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Abstract

Test of homogeneity of covariances (or homoscedasticity) among several groups has many

applications in statistical analysis. In the context of incomplete data analysis, tests of

homoscedasticity among groups of cases with identical missing data patterns have been

proposed to test whether data are missing completely at random (MCAR). These tests of

MCAR require large sample sizes n and/or large group sample sizes ni, and they usually fail

when applied to non-normal data. Hawkins (1981) proposed a test of multivariate normality

and homoscedasticity that is an exact test for complete data when ni are small. This paper

proposes a modification of this test for complete data to improve its performance, and

extends its application to test of homoscedasticity and MCAR when data are multivariate

normal and incomplete. Moreover, it is shown that the statistic used in the Hawkins test in

conjunction with a nonparametric k-sample test can be used to obtain a nonparametric test of

homoscedasticity that works well for both normal and non-normal data. It is explained how

a combination of the proposed normal-theory Hawkins test and the nonparametric test can

be employed to test for homoscedasticity, MCAR, and multivariate normality. Simulation

studies show that the newly proposed tests generally outperform their existing competitors in

terms of type I error rejection rates. Also, a power study of the proposed tests indicates good

power. The proposed methods use appropriate missing data imputations to impute missing

data. Methods of multiple imputation are described and one of the methods is employed to

confirm the result of our single imputation methods. Examples are provided where multiple

imputation enables one to identify group or groups whose covariance matrices differ from

the majority of other groups.

Keywords : Covariance Structures; k-Sample Test; Missing Data; Multiple Imputation; Non-

parametric Test; Structural Equations; Test of Homogeneity of Covariances;



1 Introduction

In almost all areas of empirical research, incomplete data sets are more of a rule than

exception. In an analysis of incomplete data, ignoring the cases that have missing values

can result in biased and/or inefficient inference. Statistical methods that include incomplete

cases in the analysis have been proposed in various contexts (see e.g., Little and Rubin 2002

and references therein). Validity of inference resulting from such methods depends on the

missing data mechanism; that is the process that leads to missing data. Missing completely

at random (MCAR) and missing at random (MAR) are two popular missing data mechanisms

coined by Rubin (1976) and further described by Little and Rubin (1987). Briefly, MCAR

is a process in which the missing-ness of the data is completely independent of both the

observed and the missing values, and MAR is a process in which the missing-ness of the data

depends on the observed values, but is independent of the missing values. When the missing

data mechanism is neither MCAR nor MAR and, in particular, the missing-ness depends on

the missing values themselves, the process is called missing not at random (MNAR).

This paper considers statistical tests of MCAR. Little (1988) lists a number of important

instances where it is important to verify that data are MCAR. Essentially, if the missing

data mechanism is MCAR, then the results from many missing data procedures would be

valid. On the other hand, if data are not MCAR, care must be exercised in employing

routine missing data procedures (see e.g., Little 1988). Thus, statistical tests of MCAR are

important and of interest.

The methods considered here for testing MCAR are based on testing homogeneity of

covariances (or test of homoscedasticity), and one of the methods considered can also be

used as a test of multivariate normality. Let Y denote a set of n observations on p variables,

where some of the cases are incompletely observed. Suppose that there are g different

missing (observed) data patterns among the cases, including the completely observed pattern.

Moreover, let ni and pi(≤ p) respectively denote the number of cases and the number of

observed variables in the ith missing data pattern for i = 1, · · · , g; thus n =
∑g

i=1 ni. An

approach that has been employed to test for MCAR is to test homogeneity of means and

covariances amongst the g groups of data, distinguished by their missing data patterns (see

e.g., Little 1988, Kim and Bentler 2002). Assuming that data are from a multivariate normal
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distribution, Little (1988) developed a likelihood ratio test to test equality of the variable

means amongst the g groups. He argued that rejection of this test provides evidence that

data are not MCAR. Little (1988) also mentioned a likelihood ratio test of MCAR based on

testing homogeneity of combined mean and covariances of the g groups, but casted doubt

on its success unless the sample size is very large.

Using the same approach to test for MCAR, Kim and Bentler (2002) studied tests of

homogeneity of means (HM), homogeneity of covariances or homoscedasticity (HC), and

homogeneity of means and covariances (HMC) amongst the g groups consisting of cases

with identical missing data patterns. They studied the HM and HMC likelihood ratio tests

of Little (1988) in addition to a likelihood ratio test of HC. Little’s HM test performed well in

the Kim and Bentler’s study. Motivated by applications in structural equation models where

often covariances are modeled, Kim and Bentler (2002) expressed importance of examining

homogeneity of covariances. Their study confirmed Little’s doubt that the likelihood ratio

tests of HC and HMC fail in that the observed significance levels of these tests far exceed

their corresponding nominal significance levels.

To improve on the performance of the likelihood ratio test, and at the same time to

overcome a restriction ni ≥ pi of the likelihood ratio tests of HC and HMC, Kim and Bentler

(2002) developed three tests of HM, HC, and HMC based on generalized least squares.

Hereafter we refer to these tests as “KB tests”. They conducted a simulation study to make

a comparison of the performance of the likelihood ratio test to their proposed generalized

least squares test. Their study included values of n ranging from 100 to 1500, values of p

ranging from 5 to 30, percent of missing ranging from 10 to 50, and missing data patterns

were restricted to at most 32 patterns. This study revealed that the KB tests perform

better than the likelihood ratio tests under these settings in terms of achieving the nominal

significance level, when data are MCAR.

Bentler, Kim, and Yuan (2004) pointed out that the KB tests can have a large degrees

of freedom and can fail in cases where data consists of patterns with small ni’s and a large

number of data patterns. For example, missing data patterns with ni = 1 have zero con-

tribution to the KB’s HC and HMC test statistics, while at the same time they inflate the

degrees of freedom of the test. Referring to the KB test statistics, Bentler, Kim, and Yuan

(2004) state:
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“As with the distribution of MLE, these homogeneity test statistics require that

ni go to infinity, and that the proportion ci[= ni/n]→ γi and ki[= (ni− 1)/n]→
γi [for some constants γi, i = 1, · · · , g]. Neither of these conditions could rea-

sonably be assumed to hold for any sample missing data pattern that exhibits

ni = 1. Even with very small ni the asymptotic assumptions underlying the tests

are not met.”

In Section 5 of this paper we will shed some light on the effect of ni on the performance of

the KB test of HC and the other tests that are proposed in this paper. Bentler, Kim, and

Yuan (2004) recommended dropping cases with small ni when using the KB tests. While

this recommendation goes a long way to improve the performance of the KB tests, it does

not provide a satisfactory solution to the problem, as evidenced by their simulation studies.

Our goal in this paper is to make an advance in testing of MCAR, by proposing new

tests of homoscedasticity between groups of identical missing data patterns. In practice,

testing for MCAR may entail testing for homogeneity of means, covariances, and possibly

other parameters between various missing data patterns. As noted above, Kim and Bentler

(2002) test of MCAR includes tests of mean and covariances between identical missing data

patterns. Since many tests of homogeneity of means, including the likelihood ratio test of

Little (1988) and the generalized least squares test of Kim and Bentler (2002) perform well,

hereafter we will mainly focus on the tests of homoscedasticity.

Let Yi denote the ni by p matrix of values for the ith missing data pattern, with Yobs,i

and Ymis,i respectively denoting the observed and the missing part of Yi, and let Yij =

(Yobs,ij,Ymis,ij) denote the j-th case in the i-th group. Furthermore, let rij denote a p by 1

vector of indicator variables with elements of 1 corresponding to the observed values of Yij

and elements 0 corresponding to missing values Yij. In this paper we assume that given

rij, Yij has the density f(Yij; Σi,θ) parameterized by the covariance matrix Σi = cov(Yij)

(depending on the missing data pattern i), and other parameters θ are homogenous across

missing data patterns. θ may include mean parameters or other types of parameters. In the

Appendix we have shown that under the above setting, homogeneity of covariances implies

MCAR. This is the premise underlying our test of MCAR as well as Little (1988) and Kim

and Bentler (2002).

Little (1988) assumed normality, an assumption that KB tests as well as one of the tests
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proposed here do away with. We will propose a test of homoscedasticity, based on the work of

Hawkins (1981), for the case where f(Yij; Σi,θ) is multivariate normal; for this case θ is the

mean of the population. Moreover, we will propose a nonparametric test of homoscedasticity

where f(Yij; Σi,θ) is not necessarily normal.

The remaining sections of the paper are organized as follows: In Section 2, we give a

background needed to develop our tests of homoscedasticity. In Section 3, we give details of

our tests of homoscedasticity under normal and non-normal data. In Section 4, we will report

on the result of a simulation study where we compare the performance of the KB test of

HC, and our proposed tests under various scenarios of n, p, percentages of missing, and data

distributions. Based on this simulation study, our nonparametric test overall outperforms

the other tests, especially when data are non-normal. In section 5, we examine the effect

of ni on the performance of the KB tests as well as our newly proposed test. Since our

proposed tests rely on imputation of missing data, in Section 6, we assess the variability due

to imputation for our proposed tests using a multiple imputation method. As we will see, in

some cases the multiple imputation method introduced enables us to identify group(s) whose

covariances differ from the majority of the other groups. Finally, we give a summary and a

discussion in Section 7, including a guideline as to how the proposed tests can be employed

to test for multivariate normality, homoscedasticity, and MCAR.

2 Preliminaries and Background

Our approach in constructing the proposed tests of MCAR and homoscedasticity is to im-

pute the missing data for each group (missing data pattern), and then apply a complete

data method to the completed data. Hence, selection of an appropriate test of homoscedas-

ticity for complete data is important. In particular, it is of interest to employ methods

that handle small group sample sizes ni well. Many tests of homoscedasticity for complete

data rely on asymptotic theory that requires large ni (for a list of references to such tests

see e.g., Jamshidian and Schott 2007). Hawkins (1981) proposed a test statistic to test ho-

moscedasticity for multivariate normal data based on a statistic whose distribution is known

exactly, even if the ni’s are small. Because it works well for small ni’s, we utilize Hawkins

test to construct both a normal theory based and a nonparametric test of homoscedasticity
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here. Moreover, Hawkins test is a test of homogeneity of covariances as well as a test of

multivariate normality. As we will explain, by using the Hawkins test in conjunction with

the proposed nonparametric test we will be able to make inference about homoscedasticity,

MCAR, and multivariate normality of a set of data; the latter is important in its own right

as many statistical procedures are valid only under the multivariate normality assumption.

In what follows we describe Hawkins test of homoscedasticity and a modification of it that

we have used for the proposed tests here.

Let X be an n × p matrix of completely observed cases on g groups, with Xij denoting

the j-th case from the i-th group; j = 1, · · · , ni and i = 1, · · · , g. Assume that

Xij ∼ Np (µi,Σi) , (1)

where Np denotes the p-variate normal distribution. Let

X̄i =
1

ni

ni∑
j=1

Xij, Si =
1

ni − 1

ni∑
j=1

(
Xij − X̄i

) (
Xij − X̄i

)T
and S =

g∑
i=1

(
ni − 1

n− g

)
Si

respectively denote group i sample mean, sample covariance, and the overall pooled co-

variance. Moreover, let X∗(ij) and S∗(ij) denote the mean vector of group i and the pooled

covariance matrix obtained after removal of Xij from the sample. Consider the statistic

T 2
ij =

(
ni − 1

ni

) (
Xij −X∗(ij)

)T
(S∗(ij))

−1
(
Xij −X∗(ij)

)
.

Hawkins (1981) showed that under the null hypothesis

H0 : Σ1 = · · · = Σg ≡ Σ, (2)

where Σ denotes the common covariance matrix, T 2
ij has a Hotellings T 2 distribution, and

thus Fij = (n− g−p)T 2
ij/((n− g−1)p) follows a F distribution with p and n− g−p degrees

of freedom. A more computationally tractable form of Fij is given by

Fij =
(n− g − p)niVij

p{(ni − 1)(n− g)− niVij}
, where Vij =

(
Xij − X̄i

)T
S−1

(
Xij − X̄i

)
.

Now, let

Aij = Pr[F > Fij] (3)

denote the probability that an F -distributed random variable with degrees of freedom p and

n− g − p exceeds Fij. If the model of homoscedastic normal distribution holds, then Aij is
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distributed as a uniform random variate over the range (0, 1). Hawkins proposed testing Aij

for uniformity as a test of homoscedasticity. Specifically, if Aij are deemed not to be uniform

on (0,1), then the null hypothesis (2) or the normality assumption (1) are rejected.

Various tests have been proposed for testing uniformity of a sequence of independent

observed variates (see for example, Marhueda, Morales, and Pardo 2005 for a review and

a comparison of tests of uniformity). Hawkins (1981) suggested using the Anderson and

Darling (1954) test to test uniformity of Aij’s for each group or by combining all the Aij

into one group and testing the uniformity of the n combined values. He followed the former

procedure, and proposed rejecting H0 if the p-value for at least one of the groups is smaller

than a threshold, corrected for simultaneity. A caveat here is that Aij are not in general

independent. However, Hawkins argued that for large ni the interdependence among the Aij

is sufficiently weak so that the Aij’s behave like a set of independent uniform variates. He

tested this in a simulation study and concluded that if ni ≥ 4, the independence assumption

holds quite well. In a fairly comprehensive simulation study that we don’t report here we

have also confirmed that independence holds when ni ≥ 4, both for the complete data and

the incomplete data cases that we will consider in the next section. We will give a discussion

of this issue in Section 5.

In a modification to the Hawkins test, and in order to attain better power, we suggest

using Neyman (1937) test of uniformity in place of the Anderson and Darling (1954) test.

This choice is supported by our own simulation studies as well as other studies reported in

the literature (see e.g., Rayner and Best 1990, Ledwina 1994, and Marhueda, Morales, and

Pardo 2005). In our setting, the Neyman test for testing uniformity on (0, 1) rejects the null

hypothesis of uniformity for large values of

Nik =
k∑

`=1

n−1/2i

ni∑
j=1

π`(Aij)


2

, i = 1, · · · , g,

where π1, π2, · · · , πk are normalized Legendre polynomials on [0,1]. Ledwina (1994) gives a

method to determine the choice of k adaptively based on the data. However, it turns out

that k = 4 works very well for most practical purposes (see e.g., David 1939, Ledwina 1994,

and Marhueda, Morales, and Pardo 2005), and this is what we have used in our simulation

studies. The first four Legendre polynomials π1, · · · , π4 are given in David (1939). It can

be shown that if the null hypothesis of uniformity holds, as ni → ∞, the distribution of
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Nik approaches to the central chi-squared distribution with k degrees of freedom (see e.g.,

David 1939). Because our applications can involve small ni’s, we avoid methods that rely

asymptotically on ni and compute p-values for our test based on an empirical distribution

of Nik obtained by simulating a large number (1,000,000 in our simulation study) of Nik’s.

In yet another modification to the Hawkins test, we combine the p-values from each group

to obtain a single p-value for the overall test. Specifically, let P1, · · · , Pg denote the p-values

obtained from the Neyman’s test. Again, if the null hypothesis of equality of covariances

is true, then the Pi’s would have a uniform distribution on (0, 1). We propose to apply the

procedure proposed by Fisher (1932) for combining p-values. Namely, we use the statistic

PT =
g∑

i=1

(−2 logPi) ∼ χ2
2g, (4)

which under the null is distributed as χ2
2g, the central chi-squared distribution with 2g degrees

of freedom.

Our examination of the modified version of the Hawkins test with complete data , where

we use the Neyman’s test of uniformity in place of the Anderson and Darling test and the

combined statistics (4), showed that this test is more powerful than the original version of

the test proposed by Hawkins (1981). Since our main concern in this paper is dealing with

incomplete data, we will not report our simulation studies of the modified Hawkins test for

the complete data. In the next section we extend the Hawkins method to construct tests of

homoscedasticity between groups with identically missing data patterns for incomplete data.

3 Tests of Homoscedasticity and Normality

In this section we give an extension of the modified Hawkins test of homoscedasticity, de-

scribed in Section 2, to the case where data are not completely observed. When data

come from a normally distributed population, rejection of the Hawkins test implies non-

homogeneity of covariances. However, if the population distribution is not known, then

rejection of the Hawkins test can be due to either non-normality or non-homogeneity of co-

variances. In general one does not know whether the data are normally distributed, and if

this is the case, we propose the following sequence of actions. First apply the Hawkins test.

If the test is not rejected, then there is no ground to suspect non-normality or heterogeneity
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of covariances. On the other hand, if the Hawkins test is rejected, then apply a nonparamet-

ric test of homoscedasticity. If the nonparametric test is not rejected, then we may conclude

that data are non-normal, and if the nonparametric test is rejected then non-homogeneity

of covariances will be concluded. In the following two subsections we will describe our ex-

tension of the Hawkins (1981) test to incomplete data as well as a nonparametric test of

homoscedasticity.

3.1 Test of homoscedasticity under the normality assumption

Following notation of Section 1, assume that Yij is independent of Yik for all i and j 6= k,

and

Yij ∼ Np(µi,Σi), i = 1. · · · , g, j = 1, · · · , ni. (5)

We propose to impute the missing data and apply the method of Section 2 with each

group comprising of the cases that had identical missing data pattern prior to the imputation.

In the outset we note that the result of the proposed test depends on the imputed data and

does not take into account the variation in the imputation. However, our simulation studies

in Section 4 show promise for our single imputation method. To assess the effect of variability

of the results due to imputation, we will present the use of multiple imputation in Section 6.

Let µi and Σi be partitioned according to their missing and observed values as

µi =
(
µo,i

µm,i

)
, Σi =

(
Σoo,i Σom,i

Σmo,i Σmm,i

)
.

Then, the conditional distribution of Ymis,ij given Yobs,ij, µi, and Σi is

Ymis,ij|Yobs,ij,µi,Σi ∼ Np−pi

(
µm,i + Σmo,iΣ

−1
oo,i(Yobs,ij − µo,i),Σmm,i −Σmo,iΣ

−1
oo,iΣom,i

)
.

(6)

For known µi and Σi, Equation (6) suggests a method to impute the missing values Ymis,ij,

namely we can generate a random variate from the distribution in (6) to fill Ymis,ij, the

missing data for the i-th case of the j-th group.

In most applications µi and Σi are not known. Since our main aim is to test the null

hypothesis (2), we assume µ1 = · · · = µg = µ and Σ1 = · · · = Σg = Σ and estimate the

common mean µ and the common covariance Σ using the method of maximum likelihood

(see e.g., Jamshidian and Bentler 1999). If the means are not equal, then ML estimates of
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µi can be used for each group. Let µ̂ and Σ̂ be the maximum likelihood estimates of µ and

Σ, respectively. In an imputation step, we use these quantities in place of µi and Σi in (6)

to impute the Ymis,i for all i by generating random variates from a multivariate normal with

mean and covariance specified in (6).

If µi and Σi were known, then the above imputation would produce a set of complete

data that satisfies assumption (1) and thus under the null hypothesis (2), uniformity of

Aij in (3) would hold. Hence, employment of the Hawkins test to test the null hypothesis

(2) based on the imputed data set is justified. In the more realistic event that µi and Σi

are unknown, under the null hypothesis (2), µ̂ and Σ̂ converge in probability to µ and Σ,

respectively, and thus employment of the new method can be justified for large n. Note that

the convergence in probability, mentioned above, depends on the overall sample size n, and

not on the groups sample sizes ni. As we show in the Appendix, the distribution of Fij used

in (3) is independent of ni under the normality and homoscedasticity assumptions.

3.2 A nonparametric test of homoscedasticity

In this section we propose a test of homoscedasticity for the case, described in Section 1,

where data come form a population with a density of the form f(Yij; Σi,θ), where we test

equality of the covariances Σi. Our test will utilize the Fij statistic given in Section 2. We

have argued in the Appendix that if the distribution of Xij, the complete case version of Yij,

are distinguished only by their covariances, and if the null hypothesis (2) holds, then the

distribution of Fij will be identical for all i and j provided that all the ni are equal, or if ni

are not equal this result holds asymptotically provided that ni are sufficiently large. Hence,

we reject the null hypothesis (2) if the distributions of the Fij between the i = 1, · · · , g
groups are not the same. When Xij are normal, the distribution of Fij is known. However,

when the distribution of Xij is not known a nonparametric test should be utilized to test

whether the distribution of Fij differs between groups i = 1, · · · , g. Again, because we are

faced with incomplete data, we propose to use imputation.

Since we are under the assumption that the distribution of the data is unknown, an

imputation method such as that described in Section 3.1 will not be appropriate. In this sec-

tion we consider an imputation method that only assumes independence of the observations

from case to case and the continuity of their cumulative distribution function; no specific
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distributional assumptions is required. This method is in the spirit of a method given by

Srivastava and Dolatabadi (2009) and described in Srivastava (2002). To obtain appropriate

imputation values, the best linear predictors of the missing observations are obtained first,

and then random errors are added to them to obtain imputation values. This method of im-

putation implicitly assumes that variables are linearly related. Yuan (2009) gives examples

of families of distributions where variables are linearly related.

Without loss of generality, assume that the first group is completely observed with n1

observations. Moreover, assume that n1 is of reasonable size with n1 > p. Let Ȳ1 and S1,

respectively denote the sample mean and covariance obtained from the n1 complete cases.

If n1 is small, one can use the ML estimates µ̂ and Σ̂ in place of Ȳ1 and S1. This is what

we have used in our simulation study. As in the previous subsection, let Yobs,ij and Ymis,ij

denote respectively the observed and the missing observations for the j-th case in the i-th

group, and partition Ȳ1 and S1 according to these missing and observed cases as follows:

Ȳ1 =
(

Ȳo,1

Ȳm,1

)
, S1 =

(
Soo,1 Som,1

Smo,1 Smm,1

)
.

Then the best linear predictor for Ymis,ij is given by

Ẑmis,ij = Ȳm,1 + Smo,1S
−1
oo,1(Yobs,ij − Ȳo,1).

As Srivastava (2002) notes, the conditional covariance of Ẑmis,ij given Σ is approximately

1

n1

(
Σmm,i −Σmo,iΣ

−1
oo,iΣom,i

)
,

which is smaller, by a factor of 1/n1, from the conditional variance of Ymis,ij. Thus, Ẑmis,ij

will have less variability than Ymis,ij, and would not be appropriate to use as an imputation

for Ymis,ij. To remedy this problem, Srivastava (2002, Chapter 18) proposes computing the

following residuals from the complete cases:

ej =
(

n1

n1 − 1

) 1
2 (

Y1j − Ȳ1

)
, j = 1, · · · , n1.

Then, a sample of size n− n1 is drawn with replacement from the above residuals. Denote

elements of this sample by e∗ij, i = 2, · · · , g, and j = 1, · · · , ni. The conditional mean and

covariance of e∗ij, given the complete cases Y1, are 0 and S1, respectively. Using these

residuals compute

η∗ij = e∗m,ij − Smo,1S
−1
oo,1e

∗
o,ij,
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where e∗ij = (e∗o,ij, e
∗
m,ij) is partitioned according to the observed and missing parts of Yij =

(Yobs,ij,Ymis,ij). Then an appropriate imputed value for Ymis,ij is given by

Ŷmis,ij = Ẑmis,ij + η∗ij. (7)

As Srivastava (2002) argues, the covariance of the imputed observations Ŷmis,ij will be close

to the covariance of Ymis,ij, if they were observed, with this approximation getting better for

larger ni. Hence, inference can be made about the covariances Σi by using the completed

data set.

Once we impute the missing values, using (7), then we need to test equality of distribution

of Fij between the groups i = 1, · · · , g, computed based on the completed data. Specifically,

we consider the g samples Fij for i = 1, · · · , g and j = 1, · · · , ni and test whether they come

from the same distribution. When the density f is unknown, this will require a nonparametric

(so called) k-sample test. We have considered various k-sample tests for our problem. Based

on our numerical experiments, k-sample tests of Thas and Ottoy (2004) and Scholz and

Stephens (1987) were most successful.These tests exhibited a better power as compared to

other tests that we tried, such as the Kruskal-Wallis test (Kruskal and Wallis, 1952) and the

k-sample Kolmogorov-Smironov test. In the simulation studies reported in the next section

we have used the Scholz and Stephens (1987), also known as the Anderson-Darling k-sample

test, because it is more computationally efficient than the Thas and Ottoy (2004) test. This

test uses a rank statistic of the form T = 1
N

∑g
i=1 Ti with

Ti =
1

ni

N−1∑
j=1

(NMij − jni)
2

j(N − j)
, (8)

where N =
∑g

i=1 ni is the size of the pooled sample of Fij’s, Mij is the number of observations

in the ith sample that are not greater than the j-th order statistic in the pooled sample of

Fij’s.

To summarize, in the nonparametric test (referred to as the NP test hereafter) we impute

the missing data using (7), compute Fij as defined in Section 2, and apply the Anderson-

Darling k-sample test to test equality of distribution of Fij’s amongst groups i = 1, · · · , g.

If this test is rejected, we conclude that the covariances are non-homogeneous, and in the

context of the incomplete data problem data are not MCAR.
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4 Simulation Studies

4.1 A comparison of type I error rates for the KB, Hawkins, and
the NP tests

In this section we report on a simulation study that we conducted to compare the observed

significance levels of the KB test, our proposed test in section 3.1 (referred to as the Hawkins

test hereafter), and the nonparametric test given in Section 3.2. Tables 1-3 contain the result

of our simulation study for this section. We have considered sample sizes n = 200, 500, and

1000, and number of variables p = 4, 7, and 10. Additionally, data were generated according

to eight different (population) distributions: (i) The standard multivariate normal Np(0, I)

(denoted by N); (ii) a correlated multivariate normal Np(0,Σ) (denoted by Corr -N); (iii)

a multivariate t distribution with mean 0, covariance I, and degrees of freedom 4 (denoted

by t); (iv) a multivariate t distribution with mean 0, covariance Σ, and degrees of freedom 4

(denoted by Corr -t); (v) a multivariate uniform obtained by generating independent uniform

(0,1) random variates (denoted by U); (vi) a correlated multivariate uniform obtained by

generating independent uniform (0,1) random variates and multiplying by Σ1/2 to have a

covariance Σ (denoted by Corr -U); (vii) a random variate W = N + 0.1N3, where N is the

standard multivariate normal (denoted by W ); (viii) a multivariate Weibull distribution ob-

tained by generating independent Weibull random variates with scale parameter 1, and shape

parameter 2 (denoted by Weibull). The distributions (v) and (vii) were used in Hawkins

(1981) simulation study as two examples of light tailed and heavy tailed distributions, re-

spectively. Here t and Corr-t are also heavy tailed, and Corr-U is a light-tailed distribution.

Finally, the Weibull distribution is an example of a skewed to the right distribution.

The population distributions (ii), (iv), and (vi) require a population covariance Σ. In

every case we generated data using the factor analysis covariance structure Σ = ΛΦΛT + Ψ,

where Λ is a p by k matrix of factor loadings, Φ is the factor correlation (with diagonal

elements fixed to 1), and Ψ is a diagonal matrix with unique variances on its diagonal. For

p = 4 we used a two-factor model (k = 2) with Λi1 = 0.8 for i = 1, 2, Λi2 = 0.8 for i = 3, 4,

and all other elements fixed to 0. For p = 7 we used a two-factor model (k = 2) with Λi1 = 0.8

for i = 1, 2, 3, Λi2 = 0.8 for i = 4, 5, 6, 7, and all other elements fixed to 0. For p = 10 we

used a three-factor model (k = 3) with Λi1 = 0.8 for i = 1, 2, 3, Λi2 = 0.8 for i = 4, 5, 6,
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Λi3 = 0.8 for i = 7, 8, 9, 10, and all other elements fixed to 0. All factor correlations were set

to 0.3, and unique variances were set to 1.

For each combination of n and p, data Yij were generated according to each of the

above distributions. When a fraction q of missing data was desired, independent uij ∼
uniform(0, 1) were generated and if uij < q, then Yij was set as a missing value. This

led to incomplete data with MCAR missing data mechanism. We have used q = 0.1, 0.2,

and 0.3, in Tables 1-3 respectively. Moreover, we have removed missing data patterns that

included 6 or less cases. In cases where this removal resulted in deletion of more than half

of the cases, we did not carry our simulation; we mark these instances in the tables by

“NED” (not enough data). The number of remaining cases, after deletion of missing data

patterns with small number of observations, is indicated in the rows labeled n∗. We kept

the patterns of missing data constant under each condition. The rows labeled #ni indicate

the number of missing data patterns in each case. The values within the body of the table

are the percentage of rejections over 1000 repetition of each test under a given circumstance.

All the test were carried out at 5% significance level, thus ideally the observed significants

levels (or the rejection rates) should be close to 5%.

4.1.1 Type I error rates for the KB test

As shown in Tables 1-3, when data are normally distributed, the observed significance levels

for the KB test are acceptable, but slightly inflated. In each case, as the number of variables

p increases the observed significance levels of the KB test increase. The smaller the ni’s

relative to p, the more inflated the observed significance levels are for the KB test. In a

simulation study, not reported here, in which we retained missing data patterns with ni > 3,

the KB test’s observed type I error rates were more inflated than those shown in Tables 1-3.

In Section 5, we will discuss the effect of small ni’s on the performance of the tests that we

have considered and we will see why the KB test is especially sensitive to small ni’s.

For the Weibull distribution, the KB test’s observed significance levels are consistently

above 10%, and go as high as 23%. The rejection rates increase significantly for the heavy

tailed distributions t, Corr-t, and W . On the other hand, the observed rejection rates are far

below the 5% nominal level for the short-tailed distributions uniform U and Corr-U . This

can be explained as follows: The KB test statistics is a weighted sum of quantities of the
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Table 1: Type I rejection rates when 10% of data are MCAR.
n = 200 n = 500 n = 1000

n∗ 195 177 141 483 435 367 987 894 799
#ni 5 8 8 6 8 11 9 11 19

Dist. Method p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10
KB 8.2 13.3 17.4 5.6 8.1 10.5 8.5 7.2 13.3

N Hawkins 4.4 4.9 5 4.5 5.3 4.2 5.5 4.9 5.8
NP 4.6 7.2 7.6 5.8 6.7 6.3 8.1 5.3 8.5
KB 8.1 13.4 16.8 6.8 8.1 9.9 9.4 7.7 12.9

Corr-N Hawkins 4 5.2 4.7 4.3 5.5 5.4 5.1 5.3 5.6
NP 5.6 7.9 7.8 5.6 6.8 7.6 7.4 5.3 7.6
KB 68.8 91.4 93.4 85.1 99.6 100 93.9 99.9 100

t Hawkins 100 100 100 100 100 100 100 100 100
NP 8.6 10.1 10.5 7.8 8.9 9.6 13.7 12.9 16.6
KB 62.9 88.9 92.5 82.7 99.5 100 93.3 100 100

corr-t Hawkins 100 100 100 100 100 100 100 100 100
NP 8.2 11.5 10.5 9.1 9.4 9.7 15.5 13.6 15.8
KB 0.9 0.6 1.1 0.2 0.3 0.1 0.2 0.2 0

U Hawkins 99.5 80 41 100 100 99.9 100 100 100
NP 7 9.5 7.1 7.1 5.4 7.8 11.1 8.6 10.3
KB 0.6 0.5 1.5 0.2 0.3 0.1 0.2 0.2 0

Corr-U Hawkins 99.1 80.9 40.8 100 100 100 100 100 100
NP 8.4 10.3 8.4 10 6.4 9 12.9 9.7 12.2
KB 45.9 62.6 63 55.8 76.3 87.7 66.7 87 93.7

W Hawkins 95.2 95.1 93.9 100 100 100 100 100 100
NP 5.5 7.9 6.9 6.3 6.4 6.8 8.8 6.2 7.9
KB 10.3 17.2 17.7 10.6 12.9 17.6 12.1 17.3 21.2

Weibull Hawkins 5.9 7 5.8 13.5 11.4 8.2 27.8 21.4 14
NP 6.8 8.6 8.8 9.1 7.7 9.3 9.9 8.4 9.3

Table 2: Type I rejection rates when 20% of data are MCAR.
n = 200 n = 500 n = 1000

n∗ 175 105 43 489 369 207 982 855 557
#ni 6 7 4 11 16 13 12 30 33
Method p= 4 p= 7 p= 10 p= 4 p= 7 p= 10 p= 4 p= 7 p= 10
KB 6.2 10.2 NED 7 10.4 NED 6.1 8.6 11.1

N Hawkins 3.8 4 NED 4.9 4.5 NED 3.6 5.9 6.1
NP 5.9 7.1 NED 7 8.6 NED 5.1 9.6 11.2
KB 6.1 11.1 NED 6.9 9.8 NED 7 9.2 10.8

Corr-N Hawkins 3.2 5.8 NED 4.8 5.3 NED 5 6.3 7.2
NP 5.3 7 NED 6.7 9.1 NED 5.6 9.4 11.6
KB 76.8 92.2 NED 96.4 100 NED 99.1 100 100

t Hawkins 99.2 99.1 NED 100 100 NED 100 100 100
NP 6.9 7.9 NED 9.9 13.1 NED 14 15.4 25.6
KB 77.5 94.4 NED 95.1 99.9 NED 99 100 100

Corr-t Hawkins 99.4 100 NED 100 100 NED 100 100 100
NP 7.9 9.6 NED 9.9 11.9 NED 12 18.2 25
KB 0.2 0.7 NED 0 0.1 NED 0 0 0

U Hawkins 90.5 17.9 NED 100 97.9 NED 100 100 96.3
NP 8.2 8.3 NED 6.4 10.5 NED 9.4 11.4 11.1
KB 0.2 0.4 NED 0 0 NED 0 0 0

Corr-U Hawkins 87.8 20.3 NED 100 96.7 NED 100 100 94.6
NP 8.2 9 NED 10.2 11.8 NED 10.7 13.2 13.4
KB 51.7 60.2 NED 76.8 90.9 NED 81.8 99.1 99.1

W Hawkins 84.9 75.4 NED 99.9 99.8 NED 100 100 100
NP 6.7 9 NED 6.6 8.5 NED 5.4 10.6 14.5
KB 9.2 14.5 NED 13.3 15.5 NED 11.6 18.7 23.5

Weibull Hawkins 6.9 6.3 NED 10.7 8.5 NED 23.1 12.5 12.6
NP 9.8 10.5 NED 9.9 11.9 NED 10.2 14.3 14.9
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Table 3: Type I rejection rates when 30% of data are MCAR.
n = 200 n = 500 n = 1000

n∗ 173 74 8 489 289 42 989 821 280
#ni 9 7 1 14 22 5 15 51 29
Method p= 4 p= 7 p= 10 p= 4 p= 7 p= 10 p= 4 p= 7 p= 10
KB 6.5 NED NED 7.2 8 NED 4.2 9.2 NED

N Hawkins 5.7 NED NED 7.1 6 NED 6.4 9.5 NED

NP 6 NED NED 8.6 11.5 NED 6.8 14.5 NED

KB 6.5 NED NED 5.6 8.8 NED 5.4 8.7 NED

Corr-N Hawkins 6 NED NED 6.3 7.1 NED 6.6 9.2 NED

NP 6.8 NED NED 9.2 10.5 NED 8 13.8 NED

KB 85.9 NED NED 98.3 100 NED 99.5 100 NED

t Hawkins 95.6 NED NED 100 100 NED 100 100 NED

NP 9.5 NED NED 10.3 19.5 NED 10.9 33 NED

KB 84.9 NED NED 97.8 100 NED 99.6 100 NED

Corr-t Hawkins 96.7 NED NED 100 100 NED 100 100 NED

NP 10.1 NED NED 13.8 19.5 NED 12 28.2 NED

KB 0.1 NED NED 0.1 0.1 NED 0 0 NED

U Hawkins 59.7 NED NED 100 34.1 NED 100 99.1 NED

NP 10.2 NED NED 8.6 10.2 NED 7.9 15.2 NED

KB 0.1 NED NED 0 0.1 NED 0.1 0 NED

Corr-U Hawkins 57 NED NED 100 29.5 NED 100 96.8 NED

NP 9.2 NED NED 10.1 11.1 NED 9.2 16.3 NED

KB 62.1 NED NED 82.3 97.5 NED 90.4 100 NED

W Hawkins 82.5 NED NED 99.5 98.1 NED 100 100 NED

NP 8 NED NED 9.1 14.6 NED 7.7 20.2 NED

KB 12.5 NED NED 12.3 16.8 NED 11.1 21.2 NED

Weibull Hawkins 8 NED NED 11.2 10.6 NED 21.2 14.2 NED

NP 11.2 NED NED 12.9 16.8 NED 11.4 20.4 NED

form

trace
[
(Soo,i − Σ̂oo,i)Σ̂

−1
oo,i

]2
=
[
vec(Soo,i − Σ̂oo,i)

]T [
Σ̂
−1
oo,i ⊗ Σ̂

−1
oo,i

] [
vec(Soo,i − Σ̂oo,i)

]
,

where Soo,i is the sample covariance based on the observed data for the i-th pattern, Σ̂oo,i is

the sub-matrix of Σ̂ corresponding to the observed variables in the i-th missing data pattern,

where Σ̂ is the normal theory ML estimate of Σ obtained under the null hypothesis (2), and

finally trace and vec are the usual matrix operators. In this test statistic, the quantity

Soo,i− Σ̂oo,i is a measures of the deviance of the observed covariance for each group and the

corresponding covariance obtained under the null hypothesis. This quantity is normalized

(Studentized) by an estimate of its covariance, namely Σ̂
−1
oo,i ⊗ Σ̂

−1
oo,i. Yuan, Bentler, and

Zhang (2005) argue that the estimate Σ̂
−1
oo,i ⊗ Σ̂

−1
oo,i is negatively biased for heavy tailed

distributions and it is positively biased for light-tailed distributions. Using this result, the

KB test statistics will be too small for light tailed distributions and too large for heavy-tailed

distributions, which explains the significance levels obtained in Tables 1-3 for KB. Therefore

we conclude that the KB test is not appropriate to use for testing homogeneity of covariances

when the population distribution is not known or normality cannot be assumed.
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4.1.2 Type I error rates for the Hawkins test

When data are normally distributed, the Hawkins test rejection rates are very close to their

nominal level of 5% and in almost all cases they are less than their KB test counter part.

The largest deviation from the ideal 5% level for the normal case occurs when n = 1000,

p = 7, and q = 0.3. In this case there are 51 missing data patterns, after deletion of patterns

with ni ≤ 6, and these include a large number of patterns with small ni’s. Again, as we will

explain in Section 5, small ni can affect the performance of the Hawkins test, but this test

is fairly robust to small ni’s. In a simulation study of this test, where we deleted patterns

with ni ≤ 3, the performance of the test was quite acceptable.

When data are not normal, Hawkins test rejection rates are very high. This is expected,

since the Hawkins test, as mentioned earlier, is a test of multivariate normality as well as

homogeneity of covariance. When data are non-normal, then the Fij no longer follow an F

distribution. Interestingly, however, the power of the Hawkins test as a test of normality

against the alternative of Weibull distribution is not as high as the other distributions that

we have considered. Overall, like the KB test, this test would not be appropriate to use as

a test of homoscedasticity for non-normal populations.

4.1.3 Type I error rates for the NP test

When data are normally distributed, the type I rejection rates for the NP test are somewhat

larger than the Hawkins rejection rates, but in almost all of these cases they are acceptable.

When data are non-normal, the performance of the NP test is far superior than the Hawkins

and the KB tests, having acceptable type I error rates in most cases. The NP test’s observed

significance levels deviate more from the nominal 5% level as n, p, and q get large. The

increase in these values result in more patterns of missing, smaller ni’s, and more unbalanced

ni’s all of which contribute to this inflation. Overall, however, the NP test performs well

both for normal and non-normal data.

4.2 A study of the power of the Hawkins, and the NP tests

In this Section we report on simulation studies that we have performed to test the power

of the Hawkins and the NP tests. We consider two types of alternatives, one where we test

the power of these tests when data are MAR, and another where we generate data with
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non-homogeneous covariances within each pattern of missing. We refer to the former as the

MAR alternative and the latter as the non-HC alternative.

We have used the same distributions described in the previous section to generate data.

To generate data according to the MAR alternative, we have used the following scheme:

For each datum Yij, i = 1, · · · , n; j = 2, · · · , p, we have set a value as missing if the value

of the corresponding datum Yi,j−1 is larger than a given threshold. The threshold was set

to achieve a desired percentage of missing-ness. To generate data according to the non-HC

alternative, we considered the pairs of distributions (N , Corr-N), (t, Corr-t), and (U , Corr-

U). For each pair we generated the data according to one of the distributions in the pair,

imposed MCAR missing data mechanism, identified the missing data pattern with the largest

number of cases, and replaced the data for this pattern with data from the distribution of

the other pair. For example, when considering the pair (N , Corr-N), we generated n cases

according to N (0, I), then imposed MCAR missing data as in Section 4.1, and identified

the group with the largest number of cases (excluding the group with all complete data)

and replaced the data for that missing data pattern by data generated from N (0,Σ); this is

denoted by N/corr-N in our tables. In another scenario, denoted by corr-N/N , we generate

data according to N (0,Σ) and then we replace the missing data pattern with the largest

number of cases with N (0, I) data. Other pairs of distributions were simulated similarly. In

each scenario we have considered n = 200, 500 and 1000 and fractions of missing q = 0.1, 0.2,

and 0.3.

Table 4: Power of the Hawkins test
q n = 200 n = 500 n = 1000

Dist. p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10
0.1 18 8 5.7 50.2 19.6 11.4 90.5 58.5 27

N/MAR 0.2 16.7 8.5 NED 45.5 23.6 NED 86.9 50.7 27.5
0.3 19.7 NED NED 42.9 29.1 NED 82.8 53.6 NED

0.1 17.2 9.6 5.6 49.5 20.3 10.6 89.6 58.5 26.6
Corr-N/MAR 0.2 18.7 9 NED 43.5 23.4 NED 83.9 46.1 27.3

0.3 18.6 NED NED 39.5 27.5 NED 76.7 49.5 NED

0.1 31.7 39.2 45.2 66.2 85 84.4 83.9 97.3 99.8
N/Corr-N 0.2 23 22.6 NED 42.8 50 NED 80.9 84.1 84.3

0.3 17.9 NED NED 40.5 35.1 NED 79 70.6 NED

0.1 12.4 11.9 13.5 28.1 25.8 24.8 38.3 37.3 40.3
Corr-N/N 0.2 12.5 8.3 NED 19.8 14.2 NED 42.4 23.3 25.2

0.3 9.3 NED NED 18.5 13.5 NED 41.9 20.1 NED
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Table 5: Power of the NP test with MAR alternative
q n = 200 n = 500 n = 1000

Dist. p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10
0.1 39.8 19.1 12.5 78.2 40.8 24.4 98.8 83.3 54.5

N 0.2 28.4 12.6 NED 56.2 33.4 NED 88.2 63.5 35
0.3 18.2 NED NED 20.2 29.7 NED 29.6 42.5 NED

0.1 39.2 19.6 12.4 78.2 41.6 24.4 99 83.7 53.5
Corr-N 0.2 28.4 12.6 NED 56.2 33.4 NED 88.2 63.5 35

0.3 17.7 NED NED 20.4 27.3 NED 27.8 36.4 NED

0.1 30.5 51.2 49 64.8 91.2 91.3 86.8 100 100
t 0.2 29.9 31.4 NED 46.1 83.7 NED 59.7 99.1 97.8

0.3 30 NED NED 36.2 84.2 NED 43.1 98.6 NED

0.1 31.1 48.9 47.8 62.5 91.5 91.2 87 100 100
Corr-t 0.2 30.4 31.2 NED 46.6 83.1 NED 62.5 99.4 98

0.3 29.7 NED NED 36.2 82.7 NED 45.1 97.8 NED

0.1 88.9 48.5 32.2 100 95.9 62.2 100 100 98.7
U 0.2 91.7 37.3 NED 99.9 94.6 NED 100 100 90.3

0.3 38.8 NED NED 90.2 59.9 NED 100 98.7 NED

0.1 89.5 48.5 34.3 100 95.9 63.2 100 100 99.2
Corr-U 0.2 90.4 36.5 NED 99.9 94.3 NED 100 100 89.7

0.3 38.9 NED NED 87.6 56.9 NED 99.9 97.1 NED

0.1 14.4 12.2 11.7 20.8 12.8 13.4 28.4 25.2 19.5
W 0.2 20.5 15.9 NED 21.5 27.4 NED 27.6 35.4 34.7

0.3 26.5 NED NED 25 48.5 NED 26.5 61.7 NED

0.1 23.9 17.6 13.1 51.9 29.3 17.8 81.8 61 38.2
Weibull 0.2 14.4 11 NED 16.5 20.1 NED 20.4 26 23.6

0.3 24.1 NED NED 41.2 30.9 NED 71.3 47 NED

4.2.1 Power of the Hawkins test

In our power studies of the Hawkins test we only consider the normal and correlated normal

distributions, as the Hawkins test type-I error rates for non-normal data are large, and

therefore a power study for the non-normal cases is meaningless. Table 4 shows the rejection

rates of the Hawkins test under both the MAR alternative and the non-HC alternative. The

rows labeled as N/MAR and corr-N/MAR indicate power under the MAR alternative, and

the rows labeled N/corr-N and corr-N/N indicate power of the test under two non-HC

alternatives, described earlier. As expected, as the number of cases increase the power of the

Hawkins test increases. When the sample size is 200, the power of the Hawkins test is fairly

low, specially in the cases where p is large. Note that since we remove patterns with ni ≤ 6,

as p gets large more patterns with ni ≤ 6 are generated and thus more cases are removed.

As before, table entries “NED” indicate situations where after removal of cases with ni ≤ 6

less than half of the cases remain. Overall, the power of the Hawkins test for n = 500 is

reasonable, and it is quite respectable when n = 1000.
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Table 6: Power of the NP test with non-HC alternative
q n = 200 n = 500 n = 1000

Dist. p = 4 p = 7 p = 10 p = 4 p = 7 p = 10 p = 4 p = 7 p = 10
0.1 42 50.1 55.1 79.9 92 91.3 92.4 99.1 100

N/Corr-N 0.2 34.5 30.3 NED 56.5 59.8 NED 90.7 89.9 91.4
0.3 27 NED NED 51.4 44.6 NED 87.5 79.3 NED

0.1 24.4 26 26.6 54.1 50 43.1 67.1 63.8 65.7
Corr-N/N 0.2 25.5 14.1 NED 37.3 25.6 NED 71.8 43.7 45

0.3 16.6 NED NED 32 22.3 NED 64.9 36.9 NED

0.1 31 28.8 29.2 67.4 56.9 45 79.7 83.6 79.6
t/Corr-t 0.2 24 19.8 NED 37.9 31.9 NED 70.5 58.4 59.3

0.3 20 NED NED 34.5 29.8 NED 58.7 59.2 NED

0.1 12.1 13.1 13.6 16.5 17.4 18.2 29.1 19.2 25.8
Corr-t/t 0.2 13.2 13 NED 22.9 18.3 NED 42.4 29.4 34.4

0.3 15 NED NED 28.1 26 NED 44 43.7 NED

0.1 80.2 81.3 81.2 99.5 100 99.9 100 100 100
U/Corr-U 0.2 65.2 47.2 NED 93 90.6 NED 99.8 100 99.8

0.3 46.7 NED NED 87.8 64.9 NED 99.8 97.8 NED

0.1 57.8 46.5 46.5 94.1 88.4 81.1 98.7 97.7 98.2
Corr-U/U 0.2 52.6 22.2 NED 77 52.7 NED 99.2 82.3 75

0.3 31 NED NED 66.4 34.9 NED 97 65.5 NED

4.2.2 Power of the NP test

Table 5 gives the rejection rates of the NP test when data were generated according to the

eight distributions considered in Section 4.1, and the missing data were generated according

to the MAR alternative. As expected, as the sample size increases the power of the NP test

increases. The power of the test is specially good for the short-tailed distributions U and

corr-U . On the other hand we observe the least power for the W and Weibull distributions.

Overall the power is quite good for large sample sizes n = 500 and 1000. For the MAR

alternative case, there is not much difference between the N and Corr-N cases. However,

when comparing the power for N/Corr-N to Corr-N/N , the power for the latter case is

noticeably larger.

Table 6 gives the rejection rates of the NP test when data were generated according to

the non-HC alternative. Again, the power of the test increases as the sample size increases.

Also, the power is quite good for the short-tailed uniform distributions. Overall the power

is good for n = 500, and quite good when the sample size is 1000.

5 The Effect of ni on the Performance of the Tests

As we have seen, the performance of each of the KB, Hawkins, and NP tests depends on the

sample size ni for each of the groups. Also, as noted in the Introduction, the generalized
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Figure 1: Q-Q plots of 1000 KB test statistic when H0 is true.

Figure 2: Q-Q plots of 1000 Hawkins test statistic PT when H0 is true.
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Figure 3: Q-Q plots of 1000 NP test statistic T when H0 is true.

least squares statistic used in the KB test has a χ2 distribution provided that ni go to infinity

and ni/n→ γi, for some constant γi. In Section 2 we pointed out that independence of Fij

plays a role in testing the uniformity of Aij in the Hawkins test, and Hawkins (1981) argued

that for large ni, as large as 4, the independence amongst Fij holds. As for the NP test,

application of the Anderson-Darling k-sample test requires that the Fij be independent, and

again it can be argued as in Hawkins (1981), that for large ni this independence holds. So a

common denominator here is that all of these tests perform well when ni are large. But the

question is how large is sufficiently large. In this section we report on our search to answer

this question.

We have compared the theoretical distribution of the test statistics used for each of the

tests to their observed distribution on several examples. We report on a typical example here.

Considered 1000 data sets generated from the standard multivariate normal with n = 500,

p = 7, and a fixed MCAR missing data pattern with 20% missing data. Furthermore, we

consider four versions of each data set obtained by deleting groups with ni = 1, ni ≤ 3,

ni ≤ 6, and ni ≤ 9; we refer to each of these cases respectively as D1, D3, D6 and D9.

Finally for each instance of D1, D3, D6 and D9, using the generated data, we compute 1000
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copies of the generalized least squares test statistic for the KB test, the PT statistics given

in (4) for the Hawkins test, and the T statistic given in Section 3.2 for the nonparametric

test. Figures 1-3 give the Q-Q plot of the quantiles of these observed statistics against each

of their theoretical quantiles.

Figure 1 includes the Q-Q plots related to the KB test. Plots for D1 and D3 indicate that

the observed distribution of the KB statistic has a longer tail than its theoretically assumed

(asymptotic) distribution. This pattern continues on the plots corresponding to D6 and D9,

but the deviance from the assumed theoretical distribution decreases as the minimum ni

increases. The observed significance level corresponding to each case is given on the caption

of each plot. For the KB test these values exceed their nominal level of 5%, but approach

it as ni gets larger. This suggests that if a data set consists of missing data patterns with a

few observations, then it would not be appropriate to use the KB test.

Figure 2 shows the Q-Q plots related to the Hawkins test. The Q-Q plots for the cases

D3, D6 and D9 look quite good, confirming that our assumed distribution in (4) holds for

ni as low as 4. As shown on the figure, the observed significance level for D3 is reasonably

close to its nominal level of 5%, and that for D6 and D9 are very close to their nominal level

of 5%, respectively being 4.8% and 4.3%. It’s interesting that the Q-Q plot for the case D1

is parallel, but above the “y = x” line. Our investigation of this led us to note that in this

case Pi’s are dependent for very small ni’s, which violates an assumption required for (4) to

hold. When Pi’s are dependent, Hou (2005) shows that the distribution of the Fisher’s test

statistic is a multiple of chi-square with an adjusted degrees of freedom. Thus, if we adjust

the degrees of freedom appropriately, we expect the Hawkins test to work well for cases with

minimum ni as small as 2. It turns out that the degrees of freedom adjustment proposed by

Hou (2005) requires an estimate of Cov(−2 logPi,−2 logPj) which is not easily computable.

We opted not to pursue this further because our test performs well for cases with ni as low

as 4, and thus the effort may not practically be warranted.

Finally, Figure 3 shows the Q-Q plots related to the T statistics for the NP test. This

statistic does not have a closed form distribution, and so we approximated its theoretical

quantiles by simulating 10,000 copies of T . Again, due to dependency of the Fij, the observed

significance level is quite inflated for the D1 case, and the Q-Q plot shows a distinct difference

between the theoretical and the observed distributions. However, this difference closes gap
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quickly for the cases with ni as low as 4. In the best scenario case of D9, the observed

significance level is 7.4%, reasonably close to its nominal value of 5%, and that for the case

D6 is 8.6%. The observed significance levels for D3 is 14.2%, which is somewhat inflated. Of

course the main advantage of the NP test is that it works well for data that are not normally

distributed. We performed a same exercise using multivariate t, and we observed a similar

pattern to that in Figure 3 with slightly larger observed significance levels; for example the

observed significance level for D9 was 9%. The inflated rejection rates for the NP test can

be attributed to the fact that the k-sample test used requires data within each group to be

uncorrelated, but for our setting Fij are not uncorrelated, but their correlation decreases

with larger ni.

6 Multiple Imputation

The tests proposed in this paper impute the missing data and apply a complete-data method

to the completed data. A problem with single imputation methods is that the variance

due to the imputed values is not accounted for. A way to account for this variance is to

multiply impute the data (see Rubin 1987). In parameter estimation, various methods exist

that combine parameter estimates and variances from each single imputation of the data

to obtain parameter estimates and variances that account for imputation variation. When

testing hypotheses, however, combining the p-values obtained from each single imputation to

get a single overall p-value is not simple. For example, the Fisher (1932) method, described

in Section 2, cannot be applied since the p-values obtained from each of the imputed data sets

are not independent. In order to assess the variability of imputations, we propose multiply

imputing data and examining the variability in the p-values obtained using exploratory

methods. Various methods of multiple imputation are available (see for example, Little and

Rubin, 2002, Chapter 10). Here we discuss two methods and employ one.

Recall that in the Hawkins method we imputed a missing datum Ymis,ij by replacing

µ and Σ in (6) by their respective ML estimates µ̂ and Σ̂. Equation (6) can also be

used to produce multiple imputations, by generating multiple estimates of µ and Σ via the

asymptotic distribution of their ML estimates. Let θ denote a p+p(p+1)/2 vector containing

the parameters in µ and Σ and let θ̂ denote an ML estimate of θ. If data are normally
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distributed and MCAR, it is well-known that θ̂ ∼ N (θ,Ω), where Ω can be estimated by

Ω̂, the negative of the inverse of the observed information matrix evaluated at θ̂. Thus, in

this case multiple estimates of µ and Σ can be obtained by multiply generating from the

distribution N (θ̂, Ω̂). Each estimate then can be used in (6) to generate a set of imputed

values. This approach can be used with non-normal data as well, given consistency results

under certain conditions (Yuan 2009) and availability of sandwich type estimators to replace

for Ω̂. Our experiments with this method of multiple imputation has been successful with

normal data. The method just described is one of several methods described by Little and

Rubin (2002, Chapter 10). Alternatively Bayesian-based methods can be used for obtaining

imputation values. For our problem, our limited experience with the Bayesian methods

shows little advantage over the method that we just described. Indeed an advantage of

the method that we just described, as compared to many Bayesian methods, is that it is

computationally simpler and for example does not require assessing convergence of iterative

simulations (see Little and Rubin 2002, Chapter 10).

An alternative method is to employ the nonparametric method of imputation of Section

3.2 for multiple imputation for both normal and non-normal data. Recall that in the method

of Section 3.2, we obtain the best linear estimator for Ymis,ij based on the completely observed

data and add a random component ej that is a function of a sample from the residuals

ej. To extend this method for multiple imputation, Srivastava (2002) and Srivastava and

Dolatabadi (2009) recommend re-sampling the ej, computing η∗ij for each instance of multiple

imputation, and using (7) to form the imputations. Variations to this method is discussed

in Srivastava and Dolatabadi (2009). We have experimented with some of these variations,

and because the method that we just described works well and is simple we have adopted

it. In all of the examples that follow, we have used this method of multiple imputation.

6.1 Examples of applications of multiple imputation

In this section we discuss applications of multiple imputation using examples. We start with

normally distributed data. Figure 4 shows boxplots and frequency histograms of the p-values

obtained from 200 imputations of two data sets consisting of 20% MCAR data and generated

from a standard multivariate normal. Figure 4(a) corresponds to a data set consisting of

n = 300 cases generated from N (0, I). For this example, there were 9 missing data patterns.
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Figure 4: Boxplots of p-values for each missing data patterns and the frequency histogram
of the overall p-values, when missing data were imputed 200 times; p = 7.

25



Each boxplot corresponds to a missing data pattern, and is a summary boxplot of the 200

p-values Pi, described in Section 2, obtained for each of the imputed data sets. Since the

null-hypothesis (2) holds here, as expected these p-values range almost uniformly in the

interval (0,1). The last boxplot in this figure corresponds to the group which was completely

observed, and it stands above the other groups’ boxplots. The graphs shown on the right

column are the frequency histograms of the overall p-values, PT , for the 200 imputations.

While the p-values vary from imputation to imputation, they are all above the 5% mark,

indicated by the vertical line on the plot.

A similar scenario as in Figure 4(a) is used in Figure 4(b), except that in the latter we have

used the population covariance matrix 2I for the second group, and have kept the covariances

for the remaining groups equal to I. It is interesting that the boxplot corresponding to group

2 is clearly below the horizontal 5% line shown on the figure, thus this plot identifies the

group that is responsible for non-homogeneity. Also, the frequency histogram of the p-values

in panel 4(b) shows the variation due to imputation, but in 91% of the cases the p-values

are smaller than the 5% significant level and the null hypothesis is correctly rejected.

Figures 4(c) and 4(d) are analogs of Figures 4(a) and 4(b), respectively, with a sample

size of n = 500. For this case we have 16 data patterns. Most of the boxplots in 4(c) range

between (0,1). The frequency histogram of PT shows that 95.5% of the p-values are above

the 5%-level thus correctly not rejecting H0. The data for Figure 4(d) has been set so that

the covariance for the second missing data pattern equals to 2I. The boxplot for group

2 is well below the 5% line, thus again enabling us to identify the group with a different

covariance matrix, as compared to the remaining groups. In this example the frequency

histogram shows that the null hypothesis is correctly rejected for 99.5% of the imputed data

sets.

Figure 5 is analogous to Figure 4, except that here we have used the standard multivariate

t distribution with 4 degrees of freedom to generate data. For this example, in place of the

boxplot of p-values for each group we have shown the boxplot of the Ti values given in

(8). The Ti values indicate the contribution of each group to the overall T statistic, and

thus a group with unusually high Ti value is perhaps a good candidate, responsible for non-

homogeneity of covariances. Figures 5(a) and 5(c) correspond to examples with homogeneous

population covariances. In both of these cases while the frequency histograms of the p-values
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Figure 5: Boxplots of Ti-values for each missing data patterns and the frequency histogram
of the overall p-values, when missing data were imputed 200 times; p = 7.
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Figure 6: A sequence of boxplots of Ti-values obtained by each time eliminating the group
with significantly higher Ti values.

show variation due to multiple imputation, in over 98.5% of the cases the NP test of HC is

not rejected at 5% level. Figures 5(b) and 5(d) correspond to cases where data for groups

5 and 13 were respectively generated from a covariance matrix of 2I, as opposed to I for

other groups. These figures clearly identify the groups with a different covariance matrix

than others. The p-values for 61% of the cases in Figure 5(b) are below the 5% level, and

that for figure (d) is 100%.

The above examples suggest that if one group’s covariance differs from others, then

using the boxplots, we are able to identify that group. We have tried this on several similar

examples and have been able to identify the single group with a different covariance than the

remaining groups. Now, as the number of groups with different covariances than the majority

of groups increases, identification of such groups become more difficult. Nonetheless, one

may be able to get some information by examining the distribution of Ti’s. Figure 6(a)

shows an example where data are generated similar to those in Figure 5(c), except that the

covariances for the second and third groups are 2I and different from the other groups. In

Figure 6(a), the boxplot for group 3 clearly stands above, but that for groups 2 and 5 are
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also higher than others, although group 5 does not have a different covariance matrix from

the majority. We eliminated group 3, the group with the highest boxplot, and reexamine

the boxplots for the newly formed data. The result of this experiment is shown in Figure

6(b). Now group 2 (our original group 3) is the only one with a boxplot standing above

others. Eliminating group 2 from Figure 6(b) gives rise to a set of homogeneous data and for

this no boxplot seem to standout clearly, as depicted in Figure 6(c). This shows an example

of a sequence of elimination and testing to identify groups with different covariances from

the majority of groups. In general, we recommend that conclusion from such analyses be

substantiated by using the knowledge about the data.

To summarize this section, we recommend that multiple imputation be conducted in

each case and the histogram of the p-values be examined. If this histogram indicates a

large percentage of rejections, then we should declare non-homogeneity of covariances. If

homoscedasticity is rejected, then this analysis can be followed by examining the box plots

of Ti’s for each group in the hope of identifying group or groups whose covariances are

different from the majority of the groups.

7 Summary and Discussion

Tests of homoscedasticity have a number of applications, and in particular in the context

of incomplete data analysis have been suggested as a test of MCAR by Little (1988) and

Kim and Bentler (2002). These authors have proposed that if a test of homogeneity of

covariances between groups with identical missing data patterns is rejected, then data are

deemed not to be MCAR; a premise that we further explored in this paper. Little (1988)

proposed a likelihood ratio test of MCAR for normally distributed data. His test requires

that ni, the number of observations in a missing data pattern, be greater than the number

of variables pi for that missing data pattern. Moreover, it is well-known that the normal

theory likelihood ratio test in testing homoscedasticity requires a large n and is sensitive

to deviation from normality (see e.g., Jamshidian and Schott 2007). To do away with the

requirement of ni ≥ pi and normality, Kim and Bentler (2002) proposed a generalized least

squares test (KB) to test for MCAR. In this paper we have argued why the KB test may

not perform well when ni are small. Moreover, we have demonstrated, both in a simulation
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study and based on an argument, that the type I rejection rates for the KB test is too high

for heavy-tailed distributions, and too low for light tailed distributions.

In this paper we proposed two tests of homoscedasticity that work well for reasonably

small ni, one for normal data, and another for normal or non-normal data. In the context

of complete data, Hawkins (1988) proposed a test of homoscedasticity that works well when

ni are small. We have proposed an improved version of this test for complete data and have

extended its use for test of homoscedasticity for incomplete data. Furthermore, we have

employed the Hawkins (1988) statistic in conjunction with a nonparametric k-sample test

to construct a nonparametric test of homoscedasticity (NP) that works well when data are

non-normal.

Our simulation studies show that when data are normally distributed our proposed

Hawkins test performs well in the sense that its observed significance levels are close to

the nominal significance level. The KB test works well when p is small (say p ≤ 4) and

the ni are large. In our simulations with p = 4, the KB test had generally a higher power

than the Hawkins test with the gap closing as the sample size and percentage of missing

increased. However, for p = 7 and p = 10 the KB test had somewhat inflated observed

significance levels, because as the values of p increased in our simulations, the number of

groups with smaller ni also increased and this mainly was the reason for poorer performance

of the KB test. Both the Hawkins test and the KB test fail as a test of homoscedasticity for

non-normal data.

Our simulations show that the proposed NP test works well for normal and non-normal

data, both in the sense of achieving observed significance levels close to the nominal level and

in terms of power. For normally distributed data, however, overall the Hawkins test performs

best in terms of the observed significant level followed by NP and KB in that order.

Since Hawkins test is a test of homoscedasticity as well as multivariate normality, in-

terestingly the combination of the Hawkins test and the NP test will afford us testing for

both homoscedasticity and multivariate normality when the following sequence of tests is

applied. Begin by applying the Hawkins test. If this test is not rejected, then there is no

evidence against either normality or homoscedasticity. On the other hand, if the Hawkins

test is rejected and normality cannot be assumed, then apply the NP test. At this stage,

if the NP test is rejected, then we conclude non-homogeneity of covariances (reject MCAR)
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Figure 7: Flowchart of sequence of tests to test normality and MCAR using the Hawkins
and NP tests.

and if the NP test is not rejected, then we conclude non-normality, but homoscedasticity of

the data. This is our recommended procedure, and it is depicted in the flowchart given in

Figure 7.

Our proposed Hawkins and NP tests rely on imputing the missing values. We propose

that multiple imputation be performed in order to assess the uncertainty due to imputing

values. As we explained, in addition to confirmation of our single imputation test result, in

some cases the multiple imputation enables us to identify group or groups whose covariance

significantly differs from the other groups.

The problems that we have considered here assume a saturated model for the covariance.

Our methods can easily be extended to test homoscedasticity when a structure is imposed

on the covariances, as in structural equations models. In an extension of our method to such

problems the estimate of the covariance matrix under saturated model should be replaced

by the estimate of the covariance under a given structure Σ(θ).
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An important note is that in testing MCAR we have assumed that the complete data

come from a single population, and homoscedasticity in the incomplete data would result

because of a not MCAR missing data mechanism. There can be situations where the original

data come from multiple groups with distinct covariance matrices, and we have missing data.

For such cases, the tests proposed here would be inconclusive. For example, we may have a

situation where missing data mechanism is MCAR, but due to multiple group nature of data,

including groups with non-homogeneous covariances, our tests of homoscedasticity would be

rejected. For such cases, one may employ the tests considered in Jamshidian and Schott

(2004), provided that the groups are known a’priori.

In general, in the absence of any information about missing data, tests of MCAR can

be quite valuable. If a test of MCAR is rejected, a flag should be raised to a researcher to

look into the missing data mechanism carefully and perhaps use the substantive knowledge

from the data to deal with the missing data problem and perhaps incorporate a model for

the missingness in the analysis. On the other hand, not rejecting a test of MCAR should

provide some degree of comfort in employing many analyses, such as ML, that incorporate

missing cases in the analysis.

8 Appendix

8.1 Distribution of Fij and its dependence on ni

The quantity Fij is a constant multiple of T 2
ij, with the multiplicative constant (n − g −

p)/((n− g − 1)p) independent of ni. In this section we discuss the distribution of T 2
ij when

Xij are either normal or non-normal. It can be shown that

S∗(ij) =
n− g

n− g − 1

[
S − ni − 1

ni(n− g)
(Xij −X∗(ij))(Xij −X∗(ij))

T

]
.

We note that the relationship between S and S∗(ij) given on page 106 of Hawkins (1981) is

incorrect. Now define

uij ≡
(
ni − 1

ni

)1/2

(Xij −X∗(ij)) =
(

ni

ni − 1

)1/2

(Xij − X̄i), (9)

where the second equality can be shown to hold using some algebraic manipulations. Rewrit-

ing S∗(ij) in terms of uij, we have S∗(ij) = [(n− g)S−uiju
T
ij]/(n− g− 1), and by applying the
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Sherman-Morrison formula we obtain

(S∗(ij))
−1 =

n− g − 1

n− g

[
S−1 −

S−1uiju
T
ijS
−1

uT
ijS
−1uij − (n− g)

]
.

Thus,

T 2
ij = uT

ij(S
∗
(ij))

−1uij =
(n− g − 1)uT

ijS
−1uij

n− g − uT
ijS
−1uij

. (10)

Equation (10) indicates that the distribution of T 2
ij depends on ni only through the uij given

in Equation (9). Note that S = 1
n−g

∑g
i=1

∑ni
j=1(Xij − X̄i)(Xij − X̄i)

T , and is the same for all

i and j. Now, if Xij’s satisfy the normality assumption given in (1) and the null hypothesis

(2) holds, then uij ∼ N (0,Σ), independent of i and j, and in fact T 2
ij has a Hotellings T 2

distribution with Fij = (n−g−p)T 2
ij/((n−g−1)p) following an F distribution with degrees

of freedom p and n− g − p independent of ni.

If Xij’s are not normally distributed, but we have a balanced case where n1 = n2 = · · · =
nk and all Xij are identically distributed, then in this case the distribution of uij will be the

same for all i and j. In particular, if the distribution of Xij has a pmf or pdf of the form

f(Xij,Σi,θ) whose second central moment Σi can vary across groups, and other distribution

parameters θ (e.g., means) are equal for all groups, then if the null hypothesis (2) holds, the

distribution of Fij will be equal for all i and j.

Finally, if Xij are not normally distributed and we are in the unbalanced case where not

all ni are equal, then obviously the distribution of uij will in general depend on ni. However,

again if all Xij are identically distributed, and ni are sufficiently large, then ni/(ni − 1)

will be close to 1 and by the central limit theorem, under some regularity conditions on

the distribution of Xij, the distribution of X̄i tends to normal and the dependency of the

distribution of uij on ni weakens as ni increases.

8.2 HC Implies MCAR

In using the test of homogeneity of covariances amongst groups consisting of identical missing

data patterns to test for MCAR, we are effectively under the premise that HC implies MCAR.

In this section we discuss the assumptions under which this holds. Following the notation

of Section 3.2, let Yi be the ni by p matrix of values for the ith missing data pattern,

with Yobs,i and Ymis,i respectively denoting the observed and the missing part of Yi, and
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Yij = (Yobs,ij,Ymis,ij) denoting the j-th case in the i-th group. Moreover, let ri denote a

p by 1 vector of indicator variables corresponding to the observed and missing values of

Yi with a 1 and 0 respectively indicating that the corresponding component is observed

or missing. Let Σi = cov(Yij), and f(Yij; Σi,θ) be the density of Yij parametrized by

Σi (depending on i) and θ. Here we assume that θ are all equal across the missing data

patterns i = 1, · · · , g. For example, f can be the multivariate normal density that depends

on the mean and covariance, and we assume that the means are equal across groups. Another

example is the multivariate t which is parameterized by a mean vector, a covariance matrix,

and a degrees of freedom parameter; in this case we assume that the mean and the degrees

of freedom parameter are equal over the g groups. We then test the hypothesis

H0 : Σ1 = · · · = Σg ≡ Σ, (11)

where Σ denotes a common value. We assume that given ri, the distribution of of Yij

depends on Σi and is f(Yij; Σi,θ). Moreover, if the hypothesis of homoscedasticity (11)

holds, then

f(Yij; Σi,θ|ri) = f(Yij; Σi,θ) = f(Yij; Σ,θ). (12)

The first equality essentially states that if we know that we are under ri, or have the i-th

missing data pattern, then our distribution is given by f(Yij; Σi,θ). That is the data come

from a single population, and the distinction is only based on missing data patterns and

through Σi. The second equality obviously holds, if (11) holds.

Theorem: Under the above setting, if the null hypothesis (11) holds, then data are MCAR.

Proof: We need to show that the missing data mechanism ri is independent of the observed

or missing values. Let f(ri|Yij) = f(ri;ψi|Yobs,ij,Ymis,ij) denote the conditional density

(or probability mass function) of ri given Yij = (Yobs,ij,Ymis,ij), where ψi is a vector of

parameters related to ri and is disjoint from θ and Σi. Note that in this section we use f

generically to denote a pdf or pmf.

f(ri;ψi|Yobs,ij,Ymis,ij) =
f(Yobs,ij,Ymis,ij; Σi,θ|ri)f(ri;ψi)

f(Yobs,ij,Ymis,ij; Σi,θ)

=
f(Yobs,ij,Ymis,ij; Σ,θ)f(ri;ψi)

f(Yobs,ij,Ymis,ij; Σ,θ)
[since (11) holds]

= f(ri;ψi)
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Thus, the missing data mechanism is MCAR.

Yuan (2009) considers a class of distributions characterized as y = µ + Az, where y =

(y1, · · · , yp) and z = (z1, · · · , zp) are random vectors with z1, · · · , zp independent and E(zi) =

0 and V ar(zi) = 1. Furthermore, µ is a p by 1 vector, consisting of the mean of y, and A

is a lower diagonal matrix such that the cov(y) = Σ = AA′. The theorem above can apply

to this class of distributions, provided that the distribution of zi does not depend on any

parameters (for example, zi ∼ N(0, 1), or zi ∼ Unif(0, 1)), or if it does these parameters

are equal across all the g groups.
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