UCLA UCLA Previously Published Works

Title

The Role of Mesolimbic Circuitry in Buffering Election-Related Distress.

Permalink

https://escholarship.org/uc/item/872752mm

Journal

The Journal of neuroscience : the official journal of the Society for Neuroscience, 38(11)

ISSN 0270-6474

Authors

Tashjian, Sarah M Galván, Adriana

Publication Date 2018-03-01

DOI

10.1523/jneurosci.2470-17.2018

Peer reviewed

JNeuroscience

Research Articles: Behavioral/Cognitive

The Role of Mesolimbic Circuitry in Buffering Election-Related Distress

Sarah M. Tashjian¹ and Adriana Galván^{1,2}

¹University of California, Los Angeles, Department of Psychology, Los Angeles, CA 90095, USA. ²Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

DOI: 10.1523/JNEUROSCI.2470-17.2018

Received: 29 August 2017

Revised: 2 January 2018

Accepted: 16 January 2018

Published: 5 February 2018

Author contributions: S.M.T. and A.G. designed research; S.M.T. and A.G. analyzed data; S.M.T. and A.G. wrote the paper.

Conflict of Interest: The authors declare no competing financial interests.

This work was supported by the Jeffrey/Wenzel Chair in Behavioral Neuroscience to AG. Preparation of this manuscript was supported in part by the National Science Foundation Graduate Fellowship to SMT.

Correspondence to: Sarah M. Tashjian or Adriana Galván, Department of Psychology, University of California, 1285 Franz Hall, Los Angeles, CA 90095-1563. E-mail: smtashjian@ucla.edu, agalvan@ucla.edu

Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2470-17.2018

Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

Copyright © 2018 the authors

- 2 Related Distress
- 3 Abbreviated title: Post-Election Distress Moderators
- 4 **Authors:** Sarah M. Tashjian^{1*}, Adriana Galván^{1,2,*}
- 5 Affiliations:
- ⁶ ¹University of California, Los Angeles, Department of Psychology, Los Angeles,
- 7 CA 90095, USA.
- ⁸ ²Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
- 9 90095, USA.
- 10 *Correspondence to: Sarah M. Tashjian or Adriana Galván, Department of
- 11 Psychology, University of California, 1285 Franz Hall, Los Angeles, CA 90095-
- 12 1563. E-mail: smtashjian@ucla.edu, agalvan@ucla.edu
- 13 Pages: 41, Figures: 8; Tables: 4
- 14 Wordcount: Abstract 219; Significance 120; Introduction 640; Discussion 1396
- 15 **Conflict of Interest**: The authors declare no competing financial interests.
- 16 Acknowledgments:
- 17 This work was supported by the Jeffrey/Wenzel Chair in Behavioral
- 18 Neuroscience to AG. Preparation of this manuscript was supported in part by the
- 19 National Science Foundation Graduate Fellowship to SMT.

20 Abstract:

21	The 2016 U.S. presidential election yielded distress among many individuals who
22	identify with historically marginalized groups. We used functional magnetic
23	resonance imaging (fMRI) and psychological measures to test the hypotheses
24	that neural response to reward, probing the nucleus accumbens (NAcc) and
25	medial prefrontal cortex (mPFC), and social support would ameliorate the effects
26	of election distress among those who felt negatively affected by the result.
27	Within four months of the 2016 U.S. presidential election, we tested human
28	participants who felt affected by the election result ($N = 40$, $M_{age} = 21.9$ years, 28
29	female) and control participants ($N = 20$, $M_{age} = 20.25$ years, 12 female) who did
30	not feel affected by the election result. Election-related distress significantly
31	differed between the groups and distress accounted for over half of the relation
32	between discrimination experiences and depression symptoms among affected
33	individuals. NAcc activation, connectivity between the NAcc and mPFC, and
34	family support moderated the associations between election distress and
35	depression symptoms. Prior work has primarily investigated mesolimbic circuitry
36	in reward and motivation contexts, but our findings extend the relevance of
37	functioning in this circuitry to ameliorating psychological manifestations of acute
38	distress after shifts in political climate. These findings highlight the psychological
39	effects of this important historic event and identify neurobiological and social
40	mechanisms associated with individual differences in response to election
41	distress.

- 43 Keywords: depression, distress, election, fMRI, nucleus accumbens, social
- 44 support

46 Significance Statement:

47 The 2016 U.S. presidential election was psychologically distressing for many 48 individuals. In this study, election-related distress was linked to depression 49 symptomology for affected individuals, but not control individuals. However, 50 among individuals distressed by the election, those with greater neural response 51 to reward and higher family support were protected against these depressive 52 symptoms. Previous research has examined how neural response to reward 53 following a discrete event ameliorates clinical symptoms. The current study 54 extends this knowledge by demonstrating that both the brain and social support 55 may play influential roles in dampening affective responses to ongoing and 56 anticipated distress related to political climate. Leveraging this finding to enact 57 interventions that dampen continuous distress, political or otherwise, is a 58 promising endeavor for future research.

60	The charged rhetoric of the 2016 U.S. presidential campaign left
61	marginalized groups feeling vulnerable and victimized, with many reporting
62	hopelessness, fear, and other symptoms commonly reported by those who have
63	experienced a stressful event (Gold, 2017; Stoler, 2016). In the first 10 days after
64	the election, the Southern Poverty Law Center (SPLC) recorded over 876 hate
65	incidents, the outbreak of which SPLC attributed to the election (SPLC, 2016).
66	According to theories on discrimination (Comas-Díaz, 2016), distress may result
67	from witnessing violence toward one's identity group or experiencing institutional
68	discrimination. Perceived discrimination is linked to a variety of negative health
69	outcomes including depression and psychological distress (Pascoe & Richman,
70	2009). Even individuals who have not been direct victims of post-election
71	discrimination may have experienced distress through media coverage of hate
72	crimes perpetrated against their identity groups (Gross, 2016; Reeves, 2016).
73	Similarly, prior perceptions of discrimination may relate to the way vulnerable
74	populations experienced these incidents. In contrast, for many the election result
75	did not result in distress. In this study, we used functional magnetic resonance
76	imaging (fMRI) and psychological measures to test differences in response to the
77	election. We tested hypotheses that neural response to reward and social
78	support would ameliorate the effects of election distress among those who felt
79	negatively affected by the result.
80	Prior work primarily focuses on the role of the mesolimbic neural system,
81	including the nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC), in

82 responding to reward and motivation. However, clinical and animal studies

83	indicate these neural pathways are vulnerable to stressful experiences (Ferenczi,
84	2016; Hanson et al., 2016; Trainor, 2011). Greater activation in and stronger
85	connectivity between the mPFC and NAcc have been associated with lower
86	negative psychological symptoms in individuals with major depressive disorder
87	(Furman, Hamilton, & Gotlib, 2011; Young et al., 2016). Dampened mesolimbic
88	responsivity to reward has been linked to individual differences in coping
89	following stressful experiences (Admon et al., 2013; Feder, Nestler, & Charney,
90	2009; Nikolova et al., 2012). Although this work offers promising advances in
91	understanding how neural circuitry buffers against negative outcomes, it remains
92	unknown whether the election is associated with psychological distress and, if so,
93	whether activity in reward-related neural circuitry is associated with ameliorated
94	negative outcomes. We explore individual differences in neural responsivity as a
95	phenotype of vulnerability to depression following a potentially distressing
96	political event.
97	Social support is crucial to dampening negative psychological outcomes
98	following stressful events (Panagioti et al., 2014; Schumm, Briggs-Phillips,
99	Hobfoll, 2006). High levels of social support have been associated with positive
100	outcomes following traumatic events (Prati & Pietrantoni, 2009). Oxytocin
101	facilitates social attachment by enhancing the reward value of social stimuli in the
102	brain (Skuse & Gallagher, 2009) and may thus relate to openness to social
103	support. Social support ameliorates negative psychological outcomes by
104	operating on physiological and cognitive coping strategies, thereby enhancing

105 resilience to stress (Charuvastra & Cloitre, 2008; Eisenberger et al., 2007;

Marroquín, 2011; Ozbay et al., 2007). It has yet to be established whether social
support can protect against deleterious effects of distressing shifts in political
climate.

109 Within four months of the 2016 U.S. presidential election (November 110 2016-March 2017), we tested a group of participants who reported feeling 111 personally affected by the election result ("affected" group) and a group of 112 participants who reported not feeling personally affected by the election ("control" 113 group). We hypothesized that (1) the affected group would report greater 114 election-related distress than the control group, (2) more discrimination 115 experiences would relate to greater election distress and depression within the 116 affected group, (3) within the affected group, election distress would relate to 117 depression, and (4) greater neural activation and connectivity in response to 118 reward and (5) greater social support from family and friends would moderate the 119 relation between election distress and depression. We tested both neural 120 activation and social support as moderators, investigating two potential buffers 121 against negative outcomes.

122 Methods

123 Participants

Sixty participants were tested after being deemed eligible to participate based on their responses to 3 pre-screening questions: (1) Do you think the result of the 2016 U.S. presidential election will personally affect you?, (2) On a scale of 1 to 7, 1 = *no negative emotional response* and 7 = *an extremely negative emotional response*, how do you feel about the result of the 2016 U.S.

129	presidential election, and (3) What do you identify as your gender, ethnicity,
130	sexual orientation, religion, and immigration status? We used these pre-
131	screening questions prior to testing to ensure we recruited a heterogeneous
132	sample of participants inclusive of those who felt affected and unaffected by the
133	election result. Prior to testing, participants were assigned to either the affected
134	or control group and recruitment was terminated once the pre-determined group
135	sizes were obtained. Forty participants were assigned to the "affected group" (28
136	female, M_{Age} =20.25 years, SD =2.27, range =18-28 years). Participants were
137	considered "affected" if they met three pre-screening criteria: (1) they indicated
138	they thought they would be personally affected by the election result, (2) they
139	reported an affect rating of 5 or higher, and (3) they reported identifying with at
140	least one historically marginalized group (Table 1). We also obtained free-
141	response explanations of how participants thought they would be personally
142	affected by the election result to ensure our pre-testing categorization as
143	"affected" was accurate (Table 2). One additional affected participant was
144	recruited, but later excluded due to a technical error during scanning. Twenty
145	participants were assigned to the "control group" (12 female, M_{Age} =21.90 years,
146	SD =2.83, range =18-30 years). Participants were considered "control" if they
147	met two pre-screening criteria: (1) they indicated they did not think they would be
148	personally affected by the election result, and (2) they reported an affect rating of
149	4 or lower.
150	Our primary interest was to determine how individual differences in

151 mesolimbic response to reward and social support buffered distress-related

152 depression for affected participants. We recruited the control group as a 153 comparison to (1) address that not all individuals felt distressed by the election, 154 (2) demonstrate that election distress among affected participants was linked to 155 depression but that this was not the case for the control group, and (3) assess 156 whether there were underlying differences in the functioning of mesolimbic 157 circuitry between the groups. Thus, we oversampled the affected group to 158 investigate individual differences within that group rather than equally recruiting 159 for both groups, which would have reduced power for within-group analyses. 160 We did not test a scale inclusive of positive affective responses because 161 testing was conducted in a liberal urban city and conservative-leaning supporters 162 may have experienced discrimination as a result of their political affiliation, 163 conflating potential sources of distress in the two groups. In addition to the pre-164 screening questions, eligibility criteria included: fluent in English, between the 165 ages of 18-30 years, right handed. Exclusion criteria included: no prior 166 developmental, psychiatric or neurological disorder, no psychotropic medication, 167 not claustrophobic, and no metal in the body. 168 **Experimental Design** 169 Participants completed an MRI scan and self-report measures of election-170 related distress, everyday discrimination, depression symptoms, and perceived

171 social support from family and friends. Only reports of distress were specifically

172 framed with regard to the 2016 U.S. presidential election. Written consent was

173 obtained in accordance with the university's Institutional Review Board and

participants were compensated for their participation. Testing sessions lastedapproximately 1.5 hours.

176 Self-Report Measures. Participants completed the Impact of Events 177 Scale – Revised (IES-R), a 22-item self-report measure that assesses subjective 178 distress caused by traumatic events (Weiss, 2007). Participants were asked to 179 respond to items on a 5-point scale from 0 (not at all) to 4 (extremely) indicating 180 for the past seven days how distressing or bothersome each difficulty had been 181 with respect to the 2016 U.S. presidential election (sample items: "I thought about it when I didn't mean to", "Reminders of it caused me to have physical 182 183 reactions, such as sweating, trouble breathing, nausea, or a pounding heart"). 184 Total scores were used in analyses. The maximum possible score was 88. 185 Participants completed the Everyday Discrimination Scale, a 9-item self-186 report measure of discrimination experiences (Williams et al., 1997). Participants 187 were asked to respond to items on a scale of 0 (never) to 5 (almost every day) 188 indicating how often each item occurs (sample items: "people act as if they are 189 afraid of you", "you are called names or insulted"). Discrimination questions were 190 not framed with regard to the election. Total scores were used in analyses. The 191 maximum possible score was 45. 192 Participants completed the Center for Epidemiologic Studies Depression

Scale (CES-D), a 20-item self-report measure that assesses depression
symptoms as defined by the American Psychiatric Association Diagnostic and
Statistical Manual (DSM-V) (Radloff, 1977). Participants were asked to respond
to items on a 4-point scale from 0 (*rarely or none of the time*) to 3 (*most or all of*

the time) indicating for the past week how often they have felt or behaved in that way (sample items: "I did not feel like eating; my appetite was poor", "I talked less than usual"). CES-D questions were not framed with regard to the election. Total scores were used in analyses. The maximum possible score was 60.

201 Participants completed the Perceived Social Support (PSS) from Family 202 and Friends Scale, assessing perceived emotional support from family (20 items, 203 PSS-Fa) and friends (20 item, PSS-Fr) (Procidano & Heller, 1983). Participants 204 were asked to respond to items with Yes, No, Don't Know as to feelings or 205 experiences they identify with (sample items: "My friends/family and I are very 206 open about what we think about things", "My friends/family give(s) me the moral 207 support I need"). PSS questions were not framed with regard to the election. 208 Total scores were used in analyses. The maximum possible score for each scale 209 was 20.

Participants also provided free-response explanations of how they thought
they would be affected by the results of the 2016 U.S. presidential election to
ensure our categorization as "affected" was accurate from the participant's point
of view. Example responses are listed in Table 2.

fMRI Paradigm. To probe neural activity in response to reward anticipation and feedback, participants completed a modified version of the Monetary Incentive Delay (MID) task (Knutson et al., 2000) while being scanned with fMRI (Figure 1). The MID task has been widely used to elicit activation in reward circuitry. Participants received spoken and written instructions and then completed a brief practice session outside of the scanner before beginning the

220	experimental session. During each randomized event-related trial, participants
221	viewed one of four types of monetary cues indicating a combination of incentive
222	valence (gain, loss) and magnitude (large: \pm \$5.00, small: \pm \$0.20) or a cue
223	indicating "no money at stake". Cues took one of three forms: a circle indicated a
224	gain trial, a square indicated a loss trial, and a triangle indicated no money was
225	at stake. Each cue was presented for 2000ms. Cue presentation was modeled as
226	the anticipation phase of the task. Cues were followed by a fixation cross (jittered
227	1500-4000 ms), after which a target of the same shape as the cue was rapidly
228	presented on the screen (150-500ms). If the participant pressed the button after
229	the target onset but before the target offset, they either gained or avoided losing
230	the cued amount of money. Hit rate was targeted at 60% for each participant by
231	an algorithm that adaptively changed target durations every 3 trials based on
232	past performance. The average reaction time from the practice session plus 2
233	standard deviations, with a maximum of 500ms, was used at the onset of the
234	task for the purpose of target duration calculation. Feedback indicating the trial
235	outcome was then presented. This feedback presentation was modeled as the
236	feedback phase of the task. Potential trial outcomes were: money gained (gain
237	trials with a correct response), money not gained (gain trials with an incorrect
238	response), money kept (loss trial with a correct response), money lost (loss trial
239	with an incorrect response), no money at stake (no money at stake trials with
240	correct or incorrect response). Ten repetitions of each of the 5 trial types were
241	presented in a randomized order for each individual, summing to a total of 50

fMRI Data Acquisition. The scan was conducted on a Siemens Magnetom Prisma MRI scanner with a 32-channel head coil. Parameters for image acquisition were voxel size = $2.4 \times 2.4 \times 2.4$ mm, slices = 60, slice thickness = 2.4 mm, repetition time = 800 ms, echo time = 30 ms, flip angle = 52 degrees, interleaved slice geometry, field of view = 216 mm, 411 volumes. Preprocessing was conducted using FEAT (FMRI Expert Analysis Tool) version 6.00, part of FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl RRID:SCR_002823). Preprocessing consisted of non-brain removal using BET, high-pass filtering (100-s cutoff), and spatial smoothing using a Gaussian kernel of FWHM 5mm. Rigid body motion correction with six degrees of freedom was performed using MCFLIRT. A magnetization-prepared rapid-acquisition gradient echo (MPRAGE) scan was acquired for registration purposes (TR 1900 ms, TE 2.26 ms, FoV 250 mm, slice thickness 1mm, 176 slices per slab). Each participant's functional data were registered to their MPRAGE using boundary based registration (BBR) (Greve & Fischl, 2009) and then to MNI (Montreal Neurological Institute) stereotaxic space with 12 degrees of freedom using FSL's registration method via FLIRT. Alignment was visually confirmed for all 261 participants. 262 Data Availability. Data, materials, and preregistration documents can be

263 accessed at Open Science Framework.

264 **Statistical Analysis**

- 242 trials in each run. Participants completed two functional runs and each run lasted
- 243 5.33 minutes.
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- - 260

265	At the individual level, one general linear model (GLM) was defined for
266	each run of the MID task. The GLM included 10 multiple regressors for each
267	event type: anticipation of gains, anticipation of losses, anticipation of no money
268	at stake, feedback of gains, feedback of losses, feedback of no money at stake,
269	feedback of no money gained, feedback of no money lost, all targets, and all
270	fixation crosses. Magnitude of gains and losses were collapsed. Events were
271	modeled with a canonical (double-gamma) hemodynamic response function for a
272	duration from stimulus onset to stimulus offset. Temporal derivatives were
273	included as covariates of no interest for all regressors, allowing a better fit for the
274	whole model and reducing unexplained noise. Group-level analyses were
275	performed using the FMRIB Local Analysis of Mixed Effects (FLAME-1) module
276	in FSL (Beckmann, Jenkinson, & Smith, 2003). Outliers were de-weighted in the
277	multi-subject statistics using mixture modeling (Woolrich, 2008). Contrasts of
278	interest were anticipation of gains versus losses and feedback of gains versus
279	losses.
280	Based on previous meta-analytic findings (Knutson & Greer, 2008) and
281	our a priori hypotheses, analyses focused on activity in two bilateral brain regions
282	known to be activated in the MID task, the right and left NAcc and mPFC (Figure
283	2). Consistent with prior work, regions of interest (ROIs) were specified as 8mm ³

284 diameter spheres centered on predicted foci derived from the meta-analysis in

285 the Nacc (x = \pm 10, y = 10, z = -2) and mPFC (x = \pm 5, y = 45, z = 0) (Wu et al.,

286 2014). Foci are reported here as Talairach coordinates in conformity with the

287 original meta-analysis and were converted to MNI coordinates using the icbm2tal

transformation prior to analysis. Means of β-coefficients across the voxels of
each ROI (bilateral Nacc, bilateral mPFC) were extracted and exported into
SPSS (SPSS, Chicago, IL), and then regressed against psychological variables
of interest. The bilateral mPFC ROI was used for connectivity analyses. ROI
approaches constrain the number of statistical tests, thus reducing probability of
Type I error, and provide greater sensitivity for detecting associations with selfreport measures.

295 We also conducted psychophysiological interaction (PPI) analyses 296 (Friston et al., 1997) to examine functional connectivity between the Nacc and 297 mPFC. The standard-space bilateral Nacc mask was transformed to individual 298 functional space using FLIRT, and the average time course of all voxels within 299 the individual's mask were extracted using *fslmeants*. At the individual level, a 300 GLM was defined for each run of the MID task with the same 10 multiple 301 regressors from the ROI analyses. Additionally, the timeseries extracted from the 302 bilateral Nacc mask (physical regressor) was added to each participant's 303 individual-level GLM design matrix as well as the product between the Nacc 304 timeseries (physical regressor) and the task contrast of interest (psychological 305 regressor). The interaction term identified regions that covaried in a task-306 dependent manner with the Nacc. Two GLMs were defined separately for the 307 contrast of (1) anticipation of gains minus anticipation of losses, and (2) feedback 308 of gains minus feedback of losses. The psychological regressor was zero-309 centered and the physical regressor was demeaned. Two group-level analyses 310 were performed, one for each contrast, using FLAME-1 in FSL with outliers de-

weighted using mixture modeling. Means of β-coefficients across the voxels of
the bilateral mPFC ROI for each subject, representing connectivity between the
Nacc and mPFC, were extracted at the group level, exported into SPSS, and
then regressed against psychological variables of interest.

315 To analyze the relation between discrimination, election distress, and 316 depression, mediation (Model 4) was performed using Hayes' PROCESS macro 317 for SPSS (Hayes, 2013). A completely standardized index of mediation (ab_{cs}) 318 was calculated for comparability to direct effects (Preacher & Kelley, 2011). To 319 test the moderating effect of neural activation/connectivity, and social support, 320 moderated mediation (Model 14) was performed. Simple moderation (Model 1) 321 was used to plot significant moderation effects with the low value of the 322 moderator calculated as 1 SD below the mean and the high value calculated at 1 323 SD above the mean, consistent with procedures outlined by Aiken and West 324 (1991). Each analysis utilized a bootstrapping approach with 5000 samples, and 325 significance was determined at 95% bias-corrected confidence intervals (95% BC 326 CI). All variables were continuous and centered prior to analysis, and the 327 estimated effects are reported as unstandardized regression coefficients. All 328 analyses control for time from the election to testing. In all analyses, 329 discrimination was the predictor variable, election-related distress was the 330 mediator and depression symptomology was the outcome variable. Nacc 331 activation, Nacc-mPFC connectivity, and perceived social support (PSS-Fa, 332 PSS-Fr) were tested as moderators. 333 **Results**

224	Affected and control participants significantly differed on ago $t(59) = 2.44$ n
334	Anected and control participants significantly differed on age $t(36)$ –2.44, p
335	=0.018, M_{diff} =1.65, 95% CI [0.30, 3.00] and political affiliation (0 =
336	Democrat/liberal, 1 = not Democrat/liberal) $t(48) = 5.27$, $p < 0.001$, $M_{\text{diff}} = 0.60$,
337	95% CI [0.37, 0.83], but not on gender (0 = male, 1 = female) <i>t</i> (58) = -0.77, <i>p</i>
338	=0.45, ethnicity (0 = Caucasian, 1 = not Caucasian) $t(58)$ = -1.91, p =0.06, sexual
339	orientation (0 = straight, 1 = not straight) $t(58) = -1.99$, $p = 0.05$, or religion (0 =
340	Christian/Catholic, 1 = not Christian/Catholic) <i>t</i> (58) =36, <i>p</i> =0.72 (Table 1).
341	Males and females did not differ on age $t(58) = 0.85$, $p = 0.40$, ethnicity (0 =
342	Caucasian, 1 = not Caucasian) $t(58)$ =0.97, p =0.34, sexual orientation (0 =
343	straight, 1 = not straight) $t(58) = 0.23$, $p = 0.82$, religion (0 = Christian/Catholic, 1 =
344	not Christian/Catholic) $t(58) = -1.47$, $p = 0.15$, or political affiliation (0 =
345	Democrat/liberal, 1 = not Democrat/liberal) $t(48) = 1.65$, $p = 0.11$.
346	Psychological Outcomes
347	Descriptive statistics for variables of interest are reported in Table 3.
348	Supporting our first hypothesis, independent samples <i>t</i> -test revealed significant
349	differences between the affected (M =26.00) and control (M =8.95) groups with
350	regard to overall election-related distress $t(58) = -4.18$, $p < 0.001$, $M_{\text{diff}} = -17.05$,
351	95%CI [-8.88, -25.22], such that affected individuals reported significantly greater
352	election distress than control individuals. Affected participants reported
353	significantly greater election distress than control participants for each of the
354	intrusion, avoidance, and hyperarousal subscales. Election distress, as
355	measured by the Impact of Events Scale, was not related to pre-screening affect
356	rating demonstrating nuance in the manifestation of distress even among those

who felt similarly negative about the election result. The groups also significantly differed with regard to discrimination t(58) = -2.30, p = 0.025, $M_{diff} = -4.78$, 95%CI [-8.94, -0.61], such that affected individuals (*M*=13.18) reported significantly more everyday discrimination than control individuals (*M*=8.40).

361 The groups differed as to depression symptoms t(58) = -2.13, p = 0.038, *M*_{diff} = -5.13, 95%CI [-9.95, -0.30], such that affected individuals (*M*=12.98) 362 363 reported significantly greater depressive symptoms than control individuals 364 (M=7.85). Using a recommended cut-off point of ≥ 20 (Vilagut et al., 2016), 1 (0.05%) control individual and 9 (22.5%) affected individuals reported clinical 365 366 depression. Notably, and supporting our second and third hypotheses, election-367 related distress and discrimination were significantly correlated with depression 368 symptoms only in the affected group, discrimination and depression r(40) = .51, p 369 =.001, election distress and depression r(40) = .63, p < .001 (Table 4). 370 **Discrimination, Election Distress, and Depression** 371 To test whether, in the immediate aftermath of the election, election-372 related distress would mediate the association between discrimination 373 experiences and depression, we conducted mediation analyses using PROCESS 374 Model 4. Analyses included discrimination as the predictor, election-related 375 distress as the mediator, and depression as the outcome, and controlled for time 376 since the election. For the affected group, results revealed that the indirect effect of discrimination on depression through election distress was significant, R^2 = 377 378 .50, *F*(3, 36) = 11.84, *p* < 0.001; indirect effect 0.28, *SE* = .17, 95% BC CI 379 [0.0538, 0.7702] (Figure 3). The completely standardized index of mediation (abcs

380	= 0.21) was 0.21 SE = .01, 95% BC CI [0.0545, 0.4376], 51% the size of the
381	remaining direct effect. In other words, over half of the association between
382	discrimination and depression for the affected group was accounted for by
383	election distress. Mediation was not significant in the control group, R^2 = .10, $F(3,$
384	16) = 1.34, <i>p</i> = 0.30; indirect effect -0.001, <i>SE</i> = .05, 95% BC CI [-0.1248,
385	0.0993], so we did not test moderation in the control group.
386	Ventral Striatal Activation and Election-Related Depression
387	During the MID task, Nacc activation in response to feedback (M_{affected}
388	=11.39; M_{control} = 8.16) did not significantly differ between groups $t(58)$ = -0.15, p
389	= .881, <i>M</i> _{diff} = -3.23, 95%CI [-46.32, 39.85] (Figure 4A). Nacc activation in
390	response to anticipation ($M_{affected}$ = -3.24; $M_{control}$ = 8.32) did not significantly differ
391	between groups $t(58) = 1.02$, $p = 0.310$, $M_{\text{diff}} = 11.57$, 95%CI [-11.05, 34.19].
392	To test our fourth hypothesis that Nacc activation would moderate
393	depression related to election distress, we tested moderated mediation using
394	PROCESS Model 14 in the affected group controlling for time from the election
395	with discrimination as the predictor, election-related distress as the mediator,
396	depression as the outcome, and Nacc activation during anticipation and feedback
397	for the contrast of reward versus loss as moderators. Results revealed
398	moderated mediation was significant for Nacc activation during feedback of
399	reward versus loss $R^2 = 0.59$, $F(5, 34) = 9.96$, $p < 0.001$; index of moderated
400	mediation -0.0033, SE = .002, 95% BC CI [-0.0085, -0.0006] (Figure 4B). Nacc
401	activation significantly moderated the association between election distress and
402	depression such that individuals with higher Nacc activation did not show a

403 significant relation between distress and depression but individuals with average 404 or low Nacc did show a significant relation (Figure 4C). To assess whether this 405 moderation was specific to the association between election distress and 406 depression, we tested whether Nacc activation moderated the association 407 between discrimination and election distress or the association between 408 discrimination and depression and neither of these paths were significant. 409

Functional Connectivity and Election Distress

410 We conducted PPI analyses to examine whether functional coupling 411 between the Nacc and mPFC moderated election-related depression for the 412 affected group. Weaker connectivity in this circuitry has been identified as a 413 potential phenotype of vulnerability to long-term negative outcomes following 414 stressful life events (Furman et al., 2011; Salier et al., 2008). Nacc-mPFC connectivity for anticipation of reward versus loss ($M_{\text{affected}} = 0.002$; $M_{\text{control}} = 0.03$); 415 416 t(58) = 0.30, p = 0.77, M_{diff} =0.03, 95%CI [-0.16, 0.22] did not significantly differ 417 between groups (Figure 5A). Nacc-mPFC connectivity for feedback of reward > 418 loss also did not differ between groups ($M_{affected} = -0.030$; $M_{control} = -0.35$); t(58) = -419 1.41, *p* = 0.16, *M*_{diff} =-0.32, 95%CI [-0.78, 0.13]. 420 Confirming our fourth hypothesis, moderated mediation was significant for

Nacc-mPFC connectivity during anticipation of reward versus loss $R^2 = 0.58$, F(5, -1)421 422 34) = 9.58, p < 0.001; index of moderated mediation -0.48, SE = .35, 95% BC CI 423 [-1.2878, -0.0117] (Figure 5B). Greater connectivity between the Nacc and mPFC 424 during anticipation of rewards versus anticipation of losses significantly

425 moderated the association between election distress and depression such that

426 affected individuals showed a more attenuated relation between distress and 427 depression as connectivity strengthened (Figure 5C). To assess whether this 428 moderation was specific to the association between election distress and 429 depression, we tested whether Nacc-mPFC connectivity moderated the 430 association between discrimination and election distress or the association 431 between discrimination and depression and neither of these paths were 432 significant.

433 Post-Hoc fMRI Analyses

434 To disaggregate the contributions of reward and loss, we conducted post-435 hoc moderation analyses (PROCESS Model 1) using the contrasts of reward 436 versus no money at stake and loss versus no money at stake for both NAcc 437 activation and NAcc-mPFC connectivity. Moderation analyses, controlling for 438 time from the election to testing, indicated that the association between election 439 distress and depression was moderated by NAcc activation during feedback, R^2 = .51, F(4, 35) = 9.15, p < .001, interaction B = -0.002, t(35) = -2.13, p = .04, and 440 NAcc-mPFC connectivity during anticipation, $R^2 = .51$, F(4, 35) = 9.11, p < .001, 441 442 interaction B = -0.94, t(35) = -2.24, p = .03, for the reward versus no money at 443 stake contrast, but not loss versus no money at stake. Those with greater (+1 444 SD) NAcc activation during feedback to reward versus no money at stake did not 445 show an association between election distress and depression and those with 446 greater (+1 SD) NAcc-mPFC connectivity during anticipation of reward versus no 447 money at stake showed an attenuated association between election distress and 448 depression. For the loss versus no money at stake contrasts, NAcc activation

449	was not a significant moderator, $R^2 = .47$, $F(4, 35) = 7.74$, $p < .001$, interaction B
450	= -0.001, $t(35)$ = -1.13, p = .27, nor was NAcc-mPFC connectivity, R^2 = .42, $F(4, -1)$
451	35) = 6.27, <i>p</i> < .001, interaction <i>B</i> = 0.06, <i>t</i> (35) = 0.33, <i>p</i> = .74.
452	Correlational analyses indicated beta values for the feedback (NAcc
453	activation) contrast of reward versus loss were positively correlated with reward
454	versus no money at stake, $r(40) = .37$, $p = .02$, and negatively correlated with
455	loss versus no money at stake, $r(40) =58$, $p < .001$. For the anticipation (NAcc-
456	mPFC connectivity) contrast betas for reward versus loss were positively
457	correlated with reward versus no money at stake, $r(40) = .58$, $p < .001$, and
458	(marginally significant) negatively correlated with loss versus no money at stake,
150	r(40) = -29 $p = 07$
437	r(40) =23, p = .07.
460	Social Support and Election Distress
460 461	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would
460 461 462	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would moderate negative outcomes related to election distress, we tested moderated
460 461 462 463	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would moderate negative outcomes related to election distress, we tested moderated mediation for the affected group with family and friend support as moderators.
460 461 462 463 464	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would moderate negative outcomes related to election distress, we tested moderated mediation for the affected group with family and friend support as moderators. Perceptions of family support ($M_{affected} = 13.83$; $M_{control} = 12.60$); $t(58) = -0.80$, $p =$
 460 461 462 463 464 465 	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would moderate negative outcomes related to election distress, we tested moderated mediation for the affected group with family and friend support as moderators. Perceptions of family support ($M_{affected} = 13.83$; $M_{control} = 12.60$); $t(58) = -0.80$, $p = 0.43$, $M_{diff} = -1.23$, 95%CI [-4.28, 1.83] support did not significantly differ between
460 461 462 463 464 465 466	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would moderate negative outcomes related to election distress, we tested moderated mediation for the affected group with family and friend support as moderators. Perceptions of family support ($M_{affected} = 13.83$; $M_{control} = 12.60$); $t(58) = -0.80$, $p =$ 0.43, $M_{diff} = -1.23$, 95%CI [-4.28, 1.83] support did not significantly differ between groups (Figure 6A). Perceptions of friend support ($M_{affected} = 16.98$; $M_{control}$
460 461 462 463 464 465 466 467	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would moderate negative outcomes related to election distress, we tested moderated mediation for the affected group with family and friend support as moderators. Perceptions of family support ($M_{affected} = 13.83$; $M_{control} = 12.60$); $t(58) = -0.80$, $p =$ 0.43, $M_{diff} = -1.23$, 95%CI [-4.28, 1.83] support did not significantly differ between groups (Figure 6A). Perceptions of friend support ($M_{affected} = 16.98$; $M_{control} =$ $= 14.95$); $t(58) = -1.62$, $p = 0.11$, $M_{diff} = -2.03$, 95%CI [-4.53, 0.48] support did not
460 461 462 463 464 465 466 467 468	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would moderate negative outcomes related to election distress, we tested moderated mediation for the affected group with family and friend support as moderators. Perceptions of family support ($M_{affected} = 13.83$; $M_{control} = 12.60$); $t(58) = -0.80$, $p =$ 0.43, $M_{diff} = -1.23$, 95%CI [-4.28, 1.83] support did not significantly differ between groups (Figure 6A). Perceptions of friend support ($M_{affected} = 16.98$; $M_{control} =$ $= 14.95$); $t(58) = -1.62$, $p = 0.11$, $M_{diff} = -2.03$, 95%CI [-4.53, 0.48] support did not significantly differ between groups. Family support and friend support were
 460 461 462 463 464 465 466 467 468 469 	Social Support and Election Distress To test our fifth hypothesis that perceptions of social support would moderate negative outcomes related to election distress, we tested moderated mediation for the affected group with family and friend support as moderators. Perceptions of family support ($M_{affected} = 13.83$; $M_{control} = 12.60$); $t(58) = -0.80$, $p =$ 0.43, $M_{diff} = -1.23$, 95%CI [-4.28, 1.83] support did not significantly differ between groups (Figure 6A). Perceptions of friend support ($M_{affected} = 16.98$; $M_{control} =$ $= 14.95$); $t(58) = -1.62$, $p = 0.11$, $M_{diff} = -2.03$, 95%CI [-4.53, 0.48] support did not significantly differ between groups. Family support and friend support were significantly correlated in both groups (Table 4). Family support and friend

471	Results revealed moderated mediation was not significant. However, simple
472	moderation (PROCESS Model 1) demonstrated that family support significantly
473	moderated the association between election distress and depression, R^2 = .58,
474	<i>F</i> (4, 35) = 12.14, <i>p</i> < .001; interaction -0.03, <i>SE</i> = .01, <i>t</i> (35) = -2.33, <i>p</i> = .03
475	(Figure 6B), such that individuals with higher family support did not show a
476	significant relation between distress and depression, $B = 0.16$, $t(35) = 1.61$, $p =$
477	.12, but individuals with average $B = 0.31$, $t(35) = 4.65$, $p < .001$ or low family
478	support did show a significant relation, $B = 0.46$, $t(35) = 5.67$, $p < .001$ (Figure
479	6C). Perceptions of friend support did not significantly moderate the association
480	between election distress and depression.
481	Discussion
482	The current findings elucidate reactivity of mesolimbic circuitry as an
483	individual difference that explains variance in outcomes following distress related
484	to the 2016 U.S. presidential election. For individuals who felt affected by the
485	election, greater election distress was related to greater depression symptoms,
486	but this association was not present for the control group. Election distress
487	explained 51% of the association between perceived discrimination and

488 depression, and activation and connectivity in frontostriatal circuitry moderated

489 links between election distress and depression, but not discrimination and

490 psychological symptoms in the affected group. Greater activation in the NAcc

491 and stronger connectivity between the NAcc and mPFC were associated with

492 less depression for affected individuals even under conditions of high election-

493 related distress.

494	According to the Center for Disease Control, a traumatic event is when an
495	event causes a lot of stress to the individual (CDC). We did not clinically assess
496	whether the 2016 U.S. presidential election manifested as a trauma for affected
497	individuals. However, our results demonstrated links between election-related
498	distress and depression, which has been commonly identified as psychological
499	problems following trauma (CDC; Schumm et al., 2006). Additionally, we
500	identified activity in neural circuitry related to reward and family support as
501	moderators of these links. These moderators have been identified as sources of
502	resiliency following trauma (Haden et al., 2007; Ozbay et al., 2007). Although
503	political events are not typically characterized as traumatic, many of the concerns
504	expressed by the affected participants in this study (Table 2) are similar to noted
505	hallmarks of trauma (e.g., fear, helplessness). It is important to note that these
506	indicators were only present for the affected group and that the control group
507	evinced significantly less distress in response to the election as well as fewer
508	depression symptoms compared to the affected group.
509	Only 5 (12.5%) of the affected participants in our study reported personally
510	experiencing election-related discrimination following the election (e.g., having
511	people shout "build that wall" at them). However, 32 (80%) of the affected
512	participants reported concern for family, friends, and their community following
513	the election (e.g., Table 2). These data provide evidence that individuals can
514	experience distress and negative psychological outcomes related to witnessing
515	or fearing discrimination against others with whom they identify (Comas-Díaz,

516 2016). Perceptions of everyday discrimination may also influence the way

517 individuals internalize these vicarious experiences of discrimination against 518 others. Our data suggest that in the immediate aftermath of the election, a large 519 portion of the relation between everyday discrimination experiences and 520 depression was accounted for by election distress. This study expands existing 521 literature to consider shared identity between direct victims and removed 522 members of the same group, and calls for treatment and intervention efforts to 523 include not only those who directly experience discrimination but also those who 524 identify with a targeted group. 525 The Role of Mesolimbic Circuitry on Election-related Distress

526 Prior research has shown that that individual differences in the 527 engagement of mesolimbic circuitry contribute to individual differences in 528 psychological outcomes. We extend this research with the observation that this 529 effect is similar following acute distress related to the election in a non-clinical 530 population. What is particularly novel is the knowledge gained about ongoing 531 distress that occurs on a population level across an important epoch in this 532 country's history. For individuals who feel socially and politically marginalized, 533 social support is powerful. By showing that social support and reward systems 534 dampen depressive symptoms, this research highlights two powerful tools that 535 can mitigate election-related distress. Unlike previous research on related 536 guestions, the affected individuals in our sample were not only reporting their 537 distress from a past, discrete event but also their ongoing and future distress 538 based on the perception that the event (the election) would personally affect 539 them in the future. Alterations in the functioning of mesolimbic circuitry have been

540 previously identified as a marker of vulnerability for clinical populations 541 diagnosed with major depressive disorder (Furman et al., 2011; Young et al., 542 2016). Our data suggests that mesolimbic circuitry may be more protective 543 against depressive symptoms in response to acute (i.e. election-related) versus 544 chronic (i.e. discrimination-related) distress. Prior work on trauma and reward-545 related activation has not explored prior experiences of ongoing trauma like 546 discrimination to disentangle the potentially distinct role that mesolimbic circuitry 547 has in acute versus chronic trauma/distress. Although the current study is not 548 positioned to definitively do so either, our findings may serve as a launching pad 549 upon which to pursue such questions. 550 Animal research provides a biological basis for the finding that reactivity in 551 this circuitry has critical effects on behavioral manifestations of stress. 552 Corticotropin releasing factor (CRF) released in response to acute stressors acts 553 on the NAcc to increase dopamine release, resulting in motivational behavior 554 (Peciña, Schulkin, & Berridge, 2006). However, severe stress eliminates this 555 effect such that CRF no longer produces appetitive responses to arousing stimuli 556 (Lemos et al., 2012). This loss in regulation of motivational behavior following

557 stress underlies anhedonia, which is a key symptom in major depressive disorder

558 (APA, 2013; Gorwood, 2008). Similarly, elevated biomarkers of inflammation in

559 patients with major depressive disorder has been linked to decreased

560 connectivity in frontostriatal circuitry, which in turn related to increased anhedonia561 (Felger et al., 2016).

562

Social Support Moderates Election Distress and Depression

563	Perceived support from family also moderated the relation between
564	election distress and negative outcomes, supplementing prior work identifying
565	family support as an important factor in healthy coping following distressing
566	events (Kraaij et al., 2003; Marroquín, 2011; Oliva et al., 2009). Perceived
567	support from friends was not a significant moderator for this sample, potentially
568	identifying a more robust connection between family support and the mental
569	health of young adults (Guassi-Moreira & Telzer, 2015; Mattanah, Lopez,
570	Govern, 2011). It is also possible that shared identity with family calls for greater
571	reliance on family as opposed to friends in times of identity-related discrimination
572	(Mulvaney-Day, Alegría, & Sribney, 2007). Prior animal research indicates
573	neurobiological factors such as oxytocin receptors in the NAcc in facilitating
574	social attachment and reward experiences following positive social interactions
575	(Dölen et al., 2013; Insel & Shapiro,1992). Human neuroimaging studies have
576	also shown greater ventral striatal activation when providing support to a loved-
577	one (Inagaki & Eisenberger, 2012; Telzer et al., 2010). However, indices of social
578	support were not correlated with neural activation or connectivity in this sample,
579	perhaps due to the non-social nature of the task used to elicit NAcc activation in
580	this study. Our findings suggest that neurobiological and social resources may
581	offer two distinct avenues of protection against deleterious psychological
582	outcomes rather than accounting for divergent outcomes in the same resilient
583	individuals. Notably, neural activation and perceptions of social support did not
584	significantly differ for the affected and control groups. Rather than representing
585	indices of pathology, these biological and social factors appear to represent

587 negative psychological symptoms.

588 Limitations and Future Directions

589 These findings should be considered in light of study limitations. We did 590 not obtain measures of depression symptoms or discrimination experiences prior 591 to the election and thus we could not determine a causal pathway. However, past 592 longitudinal work suggests poor mental health does not predict discrimination 593 perceptions. No participants in this study reported prior diagnoses of 594 psychological disorders, suggesting our results were not influenced by clinical 595 symptoms prior to the election. Although we chose a timeframe of four months 596 post-election to capitalize on the immediate aftermath of the election results, it is 597 possible that this timeframe was too short to manifest between-group neural 598 differences. A longitudinal study is needed to determine whether neural circuitry 599 in affected individuals will demonstrate altered activation in response to 600 continued election-related distress. We identified neural and social contributors of 601 individual differences in psychological outcomes related to distressing events, 602 however election-related distress differed between the groups in our study and 603 not all affected participants reported high distress. Future work should explore 604 mechanisms that may lead to these different affective manifestations of common 605 experiences. 606 Conclusions

607 Our findings elucidate pathways through which political events influence 608 well-being, yielding insights into neural mechanisms contributing to individual

609	differences in responses to distressing events in a non-clinical population. We
610	demonstrate resiliency following distressing shifts in political climate for
611	individuals who exhibit robust responsivity in the brain's reward circuitry. Our
612	findings compliment animal research highlighting the vulnerability of the
613	mesolimbic dopamine system to stressful experiences. We also provide empirical
614	evidence of psychological manifestations of distress following shifts in political
615	climate, which has implications for a vast number of individuals.
616	

617	References
618	Admon R, Lubin G, Rosenblatt JD, Stern O, Kahn I, Assaf M, Hendler T (2013)
619	Imbalanced neural responsivity to risk and reward indicates stress
620	vulnerability in humans. Cereb Cortex 23: 28-35.
621	Aiken LS, West SG (1991) Multiple regression: Testing and interpreting
622	interactions. Newbury Park, CA: Sage.
623	(APA) American Psychiatric Association (2013) Diagnostic and Statistical Manual
624	of Mental Disorders. 5 th ed. Arlington, VA: American Psychiatric
625	Publishing.
626	Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear modeling
627	for group analysis in fMRI. NeuroImage 20: 1052-1063.
628	(CDC) Center for Disease Control, Coping with a Traumatic Event. (United
629	States Department of Health and Human Services, Center for Disease
630	Control; https://www.cdc.gov/masstrauma/factsheets/public/coping.pdf).
631	Charuvastra A, Cloitre M (2008) Social bonds and posttraumatic stress disorder.
632	Annu Rev Psychol 59: 301-328.
633	Comas-Díaz L (2016) Racial trauma recovery: A race-informed therapeutic
634	approach to racial wounds. The cost of racism for people of color:
635	Contextualizing experiences of discrimination. Cultural, racial, and ethnic
636	psychology book series, (Alvarez AN, Liang CTH, Neville HA eds), pp
637	249-272. Washington DC: APA.

638	Dölen G, Darvishzadeh A, Huang KW, Malenka, R (2013) Social reward requires
639	coordinated activity of accumbens oxytocin and 5HT. Nature 501: 179-
640	184.
641	Eisenberger NI, Taylor SE, Gable SL, Hilert CJ, Lieberman MD (2007) Neural
642	pathways link social support to attenuated neuroendocrine stress
643	responses. NeuroImage 35: 1601-1612.
644	Feder A, Nestler EJ, Charney DS (2009) Psychobiology and molecular genetics
645	of resilience. Nature 10: 446-457.
646	Felger JC, Li Z, Haroon E., Woolwine BJ, Jung MY, Hu X, Miller AH (2016)
647	Inflammation is associated with decreased functional connectivity within
648	corticostriatal reward circuitry in depression. Mol Psychiatry 21: 1358-1365
649	Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D,
650	Katovich K, Mehta H, Patenaude B, Ramakrishnan C, Kalanithi P, Etkin A,
651	Knutson B, Glover GH, Deisseroth K. (2016) Prefrontal cortical regulation
652	of brainwide circuit dynamics and reward-related behavior. Science 351:
653	aac9698.
654	Fingerman KL, Cheng YP, Tighe L, Birditt KS, Zarit S (2012) Relationships
655	between young adults and their parents. Early adulthood in a family
656	context, pp 59-85. New York, NY: Springer.
657	Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. (1997)
658	Psychophysiological and modulatory interactions in neuroimaging.
659	NeuroImage 6: 218-229.

660	Furman DJ, Hamilton JP, Gotlib IH (2011) Frontostriatal functional connectivity in
661	major depressive disorder. Biol Mood Anxiety Disord 1: 1-11.
662	Gold J (2017) Post-election stress disorder' strikes on both sides (CNN;
663	http://edition.cnn.com/2017/02/20/health/post-election-stress-partner/).
664	Gorwood P (2008) Neurobiological mechanisms of anhedonia. Dialogues Clin
665	Neurosci 10: 291-299.
666	Greve DN, Fischl B (2009) Accurate and robust brain image alignment using
667	boundary based registration. NeuroImage 48: 63-72.
668	Gross N (2016) Are Americans Experiencing Collective Trauma? (New York
669	Times; https://www.nytimes.com/2016/12/16/opinion/sunday/are-
670	americans-experiencing-collective-trauma.html).
671	Guassi-Moreira JF, Telzer EH (2015) Changes in family cohesion and links to
672	depression during the college transition. J Adolesc 43: 72-82.
673	Haden SC, Scarpa A, Jones RT, Ollendick TH (2007) Posttraumatic stress
674	disorder symptoms and injury: The moderating role of perceived social
675	support and coping for young adults. Pers Individ Dif 42: 1187-1198.
676	Hanson JL, Albert D, Iselin AMR, Carré JM, Dodge KA, Hariri AR (2016)
677	Cumulative stress in childhood is associated with blunted reward-related
678	brain activity in adulthood. Soc Cogn Affect Neurosci 11: 405-412.
679	Hayes AF (2013) Introduction to mediation, moderation, and conditional process
680	analysis. A regression-based approach. New York, NY: Guildford Press.

681	Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (2003) Social support and
682	oxytocin interact to suppress cortisol and subjective responses to
683	psychological stress. Biol Psychiatry 54: 1389-1398.
684	Inagaki TK, Eisenberger NI (2012) Neural correlates of giving support to a loved
685	one. Psychosom Med 74: 3-7.
686	Insel TR, Shapiro LE (1992). Oxytocin receptor distribution reflects social
687	organization in monogamous and polygamous voles. Proc Natl Acad Sci
688	89: 5981-5985.
689	King LA, King DW, Leskin GA, Foy DW (1995) The Los Angeles Symptom
690	Checklist: A self-report measure of posttraumatic stress disorder.
691	Assessment 2: 1-17.
692	Kraaij V, Garnefski N, de Wilde EJ, Dijkstra A, Gebhardt W, Maes S, ter Doest L
693	(2003) Negative life events and depressive symptoms in late adolescence:
694	Bonding and cognitive coping as vulnerability factors? J Youth Adolesc 32:
695	185-193.
696	Knutson B, Westdorp A, Kaiser E, Hommer D (2000) FMRI visualization of brain
697	activity during a monetary incentive delay task. NeuroImage 12: 20-27.
698	Knutson B, Greer SM (2008) Anticipatory affect: Neural correlates and
699	consequences for choice. Philos Trans R Soc B Biol Sci 363: 3772-3786.
700	Kraaij V, Garnefski N, de Wilde EJ, Dijkstra A, Gebhardt W, Maes S, ter Doest L
701	(2003) Negative life events and depressive symptoms in late adolescence:
702	Bonding and cognitive coping as vulnerability factors? J Youth Adolesc 32:
703	185-193

704	Lemos JC, Wanat MJ, Smith JS, Reyes BAS, Hollon NG, Van Bockstaele EJ,
705	Chavkin C, Phillips PEM (2012) Severe stress switches CRF action in the
706	nucleus accumbens from appetitive to aversive. Nature 490: 402-406.
707	Marroquín B (2011) Interpersonal emotion regulation as a mechanism of social
708	support in depression. Clin Psychol Rev 31: 1276-1290.
709	Mattanah JF, Lopez FG, Govern JM (2011) The contributions of parental
710	attachment bonds to college student development and adjustment: A
711	meta-analytic review. J Couns Psychol 58: 565-596.
712	Mulvaney-Day NE, Alegría M, Sribney W (2007) Social cohesion, social support,
713	and health among Latinos in the United States. Soc Sci Med 64: 477-495.
714	Nikolova YS, Bogdan R, Brigidi BD, Hariri AR (2012) Ventral striatum reactivity to
715	reward and recent life stress interact to predict positive affect. Biol
716	Psychiatry 72: 157-163.
717	Oliva A, Jiménez JM, Parra Á (2009) Protective effect of supportive family
718	relationships and the influence of stressful life events on adolescent
719	adjustment. Anxiety Stress Coping 22: 137-152.
720	Ozbay F, Johnson DC, Dimoulas E, Morgan III CA, Charney D, Southwick S
721	(2007) Social support and resilience to stress. Psychiatry 4: 35-40.
722	Pascoe EA, Richman LS (2009) Perceived discrimination and health: A meta-
723	analytic review. Psychol Bull 135: 531-554.
724	Panagioti M, Gooding PA, Taylor PJ, Tarrier N (2014) Perceived social support
725	buffers the impact of PTSD symptoms on suicidal behavior: Implications
726	into suicide resilience research. Compr Psychiatry 55: 104-112.

727	Peciña S, Schulkin J, Berridge KC (2006) Nucleus accumbens corticotropin-
728	releasing factor increases cue-triggered motivation for sucrose reward:
729	Paradoxical positive incentive effects in stress? BMC Biol 4: 8.
730	Prati G, Pietrantoni L (2009) Optimism, social support, and coping strategies as
731	factors contributing to posttraumatic growth: A meta-analysis. J Loss
732	Trauma 5: 364-388.
733	Preacher KJ, Kelley K (2011) Effect size measures for mediation models:
734	Quantitative strategies for communicating indirect effects. Psychol
735	Methods 16: 93-115.
736	Procidano M, Heller K (1983) Measures of perceived social support from friends
737	and from family: Three validation studies. Am J Community Psychol 11: 1-
738	24.
739	Radloff LS (1977) The CES-D scale: A self report depression scale for research
740	in the general population. Appl Psychol Meas 1: 385-401.
741	Reeves J (2016) Many minorities frightened of what a Trump presidency means
742	for them (PBS Newshour; http://www.pbs.org/newshour/rundown/many-
743	minorities-frightened-trump-presidency-means/).
744	Salier U, Robinson S, Fischmeister FP, König D, Oppenauer C, Lueger-Schuster
745	B, Moser E, Kryspin-Exner I, Bauer H. (2008) Altered reward processing in
746	the nucleus accumbens and mesial prefrontal cortex of patients with
747	posttraumatic stress disorder. Neuropsychologia 46: 2836-2844.
748	Schumm JA, Briggs-Phillips M, Hobfoll SE, (2006) Cumulative interpersonal
749	traumas and social support as risk and resiliency factors in predicting

750	PTSD and depression among inner-city women. J Trauma Stress 19: 825-
751	836.
752	Skuse DH, Gallagher L (2009) Dopaminergic-neuropeptide interactions in the
753	social brain. Trends Cogn Sci 13: 27-35.
754	(SPLC) Southern Poverty Law Center (2016) Ten days after: Harassment and
755	intimidation in the aftermath of the election. (Southern Poverty Law
756	Center;
757	https://www.splcenter.org/sites/default/files/com_hate_incidents_report_fin
758	al.pdf)
759	Stoler DR (2016) Post Election Anxiety and Depression. (Psychology Today;
760	https://www.psychologytoday.com/blog/the-resilient-brain/201612/post-
761	election-anxiety-and-depression).
762	Telzer EH, Masten CL, Berkman ET, Lieberman MD, Fuligni AJ (2010) Gaining
763	while giving: An fMRI study of the rewards of family assistance among
764	White and Latino youth. Soc Neurosci 5: 508-518.
765	Trainor BC (2011) Stress responses and the mesolimbic dopamine system:
766	Social contexts and sex differences. Horm Behav 60: 457-469.
767	Vilagut G, Forero CG, Barbaglia G, Alonso J (2016) Screening for depression in
768	the general population with the Center for Epidemiologic Studies
769	Depression (CES-D): A systematic review with meta-analysis. PLoS ONE
770	11: e0155431.

771	Weiss DS (2007) The Impact of Events Scale-Revised. Assessing Psychological
772	Trauma and PTSD: A Practitioner's Handbook, Second Edition, (Wilson
773	JP, Keane M eds), pp 168-189. New York, NY: Guilford Press.
774	Williams DR, Yu Y, Jackson JS, Anderson NB (1997) Racial differences in
775	physical and mental health: Socioeconomic status, stress, and
776	discrimination. J Health Psychol 2: 335-351.
777	Woolrich M (2008) Robust group analysis using outlier inference. NeuroImage
778	41: 286-301.
779	Wu CC, Samanez-Larkin GR, Katovich K, Knutson B (2014) Affective traits link to
780	reliable neural markers of incentive anticipation. NeuroImage 84: 279-289.
781	Young CB, Chen T, Nusslock R, Keller J, Schatzberg AF, Menon V. (2016)
782	Anhedonia and general distress show dissociable ventromedial prefrontal
783	cortex connectivity in major depressive disorder. Transl Psychiatry 6:
784	e810.
785	

Figure Legends

787 788	Figure 1. Representative MID task trials. During each trial, participants first saw
789	a cue indicating a potential gain or loss of different amounts (large: \pm \$5.00, small:
790	\pm \$0.20) or a cue indicating "no money at stake" (anticipation phase). Next,
791	participants saw a jittered fixation cross as they waited for a rapidly presented
792	target to which they were instructed to respond with a button press. Finally,
793	participants saw the outcome of their action and their success at responding
794	while the target was on the screen.
795	Figure 2. Bilateral 8mm ³ NAcc ROI (yellow, $x = \pm 10$, $y = 10$, $z = -2$) and mPFC
796	ROI (green, x = \pm 5, y = 45, z = 0) based on meta-analytic findings (Knutson &
797	Greer, 2008).
798	Figure 3. Election distress significantly mediated the association between
799	discrimination and depression symptoms for the affected group. Analyses utilized
800	a bootstrapping approach with 5000 samples, and significance was determined
801	at 95% bias-corrected confidence intervals. All variables were continuous and
802	centered prior to analysis, and the estimated effects are reported as
803	unstandardized regression coefficients.
804	Figure 4. NAcc activation significantly moderated the link between election
805	distress and depression symptoms for affected individuals. Analyses utilized a
806	bootstrapping approach with 5000 samples, and significance was determined at
807	95% bias-corrected confidence intervals. All variables were continuous and
808	centered prior to analysis, and the estimated effects are reported as
809	unstandardized regression coefficients. (A) Distribution by group of NAcc

810	activation to Feedback Reward > Loss extracted from the bilateral NAcc ROI (x =
811	\pm 10, y = 10, z = -2, 8mm ³ spheres). Neural activation did not differ by group. (B)
812	Significant moderated mediation analysis. Election distress significantly mediated
813	the relation between discrimination and depression symptoms. NAcc activation
814	significantly moderated the link between election distress and depression
815	symptoms for affected individuals. (C) Simple slopes analyses showing that high
816	NAcc activation ameliorated the relation between election distress and
817	depression symptoms for affected individuals.
818	Figure 5. NAcc-mPFC connectivity significantly moderated links between
819	election distress and depression symptoms for affected individuals. Analyses
820	utilized a bootstrapping approach with 5000 samples, and significance was
821	determined at 95% bias-corrected confidence intervals. All variables were
822	continuous and centered prior to analysis, and the estimated effects are reported
823	as unstandardized regression coefficients. (A) Distribution by group of NAcc-
824	mPFC connectivity to Anticipation of Reward > Loss from the bilateral mPFC ROI
825	(x = \pm 5, y = 45, z = 0, 8mm ³ spheres). Neural connectivity did not differ by group.
826	(B) Significant moderated mediation analysis. Election distress significantly
827	mediated the relation between discrimination and depression symptoms. NAcc-
828	mPFC connectivity significantly moderated links between election distress and
829	depression symptoms for affected individuals. (C) Simple slopes analyses
830	showing that high NAcc-mPFC connectivity ameliorated the relation between
831	election distress and depression symptoms for affected individuals.

832	Figure 6. Family support significantly moderated links between election distress
833	and depression symptoms for affected individuals. Analyses utilized a
834	bootstrapping approach with 5000 samples, and significance was determined at
835	95% bias-corrected confidence intervals. All variables were continuous and
836	centered prior to analysis, and the estimated effects are reported as
837	unstandardized regression coefficients. (A) Distribution by group of family
838	support. Family support did not differ by group. (B) Significant moderation
839	analysis. Family support significantly moderated links between election distress
840	and depression symptoms for affected individuals. (C) Simple slopes analyses
841	showing that high family support ameliorated the relation between election
842	distress and depression symptoms for affected individuals.
843	

JNeurosci Accepted Manuscript

Controlling for time elapsed from the election to testing

p < 0.05, p < 0.01, p < 0.001

Election Distress

Election Distress

JNeurosci Accepted Manuscript

Α

Table TA. Demourablies for the full satisfies $(N = 0)$	Table 1A.	Demographics	for the full	sample	(N = 60)).
--	-----------	--------------	--------------	--------	----------	----

Age	Age% of % o	iGend6een nnle	Ider of % of SameSemi	Et Et loity ity	%0%/of Sa®andania	Secuaal Minetaaihen	‱ooff SSammadae	Religion	% & fof Po	Ribitialcal	% 8% for f
(years			oo =		Cubipito		Cataling the C		Cuomina	D	
18	15.0	Female	66.7	Asian	30.0	Straight	81.7	Catholic	25.0	Democrat	46.7
19	15.0	Male	33.3	Hispanic/Latino	26.7	Bisexual	8.3	Christian	23.3	Republican	3.3
20	31.7			Caucasian	21.7	Gay	3.3	Agnostic	20.0	Independent	8.3
21	6.7			African American	15.0	Queer	5.0	Atheist	16.7	Libertarian	1.7
22	16.7			Middle Eastern	6.7	A-sexual	1.7	Hindu	3.3	Liberal	8.3
23	3.3							Islam	3.3	Conservative	9 1.7
24	3.3							Buddhist	1.7	None	13.3
25	1.7							Other	6.7	No response	16.7
26	1.7										
28	3.3										
30	1.7										

Table 1B. Demographics for the control group (N = 20).

18	5.0	Female	60.0	Asian	45.0	Straight	95.0	Catholic	20.0	Democrat	10.0
19	15.0	Male	40.0	Hispanic/Latino	10.0	Bisexual	5.0	Christian	35.0	Republican	10.0
20	15.0			Caucasian	35.0	Gay	0.0	Agnostic	15.0	Independent	15.0
21	10.0			African American	5.0	Queer	0.0	Atheist	15.0	Libertarian	5.0
22	25.0			Middle Eastern	5.0	A-sexual	0.0	Hindu	50	Liberal	15.0
Age ₂₃	% of ₁₀₀ G	Gender %	6 of	Ethnicity 9	%of	Sexual	% of	Religion	്നof	Political tive	ട്ശof
Age ₂₃ (yeayış)	%of _{10.0} G Sample	Sender %	% of Sample	Ethnicity	%of Sample	Sexual Orientation	% of Sample	Religion Buddhist	ੴ0of §ample	Constitutive	ട്ട്⊛of §ample
Аде ₂₃ (уеадар) 25	% оf _{10.0} Sample 5.0	Sender %	% of Sample	Ethnicity 9	%of Sample	Sexual Orientation	% of Sample	Religion Buddhist Other	%₀of §ample 10.0	No response	<u>த</u> ீறof திதற்று 10.0
Age ₂₃ (yeagras) 25 26	% ођ _{0.0} Sample 5.0 5.0	Sender %	% of Sample	Ethnicity 9	%of Sample	Sexual Orientation	% of Sample	Religion Buddhist Other	<u>്</u> നof ക്രുmple 10.0	Constitution Affiliation No response	ළීග of § ample 10.0

Table 1C. Demographics for the affected group (N = 40).

18	20.0	Female	70.0	Asian	22.5	Straight	75.0	Catholic	27.5	Democrat	65.0
19	15.0	Male	30.0	Hispanic/Latino	35.0	Bisexual	10.0	Christian	17.5	Independent	5.0
20	40.0			Caucasian	15.0	Gay	5.0	Agnostic	22.5	Liberal	5.0
21	5.0			African American	20.0	Queer	7.5	Atheist	17.5	None	5.0
22	12.5			Middle Eastern	7.5	A-sexual	2.5	Hindu	2.5	No response	20.0
24	2.5							Islam	5.0		
28	5.0							Buddhist	2.5		
								Other	50		

Table 2. Sample free-response explanations of how affected participants felt they would

be affected by the 2016 U.S. presidential election.

Affected Participant Explanations	I feel that people that have historically discriminated against minorities like me will feel safe in openly displaying their prejudice towards me and others.
	I think I will be personally affected because I believe this president will only spread more racism and hate towards my people.
	I will be mistreated in certain areas.
	Since I am gay I feel like hateful people will feel emboldened to discriminate against me.
	Many of my family members are scared they will be deported. The overall social climate around me seems to have become more negative especially when it comes to immigration and equal rights. Although nothing racist has happened yet to me, I feel like the likelihood of something happening will increase these coming years.
	As a person of color, I feel that this election has emboldened many to disregard, discriminate, and deny the experiences and realities of people like me. I fear for my life and my family's and my friends and friends' families lives.
	My girlfriend and her family is undocumented and I fear that the results of the US Presidential Election will affect that status. As a Hispanic, I feel targeted as a minority by people who do not like my race.
	My mother is undocumented and I have disabled relatives that rely on the Affordable Care Act that Trump is repealing and I fear that my mom is going to be deported or experience more overt racism because she's undocumented.
	As a woman, I feel that certain rights, such as the right to reproductive care, are being threatened. I am also the daughter of an immigrant and have had experience being racially profiled and feel that these events will only increase along the duration of Trump's presidency.
	I am an African American woman so this election will affect laws not only for my health rights but also create even more tension for minorities in everyday life.
	With all that has happened lately, in regards to the "muslim ban", I believe that legislation will be passed that enforces stronger immigration laws. Ultimately, I can see both of my parents being deported. This worries me a lot.

Note: All explanations are reproduced verbatim.

	Control	Affected			
	Control	Affected			
	M(SD)				
Election affect	2.70(1.17)	6.23(.80)			
Range	1-4	5-7			
Skew(SE)	21	44			
Election distress	8.95(8.53)	26.00(17.17)			
Range	0-28	3-77			
Skew(SE)	1.24(.51)	1.32(.37)			
Discrimination	8.40(7.24)	13.18(7.76)			
Range	0-29	2-33			
Skew(SE)	1.29(.51)	.69(.37)			
Depression symptoms	7.85(4.93)	12.98(10.17)			
Range	1-20	0-50			
Skew(SE)	1.12(.51)	1.48(.37)			
PSS-Family	12.60(6.06)	13.83(5.32)			
Range	1-20	1-20			
Skew(SE)	71(.51)	77(.37)			
PSS-Friends	14.95(5.75)	16.98(3.87)			
Range	3-20	7-20			
Skew(SE)	-1.19(.51)	-1.45(.37)			

Table 3. Descriptive statistics by group ($N_{\text{control}} = 20$, $N_{\text{affected}} = 40$).

Table 4A. Bivariate correlations for the affected group (N = 40).

	1	2	3	4	5	6	7	
1. Age	—							
2. Election affect	36*	_						
Election distress	07	.26	_					
 Discrimination 	.02	002	.43**	_				
5. Depression symptoms	11	.36*	.63***	.51**	_			
6. PSS-Family	.10	.05	13	33*	42**	_		
7. PSS-Friends	.13	27	.05	06	26	.39*	_	
Note: *p <0.05 **p <0.01 ***p <0.001								

Table 4B. Bivariate correlations for the control group (*N* = 20).

	1	2	3	4	5	6	7
1. Age	—						
2. Election affect	41						
Election distress	.00	.36					
4. Discrimination	.36	36	02	_			
5 Depression symptoms	.35	23	.14	.41			
6. PSS-Family	65**	.40	.03	46*	32	_	
7. PSS-Friends	58**	.22	18	63**	57**	68**	

Note: **p* <0.05, ***p* <0.01, ****p* <0.001