practice.3

One feature important to historical and modern linking is “blocking.” Blocking refers to the 

partition of a dataset into “blocks” (or clusters of records) using a record attribute 

(Michelson 2006). This technique limits the number of potential matches according to the 

blocking attribute, thereby improving computational efficiency while (ideally) maintaining 

accuracy. For instance, blocking on place of birth and sex means that a linking algorithm 

looking for Franklin Jones born in Kentucky would only search within the set of candidate 

matches of men born in that state.

Historical linkage has always used blocking techniques to increase the feasibility of 

manually linking samples across manuscripts. The earliest blocking methods involved 

identifying a group of individuals in a particular location (e.g., township, county, or state) in 

one census and manually searching for the same people within the same region (the block) 

in the subsequent census (Malin 1935, Curti 1959, Bogue 1963, Thernstrom 1964, Guest 

1987). While making manual searching feasible, this blocking strategy missed those who 

3See Ruggles, Fitch, and Roberts (2018) for a more detailed history of the findings in this early literature.
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relocated or changed names between census years. The resulting linked samples omitted the 

geographically mobile population and were, therefore, unrepresentative (Ruggles 2006).

The creation of digitized state population indexes facilitated refinements in blocking.4 In one 

such approach that improved on previous methods, Steckel (1988) drew a random sample of 

households with children at least 10 years old in a historical census. He then searched for the 

same household in the previous census using the birth state of the child to narrow the search. 

This technique was able to locate individuals who moved between the census years, but it 

restricted the sample of linked households to those with children surviving to age ten.

Advances in computing allowed improvements in automated matching, effectively replacing 

time-intensive human search with computer queries. Leveraging newly created national 

population indexes and Public Use Microdata Samples (PUMS), automated matching began 

incorporating more data elements in the linking process. An early example of this strategy 

was Atack, Bateman, and Gregson (1992)’s probabilistic matching software, called “PC 

Matchmaker.” PC Matchmaker transformed names using phonetic codes and allowed for 

user-specified blocking and weighting schemes. Atack (2004) used this software to create a 

linked sample between the agricultural and population censuses between 1850 and 1880. 

Ferrie (1996)’s approach, which we describe in more detail in the following sections, aimed 

to create large, representative linked U.S. Census samples and has since been embraced by 

the literature, forming the basis of prominent methods in use today. Before summarizing 

more modern methods, we present an example linking problem to illustrate common 

challenges in historical linking.

II. Current Approaches to Linking Historical Data

Matching records across sources requires choosing linking variables, also called “features” 

in the computer science and statistics literatures. Modern administrative records typically 

have multiple, high-quality features (e.g., full legal name, Social Security Number, exact 

date of birth, address of residence). Outside of restricted administrative enclaves, data 

typically contain a limited set of noisy linking features. Historical data have the advantage of 

containing identifiable information, allowing transparent study of how limited data and data 

errors affect the quality of linked samples. Like many modern linking problems, historical 

data have limited information that is often measured with error.

As an example, consider the challenge of linking birth certificates to the 1940 U.S. Census. 

Researchers typically use “time-invariant” features to do linking in order to minimize 

concerns about selection bias and non-representativeness in linked samples (Ruggles, 2006). 

For U.S. Census linking, these variables typically include first name, last name, age, birth 

state, race, and sex.5 In practice, names may vary over time, either because Census 

enumerators misspelled names, the individual reported incorrectly, or the individual changed 

names (perhaps using a middle name or nickname in place of the given name). Goeken et al. 

4A state “index” is a list of individuals living in a state at a point in time.
5Matching in historical settings in other countries often makes greater use of characteristics not available in U.S. data. Modalsli (2017) 
notes that in Norway before 1910 there is less first name variation and more flexible surname traditions than in the U.S. In addition, 
Norwegian censuses use 500 birthplaces (municipalities) for a population of under 2 million, whereas the U.S. Censuses identify 
birthplaces as 48 states and foreign countries for a much larger population (~132 million residents in the 1940).
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(2017) document that in two enumerations of St. Louis in the 1880 Census, nearly 46 

percent of first names are not exact matches. Similarly, the Early Indicators project notes 

that 11.5 percent of individuals in the Oldest Old sample have a shorter first name in pension 

records than in the original Civil War enlistment records (Costa et al. 2017).

Similar problems arise in reported age and birth state. The recording of age in the Census 

tends to reflect “age heaping,” the common practice of rounding ages to the nearest multiple 

of five (A'Hearn, Baten, and Crayen 2009, Hacker 2013). In addition, birthplaces are often 

inaccurately recorded. Goeken et al. (2017) show that 8 percent of reported birthplaces do 

not match across the two enumerations of St. Louis. In addition, rates of disagreement for 

mothers’ and fathers’ birthplaces for the same individuals average 19 and 18 percent, 

respectively.

The digitization of hand-written manuscripts compounds errors in recording. Our 

comparison of two independently digitized versions of the 1940 Census by Ancestry.com 

and FamilySearch.org shows that 25 percent of records have different transcriptions of last 

name due to digitization alone.

These data quality issues are well known, and linking algorithms account for them by 

allowing for variation in age and name spellings. To deal with differences in age, researchers 

typically search over a range of ages. Researchers account for orthographic differences by 

using metrics such as Jaro-Winkler or Levenshtein to quantify the dissimilarity of two name 

strings. In some cases, researchers use phonetic string cleaning algorithms to help account 

for spelling differences, name Anglicization, and transcription errors. Soundex, for example, 

was developed in the early 20th century to help create Census links, simplifying names into 

phonetic codes to facilitate record searches. For example, Soundex assigns the same code 

(S530) to similar sounding names like “Smith,” “Smyth” and “Smythe.” Another cleaning 

algorithm, NYSIIS, the New York State Identification and Intelligence System, was 

developed as an improvement to Soundex in 1970. NYSIIS transforms the same root name 

to a common string, making names like “Wilhem” and “William” into “WALAN.” While 

phonetically cleaned strings allow researchers to identify more candidate links, matching on 

them deterministically treats distinct names as the same. One implementations of NYSIIS, 

for instance, categorizes John and James as perfect matches (Ruggles, Fitch, and Roberts 

2018).

Figure 1 illustrates how limited information and measurement error create challenges for 

matching records. The linking problem is depicted as two-dimensional scatter plot after 

blocking on birth state and sex, as is common in the literature. The x-axis captures the 

similarity between the name on record to be linked and the names of candidate links in the 

1940 Census using the Jaro-Winkler similarity score, which will equal 1 if the names are 

identical and is less than 1 otherwise.6 The y-axis captures the difference in the age implied 

by the birth certificate (which contains exact date of birth) and the reported age in the 1940 

Census. A perfect match in ages occurs when the age difference is zero.

6Jaro-Winkler similarity score adapts the Jaro (1989) string score, the minimum number of single-character transpositions required to 
change one string into another, to up-weight differences that occur at the beginning of the string. See Winkler (2006) for an overview.
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In this two-dimensional space, candidate links fall into one of four categories:

(M1) A perfect (1,0), unique match in terms of name and age similarity (Figure 1A).

(M2) A single, similar match that is slightly different in terms of age, name, or both 

(Figure 1B).

(M3) Many perfect (1,0) matches, leading to problems with multiple matches (Figure 

1C).

(M4) Multiple similar matches that are slightly different in terms of age, name, or 

both (Figure 1D).

As we discuss, historical linking algorithms generally treat M1 cases as matches. However, 

methods differ in their treatment of candidates in the M2, M3, and M4 categories. To 

account for differences in age as in M2, researchers typically search within a band of ±3 or 

±5 years. Prominent approaches to dealing with ties in categories M3 or M4 include random 

selection among equally likely (tied) candidates (Nix and Qian 2015), equal probability 

weighting of tied candidates (Bleakley and Ferrie 2016), or the use of a weighted 

combination of linking features to classify true matches (Feigenbaum 2016, Abramitzky, 

Mill, and Pérez 2018). The next sections describe how commonly used linking algorithms 

work and ultimately classify records in cases such as M2, M3, and M4.

A. Ferrie (1996)

Ferrie’s (1996) path-breaking approach links men in the 1850 U.S. Census to men who were 

10 years and older in the 1860 U.S. Census. Ferrie (1996) begins by selecting a sample of 

uncommon names from the 1850 Census.7 To correct for minor orthographic differences 

(category M2 above), his algorithm transforms last names using NYSIIS codes and also 

truncates the untransformed first name at the fourth letter. The algorithm then links his 

sample to the 1860 Census and eliminates candidate links that were not born in the same 

state and not living with the same family. The algorithm keeps all candidate links within a 

±5 year difference in age (or “age band”) and, if more than two links remain, chooses the 

link with the smallest age difference. At the end of this process, the algorithm drops cases 

where two individuals from 1850 link to the same observation in 1860.8 This process 

produces a linked sample of 4,938 men—9 percent of the male population in 1850, and 19 

percent of the population of men with uncommon names. Ferrie has used different 

approaches in more recent work, including smaller age ranges, different ways of 

parameterizing name dissimilarities like SPEDIS, or altered restrictions on common names. 

More than 20 years later, Ferrie’s approach has become the foundation for much of the 

historical linking literature.

Two features of this algorithm are especially worth noting. First, the decision to make links 

among observations with uncommon names reduces both the computational burden and the 

number of candidate matches of the M3 variety. Consequently, this method never attempts to 

link common names like “John Smith.” Second, the decision to use NYSIIS and truncate 

7Ferrie (1996) searched for 25,586 men in the 1860 Census whose surname and first name appeared ten or fewer times in 1850.
8Ferrie (1996) does not specify a process for multiple match disambiguation – in his linking from 1850-1860, there were no ties after 
minimizing the difference in age.
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first name reduces problems associated with minor orthographic differences, but it may also 

increase ties of the M3 variety and, therefore, the number of records the algorithm will not 

link. The independent effects of both of these choices are considered in our subsequent 

analysis.

B. Abramitzky, Boustan, and Eriksson (2012 and 2014)

Abramitzky, Boustan, and Eriksson’s (2012, 2014) “Iterative Method” scale up Ferrie (1996) 

to use the full-count census. This procedure relaxes Ferrie’s (1996) uncommon name 

restriction to the extent that the combination of name and age provide distinctive 

information. Summarized in a detailed web appendix, Abramitzky, Boustan, and Eriksson 

(2012b) select a sample of boys ages 3 to 15 with unique name-age combinations in the 

1865 Norwegian Census, standardize first and last names using NYSIIS codes, and look for 

exact, unique matches in U.S. and Norwegian Censuses. For the observations in the 1865 

Census without an exact, unique link (M1), the algorithm then searches for a name match 

within a ±1 age band and, if there is no match in this band, the algorithm searches within a 

±2 age band. The algorithm does not link a record if more than one candidate match exists 

within an age band. The algorithm ultimately links a sample of 2,613 migrants and 17,833 

non-migrants from a primary sample of 71,644 individuals for a match rate of 29 percent. 

Abramitzky, Boustan, and Eriksson (2014) use the same procedure to link men ages 18 to 35 

with unique age-name combinations from the 1900 U.S. Census to the 1910 and 1920 

Censuses, producing a sample of 20,225 immigrant and 1,650 native-born men for match 

rates of 12 percent and 16 percent.

The authors provide the most recent version of their code for our analysis, which has been 

used for record linkage in a number of high profile papers.9 A variation on this approach is 

also reported in Abramitzky, Boustan, and Eriksson (2014)’s appendix as a robustness 

check. Similar to Ferrie’s (1996) uncommon name restriction, this robustness check requires 

that names be unique within a five-year age band (a ±2 year difference).

Two differences to Ferrie (1996) are worth noting. First, Abramitzky, Boustan and Erickson 

(2012, 2014) link more common names, while Ferrie’s (1996) algorithm does not. Second, 

Abramitzky, Boustan and Erickson (2012, 2014) use a narrower age band than Ferrie (1996).

9Many other papers have used variations on Ferrie (1996) and Abramitzky et al. (2014). These variations are similar in that they 
require matches to match completely on a cleaned name variable. For example, Abramitzky et al. (2013) use the Abramitzky et al. 
(2014) algorithm to match men aged 3 to 15 in the 1865 Norwegian Census to the 1880 U.S. and Norwegian Censuses, and match 26 
percent of records unique by name and birth year from the 1865 Census. Boustan et al. (2012) link the IPUMS sample of the 1920 
U.S. Census to the 1930 U.S. Census using a link uniqueness age band that functions similar to an uncommon names restriction, and 
match 24 percent of men unique by name, age and birthplace in their 1920 U.S. sample. This same dataset was used in Hornbeck and 
Naidu (2014). Collins and Wanamaker (2015) use a variation on the Ferrie (1996) method with an alternate name uniqueness 
requirement to match southern men younger than 40 in the 1910 Census to the 1930 Census. They match 24 percent of their records 
from the 1910 Census. Other papers use name similarity measures. Eli, Salisbury, and Shertzer (2018) match Civil War recruitment 
records from Kentucky to U.S. Censuses before and after the Civil War using a variation of Ferrie (1996) without an uncommon 
names restriction, and impose an additional restriction on Jaro-Winkler string dissimilarity after generating candidate matches with 
NYSIIS. They match 30 percent of selected records of recruits from the 1860 U.S. Census to the 1880 U.S. Census. Aizer et al. (2016) 
match state mother's pension records to other data sources, including the Social Security Death Master File, using a variation on Ferrie 
(1996) without an uncommon names restriction and Soundex, but allow some additional matches to differ in exact name but have low 
SPEDIS and Levenstein dissimilarity measures. Aizer et al. (2016) match 48 percent of their records to the Social Security Death 
Master File, but this high match rate reflects the fact that they can use exact date of birth to match their observations.
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C. Feigenbaum (2016) and IPUMS (2015)

A common feature of Ferrie (1996) and Abramitzky, Boustan, and Eriksson (2014) is that 

they search among identical, phonetically cleaned names for a match that uniquely has the 

minimum age difference. This restriction reduces computational burden, but comes at the 

cost of excluding very similar (though not exact) names with exact or very close age 

matches.

New methods in probabilistic linking relax these assumptions and allow machine models to 

weight different kinds of disagreements in names and ages.10 The key insight is that the best 

link may not exactly match on name (or phonetically cleaned name) or age as in Figure 1B 

and Figure 1D but it may dominate other candidates when simultaneously considering both 
age and name differences.

One class of machine-learning algorithms are known as supervised learning methods and use 

“training data” to classify matches. Training data may be a subset of data coded by humans 

(sometimes genealogists and sometimes by others) or result from the observation of true 

links (called ground truth). If the training data are ground truth and the model is well 

specified, the computer will learn how to classify links to approximate this truth. However, if 

the training data are of limited quality, the computer algorithm will replicate these incorrect 

decisions. Another potential limitation is that if the training data have little in common with 

the records to be linked, the supervised-learning algorithm will have unpredictable 

performance. Consequently, the advantage and disadvantage of supervised-learning 

algorithms is that they depend heavily on the quality of the training data and its similarity 

with the data to be linked.

The Minnesota Population Center (MPC) uses a supervised learning method to create the 

Integrated Public Use Microdata Series Linked Representative Samples (IPUMS-LRS), a set 

of links between the 1850 to 1930 one-percent samples and the 1880 Census (Ruggles et al. 

2015). Using clerically reviewed data, MPC trains a Support Vector Machine (SVM) using 

features of matches that, after specifying a few tuning parameter choices, classifies links as 

true or false (Goeken et al. 2011). Illustrating the conservative nature of this approach, MPC 

produced final match rates of 12 percent for native-born whites, 3 percent for foreign-born 

whites, and 6 percent for African Americans for the 1870-1880 links.11 Unfortunately, this 

model is proprietary and we cannot use it in our analysis.

In a similar spirit, Feigenbaum (2016) uses a supervised-learning technique to link the 1915 

Iowa state Census to the 1940 U.S. Census. After creating training data by hand, he 

estimates a probit model to quantify the joint importance of different record feature in 

determining a link, including name Jaro-Winkler scores, differences in age, indicators for 

Soundex matches of first or last name, indicators for matches in letters or names, and 

indicators for matching truncated first or last names. He then tunes his model so that a link is 

only chosen if its probability of being a match is sufficiently high and sufficiently greater 

10See Mullainathan and Spiess (2017) for a useful primer on machine learning for economists.
11Researchers have used the IPUMS-LRS for a variety of research questions, including the economic effects of racial fluidity 
(Saperstein and Gullickson 2013), long-term differences in black and white women’s labor-force participation (Boustan and Collins 
2014), and intergenerational co-residency (Ruggles 2011).

Bailey et al. Page 8

J Econ Lit. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than the second-best candidate’s match probability (if a second-best candidate exists). These 

cutoffs are derived from training data to assess the Type I and Type II errors of different 

choices. Feigenbaum (2016) achieves a match rate of 57 percent.12

D. Abramitzky, Mill, and Pérez (2018)

An alternative to supervised learning is unsupervised learning, an approach which evaluates 

the quality of different links without training data. These algorithms depend on using 

observed patterns in the data to classify the data by quality of potential link. Similar to other 

deterministic methods like Ferrie (1996) and Abramitzky, Boustan, and Eriksson (2014), an 

advantage of unsupervised learning is that it creates links without training data. Moreover, if 

training data are error ridden or too different from the dataset of interest, the lack of reliance 

on them is a feature. Not relying on human decisions may also be a limitation, because the 

algorithm’s performance depends on difficult-to-validate modelling assumptions.

Abramitzky, Mill, and Pérez (2018) use unsupervised learning in the form of the 

expectation-maximization algorithm (Fellegi and Sunter 1969, Winkler 2006, Dempster, 

Laird, and Rubin 1977) to link Censuses in the U.S. and Norway. Building on Mill (2013), 

they fit a mixture model that allows for conditionally independent multinomial probabilities 

of specific age distances and discretized Jaro-Winkler scores for two distributions. They then 

fit this model with observed data using the expectation-maximization algorithm. Then, using 

their results, they calculate the estimated probability that a given potential match is a correct 

match conditional on the Jaro-Winkler score and age distance of the match. Like 

Feigenbaum (2016), they create a final set of matches by applying cut-offs to these estimated 

probabilities so that links are chosen that reach a sufficiently high estimated probability that 

is sufficiently greater than the second-best candidate match. However, unlike Feigenbaum 

(2016), these cutoffs are not guided by training data.

The approach is not completely automated, because it requires the user to define tuning 

parameters, including discretization thresholds of Jaro-Winkler scores and probability cut-

offs for classifying a link.13 With regards to the latter, using lower cut-offs will create more 

matches but potentially include more marginal matches less likely to be correct. Conversely, 

higher cut-offs will create fewer matches but create matches that have a higher estimated 

probability of being correct. To address this trade-off, Abramitzky, Mill, and Pérez (2018) 

use two cut-offs, a more conservative and less conservative choice. Using these two cut-offs 

for their algorithm, they achieve match rates of 5 percent and 15 percent in their Census 

12We focus on Feigenbaum (2016) in this analysis because it was developed for U.S. data, and is transparent and easy to replicate. 
Many other researchers have also incorporated probabilistic and machine learning. Mill (2013) and Mill and Stein (2016) use an 
expectation maximization method. Similar to the IPUMS-LRS, Wisselgren et al. (2014) use a support vector machine and link the 
1890 Swedish Census to the 1900 Swedish Census in a few select parishes for match rates ranging from 25 to 72 percent. Antonie et 
al. (2014) link across historical Canadian census data and achieve linkage rates from 17.5 percent (Quebec) to 25.5 percent (New 
Brunswick). Other work uses Ancestry.com’s search algorithm to link records. Bailey et al. (2011) link records of lynching to the 1900 
to 1930 U.S. Censuses using the Ancestry.com’s algorithm, linking 45 percent of their lynching records. Collins and Wanamaker 
(2014) and (2015) search Ancestry using Soundex for names as well as age and place of birth for white and black men ages 0 to 40 
resident in Southern states in the 1910 Census. They match 19 and 24 percent of men, respectively, to a unique person in 1930.
13These choices may be consequential. For example, setting a high Jaro-Winkler similarity threshold corresponding to (0.92,1] 
assigns the same estimated match probability to a pair with first names, Katherine/Catherine, as to a pair with an exact match on first 
name, all else equal.
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data. Our analysis implements these cutoffs and considers the effects of alternate cut-offs in 

an appendix.

In summary, existing linking methods involve a variety of modelling choices with unknown 

effects on data quality. Which set of assumptions should researchers use in different 

contexts? What are the implications of different assumptions for error rates? The next 

sections answers these questions by presenting a systematic comparison of methods in 

different records.

III. Data and Metrics of Automated Method Performance

Our analysis considers four different linking algorithms: Ferrie (1996); Abramitzky 

(Abramitzky, Boustan, and Eriksson 2014); regression-based, supervised learning 

(Feigenbaum 2016); and unsupervised machine learning (Abramitzky, Mill, and Pérez 

2018). Detailed web appendices, published articles, and posted code make replicating these 

methods straightforward. Ferrie (1996) and Feigenbaum (2016) describe their methods step 

by step, which we implement exactly.14 We present Feigenbaum (2016) using both his 

regression coefficients for the Iowa Census-1940 training data (labeled “Iowa coef.”) as well 

as coefficients estimated using hand-linked samples (called “Estimated coef.”; see Appendix 

A for details and coefficient estimates). To implement Abramitzky, Boustan, and Eriksson 

(2014) and Abramitzky, Mill, and Pérez (2018), we use the code provided by the authors 

(see Appendix A) and report two cutoff implementations per the latter’s recommendation, 

“less conservative” and “more conservative.” For interested readers, we created a public 

Stata ado-file that implements these methods and the variations we consider in this paper 

(Bailey and Cole 2019).

A. Hand-linked and Synthetic Data

We examine the performance of each algorithm in two high-quality, hand-linked historical 

samples: the LIFE-M sample of birth certificates linked to the 1940 Census (Bailey 2018) 

and the Early Indicators Project’s genealogically linked sample of Union Army veterans 

(Costa et al. 2017).

The LIFE-M sample is based on a random draw from birth certificates from Ohio and North 

Carolina. These birth certificates are then linked to siblings’ birth certificates using parents’ 

names. We exclude girls because they typically changed their name at marriage in this era, 

making them hard to find as adults in the Census (see Appendix B). The LIFE-M sample 

consists of 42,869 boys born from 1881 to 1940, 24,408 of whom were born in North 

Carolina and 18,461 born in Ohio.

The LIFE-M sample of boys is then linked to the 1940 full-count U.S. Census using a semi-

automated process, making use of both computer programming and human input. Our 

linking variables include first, middle (when available), and last name, birth state, and age. 

14Unlike Ferrie (1996), we do not limit links based on family continuity. In addition, we treat records with multiple matches after the 
last step as having no link, although Ferrie reports having none of these instances and, therefore, does not indicate how he would have 
dealt with them.
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We do not use race, because it is not available on all birth certificates (see section V.B for an 

analysis of this limitation).

After cleaning and standardizing the data, we use bi-gram matching on name and age 

similarity within a birth state to generate candidate links (Wasi 2014).15 Each candidate is 

independently reviewed by two “data trainers” who choose a correct link (or no link) from 

the set of candidates. If the two trainers agree, we treat their choice (link or no link) as the 

truth. In cases where the two trainers disagree, the records are independently re-reviewed by 

three new trainers to resolve these discrepancies (see section III.B.3).16 LIFE-M data 

trainers are instructed to reject links if they are not completely certain the links are correct.

LIFE-M trainers also work under a senior data trainer and receive multiple rounds of 

feedback across approximately 30 hours of work. Before trainers are allowed to work on the 

LIFE-M team, their decisions must reach a 0.95 correlation with a truth dataset.17 After 

trainers achieve this threshold, they begin receiving training batches from an automated 

distribution system, which guarantees that links are reviewed initially by two different 

trainers and that discrepancies are reviewed by three additional trainers. This automated 

system also distributes audit batches at least once per week to provide weekly feedback to 

trainers about their accuracy. Trainers meet weekly to discuss their mistakes, difficult cases, 

and learn about historical-contextual factors affecting the quality of the data.

The Family History and Technology Lab at Brigham Young University (BYU) performed 

two independent quality checks of the LIFE-M links. First, BYU research assistants used 

genealogical methods and multiple data sources to hand link a random sample of 543 of the 

18,461 Ohio boys, 241 of which had been linked by LIFE-M. The BYU team had no 

knowledge of LIFE-M’s links. Among links made by both LIFE-M and BYU, BYU agreed 

with LIFE-M matches 93.4 percent of the time (16/241 matches were discordant). Second, 

BYU compared 1,043 LIFE-M links to those already on the FamilySearch.org “Tree.” 

(FamilySearch.org tree links are created by genealogists and users of FamilySearch.org, who 

are independent of the LIFE-M process.) For 1,043 birth certificates linked to the 1940 

Census by LIFE-M and FamilySearch.org users, the LIFE-M links agreed with 

FamilySearch.org users 96.7 percent of the time. A link-weighted average of the two 

exercises implies that LIFE-M’s false link rate is around 3.9 percent. To account for 

potential errors in the LIFE-M data, we additionally require all links that differ from the 

LIFE-M sample to be re-reviewed using the “police line-up” process described in section 

III.B.

Our second sample is the Oldest Old sample of Union Army veterans from the Early 

Indicators Project. Costa et al. (2017) created this sample of 2,076 individuals at least 95 

years old linked to the 1900 complete-count U.S. Census using genealogical methods and a 

15We generate a set of candidate links using “reclink.ado”, an algorithm that uses bi-gram comparisons of name strings. We also block 
on the first letter of last names to reduce computation time.
16“Data trainers” participate in a rigorous orientation process where they receive detailed feedback on their accuracy relative to an 
answer key. They continue this process for 10 to 20 hours per week until their matches agree with the truth dataset 95 percent of the 
time. After completing this orientation, trainers become part of the larger team that conducts independent clerical review.
17This truth dataset has been vetted by multiple individuals for accuracy. The cases for this truth dataset are selected to test the 
trainers’ knowledge and decision-making for a variety of linking problems.
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rich set of supplementary information. These veterans tended to report complete and 

accurate information to ensure they would receive their army pensions and benefits. 

Moreover, sources such as gravestone databases, obituaries, newspaper accounts, veterans 

associations and pension files allow multiple cross-validation exercises, ultimately resulting 

in a high match rate of 90 percent among men confirmed to live beyond the 1900 Census. 

The Early Indicators Project scores matches on a scale of 1 to 4 to indicate their confidence 

in a match. We use 1,887 matches coded as the highest quality (1 and 2) as the hand-linked 

sample. Importantly, we do not use all possible records for which matches were attempted.

Because these hand-linked data may contain errors, we validate our conclusions by building 

a third sample: a synthetic ground truth. This synthetic ground truth adds noise to true links 

to mimic common errors in historical data while ensuring complete certainty about correct 

and incorrect links. That is, this synthetic dataset characterizes the performance of each 

matching algorithm relative to an objective truth, which shares important commonalities 

with the LIFE-M sample.

We construct the synthetic ground truth in two steps. First, we take all of our Ohio and North 

Carolina born boys’ birth certificates, randomly drop 10 percent to reflect mortality and 

emigration and drop another 5 percent to reflect under-enumeration.18 Using the LIFE-M 

records as a basis allows us to retain sample name characteristics (e.g., ethnic origin and 

other conventions and name commonness). To account for orthographic differences in 

enumeration or transcription errors, we add noise to names and ages to reflect age heaping 

and transcription or digitization errors (Goeken et al. 2017, Hacker 2013, 2010).19 One 

limitation of this approach is that the true error structure in names and ages is unknown, so 

our decisions about how to simulate error may be simplistic and incomplete.

The resulting synthetic truth dataset is a noisy version of the truth for 85 percent of the Ohio 

and North Carolina boys. Then, we append to a random sample of boys from the 1940 

Census who were born in Michigan, Indiana, Tennessee and South Carolina. Because these 

states neighbor Ohio and North Carolina, these individuals are incorrect links by 

construction. We chose these states because they share regional naming conventions and 

have similar demographic and economic characteristics. The size of our random sample of 

boys from neighboring states ensures that our set of candidates for each state has the same 

number of observations as in the LIFE-M linking exercise: 3,133,982 boys from the relevant 

age ranges born in Michigan and Indiana for Ohio and 1,904,592 boys born in Tennessee or 

18Based on life tables from 1939 to 1941, we calculate that 8 percent of our sample should be un-linkable due to death prior to 1940 
(National Office of Vital Statistics 1948). Moreover, Census analyses estimate that around 5.4 percent of individuals were missed in 
1940 (West and Robinson 1999). This calculation leaves some scope (about 1.5 percentage points) for emigration, which reflects the 
fact that we think emigration for native-born boys would have been much lower than for those born abroad. To the extent that our 
approximation of emigration is too low, the actual Type II errors should be adjusted accordingly.
19To mimic age-heaping, 25 percent of ages are rounded to the closest multiple of 5. We introduce orthographic and transcription 
errors as follows. In 10 percent of cases, the first and middle names are transposed (if a middle name exists) and, in 5 percent of cases, 
the first and last names are transposed. In 5 percent of cases each, the first character of the first name or last name is randomly 
changed. In 5 percent of cases, each second character of the first name or last name is randomly changed. In 5 percent of cases, each 
third character of the first or last name is randomly changed. In 5 percent of cases each, we add a repeated letter to first names (e.g., 
“James” → “Jamees”) or last names. In 5 percent of cases each, a random letter is dropped or two letters are transposed in the first or 
last name (e.g., “Matthew” → “Mathew” or “William” → “Willaim”). In 5 percent of cases, we replace the first name with an initial. 
In 50 percent of cases, we drop middle names (resulting in the same share of observations having middle names as is observed in the 
1940 Census).
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South Carolina for North Carolina. When linking to this synthetic dataset, we emulate the 

common process of blocking on birthplace and consider only the synthetic Ohio data as 

candidate matches for the Ohio boys and only the synthetic North Carolina data as candidate 

matches for the North Carolina boys.

B. Performance Criteria

We use four main criteria to measure performance. The first two are almost universally 

reported in papers using linked samples.

(1) Match rate: We calculate the match rate as the share of records that were linked of 

the sample that we attempted to link. Even if matching were perfect, this rate is expected to 

be less than 100 percent due to emigration and mortality. Notably, emigration and mortality 

are not expected to have different impacts by method, so they should not impact the relative 

performance of methods.

(2) Representativeness: We compare characteristics for the linked sample to the same 

characteristics for the unlinked sample. in a multivariate, linear probability model with 

Huber-White standard errors (Huber 1967, White 1980). A heteroskedasticity-robust Wald 

test of model significance tests the null hypothesis that the covariates are jointly related to 

successful linkage.20 This straightforward, single summary metric and the regression 

coefficients describe the extent the extent of non-representativeness as well as the subgroups 

that are under-represented.

These measures alone are inadequate to assess link quality. This fact is easily illustrated in 

an example. Consider a matching algorithm that randomly links individuals between two 

datasets. This algorithm would perform very well in terms of the first two criteria, because 

the entire sample would be matched and identical to the baseline sample in observed 

characteristics (and, therefore, representative). Few researchers, however, would want to 

work with these data, because—with large enough datasets—the incidence of false links 

would approach 100 percent.

We, therefore, use two more criteria to assess link performance (Abowd and Vilhuber 2005, 

Kim and Chambers 2012).

(3) False link rate (Type I error rate)21: We compare links for each automated 

method to a measure of the truth. We treat the high-quality, hand-linked Early Indicators 

dataset as the “truth,” given that genealogists have used multiple data sources to confirm 

each link. In the synthetic data, we know the true link, so we code differences in links 

between an algorithm and the synthetic data as Type I errors.

For the LIFE-M data, we subject discrepancies between the hand-links and the algorithm to 

an additional blind review. Similar to a “police line-up,” two reviewers independently review 

20We implement this in Stata by multiplying the F-statistic reported in Stata following a regression with robust standard errors by the 
relevant degrees of freedom parameter. Note that this test could be very conservative in the sense that it would reject the null 
hypothesis due to one variable’s significance in the regression and does not weight for the ‘importance’ of different covariates.
21Computer scientists focus on precision, or 1-T1 error rate presented here.
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the LIFE-M link (made by hand), the link made by the automated method, and close 

candidate links. Reviewers may choose to code any of these links as correct or incorrect. 

This process gives the links from the hand-match and the automated method an equal shot at 

being chosen to avoid preferential treatment. For the LIFE-M data, only links that are 

rejected in clerical review as part of the police line-up are treated as Type I errors. This 

analysis may understate the true Type I error rate if the hand-links are incorrect and agree 

with the automated method.

(4) False negative rate (Type II error rate)22: This metric captures the fraction of 

true links that are not found, or 1 – Match Rate*(1 – Type I Error Rate). With this definition, 

the false negative rate can never be zero, because mortality and emigration mean that many 

individuals cannot be linked even with perfect data.23

IV. The Performance of Prominent Automated Matching Methods

Because a central focus of a growing literature is linking to the newly available 1940 

Census, we begin our analysis linking birth certificates to the 1940 Census. We then 

corroborate our findings using our synthetic ground truth and the Oldest Old sample from 

the Early Indicators Project.

A. Evaluating Algorithms Using the LIFE-M Data

Figure 2 compares the performance of selected, prominent automated linking methods to the 

hand-linked LIFE-M data, where each of these methods uses the same information to create 

links-name, age, and birth state. The length of each bar represents the match rate, computed 

as the share of the baseline sample of 42,869 boys who were successfully matched to the 

1940 complete count Census. LIFE-M hand-review matched 45 percent of the baseline 

sample. Ferrie’s (1996) method matched 28 percent of the baseline sample, and Abramitzky, 

Boustan, and Eriksson (2014) achieve a higher link rate of 42 percent. This result makes 

sense because Abramitzky, Boustan, and Eriksson (2014) do not impose Ferrie’s (1996) 

uncommon name restriction. Feigenbaum’s (2016) regression-based machine learning 

method matches 52 percent of the baseline sample both when using Iowa coefficients and 

when we estimate the coefficients using a random sample of the LIFE-M links. Abramitzky, 

Mill, and Pérez (2018)’s expectation-maximization method links 46 percent of the sample 

when using less conservative cutoffs and 28 percent of the sample with more conservative 

cutoffs.

Across the board, these match rates are higher than in the original studies. For instance, the 

Ferrie (1996) method matches 28 percent of the LIFE-M data versus his published figure of 

9 percent of all men between 1850 and 1860 Censuses. Similarly, Abramitzky, Boustan, and 

Eriksson (2014) link 40 percent of the LIFE-M sample, whereas the same method links only 

22Computer science focuses on a similar statistic, “recall.” This measure is defined as the number of true links found by the algorithm 
divided by number of linkable observations, or those linked by the data trainers.
23Note also that, if the marginal link is more likely to be incorrect, an increase in the match rate within a specific algorithm has a 
weakly negative effect on Type II error rates and a weakly positive effect on Type I error rates. If the marginal link is wrong, then the 
Type II error rate would not change but the Type I error rate would increase. However, if the marginal link is correct, the Type II error 
rate would fall and the Type I error rate would decrease.
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29 percent in Abramitzky, Boustan, and Eriksson (2012b) and 16 percent of native-born men 

in Abramitzky, Boustan, and Eriksson (2014). These higher match rates likely reflect two 

factors: the LIFE-M boys are on average 24 years old in the 1940 Census, so mortality and 

outmigration are likely lower for them than in other studies. In addition, birth certificate data 

quality is higher compared to other sources. Birth certificates (1) contain a complete and 

correct full name, often including middle names omitted in the Census; (2) record the exact 

date of birth rather than age in years;24 and (3) capture the birth state by construction (it is 

issued by the birth state and so should not have reporting error like the Census).

Figure 2 also summarizes the share of links that human reviewers rejected in a blinded 

review using the “police line-up” method. These rejected links are presented in two ways. 

First, the share of the entire sample determined to be wrong for each method is displayed in 

red. For less than 2 percent of original sample, trainers reversed LIFE-M decisions upon re-

review in favor of the link chosen by one of the automated methods. Consistent with 

genealogical validation by BYU, these reversals are rare. Second, the column on the far right 

in Figure 2 presents that share of links that were rejected by human reviewers (the estimated 

Type I error). We compute this share by dividing the share of the total sample that is 

incorrect by the match rate. Because the LIFE-M match rate is 45 percent, this implies a 

Type I error rate of 4 percent (approximately 0.017/0.445). As shown in section VI, the 

implications of measurement error for inference is linked to the share of incorrect links, so 

our discussion focuses on this second metric.

Relative to clerical review, the share of false links for automated methods is higher across 

the board. The lowest Type I error rate occurs in the more conservative version of 

Abramitzky, Mill, and Pérez (2018) at 15 percent. Ferrie’s (1996) method of selecting 

uncommon names achieves the second lowest Type I error rate at 25 percent. These error 

rates are consistent with Massey (2017) who uses contemporary administrative data linked 

by Social Security Number as the ground truth. She finds that methods similar to Ferrie 

(1996) are associated with 19 to 23 percent Type I error rates.· Abramitzky, Boustan, and 

Eriksson (2014)’s refinement of Ferrie (1996) increases match rates to 40 percent, but only 

half of the added links appear to be correct, and the Type I error rate increases to 32 percent. 

Feigenbaum’s (2016) supervised, regression-based machine learning model produces a Type 

I error rate of 34 percent when using the Iowa coefficients, and the Type I error rate 

decreases to 29 percent when estimated using LIFE-M data. Finally, Abramitzky, Mill, and 

Pérez (2018)’s less conservative cut-off results in the highest error rate at 37 percent. The 

difference between the conservative and less conservative versions of Abramitzky, Mill, and 

Pérez (2018) highlights the sensitivity of performance to the tuning parameters.

In terms of missed links, Ferrie (1996) correctly linked the lowest share of the sample 

without error at 21 percent, and Feigenbaum (2016)’s algorithm estimated with the LIFE-M 

data correctly linked the largest share of the sample without error at 37 percent. It is worth 

noting that Feigenbaum (2016) and Abramitzky, Mill, and Pérez (2018) allow for a variety 

of different choices of sample restrictions within their linking methods that alter the trade-off 

between Type I and Type II errors in their matches. We implemented versions of these 

24Massey (2017) shows that decreasing the noise in age results in higher match rates and lower Type I error rates.
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methods that reflected how they were implemented in each. Our Appendix Figures A1 and 

A5-A7 shows how show altering these restrictions impacts results in both cases.

Table 2 describes the representativeness of the linked sample. Because birth certificates do 

not contain socio-demographic measures found in the Census (race, age, or incomes of the 

parents), we regress a binary dependent variable (1= linked records) on a variety of 

covariates from the birth certificates. These variables include the individual’s exact date of 

birth;25 the number of siblings in the family; the number of characters in the infants’ 

(boys’), mothers’, and fathers’ names—a characteristic which is strongly positively 

correlated with years of schooling and income from wages in the 1940 Census; and the share 

of family records with a misspelled mother’s or father’s name, which we expect to be 

negatively correlated with years of schooling and income (Aizer et al. 2016).26 Table 2 

presents the Wald-statistic for tests of whether these covariates are jointly associated with an 

observation being linked (p-value beneath). If a representative set of birth certificates were 

linked, then these characteristics would not be jointly related to whether an observation was 

linked. However, Wald-statistics for the joint test of the association of these characteristics 

with linking show a persistent association. For all methods, including LIFE-M’s clerical 

review, we reject representativeness at the 1-percent level.

The signs and magnitudes of the regression results provide clues about the individuals easier 

to link (see the full set of regression results in Appendix C). Many automated methods are 

more likely to link boys with higher incidence of misspelled father’s last name, and more 

likely to link boys with a longer mother’s name. All methods except Feigenbaum (2016) 

with estimated coefficients are more likely to link children with longer names. Based on the 

correlation of name length with wage income in the 1940 Census, this finding indicates that 

linked records are drawn from more affluent families. Some methods are more likely to link 

individuals with more siblings, while other methods are more likely to link individuals with 

fewer siblings. In short, even though no linking algorithm generates representative samples, 

different algorithms yield samples that are non-representative in different ways.

Finally, Table 3 tests for the systematic correlation of links rejected in hand review with 

baseline characteristics. The method is identical to what is presented in Table 2 but that the 

dependent variable is equal to 1 if the link was rejected in a blind review. If the rejected links 

are systematically related to baseline characteristics, this suggests that the algorithm 

introduces systematic measurement error in variables of interest. Column 1 of Table 3 

reports the heteroskedasticity-robust Wald-statistic (p-value beneath) by method for the 

LIFE-M data (see the full set of regression results are in Appendix D). For each algorithm, 

we reject the null hypothesis that errors in linking are unrelated to baseline characteristics at 

the 1-percent level. False links are significantly negatively associated with the length of a 

mother's name and length of a father's name in nearly all samples, suggesting that being 

falsely linked is negatively associated with affluence. Patterns across other variables are 

more varied. For example, the number of siblings is positively associated with the 

25Exact day of birth (1-366, due to leap years) is as close to a continuous measure as we can get in historical records, and season of 
birth is strongly correlated with socio-economic characteristics in modern data (Buckles and Hungerman 2013).
26We measure misspellings in father and mothers’ names as the number of name spellings in the birth certificates of all siblings that 
differ from the modal spelling divided by the total number of children in a family.
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probability that a link is incorrect for the Feigenbaum (2016) algorithm, but the number of 

siblings is negatively associated with the probability that a link is incorrect in the 

Abramitzky, Boustan, and Eriksson (2014) sample. In short, different algorithms appear to 

induce different types of systematic measurement error.

B. Evaluating Algorithms Using the Synthetic Ground Truth and Early Indicators Samples

One critique of these findings is that human errors survive even the blind review process. 

This could lead the incidence of Type I errors in the LIFE-M analysis to be too high or too 

low relative to the truth. To address this potential issue, we reevaluate algorithm 

performance in synthetic data (where the truth is known). Because this objective truth is not 

influenced by human reviewers at all, this exercise validates those obtained from human 

review. We also evaluate the same algorithms using the Early Indicators, data, proving a 

complimentary perspective using a sample that was linked by genealogists and is known to 

be highly accurate.

For both the synthetic and Early Indicators data, Table 1 compares the match rates and error 

rates for each prominent algorithm. Recall, for the synthetic data, a perfect match rate is 85 

percent, because 15 percent of the original links are absent by design. Patterns in match rates 

across methods are slightly higher in the synthetic data but generally within a few 

percentage points of the LIFE-M match rates, with the exception of Feigenbaum (2016) and 

Abramitzky, Mill, and Pérez (2018). Notably, both methods perform substantially better in 

the synthetic data than in the LIFE-M data with match rates of 56 and 57 percent for 

Feigenbaum (2016) with the Iowa and estimated coefficients and 52 and 32 percent for 

Abramitzky, Mill, and Pérez (2018) with the less and more conservative cutoffs. The match 

rates for Early Indicators’ veterans linked to the 1900 complete count Census are generally 

higher than in the LIFE-M sample, which reflects the fact that all individuals in these data 

are known to be linkable. The LIFE-M data, however, contains both individuals who can be 

linked and those who cannot.

Table 1 also shows that patterns of error rates in the synthetic and Early Indicators data are 

similar to those in LIFE-M. Importantly, the best performing algorithms in LIFE-M continue 

to perform the best in the synthetic and Early Indicators data. Figure 4 describes patterns of 

error rates graphically across algorithms and datasets. In most cases, the error rates are 

slightly lower in the synthetic data and Early Indicators data relative to the LIFE-M records, 

ranging from 11 to 33 percent. Because there was no hand linking involved in producing the 

synthetic data, similar error levels suggest that the results of the LIFE-M hand-linking 

process and blind review reflect true errors in the automated linking algorithms. Larger 

reductions in error rates for machine-learning algorithms like Feigenbaum (2016) and 

Abramitzky, Mill, and Pérez (2018) suggest that these methods may be effective at detecting 

the simple errors we simulated. Because the Early Indicators data contain only individuals 

who have been successfully linked by genealogists, Type I error rates are lower, ranging 

from 10 to 24 percent versus 15 to 37 percent in the LIFE-M data. The fact that the patterns 
of error rates are the similar in all datasets, however, provides strong support for the notion 

that prominent machine linking methods in current practice make considerable errors.
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The findings for representativeness in the synthetic and Early Indicators data are also 

similar, with Table 2 suggesting that the linked samples are unrepresentative. For the 

synthetic data, this exercise allows a particularly strong test of the hypothesis that the non-

representativeness of linked samples reflects the linking algorithm per se. Because we 

randomly dropped 15 percent of individuals, non-random attrition due to differential death, 

enumeration, or emigration is ruled out by construction. The only reason that the linked 

synthetic sample would not be representative is that the methods link certain groups more 

systematically than others. Consistent with this hypothesis, the Wald-statistics and p-values 

in column 2 reject representativeness for all methods in the synthetic data at the 1-percent 

level. Most methods are less likely to link individuals with more siblings. In the Early 

Indicators data, nearly all methods are more likely to link individuals with U.S.-born 

mothers; some methods are more likely to link individuals with longer first or last names, 

while others exhibit the reverse correlation.27 (See Appendix C for the full set of regression 

results.)

Table 3 underscores the finding that false are systematically related to baseline sample 

characteristics. For all methods in both the synthetic and Early Indicators data, we reject the 

null hypothesis that false links are unrelated to baseline covariates—a pattern that may 

complicate inference by introducing systematic measurement error. (See Appendix D for the 

full set of regression results.)

C. Summary of Findings

Prominent algorithms yield widely varying results—even using the same data and linking 
variables. In the LIFE-M data, match rates range from 28 to 52 percent, while the share of 

links rejected in the police line-up ranges from 15 to 37 percent and the associated Type II 

error rate ranges from 63 to 79 percent. A synthetic ground truth dataset confirms these 

patterns and also suggests that machine-learning algorithms like Feigenbaum (2016) and 

Abramitzky, Mill, and Pérez (2018) are effective at detecting and correcting for synthetic 

errors, which speaks to their potential value in improving the quality of linked data.

An equally important finding is that error rates vary across datasets—even when links are 

created using the same algorithm and linking variables. The share of links rejected by 

humans in the Early Indicators data is slightly lower and the match rates are higher, possibly 

owing to the fact that the data consist of individuals selected on having been linked by 

genealogists (i.e., living in the U.S. and also less likely to have changed a name or its 

spelling). However, error rates likely differ across the datasets due to differences in data 

quality that are difficult to easily measure and diagnose. This variation across datasets 

cautions against generalizing this paper’s findings and recommends that researchers examine 

their linked samples for clues about error rates, representativeness, and systematic 

measurement error.

27For the synthetic dataset, we use the same covariates as in the LIFE-M data when considering representativeness. For the Early 
Indicators data, we use continuous variables in age and length of first and last names and dummy variables for speaks English, owns a 
farm, currently married, foreign born, day of birth by year, literacy, and foreign born status of parents.
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V. How Variations in Algorithms Alter Method Performance

Understanding what drives differences in algorithm performance is key to improving 

existing methods and current practice. This section considers how the performance of these 

algorithms changes when varying key features of their set-ups. First, we examine the role of 

different phonetic name cleaning strategies for algorithms that require agreement in cleaned 

names. Second, we extend the Ferrie (1996) algorithm to include more common names or 

eliminate them using a narrow age-band as in Abramitzky, Boustan, and Eriksson (2014)’s 

robustness test. Third, we examine equal weighting of exact ties (i.e., multiple, exact 

matches). A final section examines the robustness of these findings across all methods to 

using middle names, information on race, and extensions to population-to-population 

linking.

A. Phonetic Name Cleaning, Common Names, and Ties

Phonetic string cleaning algorithms account for orthographic differences that could lead a 

true match to be missed, such as minor spelling differences, name Anglicization, and 

transcription/digitization errors. Figure 3 and Table 4 show how the performance of the 

Ferrie (1996) and Abramitzky, Boustan, and Eriksson (2014) algorithms vary with three 

types of phonetic name cleaning: no cleaning (labeled “Name”), Soundex (labeled “SDX”), 

and NYSIIS. Interestingly, although name cleaning is intended to increase match rates, it can 

also decrease match rates if it increases ties (by removing meaningful spelling variations). 

This interaction is important for the Ferrie (1996) method, which matches between 20 and 

33 percent of baseline sample depending on the phonetic name cleaning used. Because this 

cleaning creates more common name strings, and Ferrie’s algorithm restricts the sample to 

uncommon names, the algorithm discards more links due to ties when cleaning is used: the 

match rate falling from 33 (Name) to 28 (NYSIIS), to 20 percent (Soundex). Because 

Abramitzky, Boustan, and Eriksson (2014) does not restrict to uncommon names, it does not 

show reductions.

The likelihood of Type I errors increases with the use of phonetic name cleaning in Ferrie 

(1996) and Abramitzky, Boustan, and Eriksson (2014). As shown in Table 4 and Figure 3, 

using NYSIIS rather than uncleaned names increases Type I error rates by an average of 18 

percent, ranging from as little as 5 to as much as 25 percent across datasets. Using Soundex 

rather than uncleaned names increases Type I error rates by an average of 36 percent, 

ranging from 14 to as much as 64 percent. These increases occur because, in addition to 

orthographic and transcription errors, phonetic codes may remove meaningful spelling 

variation. For example, both Soundex and NYSIIS would code “Meyer” and “Moore” as the 

same name, whereas reviewers tend to treat these as different names. Counterintuitively, the 

increase in error rates induced by phonetic name cleaning universally decreases the share of 

the sample that is correctly linked.

Another modification to Ferrie (1996) is to link more common names. Recall that—for 

computational reasons—Ferrie (1996) discarded matches if there were 10 or more candidate 

matches, regardless of age differences. We relax this assumption and include records with 10 

or more candidates when we find links (labeled “Ferrie 1996 + common names”). Table 4 

and Figure 3 show that including common names results in significantly higher match rates, 
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including higher shares of true links than in the original method. The results are almost 

identical to those of Abramitzky, Boustan, and Eriksson (2014), which is because this 

method’s key deviation from Ferrie’s (1996) is attempting to link more common names. The 

inclusion of common names roughly doubles the share of incorrect links but it also decreases 

Type II error rates.

Similar in spirit to the common names restriction, Abramitzky, Boustan, and Eriksson 

(2014) implement a robustness check that discards links if a name tie occurs within a two-

year age band. As reported in Figure 4 under Abramitzky, Boustan, and Eriksson 2014 

(NYSIIS, Robustness), this restriction lowers the match rate to 24 percent but it also halves 

the share of the sample that is incorrectly linked, from 14 percent to 6 percent, and changes 

the Type I error rate from 32 percent to 23 percent. This robustness check is very similar to 

the uncommon names restriction and, therefore, performs almost identically to Ferrie 

(NYSIIS) in terms of match rates and Type I errors. Relatedly, the Abramitzky, Mill, and 

Pérez (2018) algorithm with more conservative cut-offs is also similar to an uncommon 

names restriction. By requiring a high threshold of the probability of a candidate match 

being a correct match, and requiring the second-best options for the observations in the 

match to be much lower, this restriction ensures that the links made have no close analogues 

either due to differences in spelling or age. This unsupervised approach slightly outperforms 

Ferrie (NYSIIS) in terms of Type I and Type II error rates.

A third variation on prominent algorithms relates to how ties are handled (e.g., cases like M3 

in Figure 1C and M4 in Figure 1D). Ties are very common in contexts with limited 

information (such as matching between U.S. Censuses). If one could break exact ties or use 

ties in the analysis, researchers could match the majority of the sample, raising match rates 

substantially. For the Ferrie (1996) algorithm, using both common names and ties raises the 

match rates from 20 to 33 percent to 69 to 86 percent.

Two main approaches to using exact ties have been suggested by the literature. First, the 

statistics literature offers an alternative to tie-breaking by using probability weighting. For 

instance, one could use a weight that is the conditional probability that the match is correct 

(Scheuren and Winkler 1993, Lahiri and Larsen 2005). In the absence of other data features, 

this suggestion simplifies to weighting by 1/Jr, where Jr is the number of exact ties for record 

r.28 Nix and Qian (2015)’s random selection among ties is similar in spirit. Their process 

draws one of the candidate matches with probability 1/Jr. Importantly, simple probability 

weighting and random selection among ties have the same expected performance in certain 

contexts such as those we consider later for our case study.29 We label results that include 

ties as “Ferrie 1996 + ties.” Table 4 shows that including ties may dramatically increase 

28This simple probability weighting differs from Lahiri and Larsen (2005), because match probabilities vary in their data due to a 
specifically defined data generating process, and they are able to trim candidate links with lower match probabilities. We do not 
assume a specific data generating process. Furthermore trimming is not possible when all records are equally tied.
29We explain this result later in more detail, but the intuition is straightforward. Let N=the number of observations, M=the number of 
primary records with multiple exact ties as their best matches, Jr the number of ties for a primary record r=1,2, …, M. Assuming that 
one of the ties is the correct link, the expected number of false matches for records with ties is 

∑r = 1
M (Jr − 1) ∕ Jr = M − ∑r = 1

M 1 ∕ Jr for both random selection and simple probability weighting. As the number of 

multiples increases for a given record, the probability weight on a false match gets smaller as does the weight on the true match. The 
results from probability weighting may differ slightly due to sampling variation.
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match rates, but Figure 4 shows that this substantially increases the share of observations 

that are incorrectly matched in every sample. This makes sense, because at most one of the 

candidate links can be correct. For instance, if there are ten candidate “John Smith” links 

and only one of these is the correct link, nine out of ten of these links are incorrect. Notably, 

the Type I error rate is higher in the Early Indicators data, reflects the fact that they are 

selected upon being successfully linked and have fewer close ties.

Figure 5 describes the mixed progress in historical automated linking since 1996. As the 

literature has moved from the use of Ferrie’s (1996) uncommon name sample and increased 

match rates, some methods have also increased Type I errors (and decreased precision). The 

hope of researchers using these methods is that—on net—they are increasing the share of 

true links in their sample as well as sample representativeness. However, for the synthetic 

and Early Indicators data, the pattern of Type I and Type II errors suggest that there may be 

scope to improve in both dimensions by leveraging the strengths of different algorithms.30 

Similar to the findings for prominent methods, each of these variations produces samples 

that are unrepresentative (Table 5). Moreover, these variations produce false links that are 

systematically related to baseline sample characteristics in all datasets (Table 6).

B. Robustness: Middle Names, Race, and Population-to-Population Linking

How much should we expect these results to change with the addition of information 

commonly available in historical datasets? A first robustness check considers how the 

addition of middle name or race could reduce Type I error rates. For middle names, we 

examine a subsample of cases where middle name or initial was available for both the birth 

certificate and the linked Census record. Then, we calculate the number of false links that 

would have been eliminated had the automated method required that middle initial match for 

all potential matches after running a matching algorithm. We apply this restriction ex post, 
but it would also be possible to include middle name agreement in the matching process as a 

feature considered by an algorithm in the process of making matches.

Table 7 shows that the availability of middle initials may reduce match rates but also the 

reduce rate of false matches. For comparison, columns 1 and 2 reprint the information on 

match rates and Type I error rates from Table 4. Column 3 shows the share of matched 

observations that have information on middle initial in the birth certificate and the Census 

record, which range from a quarter to a third of matches. Column 4 reports the share of 

matches that have discordant middle initials among the subset of matches that have middle 

names in both records, ranging from 20 percent to 57 percent. Column 5 reports the Type I 

error rate among the matches with discordant middle initials. What is clear is that the Type I 

error rate is always above 87 percent within this subset. Presumably, these error rates are 

high because disagreements among middle initials mattered to the trainers considering these 

observations when making matches. Finally, columns 6 and 7 recalculate the match rate and 

Type I error rates after dropping observations that have discordant middle initials. Match 

30Of course, the level of Type II errors in the LIFE-M and synthetic data is overstated, because some infants did not survive until the 
1940 Census, emigrated, or were missed by enumerators in the 1940 Census. We estimate that these factors likely account for around 
15 percent of missed links (see footnote 16). A linking method that linked all LIFE-M or synthetic data individuals correctly would 
locate at (0.15, 0), missing only the 15 percent individuals who are unlinkable and making no errors. Because these sources of attrition 
affect all methods equally, these factors do not influence our comparisons across methods.
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rates tend to drop by several percentage points, but Type I error rates drop by more. For 

example, Ferrie (1996) with NYSIIS drops from a match rate of 28 percent and an 

associated Type I error rate of 25 percent to a match rate of 26 percent and an associated 

Type I error rate of 20 percent. Type II error rates are nearly unchanged despite the drop in 

match rates, with all changes in Type II error rates never exceeding one percentage point. 

This result suggests that the addition of more information contained in middle names can 

substantially reduce Type I linking errors with minimal changes in Type II errors, at least 

among observations that have middle initials in the LIFE-M data.

A second robustness check compares “race” indicated on the 1940 Census for LIFE-M 

linked records to the race reported on an individual link.31 Column 3 of Table 8 shows the 

share of linked birth certificates that would not have been erroneously linked by an 

algorithm that blocked on race. Interestingly, only a small share of incorrect links have 

discordant races, ranging from 0 to 5 percent. When we omit incorrect links with discordant 

races in column 5, we find that the match rate drops slightly and the Type I error rates 

decrease by no more than two percentage points across methods. This is consistent with 

Massey (2017), who finds that errors in linking the 2005 Current Population Survey to the 

Numident only decreased by 0.07 percentage points when blocking on race. In contrast to 

using middle initial, race does not appear to add much information to reduce errors. Note, 

however, that including race may result in better link disambiguation among links that 

appear to be close substitutes.

A third robustness check examines to the implications of linking a sample (rather than a 

population) to a Census. The critical difference in these two settings is that an observation 

could appear to be unique in a sample while having duplicates or near-duplicates in the 

population. This is important because many algorithms drop a match if (1) it occurs more 

than once in the set of records to be linked or (2) more than one observation links to the 

same record. Both are more likely to occur for a population than a sample. Sample-to-

population linkage may, therefore, result in a higher share of incorrect matches than 

population-to-population linkage.

To quantify the importance of linking a sample to a population as we do here, we compare 

our results to matching the universe (e.g., the population) of birth certificates to the 1940 

Census. First, we match the universe of Ohio and North Carolina birth certificates to the 

1940 Census using each automated method, including adjustments described above. Then, 

we isolate attention to the subset of records in the LIFE-M sample to assess performance. 

Since the LIFE-M sample is a random subsample of birth certificates, we expect the results 

to generalize to the population.

Figure 6 displays the results, with the horizontal axis depicting Type I error rates in 

matching between the sample and the 1940 Census and the vertical axis displaying the 

results matching the population of birth certificates to the 1940 Census. Results along the 

45-degree line indicate perfect agreement in the two procedures. As expected, false link rates 

31To the extent that some individuals “pass” for other races, this robustness check may eliminate true links (Nix and Qian 2015, Mill 
2013). Note that race is only observable for the observations that LIFE-M successfully linked, as we infer race from the 1940 Census 
given that it is not reported on birth certificates.
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fall below the 45-degree line for all methods that use the post-linking adjustments, 

suggesting that Type I error rates are somewhat higher for sample-to-population linkage. The 

Type I error rate in Ferrie (1996) with exact names is 20 percent for a sample but 17 percent 

for the population; for Abramitzky, Boustan, and Eriksson (2014) with exact names, the 

Type I error rate is 25 percent for the sample versus 20 percent for the population. In short, 

population-to-population linking may reduce errors but the improvements are not large, as 

no method achieves a Type I error rate lower than 15 percent.

C. Summary of Findings

Variations on machine-linking algorithms may improve or worsen performance. 

Deterministic algorithms that clean names using Soundex or NYSIIS perform worse than 

using raw name strings. Similarly, trying to link common names (especially in conjunction 

with phonetic name algorithms) tends to increase error rates and the share of the initial 

sample correctly linked. Tie breaking or weighting ties equally could dramatically increase 

sample sizes but may have the unintended effect of using more incorrect matches in 

analyses. Including middle names as a linking criterion appears to have large effects on Type 

I error rates. However, using race information or using population-to-population linking 

appears to alter data quality only modestly.

VI. How Automated Methods Affect Inferences

Our final analysis explores the consequences of Type I and Type II errors for inferences 

about historical rates of intergenerational mobility. Following the intergenerational literature 

(Solon 1999, Black and Devereux 2011), we consider the following benchmark 

specification,

log (y) = π log (x) + ε, (1)

where the dependent and independent variables have been rescaled to capture only 

individual deviations from population means. The dependent variable, log(y), refers to the 

log of son’s wage income in adulthood in the 1940 Census. The key independent variable, 

log(x), refers to the parent’s log wage income in the 1940 Census. Within this framework, 

we interpret π as the intergenerational income elasticity. The magnitude of π is an important 

indicator of the role that parents’ wage incomes play in determining their children’s wage 

income. Intergenerational mobility is measured as 1- π, which is often regarded as a metric 

of economic opportunity.

Our analysis uses the LIFE-M sample of 19,486 boys (43 percent of the 45,442 that were 

linked to the 1940 Census) and samples linked using different automated methods to 

estimate intergenerational mobility. Unlike other analyses using the Census and Panel 
Survey of Income Dynamics, we must link fathers from birth certificates to the 1940 Census 

to obtain their income information. Links for fathers are obtained using only the LIFE-M 

clerical review method, so that father links remain constant in all regressions. By using the 

same links for fathers and different methods to link sons, our analysis describes differences 

in the estimates that are driven by differences in methods used to link sons.
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A. How Type I Errors Affect Inferences

Different kinds of Type I errors could have different implications for inferences about 

intergenerational mobility. Within the regression framework in equation (1), measurement 

error in son’s income (the dependent variable in the regression) that is uncorrelated with 

father’s income will still allow us to estimate π consistently using OLS, though the 

estimates will be less precise. However, measurement error on the right-hand side in father’s 

income (the independent variable in the regression) is more consequential. At first glance, 

considering measurement error in father’s income seems counter to our problem of using 

different linking methods to link sons. Note, however, that linking a boy to the wrong man in 

1940 is equivalent to assigning the wrong father’s income to that man.

Our conceptual framework for thinking about linking-induced measurement error is similar 

to Horowitz and Manski (1995). We assume that a linking method, ℓ, induces Type I error in 

matches by erroneously linking a father to a son (we do not derive bounds here, but that is a 

useful avenue for future research). The presence of this measurement error allows us to 

divide the sample into two groups, g: one for which the links are correct, denoted with a *, 

and another for which the link is imputed (or incorrectly classified), i. Following Greene 

(2008) and Stephens and Unayama (2017), we decompose the OLS estimate of π for a 

sample linked with method, ℓ, into the sum of within and between covariance for the correct, 

*, and imputed groups, i. b denotes the between component. Let 

sxyℓ ∗ + sxyℓi = ∑gsxy
ℓg = ∑g ∑k log(xkg) − log(xkg) log(ykg) − log(ykg) , 

sxyℓb = ∑gNg (log(xkg) − log(xkg)) (log(ykg) − log(ykg)) where group means are defined with a 

single bar and overall means are defined by two bars, such that,

πℓ = sxyℓ

sxxℓ = sxyℓ ∗ + sxyℓi + sxyℓb

sxxℓ = sxx∗

sxx
πℓ ∗ + sxxi

sxx
πℓi + sxxb

sxx
πℓb . (2)

Equation (2) shows that an OLS estimator converges in probability to a weighted average of 

the plim for the correct links, πℓ ∗ , imputed links, πℓi and the between group term (* versus 

i), πℓb, Where the weights on each term reflect the share of variance due to each component, 

θ:

plim πℓ = θℓ ∗ plim πℓ ∗ + θℓiplim πℓi + θℓbplimπℓb . (3)

The between group component can be thought of as the “selection” term. In some cases, we 

expect that the plim of the between term is zero (e.g., if the means of son’s income or 

father’s income are the same for the imputed and correctly linked groups). This pattern 

could happen in practice if errors (e.g., enumeration or transcription error) randomly assign 

records to these groups. Initially, we assume this term is zero to simplify exposition but later 

relax this assumption. Note also that, if the variances of father income are equal across all 

groups, the weights θ become the share of the sample in each category.
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Now, consider the probability limit of the two remaining non-weight terms, πℓ ∗  and πℓi. The 

first term represents the elasticity for the linked subsample, plim πℓ ∗ = π. The second term 

is an estimated elasticity for the imputed observations. If we assume cov(ε, log(xℓi))=0. then

plim πℓi = cov(log(y∗), log(xℓi))
var(log(xℓi))

= cov(πlog(x∗) + ε, log(xℓi))
var(log(xℓi))

= πcov(log(x∗), log(xℓi))
var(log(xℓi))

(4)

If the imputed father’s income is the same as the true father’s income, log(x*) = log(xℓi), 

then plim πℓ ∗  = plim πi. However, if cov(log(x∗), log(xℓi))
var(log(xℓi))

≠ 1, then plim πℓi ≠ π and the degree 

of the inconsistency depends on the relationship between the true and imputed father’s 

income.

There are several special cases of interest. First, suppose that there is no relationship 

between the true father’s income and the imputed father log income, or that 

cov(log(x∗), log(xℓi))
var(log(xℓi))

= 0. Then, the plim πℓi = 0 and the estimator is inconsistent in proportion 

to the share of imputed links, πℓ = θℓ ∗ π. Second, consider the case where imputed father’s 

income equals the true father’s income plus noise, or log(xℓi) = log(x*) + u. Under the 

assumptions of the classical errors in variables model (plim(uε) = 0, plim(ulog (x*)) = 0, and 

plim(ulog (y)) = 0), then plim πℓi = θℓi σx2

σx2 + σu2
π. Moreover, plim 

πℓ = (1 − θℓ ∗ )π + θℓ ∗ σx2

σx2 + σu2
π. Third, it is well known that non-classical measurement 

error for the imputed fathers could lead to under or over-statement of the parameter of 

interest, plim πℓi > π or plim πℓi < π.

As a final exercise, consider the effect of Type I errors on inference using exact ties. 

Consider a setting where N is the total number of records that one wishes to link and for 

M≤N of these records, r=1,2,…, M, there are Jr candidate matches that are tied. For instance, 

if the first record with ties involves 30 potential matches for a John Smith, age 40, then for 

r=1, J1=30. A second record, however, may only have 4 ties, so r=2 and J2=4. Assume that 

there is one correct link among the ties for record, r, indexed by j=1, log(y), and imputed 

(but incorrect links) log(yj), j=2,…,Jr. From the researcher’s perspective, the correct link is 

unknown and the probability that any one of the ties is correct is 1
Jr

.

Assume that one of these records would be selected at random to use in the analysis. By the 

same logic as in equation (2), a regression estimate of the intergenerational income elasticity 

can be decomposed into a variance-weighted sum of elasticities for three groups of 

observations—correct, unique links, denoted *; a correct link from the ties, denoted j=1; 

incorrect links from the ties, denoted j>1, and a “selection term” (which we assume is zero). 

Therefore, the estimated elasticity will be 
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πℓ =
sxx∗
sxx

π ∗ ℓ +
sxx
j = 1

sxx
πj = 1, ℓ +

sxx
j > 1, ℓ

sxx
∑j = 2

Jr sxx
j, ℓ

sxx
j > 1, ℓπjℓ  and 

∑j = 2
Jr sxx

jℓ

sxx
j > 1, ℓπjℓ = ∑j = 2

Jr λj plim πjℓ. Therefore, the estimate of the intergenerational 

income elasticity using random selection to break ties is,

plim πℓ = π θ ∗ ℓ + θj = 1, ℓ + θj > 1, ℓ ∑j = 2
Jr λjψjℓ (5)

Note that this estimator is inconsistent if ψjℓ =
cov(log(x1), log(xj))

σxj
2 < 1.32 The degree of 

inconsistency is, again, determined by how much information is in the incorrect ties. If the 

weights, θ and λ, simplify to the expected shares of observations in each group (as they 

would if variances were equal across all groups as we note above), the degree of 

inconsistency is also related to the share of all records with exact ties, M
N  (implicit in the 

weight), as well as the number of multiples for each record, Jr.

These conclusions are identical if the elasticity is estimated with a probability-weighted 

estimator where the weight is the probability that any exact multiple in a set of exact 

multiples is the true match, or 1/Jr. The probability limit of the estimator will be the same, 

although the performance of these methods may diverge in smaller samples.33 This result is 

intuitive because the same share of imputed observations would be present using probability 

weighting or random selection for exact ties. In summary, the presence of imputed links—

either through random selection or probability weighting—will generally lead to 

inconsistency, with the degree of inconsistency increasing in the number of records with ties, 

the number of exact ties for a given record, as well as the relationship between imputed 

observation and the truth. After examining the role of Type II errors, we examine the 

quantitative importance of these errors in a case study.

B. How Type II Errors Affect Inferences

Social scientists are accustomed to working with small representative samples. As long as 

links are representative of the underlying population, higher Type II error rates should only 

reduce precision. Across linking methods and datasets, however, this paper finds evidence 

that samples of links are not representative. If Type II errors result in the selective 

representation of different groups and the relationship of interest is heterogeneous across 

32Note that 
cov(log(yj), log(x1))

σxj
2 =

cov(πlog(xj) + ε, log(x1))
σxj

2 =
cov(log(x1), log(xj))

σxj
2 π = plim(πj).

33Reducing the influence of observations with less information is why some statisticians recommend truncating lower probability 
links, where presumably the covariance between the income of the father for the imputed link and the true link is small (Scheuren and 
Winkler 1993, Lahiri and Larsen 2005). Although Lahiri and Larsen (2005) propose an exactly unbiased estimator of π, this result 
only holds when the estimated link probability is uncorrelated with father’s income and where an exact data generating process for 
links is estimated. But this result breaks down in many historical settings, because the distribution of matching variables (name, age, 
and birth place) are correlated with outcomes and, often, a parent’s socioeconomic status (see Appendix C and D).

Bailey et al. Page 26

J Econ Lit. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these groups, Type II errors may also lead to inconsistent estimates of population parameters 

in linked samples.

Heterogeneity in intergenerational income elasticities is believed to exist for many reasons. 

For instance, researchers have concluded that intergenerational income elasticities are larger 

for blacks than whites (Duncan 1968, Margo 2016) and that patterns of mobility are 

substantially different for farmers compared to non-farmers (Hout and Guest 2013, Xie and 

Killewald 2013). If one group is over-represented in the linked data, this will bias inferences 

about the historical rate of the population’s intergenerational mobility.

To make this point concretely, assume that the two groups in equation (3) are high mobility, 

h, and low mobility, l (rather than correctly and imputed links). Denote the intergenerational 

income elasticities of these groups as πh and πl where (where πh ≤ πl), and the share of the 

variation attributable to each group is θh and θl, respectively. Finally, assume that there are 

no errors in linking. Therefore, following the logic of equation (2), the regression estimate of 

the population elasticity parameter for a given linking method, ℓ, is,

plim πℓ = θℓhplim πℓh + θℓlplim πℓl + θℓbplimπℓb (6)

The inconsistency of the probability limit in equation (5) depends upon several factors. First, 

if πh=πl and the means for both groups of fathers and sons are the same, the selection term 

is 0 and having a non-representative sample will not affect inference. Having a 

representative sample matters only to the extent that the relationship of interest varies across 

those groups or the group’s characteristics differ. Second, if πh ≠ τl (and the group means 

are the same), Type II errors that effectively decrease the share of variation attributable to 

one group will lead to an inconsistent estimate of the population intergenerational elasticity 

parameter. Suppose that a linking method introduces Type II errors, which effectively 

decreases the variation attributable to observations representing the low mobility group. (In 

the extreme, high rates of Type II errors could imply that none of the total variation is 

attributable to low mobility group.) These Type II errors would result in an elasticity 

estimate that puts lower weight on the low-mobility group, resulting in a lower estimated 

elasticity. Third, if πh=πl but the group means are different, then the selection term will not 

be 0 and inferences will be affected in an ambiguous way. Both heterogeneity and selection, 

of course, may vary greatly across samples. The following case study examines the 

combined implications of non-representativeness (through heterogeneity and selection) 

using inverse propensity weights to adjust for differences in observed characteristics 

(DiNardo, Fortin, and Lemieux 1996, Heckman et al. 1998).

C. Results: Intergenerational Elasticity Estimates from the 1940 Census

Different linking methods could have large effects on intergenerational income elasticity 

estimates through their influence on both Type I and Type II error rates. Figure 7A reports 

estimates of the intergenerational elasticity using samples of sons linked using different 

methods. For the LIFE-M links, we estimate an income elasticity of 0.24 between fathers 

and sons. Consistent with lifecycle bias and transitory income fluctuations attenuating our 
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estimates, this estimate is lower than modern estimates.34 These biases, however, should not 

affect our comparisons across different linking methods for the same set of records.

Several important patterns emerge. First, higher Type I errors in matching tend to be 

associated with smaller intergenerational elasticities. Consistent with attenuation described 

in equations (4) and (5), estimates using linking samples with higher Type I error rates tend 

to be smaller. Using NYSIIS and Soundex tends to increase Type I error rates and produce 

smaller estimates than using the reported name. Moreover, weighting ties results in Type I 

error rates ranging from 50 to 67 percent and yields intergenerational income elasticity 

estimates of 0.19 to 0.11. However, Type I error is not the only factor determining bias. It is 

notable that the more conservative Abramitzky, Mill, and Pérez (2018), the method with the 

lowest Type I error rates, yields an intergenerational income elasticity that is 20 percent 

smaller and statistically different than the true coefficient. These findings show that bias 

introduced by choice of linking algorithm may be as large as transitory income bias or life-
cycle bias, which has been an important concern of the recent literature on intergenerational 

mobility (Solon 1999, Haider and Solon 2006, Mazumder 2018). Conversely, a method with 

a comparatively high Type I error rate such as Feigenbaum (2016) achieves an estimated 

intergenerational income elasticity that is statistically indistinguishable from the LIFE-M 

elasticity. These results may reflect the fact that sample composition or a more systematic 

correlations of the errors with certain characteristics impact the coefficient. Appendix 

Figures A1 through A10 consider alternate implementations of Feigenbaum (2016) and 

Abramitzky et al. (2018). In general, the implementations that place more weight on 

precision (minimizing Type I errors) achieve estimated elasticities that are closer to the 

estimate with the hand-linked data. However, the decrease in Type I error is accompanied by 

a decrease in match rates and an increase in standard errors.

To examine the role of non-representativeness, we use inverse propensity-score weights to 

reweight the linked sample to have the characteristics of the LIFE-M birth certificate sample 

(Bailey, Cole, and Massey 2019).35 Figure 7B shows that the reweighted intergenerational 

income elasticities tend to be slightly smaller in magnitude than the unweighted Figure 7A 

estimates. This result may stem from the modest over-representation of larger, less-mobile 

families in the linked sample. The attenuation of the coefficient for the more conservative 

Abramitzky, Mill, and Pérez (2018) is cut in half, however, by using weights. For this case 

study, however, the effects of non-representativeness (as measured by the changes induced 

by reweighting) on observed characteristics appear modest in comparison to the role of 

34For instance, Chetty et al. (2014) estimates 0.33, which is itself smaller than estimates for the same period using survey data 
(Mazumder 2015). Life-cycle bias may attenuate the estimated intergenerational elasticity regardless of matching method (Mazumder 
2005, Haider and Solon 2006, Black and Devereux 2011, Mazumder 2015). In addition, wage income observed in the 1940 Census is 
an imperfect measure of permanent income, and we expect the single year observation of income for both generations can generate 
downward bias in estimated elasticities due to the importance of transitory income (Solon 1992, Zimmerman 1992, Mazumder 2005). 
On the other hand, the absence of farm and self-employed income in 1940 may lead this analysis to overstate mobility by excluding 
father-son pairs of farmers—an occupation that tends to be highly persistent across generations (Hout and Guest 2013, Xie and 
Killewald 2013). However, lifecycle bias and transitory income fluctuations should have similar effects for all methods.
35To construct these weights, we first run a probit model of link status (for each method) on covariates, X, which include an indicator 
variable for presence of middle name, length of first, middle, and last name, polynomials in day of birth, polynomials in age, an index 
for first name commonness, an index for last name commonness, number of siblings, an indicator variable for presence of siblings, and 
the length of own name as well as father’s and mother’s names. We then use the estimated propensity of being linked, Pi(Li = 1∣Xi), 
for each method and reweight observations by (1 – Pi(Li = 1∣Xi))/Pi(Li = 1∣Xi)) * q/(1 – q), where q is the share of records that are 
linked. Distributions of inverse propensity score weights are plotted in Appendix E.
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errors in linking. Of course, one might also choose to re-weight the sample to resemble the 

1940 Census. Appendix E shows that these results are nearly identical to results presented 

here.

While estimates using machine-linked samples appear attenuated relative to LIFE-M, the 

attenuation is not always as severe as one might expect with random error. For instance, 

Ferrie (1996) with name results in a 20 percent Type I error rate but the intergenerational 

elasticity estimate obtained from these links is one percentage point different from the LIFE-

M estimate. If the selection term in equation (3) were zero, and the signal to noise ratio in 

equation (4) were zero, one would expect to estimate 0.19 (=0.80*0.24). Therefore, one 

might think that fathers’ incomes for imputed links positively covaries with the truth or that 

the Ferrie (1996) is positively selected on immobility. For tie-breaking methods, however, 

the attenuation appears more consistent with random error. For instance, Ferrie (1996) with 

common names and ties and Soundex shows a 69 percent Type I error rate and the 

intergenerational elasticity estimate is 0.11 in Figure 7A.

Figure 7C and Figure 7D directly examine the effects of incorrect matches by plotting π∗, or 

the estimated elasticity for the “true” links (plotted as ο with 95-percent confidence 

intervals) and , or the estimated elasticity for the “false” links (plotted as ×) from separate 

regressions. Without the incorrect links, the estimates of the intergenerational income 

elasticity are very similar across groups at around 0.23 without weights (Figure 7C) and 0.23 

with inverse propensity-score weights (Figure 7D). The comparability of unweighted 

estimates is especially striking given how different in size and representativeness the 

samples are. For instance, the number of true links varies from around 482 for Ferrie 1996 

(Soundex) to 1,600 when using exact ties Ferrie 1996 (Soundex), but the unweighted 

intergenerational income elasticities are estimated to be 0.22 and 0.23, respectively. 

Consistent with Type I errors introducing attenuation, πi tends to be smaller than π∗ across 

methods. And, consistent with the observations about the magnitudes above, the unweighted 

estimated intergenerational elasticities for the imputed links for Ferrie 1996 (Name) are 0.15 

and only 0.05 for Abramitzky, Boustan, and Eriksson (2014) (Soundex) and 0.05 for Ferrie 

1996 with common names and ties (Soundex)—a statistical zero in the latter two cases. On 

the other hand, the correlation of incorrect links for Feigenbaum (2016) is very high, which 

shows how the regression-based classification system selects links with a very high 

correlation to the true link in this setting—even when incorrect. In short, the inclusion of 

imputed links appears to have large effects on OLS estimates of the intergenerational income 

elasticities, biasing them toward zero in most cases. After purging incorrect links, 

reweighting the linked sample to resemble the set of birth certificates has a minimal effect 

on the estimates. In short, smaller attenuation for some methods reflects the fact that the 

sample of correct links is selected on having lower intergenerational mobility (i.e., a higher 

elasticity), pulling the point estimate up, while the measurement error tends to pull the 

estimates down (see Figures 7C and 7D).

Given the expected attenuation due to transitory income and life-cycle biases, how do our 

estimates of intergenerational mobility relate to the literature? If we assume the 

independence of these two biases, the LIFE-M estimates imply that the true income 
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elasticity could be around 0.36 for the early 20th century (over 56 percent or 1/(0.64) larger 

than observed). This is similar in magnitude to Chetty et al. (2014) but smaller than in 

Mazumder (2018). However, our estimate is based on fathers and sons with wage income in 

Ohio and North Carolina. To the degree that the patterns of mobility present for this sample 

are not representative of the country as a whole, these findings may not generalize. For a 

similar period, Feigenbaum (2018), who links the 1915 Iowa Census to the 1940 Census, 

finds a correlation in log income earnings of between 0.20 and 0.26. This estimate is very 

similar to the LIFE-M estimate, although one might expect Iowa’s intergenerational 

elasticity to differ due to Iowa’s commitment to and investment in education (Goldin and 

Katz 2011).

Recent work by Ward (2019), however, recommends caution in interpreting early 20th 

century estimates of intergenerational mobility. His findings challenge the notion that the US 

was more mobile in the early 20th century. Correcting for measurement error—due both to 

linking error and occupational coding—using multiple observations of fathers’ occupations 

suggests that intergenerational mobility may have increased (rather than decreased) over the 

20th century. A better understanding of the role of measurement error in historical linking is, 

therefore, crucial for understanding whether the US held more opportunities for its citizens 

in the early 20th century—especially as researchers seek to create more linked historical data 

to understand the variation in mobility and also understand its causes.

VII. Lessons for Historical Record Linking

New large-scale linked data hold the potential to shift the knowledge frontier, increasing the 

urgency for developing reliable linking methods. Using different U.S. samples, this paper 

documents how linking algorithms and resulting errors could have large effects on scientific 

conclusions and policy inferences. Not only are linked samples not representative, but 

existing algorithms yield high rates of false matches. Moreover, the incidence of false 

matches are systematically related to baseline sample characteristics, suggesting that 

linking-induced measurement error may introduce complicated forms of bias into analyses. 

Our case study shows that linking algorithms may severely attenuate estimates of 

intergenerational income elasticities.

The variability in our estimates across datasets implies that it is difficult to diagnose how 

much linking assumptions matter for different research questions using different records. 

Nevertheless, our results suggest that reducing false matches and choosing methods that 

generate false matches more highly correlated with the truth are crucial for improving 

inferences with linked data—even when reducing Type I errors increases Type II errors.

An easy remedy when linking richer data is to use more information—especially continuous 

variables or those with many values (e.g., Social Security Numbers or exact dates of birth). 

In addition, higher quality information (e.g., administrative records rather than individual 

reports) will result in lower error rates than we document. For contexts with limited linking 

variables which are measured with error, systematic clerical review (e.g., LIFE-M) and 

genealogical methods (e.g., Early Indicators) generally attain lower error rates than machine 

algorithms. Because these methods are cost prohibitive for most projects, we draw on our 
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findings to recommend several easy-to-implement and lower-cost changes to current 

practice.

First, we recommend careful examination of a sample of links resulting from automated 

algorithms. Applying close scrutiny to a sample of links allows researchers to diagnose and 

potentially remedy systematic problems with machine-linking algorithms arising for specific 

records or in a particular historical context. In fact, many of the links coded as incorrect in 

clerical review are easy to identify as such. These cases can be used to improve machine-

linking algorithms.

Second, caution is advised in linking phonetically cleaned names in deterministic algorithms 

or in commonly occurring name-age combinations. Phonetic cleaning tends to remove 

meaningful variation in names that allows algorithms to make better links. Eliminating 

commonly occurring name-age combinations, like Ferrie’s (1996) approach of only linking 

uncommon names or Abramitzky, Boustan, and Eriksson (2014)’s robustness check using 

unique name-age combinations in a five-year window, substantially reduces the incidence of 

false matches. Together with reweighting, these restrictions achieve results in our case study 

that are statistically indistinguishable from hand-linked data. In contrast, weighting name-

age ties equally by the inverse of their empirical frequency incorporates information from a 

large number of false links and results in substantial attenuation. In addition, researchers 

may incorporate more information in the linking process to break ties and distinguish true 

links from close alternatives. One such example in historical data is middle name or middle 

initial.

Third, using even a small sample of clerically reviewed data to train a machine-learning 

algorithm (or applying the results of another researcher’s model based on similar training 

data) can improve the quality of linked samples. Notably, even when these machine-methods 

make incorrect links, the correlation of these links with the truth appears to be much higher 

than for other algorithms in our setting. These errors, therefore, have less impact on 

inference. An additional feature of some machine-linking algorithms is that they allow 

researchers to choose the importance of Type I and Type II errors, balancing the trade-off to 

fit a particular application. Although Feigenbaum (2016) and Abramitzky, Mill, and Pérez 

(2018) choose a specific penalty for Type I and Type II errors, different parameter choices 

can drive Type I error rates lower while linking much of the sample correctly.

A fourth strategy for reducing Type I errors is to combine multiple methods and use the 

intersection of the links across sets—a form of ensemble machine learning in the spirit of 

“bagging” or “boosting.” By construction, requiring links to be classified as such by more 

than one algorithm should tend to decrease match rates. But, to the extent that different 

methods make errors for different reasons, taking the set of common links helps avoid 

idiosyncratic reasons for errors. We illustrate the value of this approach in Figure 8 for our 

example of intergenerational elasticity, where we plot the Type I and Type II errors 

associated with the 131,071 possible combinations (217–1) of the 17 algorithms in this paper 

for each dataset. Overall, combining methods drives down Type I error rates and increases 

Type II error rates. For example, when using LIFE-M data, combining two methods like 

Ferrie (1996) and Feigenbaum (2016) drives the Type I error rate to 10 percent—a 
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substantial improvement over error rates for either method individually. Combining 12 

methods achieves error rates as low as 6 percent, which is almost as precise as hand-linking.

Using combinations of methods may also improve inference. As shown in Figure 9A, across 

all combinations of methods, unweighted intergenerational elasticity estimates range from 

0.11 to 0.24 (circle markers) and inverse-propensity-score reweighted estimates range from 

0.13 to 0.24 (square markers). Based on an unweighted linear regression, a 10 percentage 

point increase in the Type I error rate tends to decrease the elasticity by 0.028, whereas this 

number is 0.015 in the weighted regression. Interestingly, in both weighted and unweighted 

cases, the mean over all combinations yields the value to the elasticity obtained in the hand-

linked LIFE-M sample. As in our intergenerational elasticity example using single methods, 

Figure 9B shows that eliminating the incorrect links yields an average intergenerational 

elasticity nearly identical to the hand-linked sample (0.22) whereas the average 

intergenerational elasticity estimates for the incorrect links are less than half that value 

(0.096). These findings hold even when considering only the most prominent matching 

algorithms.

Finally, after limiting the role of linking errors, we recommend using multiple record 

features to assess and improve sample representativeness. Survey methods for constructing 

weights and allocating values are easy to implement and have well-documented properties. 

Making greater use of common record features such as name length or other socio-

demographic information also allows researchers to use survey research methods or, as is 

more common in economics (and used in this paper), construct inverse-propensity weights to 

reduce sample selection and improve representativeness in observed characteristics (see 

Bailey, Cole, and Massey (2019) for a simple how-to guide). Ideally, this reweighting also 

improves balance in terms of unobserved characteristics, but there is no way to test this 

claim. A close examination of what is referred to as the common support assumption also 

informs researchers about where more time-intensive genealogical or clerical review 

methods may increase the representation of hard-to-link groups.

Many discussions of inference with linked data implicitly or explicitly assume that the 

match rate is just as important to inference as match quality. Our findings suggest that the 

quality of inferences with linked data may be improved by putting less emphasis on 

increasing sample sizes (which in our analysis tend to be associated with higher rates of 

false matches) and more emphasis on increasing the share of correct links. That is, social 

scientists wishing to conduct inference on linked data might increase the weight they place 

on decreasing Type I error rates over increasing sample sizes (decreasing Type II error 

rates). In the parlance of machine learning, this would involve weighting precision more 

heavily. Indeed, modern surveys such as the Panel Survey of Income Dynamics and the 

National Longitudinal Survey demonstrate that much can be learned from high-quality small 

samples with summary statistics and weights to describe and adjust for non-

representativeness. Ultimately, increasing sample sizes for difficult-to-link subgroups (such 

as individuals with common names) will not likely be achieved without more data or higher 

quality record features to disambiguate similar records. More research to uncover data to 

describe the groups underrepresented in linked samples will serve both to broaden 
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knowledge about them and improve the ability of modern machine learning methods to link 

them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of Common Linking Problems in Historical Samples
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Figure 2. Match Rates and False Links for LIFE-M Hand-Linked Data and Selected Automated 
Linking Methods
Notes: The bars show the performance of different algorithms linking LIFE-M boys to the 

1940 Census. See text for details and Table 1 for numerical estimates. EM stands for 

Abramitzky, Mill, and Pérez’s (2018) “Expectation maximization” method. More and less 

conservative refer to the two different, manually set thresholds recommended in the paper. 

Error rates for LIFE-M hand-links and other methods are computed based the police-review 

process described in the text.
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Figure 3. Match Rates and False Links for Common Variations on Automated Linking Methods
Notes: See Figure 2 notes and text for details and Table 4 for numerical estimates.

Bailey et al. Page 40

J Econ Lit. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Share of Incorrect Links (Type I Error Rate) by Method and Dataset
Notes: See Figure 2 notes and Table 1 for numerical estimates.
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Figure 5. Type I vs. Type II Error Rates by Method and Dataset
Notes: Points plot Type I and Type II error rates using different algorithms and data in Table 

2.
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Figure 6. A Comparison of Method Performance in Sample-to-Population and Population-to-
Population Linking
Notes: The y-axis plots the Type I error rate implied by linking birth certificates for all boys 

in the same cohorts as the Ohio and North Carolina LIFE-M sample to the 1940 Census 

using different automated methods. The x-axis plots the Type I error rate implied by linking 

the LIFE-M sample of boys in the Ohio and North Carolina birth certificates to the 1940 

Census using different automated methods.
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Figure 7. Intergenerational Income Elasticity Estimates
Notes: Differences in estimates reflect the incidence of Type I and Type II errors. The 

sample sizes of father-son pairs are lower than when matching sons only, because not all 

linked sons had income from wages and fathers who were also linked who also had income 

from wages. Sample sizes are 1,834 for LIFE-M, 1,313 for Ferrie 1996 (Name), 1,064 for 

Ferrie 1996 (NYSIIS), 708 for Ferrie 1996 (Soundex), 1,751 for Ferrie 1996 (Name) + 

common names, 1,702 for Ferrie 1996 (NYSIIS) + common names, 1,466 for Ferrie 1996 

(SDX) + common names, 2,354 for Ferrie 1996 (Name) + common names + ties, 2,648 for 

Ferrie 1996 (NYSIIS) + common names + ties, 2,875 for Ferrie 1996 (SDX) + common 
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names + ties, 1,610 for Abramitzky et al. 2014 (Name), 1,600 for Abramitzky et al. 2014 

(NYSIIS, Robustness), 1,412 for Abramitzky et al. 2014 (SDX), 999 for Abramitzky et a. 

2014 (NYSIIS, Robustness) 1,955 for Feigenbaum 2016 (Iowa), 1,855 for Feigenbaum 2016 

(LIFE-M), 1774 Abramitzky et al. 2018 (EM, less conservative), 1206 Abramitzky et al. 

2018 (EM, more conservative). Weighted estimates reweight the linked sample of LIFE-M 

birth certificates so that they match a representative sample of birth certificates using the 

following characteristics: day of year measured from one to 365, polynomials in age, first 

and last name commonness indexes and the interaction of the two, a dummy variable for 

presence of siblings, polynomials in the number of siblings, polynomials in the length of 

child, mother, and father name, and state fixed effects. * indicates that the estimate is 

statistically different from the LIFE-M estimate at the 10-percent, ** at the 5-percent, and 

*** at the 1-percent levels.
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Figure 8. Type I vs. Type II Error Rates for Different Combinations of Methods and Dataset
Notes: Each point represents the Type I and Type II error rate for 131,071 different 

combinations of the 17 methods considered in this paper by dataset.
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Figure 9. Intergenerational Income Elasticity Estimates across Method Combinations
Notes: Each point represents intergenerational elasticity estimate plotted against the Type I 

error rate for one of the 131,071 different combinations of the 17 methods considered in this 

paper. Panel A pools all links and panel B plots estimates separately for correct and incorrect 

links. See also Figure 6 notes.
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Table 2.

Representativeness of Links Created by Prominent Linking Methods, by Algorithm and Dataset

LIFE-M
Synthetic

Data
Early

Indicators

Ferrie 1996 (NYSIIS) 445.9 277.5 38.2

 p-value 0.00 0.00 0.00

Abramitzky et al. 2014 (NYSIIS) 457.0 387.2 12.7

 p-value 0.00 0.00 0.24

Feigenbaum 2016 (Iowa coef.) 195.7 34.9 50.0

 p-value 0.00 0.00 0.00

Feigenbaum 2016 (Estimated coef.) 334.9 62.2 44.0

 p-value 0.00 0.00 0.00

Abramitzky et al. 2018 (EM, less conservative) 788.3 485.0 46.6

 p-value 0.00 0.00 0.00

Abramitzky et al. 2018 (EM, more conservative) 1350.0 673.0 51.4

 p-value 0.00 0.00 0.00

Observations 42,869 42,869 1,785

Notes: Each estimate is a heteroskedasticity-robust Wald-test from a separate regression of a binary dependent variable (=1 for linked record) for 
samples described in the text. Relevant p-values are reported in italics. The covariates included in the LIFE-M sample and synthetic data are age, 
number of siblings, length of names of individuals and parents, fraction of siblings with misspelled parents' names, and an observation coming from 
Ohio. The covariates included in the Early Indicators data are age, currently married, foreign born, day of birth by year, literacy, length of first and 
last names, and foreign born status of parents. These sample sizes are slightly smaller due to missing values. See appendices for full regression 
results.
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Table 3.

Representativeness of False Links Created from Prominent Linking Methods, by Algorithm and Dataset

LIFE-M
Synthetic

Data
Early

Indicators

Ferrie 1996 (NYSIIS) 242.9 35.1 26.2

 p-value 0.00 0.00 0.00

Abramitzky et al. 2014 (NYSIIS) 500.9 64.3 39.4

 p-value 0.00 0.00 0.00

Feigenbaum 2016 (Iowa coef.) 1806.0 448.0 38.9

 p-value 0.00 0.00 0.00

Feigenbaum 2016 (Estimated coef.) 1559.0 802.0 19.4

 p-value 0.00 0.00 0.03

Abramitzky et al. 2018 (EM, less conservative) 559.3 112.9 43.0

 p-value 0.00 0.00 0.00

Abramitzky et al. 2018 (EM, more conservative) 139.8 17.4 18.3

 p-value 0.00 0.03 0.05

Notes: Each estimate is a heteroskedasticity-robust Wald-test from a separate regression of a binary dependent variable (=1 for falsely linked 
record) for samples described in the text. Relevant p-values are reported in italics. The covariates included in the LIFE-M sample and synthetic data 
are age, number of siblings, length of names of individuals and parents, fraction of siblings with misspelled parents' names, and an observation 
coming from Ohio. The covariates included in the Early Indicators data are age, currently married, foreign born, day of birth by year, literacy, 
length of first and last names, and foreign born status of parents. See appendices for full regression results.
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Table 5.

Representativeness of Links When Varying Algorithm Assumptions

LIFE-M
Synthetic

Data
Early

Indicators

Ferrie 1996 (Name) 688.3 390.7 47.5

 p-value 0.00 0.00 0.00

Ferrie 1996 (NYSIIS) 445.9 277.5 38.2

 p-value 0.00 0.00 0.00

Ferrie 1996 (SDX) 130.6 71.1 57.0

 p-value 0.00 0.00 0.00

Ferrie 1996 (Name) + common names 412.3 378.1 35.5

 p-value 0.00 0.00 0.00

Ferrie 1996 (NYSIIS) + common names 402.6 447 16.0

 p-value 0.00 0.10 0.10

Ferrie 1996 (SDX) + common names 208.8 310.6 25.6

 p-value 0.00 0.00 0.00

Ferrie 1996 (Name) + common names + exact ties 178.8 452.1 75.6

 p-value 0.00 0.00 0.00

Ferrie 1996 (NYSIIS) + common names + exact ties 148.2 363.9 69.9

 p-value 0.00 0.00 0.00

Ferrie 1996 (SDX) + common names + exact ties 104.7 174.7 43.6

 p-value 0.00 0.00 0.00

Abramitzky et al. 2014 (Name) 454.6 271.9 32.3

 p-value 0.00 0.00 0.00

Abramitzky et al. 2014 (NYSIIS) 457.0 387.2 12.7

 p-value 0.00 0.00 0.24

Abramitzky et al. 2014 (SDX) 255.7 257.8 17.1

 p-value 0.00 0.00 0.07

Abramitzky et al. 2014 (NYSIIS, Robustness) 568.6 397.7 31.2

 p-value 0.00 0.00 0.00

Feigenbaum 2016 (Iowa coef.) 195.7 34.9 50.0

 p-value 0.00 0.00 0.00

Feigenbaum 2016 (Estimated coef.) 334.9 62.2 44.0

 p-value 0.00 0.00 0.00

Abramitzky et al. 2018 (EM, less conservative) 788.3 485.0 46.6

 p-value 0.00 0.00 0.00

Abramitzky et al. 2018 (EM, more conservative) 1350.0 673.0 51.4

 p-value 0.00 0.00 0.00

Observations 42,869 42,869 1,785

Notes: See Table 2 notes and text for details.
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Table 6.

Representativeness of False Links When Varying Algorithm Assumptions

LIFE-M
Synthetic

Data
Early

Indicators

Ferrie 1996 (Name) 468.3 79.3 45.8

 p-value 0.00 0.00 0.00

Ferrie 1996 (NYSIIS) 242.9 35.1 26.2

 p-value 0.00 0.00 0.00

Ferrie 1996 (SDX) 81.5 0.9 17.5

 p-value 0.00 0.99 0.06

Ferrie 1996 (Name) + common names 772.1 115.3 48.6

 p-value 0.00 0.00 0.00

Ferrie 1996 (NYSIIS) + common names 429.0 64.4 39.2

 p-value 0.00 0.00 0.00

Ferrie 1996 (SDX) + common names 157.7 17.4 32.4

 p-value 0.00 0.03 0.00

Ferrie 1996 (Name) + common names + exact ties 1859.0 466.2 60.1

 p-value 0.00 0.00 0.00

Ferrie 1996 (NYSIIS) + common names + exact ties 1163.0 249.6 92.3

 p-value 0.00 0.00 0.00

Ferrie 1996 (SDX) + common names + exact ties 457.8 55.4 61.7

 p-value 0.00 0.00 0.00

Abramitzky et al. 2014 (Name) 744.4 100.2 54.3

 p-value 0.00 0.00 0.00

Abramitzky et al. 2014 (NYSIIS) 500.9 64.3 39.4

 p-value 0.00 0.00 0.00

Abramitzky et al. 2014 (SDX) 223.2 41.7 28.6

 p-value 0.00 0.00 0.00

Abramitzky et al. 2014 (NYSIIS, Robustness) 239 24.3 32.4

 p-value 0.00 0.00 0.00

Feigenbaum 2016 (Iowa coef.) 1806.0 448 38.9

 p-value 0.00 0.00 0.00

Feigenbaum 2016 (Estimated coef.) 1559.0 802 19.4

 p-value 0.00 0.00 0.03

Abramitzky et al. 2018 (EM, less conservative) 559.3 112.9 43.0

 p-value 0.00 0.00 0.00

Abramitzky et al. 2018 (EM, more conservative) 139.8 17.4 18.3

 p-value 0.00 0.03 0.05

Notes: See Table 3 notes and text for details.
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