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Abstract

Aim: Vegetation is sensitive to mean annual precipitation (MAP), but the sensitivity of vegetation

to precipitation variability (PV) is less clear. Tropical ecosystems are likely to experience increased

PV in the future. Here we assessed the importance, magnitude and mechanism of PV effects on

tree cover in the context of covarying environmental drivers such as fire, temperature and soil

properties.

Location: Tropical land.

Time period: 2000–2010.

Major taxa studied: Trees.

Methods: We compiled climate, soil and remotely-sensed tree cover data over tropical land. We

then comprehensively assessed the contribution of PV at different time-scales to tropical tree

cover variations and estimated the sensitivity of tree cover to PV changes by conducting rolling-

window regression and variance decomposition analyses. We further adopted a mechanistic mod-

elling approach to test whether water competition between trees and grasses can explain the

observed effect of PV.

Results: We find that PV contributes 33–56% to the total explained spatial variation (65–79%) in

tree cover. The contribution of PV depends on MAP and is highest under intermediate MAP (500–

1,500 mm). Tree cover generally increases with rainy day frequency and wet season length but

shows mixed responses to inter-annual PV. Based on the estimated sensitivity, tropical tree cover

can decrease by 3–5% overall and by up to 20% in Amazonia under a 20% decrease in rainy days.

Mechanistic modelling analysis reproduced the continental differences in tree cover along an MAP

gradient.

Main conclusions: Under intermediate rainfall regimes (500–1,500 mm), PV can be a more impor-

tant determinant of tropical tree cover than conventionally proposed drivers such as MAP and fire.

The effect of PV likely results from the sensitivity of tree–grass competition to the temporal distri-

bution of water resources. These results show that climate variability can strongly shape the

biosphere.
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1 | INTRODUCTION

Over 1 trillion trees grow in tropical and subtropical regions (Crowther

et al., 2015), supporting a significant carbon sink and storage (Pan et al.,

2011). However, the spatial distribution of tree cover, a widely used

measure for tropical tree abundance, is strikingly heterogeneous. This

spatial variability defines ecosystems with distinct levels of tree abun-

dances such as grasslands, savannas and forests. These ecosystems

provide their own particular sets of ecosystem services, including vary-

ing degrees of carbon sequestration, biodiversity, regulation of climate,

and support for human socio-economic activities (Chapin, Matson, &

Vitousek, 2011; Scholes & Walker, 1993).

Determination of the environmental drivers of spatial variation in

tree cover can provide an empirical basis to predict the future fates of

tropical ecosystems (Lehmann et al., 2014). In tropical and subtropical

ecosystems, water availability has been suggested as the primary deter-

minant on tree cover (Hirota, Holmgren, Van Nes, & Scheffer, 2011;

Lehmann et al., 2014; Sankaran et al., 2005; Staver, Archibald, & Levin,

2011a), while other proposed controlling factors include fires, herbi-

vores, and soil properties (Dantas, Hirota, Oliveira, & Pausas, 2016;

Lehmann et al., 2014; Sankaran, Ratnam, & Hanan, 2008; Staver, Archi-

bald, & Levin, 2011b). For instance, both in-situ (Sankaran et al., 2005)

and remotely-sensed (Hirota et al., 2011) observations show that mean

annual precipitation (MAP) is strongly correlated with tropical tree

cover. However, although precipitation variability (PV) at various time-

scales is well known to affect the partitioning of total water supply

between trees, grasses, soil evaporation and runoff (Rodriguez-Iturbe &

Porporato, 2004; Schaffer, Nordbotten, & Rodriguez-Iturbe, 2015; Xu,

Medvigy, & Rodriguez-Iturbe, 2015), PV has received less attention as

a determinant of tropical tree cover. PV components such as wet day

frequency and seasonality have changed over the course of the 20th

century (Feng, Porporato, & Rodriguez-Iturbe, 2013) and they are pro-

jected to become more extreme by the end of the 21st century (East-

erling et al., 2000; Pascale, Lucarini, Feng, Porporato, & Ul Hasson,

2016; Polade, Pierce, Cayan, Gershunov, & Dettinger, 2014) . There-

fore, achieving a better understanding of the effects of PV on tree

cover is highly relevant in the context of on-going climate change.

Existing analyses of the effects of PV have mostly focused on PV at

seasonal time-scales using simplistic climatic indices derived from

monthly rainfall data (Bucini, Beckage, & Gross, 2017; Holmgren, Hir-

ota, van Nes, & Scheffer, 2013; Lehmann et al., 2014; Staal, Dekker,

Xu, & van Nes, 2016; Staver et al., 2011a,b; Zemp et al., 2017; Zeng,

Chen, Piao, Rabin, & Shen, 2014) while relatively few studies have

investigated the importance of PV at daily (Good & Caylor, 2011; Kul-

matiski & Beard, 2013) or inter-annual (Holmgren et al., 2013) time-

scales. Moreover, the collinearity and interaction between PV compo-

nents, MAP and other environmental drivers were not well character-

ized in previous analyses, which can bias the reported effects and

contribution of PV to spatial variations in tree cover.

In this study, we extracted three PV components at different time-

scales from pan-tropical daily rainfall data: the wet season length

(Tw), the rain-day frequency in the wet season (k), and the coefficient

of variation of annual precipitation (CVP). We then conducted a

comprehensive statistical analysis on the effects of PV on tree cover,

using a wide variety of data sets, including satellite-derived tree cover,

mean annual burned area fraction (BAF), topsoil sand fraction, topsoil

organic carbon concentration, mean annual temperature (MAT), PV and

MAP. We aim to assess (a) the contribution of PV to tropical tree cover

variations and (b) the sensitivity of tropical tree cover to PV compo-

nents with the consideration of the interaction between PV and other

environmental factors. We further estimated the changes in tree cover

over tropical land under the projected decreases in Tw and k at the end

of this century based on our sensitivity analysis. Finally, we tested the

hypothesis that the detected PV effects can largely be explained by

tree–grass competition using a biophysical model.

2 | MATERIALS AND METHODS

2.1 | Data source

This study used the Moderate-resolution Imaging Spectroradiometer

(MODIS) Vegetation Continuous Fields (VCF) data Collection 5

(MOD44B.005) (DiMiceli et al., 2011; Hansen et al., 2003). We calcu-

lated the average tree cover from 2000 to 2010 in the tropics. In order

to compare with other environmental data sets, we aggregated the raw

VCF data to 0.258 by averaging all tree cover values of the 250 m pix-

els within the 0.258 grid cell. An earlier analysis showed that this spatial

aggregation does not influence the results of statistical analyses with

other environmental variables (Staver et al., 2011a) because the var-

iance in tree cover between 0.258 grid cells is 5–10 times higher than

the variance within grid cells (Supporting Information Table S1). We

calculated the mean annual burned fraction (%/year) at 0.258 resolution

from 1996 to 2015 to indicate average fire activity using data from the

Global Fire Emission Database v4.0 (Giglio, Randerson, & Van Der

Werf, 2013). We extracted topsoil (0–30 cm) sand fraction and soil

organic carbon from the gridded Harmonized World Soil Database

(Wieder, Boehnert, Bonan, & Langseth, 2014) and MAT from the

WorldClim data set (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005).

Similar to the MODIS VCF data, the soil and MAT data were also

aggregated to 0.258. Herbivores, especially megafauna like elephants,

are also a critical determinant for tropical tree cover (Asner et al., 2009;

Hempson et al., 2015). However, fine-resolution global data for herbi-

vore activity are hard to collect and no global gridded data set is avail-

able. Thus, we did not include the herbivore effect in our statistical

analysis. We extracted MAP and PV (see below for details) from Tropi-

cal Rainfall Measuring Mission (TRMM) daily rainfall data (3B42, ver-

sion 7). This data set provides daily rainfall depth spanning from 508N

to 508S at 0.258 resolution (Huffman et al., 2007). We used complete

annual cycles of daily rainfall from 1999 to 2014.

We limited our analysis to 158N to 358S in Africa, America and

Australia (Hirota et al., 2011) and excluded grid cells with a high eleva-

tion (> 1500 m) and a minimum monthly temperature < 15 8C. This

procedure helps to avoid the effect of low temperature on tree growth

and thus minimizes the effect of temperature seasonality (Staver et al.,

2011b). Elevation and monthly temperature data were extracted from

the WorldClim data set (Hijmans et al., 2005). We also excluded grid

XU ET AL. | 451



cells where anthropogenic land use type (crop, urban or unclassified)

was more than 5% of the grid cell area using the MODIS land cover

data set (MCD12C1). In addition, we limited our analysis to regions

with MAP < 3000 mm. In areas with very high MAP (> 3000 mm),

water is almost always abundant. The total number of grid cells

included in our statistical analysis is 12,251 for Africa, 10,759 for

America, 3,376 for Australia and 26,386 for all the continents together.

All the data were pre-processed to temporal average values before

further statistical analysis, because we focused on the average state of

tree cover and its sensitivity to climatologically average environmental

variables. Therefore, the differences in temporal durations among data

sets should have little impacts on our analysis. The spatial maps of all

the input data are shown in Supporting Information Figure S1.

2.2 | Calculation of precipitation variability

PV components were extracted from the TRMM data set. First, intra-

annual PV includes wet season length (Tw), wet day frequency (k) and

average wet day rain depth (a) in the wet season. Theses intra-annual

PV components are related to MAP as follows:

MAP5
a3k3Tw

80%
: (1)

We define Tw to cover 80% of annual rainfall following previous

practices (Guan et al., 2014) and therefore, the product of the three

intra-annual PV components is equal to 80% of MAP. The four varia-

bles in Equation 1 have 3 degrees of freedom. Therefore, we only

included MAP, Tw and k in our analysis.

We estimated Tw for each grid cell using the 16-year average

annual cycle of daily rainfall. In order to account for bimodal rainfall, we

performed a Fourier Transform on the average annual cycle to extract

the dominant rainfall periodicity. We assigned a grid cell as 1-year peri-

odicity if the strength of the 1-year periodicity was stronger than the

strength of the half-year periodicity and vice versa (Supporting Infor-

mation Figure S2). For grid cells with one wet season, we defined the

start of a hydrological year as the lowest phase of the 1-year harmonic.

We then defined the start (and end) of the wet season as when the

cumulative rainfall from the start of a hydrological year crosses 10%

(and 90%) of MAP (Guan et al., 2014). Tw was calculated as the time

from the start to the end date. For grid cells with two wet seasons, we

repeated this algorithm for each half-year cycle and summed up the

two individual Tw as total Tw. We estimated k by assuming that the

occurrence of rainfall events is a Poisson stochastic process (Good,

Guan, & Caylor, 2015). Therefore, k was calculated as the total wet

days (daily rainfall>0) in the wet season divided by the total wet sea-

son length. Second, we included inter-annual variability of annual pre-

cipitation as the inter-annual PV metric in our analysis, which was

calculated as the coefficient of variation of annual precipitation (CVP)

during 1999–2014.

2.3 | Statistical analyses

We used three different statistical metrics to investigate the effect and

importance of PV for determining the spatial variation in tree cover at

global and continental scales. First, we performed stepwise regression

analysis based on K-fold cross-validation. In the regression model,

MODIS tree cover is the response variable, and the predictors include

MAP, burned area, two soil factors (Sand% and soil organic carbon),

and three PV factors (Tw, k and CVP). In each step, the variable that

reduced root mean square error (RMSE) most following 5-fold cross-

validation was selected. Values of the Akaike information criterion

(AIC) were also compared with the cross-validation results. We com-

pared two regression models, one with PV (W-PV) in the initial predic-

tor pool and one without PV (N-PV). We calculated the difference in

both the R2
adj and AIC between the two regression models as a metric

for the importance of PV. Second, we calculated the standardized

regression coefficients (bstd) in the W-PV model to infer the sign and

size of the effect of each environmental predictor. bstd represents the

partial sensitivity of tree cover to each predictor. The absolute value of

bstd is also indicative of variable importance (Gr€omping, 2015). Third,

we calculated a more formal variable relative importance (RI) index

based on variance decomposition (Gr€omping, 2015; Lindeman, Mer-

enda, & Gold, 1980), which is equal to the average of sequential

explained variances (SEV) over all possible orderings of each predictor.

For a regression model with p different predictors, the average SEV

and RI for the variable v is calculated as follows:

SEVðvÞ5
P

i permutationEVðvjiÞ
p!

; (2)

RIðvÞ5 SEVðvÞ
P

SEV
: (3)

In Equation 2, EV(v | i) represents the explained variance by includ-

ing variable v in the ith permutation of the variable addition sequence.

The final RI for variable v is the normalized SEV over all p predictors.

To investigate the nonlinear interaction between PV and MAP, we

further extracted data subsets using MAP rolling windows and con-

ducted stepwise regressions using a data subset from each rolling win-

dow. We first conducted experiments for different window sizes from

30 to 1000 mm to determine the MAP window size that minimizes the

nonlinearity effect but can still provide informative statistical infer-

ences. For each window size, we checked the distribution of sample

size and performed twofold cross-validation of the multiple linear

regression within each window. We repeated the cross-validation 10

times and calculated the average RMSE. The average RMSE would be

high if the window size is large enough to allow for a strong nonlinear

effect or if the window size is too small to incorporate sufficient sam-

ples for robust regression results. We set the window size to be

200 mm to achieve low cross-validation RMSE and sufficient sample

size for most rolling windows (Supporting Information Figure S3). The

centre MAP of the windows rolls from 0 to 3000 mm with a step size

of 30 mm. Similar to our regression analysis at the continental and

global scales, we conducted two stepwise regressions (N-PV and W-

PV) within each MAP rolling window and compared the R2
adj of the two

different regression models. To infer the importance of PV and its

effect on tree cover, we calculated RI and extracted regression coeffi-

cients for each predictor in the W-PV model. The results of the W-PV

regressions should not be influenced much by multi-collinearity
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because variation inflation factor (VIF) values were all smaller than 10

(Supporting Information Figure S4). We calculated 95% confidence

interval for the regression coefficients by multiplying the heteroscedas-

ticity-consistent standard error (HC3_se from the PYTHON package

statsmodels.regression.linear_model) by 1.96.

All statistical analyses were performed in PYTHON 2.7.

2.4 | Changes in tree cover under future precipitation

variability

While global climate models do not agree on future trends in MAP

over tropical land areas, models consistently predict that the frequency

of rainy days will decrease (Pascale et al., 2016; Polade et al., 2014).

The largest projected changes happen in the eastern part of South

America, where rainy days decrease by about 20%. We thus investigate

an extreme scenario where across all tropical regions annual wet days

are reduced by 20% during the wet season. As the total number of wet

days in the wet season is Tw 3 k, we considered two end-member

cases where (a) the reduction of wet days is solely caused by changes

in Tw (k unchanged) and (b) the reduction is solely caused by changes in

k (Tw unchanged). The spatial maps of changes in Tw and k are dis-

played in Supporting Information Figure S5.

To calculate the sensitivity of tree cover to Tw and k for each pixel,

we first determined the MAP rolling windows associated with the grid

cell (as it is possible for a given grid cell to belong to multiple MAP roll-

ing windows). Then, we calculated the sensitivity to Tw (or k) as the

average of the continent-specific regression coefficient of Tw (or k)

from MAP rolling windows associated with the grid cell. Finally, we

computed the potential changes in tree cover as the product of the

average regression coefficient for k (or Tw) and the changes in k (or Tw).

2.5 | Landscape tree–grass competition modelling

We performed idealistic numerical experiments using a landscape tree–

grass competition model coupled with a stochastic rainfall generator

(Xu et al., 2015). The model has twenty 10-cm soil layers. For each soil

layer, the model tracks the change in soil water at a daily time-scale.

Changes in soil water result from infiltration from above (either rainfall

or leakage), water extraction from tree and/or grass roots within the

layer, soil evaporation and runoff, if applicable, and leakage to the next

layer. Plant water extraction is modelled as the current transpiration

rate multiplied by the fraction of root biomass in this soil layer while

transpiration is calculated as a function of maximum the transpiration

rate and soil moisture (Zea-Cabrera, Iwasa, Levin, & Rodríguez-Iturbe,

2006). Evaporation is also calculated as a function of maximum evapo-

ration rate and soil moisture. Leakage is computed following Darcy’s

law (Xu et al., 2015). The model also tracks net primary production

(NPP), which drives the growth of each plant functional type (PFT, tree

or grass). NPP is calculated as the product of PFT-specific water use

efficiency and daily transpiration. NPP is distributed to leaf, root and

stem biomass through an allometric allocation scheme. For root bio-

mass, the model adopts an adaptive biomass allocation scheme over all

vertical soil layers. Belowground NPP is allocated to each layer

proportionally to the water extracted from the layer. This adaptive

framework can successfully reproduce the observed root distribution

at biome level (Schenk, 2008). The model also incorporates shading

effects and a water-driven phenology framework. In the model, grasses

are more aggressive water users and can suppress tree growth consist-

ent with field observations (February, Higgins, Bond, & Swemmer,

2013; Holdo & Brocato, 2015). However, the relative advantage of

grasses over trees depends on the probability of days with high soil

moisture and thus will change with PV. Altogether, this model can gen-

erate realistic tree–grass coexistence and capture the observed

response of tree/grass abundance to precipitation regimes. Details of

the model can be found in Xu et al. (2015).

In this study, we conducted two sets of simulations driven by the

same observed continental average precipitation statistics. Neither dis-

turbances, soil variation nor temperature were included. In the first set

of simulations, we initiated both trees and grass with a leaf area index

(LAI) of 1 and a uniform vertical root profile down to 2 m. In the second

set of simulations, we only included trees and thus numerically disabled

tree–grass competition for water. Everything else was kept the same.

We then ran the model for 200 years and extracted the average wet

season tree LAI over the last 20 years. The modelling exercise was per-

formed using FORTRAN 90.

3 | RESULTS

3.1 | PV effects on tropical tree cover inferred from

statistical analysis

We first assessed the contribution of PV to the spatial variability in

tree cover at continental and global scales. A multiple linear regression

model that does not include PV (N-PV) accounted for 71% of total spa-

tial variance in tree cover globally, including 73% for Africa, 60% for

America and 60% for Australia. The regression with PV variables (W-

PV) increased R2
adj to 79% globally, 78% for Africa, 69% for America

and 65% for Australia (Figure 1a–d). Cross-validation and AIC analyses

also confirmed that the W-PV model performed better (Table 1). How-

ever, the 5–8% increase in R2
adj does not fully reflect the contribution

of PV because of collinearity between variables. Variance decomposi-

tion analysis shows that the total variable RI of the three PV predictors

reached 56% globally, 46% for Africa, 53% for America and 33% for

Australia (Figure 1a–d), values that were higher than the RI values of

BAF, MAT and soil variables combined. The results of this RI analysis

are also consistent with another metric for variable importance, the

absolute values of the standardized regression coefficients (Table 1).

Rolling window regressions show consistent results. The incorpo-

ration of PV increased regression R2
adj by 10–25% in general but the

enhancement is insignificant when MAP<500 mm and peaks at

around 1,500 mm globally (Figure 1h). The MAP range with peak PV

contribution shifted toward the higher end in Africa and toward the

lower end in America, while the pattern in Australia was similar to the

global pattern (Figure 1e–g). The RI values of PV further corroborate

the results (Figure 1i–l).
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We then investigated the magnitude of the effect of PV on tree

cover (Figure 2) by examining the partial sensitivity of tree cover to

changes in PV after excluding the effects of MAP, BAF, MAT and soil

properties (Supporting Information Figure S6). Across continents, the

effect of Tw is consistently positive but varies substantially along a

MAP gradient (Figure 2a). The sensitivity to Tw is almost zero in dry

regions (MAP<750 mm), then gradually increases with MAP, peaks at

around 1700 mm (1000 mm for American tropics) and slightly declines

afterwards. In contrast, the sensitivity to k varies widely across conti-

nents and can even change sign (Figure 2b). The sensitivity to k is gen-

erally negative for low MAP and in Australia while the sensitivity is

positive for high MAP and in Africa and America. CVP also shows mixed

effects across continents (Figure 2c). In America, an increase in CVP in

general reduces tree cover while CVP shows a relatively positive effect

on tree cover in Africa and Australia. Overall, the sensitivity of tree

cover to Tw and k dominates the PV effect (Table 1).

3.2 | Responses of tropical tree cover to projected

changes in PV

We investigated two scenarios under a 20% decrease in rainy days

(Supporting Information Figure S5) where (a) reduction of rainy days is

solely caused by changes in k and (b) the reduction is solely caused by

Tw. If only k was changed (first scenario), tree cover would on average

reduce by c. 1.68% in Africa and 6.64% in America but increase by

1.07% in Australia (Figure 3a–c). The tree cover increase in Australia is

caused by the negative sensitivity of tree cover to k (Figure 2b).

Summed over all continents, 36% of our study region would experience

more than 5% tree cover reduction (Figure 3d). In the second scenario

where Tw was changed, tree cover would consistently decrease by 2 to

8% on average across continents. 52% of our study region would expe-

rience a > 5% tree cover reduction in this scenario. The maximum

reduction can reach 20% in equatorial Africa and southern Amazonia

(Supporting Information Figure S7).

3.3 | Simulated tree abundance from tree–grass
competition model

From remote-sensing observations, average tree cover under the same

MAP increases from Australia to Africa and America, especially when

rainfall is between 500 and 1000 mm (Figure 4a). This pattern is largely

consistent with continental differences in Tw, which increases from

Australia to Africa and America when MAP > 500 mm (Figure 4e).

Meanwhile, Africa has the highest BAF and k, America has the lowest

BAF and k and Australia lies in between (Figure 4d,f). We only show

continental differences of these three environmental drivers because

they contribute most to the variations in tropical tree cover (Table 1).

Simulations driven solely by continental Tw and k values along an

MAP gradient (Figure 4e,f) produced similar continental patterns of

tree abundance indicated by equilibrium LAI (Figure 4b). Moreover, the

FIGURE 1 Precipitation variability (PV) contributes substantially to variation in tropical tree cover. (a–d) The left side of the dashed line shows the
regressionmodel explanatory power (R2

adj) without PV (N-PV, red) andwith PV (W-PV, black). The coloured bars on the right-hand side of the dashed line
represent the relative importance (RI) of mean annual precipitation (MAP), mean annual burned area fraction (BAF), mean annual temperature (MAT), soil
properties including topsoil sand fraction and soil organic carbon concentration (soil), and PV. (e–h) Rolling-window regression R2

adj of the N-PVmodel (red
line) and theW-PVmodel (black line). Blue shading represents number of grid cells in each rolling window. (i–l) RI of each predictor category from rolling-
window regression. AF5Africa; AM5America; AU5Australia
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TABLE 1 Stepwise regression results and variable importance analysis for data from all three continents

ALL

Regression model AIC R2

TC ~ MAP1Tw1 k1 fire1CVP1 Sand%1MAT1 SOC 215,207.1 0.792
TC ~ MAP1 fire1MAT1 Sand%1 SOC 223,872.4 0.713

Variable bstd RI (%) VIF

MAP 0.18 27.1 6.26
Fire 20.22 8.0 1.42
MAT 0.02 0.5 1.18
Sand% 20.02 1.8 1.21
SOC 0.02 6.0 1.49
k 0.32 14.8 5.20
Tw 0.42 28.0 3.05
CVP 20.04 13.8 3.46

AF

Regression model AIC R2

TC ~ MAP1Tw1 fire1 Sand%1 SOC1MAT1k 95,108.2 0.775
TC ~ MAP1 fire1 Sand%1 SOC 97,530.6 0.726

Variable bstd RI (%) VIF

MAP 0.55 39.1 7.22
Fire 20.21 6.4 1.46
MAT 20.02 0.5 1.26
Sand% 0.09 1.1 1.26
SOC 0.03 7.1 1.69
k 0.04 13.1 5.37
Tw 0.33 32.7 2.65
CVP n.a. n.a. n.a.

AM

Regression model AIC R2

TC ~ MAP1 fire1CVP1Tw1 k1 Sand%1MAT1 SOC 87,913.6 0.694
TC ~ MAP1 fire1 Sand%1MAT1 SOC 90,895.3 0.596

Variable bstd RI (%) VIF

MAP 20.09 20.0 5.69
Fire 20.28 14.9 1.12
MAT 0.06 4.7 1.36
Sand% 20.11 3.8 1.11
SOC 0.02 3.1 1.24
k 0.45 19.5 3.88
Tw 0.43 21.4 3.42
CVP 20.05 12.6 2.46

AU

Regression model AIC R2

TC ~ MAP1Tw1 fire1 k1 SOC1MAT1CVP1 Sand% 21,550.0 0.645
TC ~ MAP1MAT1 fire1 SOC1 Sand% 21,984.4 0.602

Variable bstd RI (%) VIF

MAP 1.23 43.0 10.14
Fire 20.21 4.2 2.67
MAT 20.13 7.8 2.51
Sand% 0.04 0.4 1.34
SOC 0.17 11.5 1.51
k 20.57 16.6 19.3
Tw 0.11 8.2 3.13
CVP 20.06 8.3 3.75

RI5 relative importance; AF5Africa; AM5America; AU5Australia; MAP5mean annual precipitation; MAT5mean annual temperature; SOC5 soil
organic carbon; TC5 tree cover; k5 the rain-day frequency in the wet season; Tw5wet season length; CVP5 coefficient of variation of annual
precipitation.
Note. For each continent, the first two rows show the regression R2

adj and Akaike information criterion (AIC) with (W-PV) and without precipitation vari-
ability (N-PV). Predictors are arranged based on the selection sequence of forward stepwise regression. The standardized regression coefficient (bstd),
variable relative importance based on variance decomposition (RI) and variance inflation factor (VIF) are listed for the regression model with PV.
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continental difference in the simulated LAI disappeared when grasses

were excluded from the simulations (Figure 4c).

4 | DISCUSSION

4.1 | PV as a determinant of tropical tree cover

Our statistical analysis shows that MAP is the first-order controlling

factor over tropical tree cover, consistent with previous studies (Hirota

et al., 2011; Sankaran et al., 2005), but also reveals that PV contributes

significantly to the spatial variations in tropical tree cover in addition to

MAP, fire, and soil effects (Table 1, Figure 1). From an ecological per-

spective, PV should be most important in intermediate MAP regions

where the temporal distribution of water resource matters most.

Indeed, our regression results show that the RI of PV (Figure 1) peaks

at intermediate rainfall. Across the global tropics, when MAP is low,

total rainfall is the dominant determinant of tree cover while fire effect

is most important when MAP is very high (Figure 1l). There are also

continental differences in the pattern of PV effects. In Africa, the MAP

value of peak PV contribution became higher (Figure 1i). In addition,

environmental factors show much lower explanatory power for tree

cover variations in Africa compared with the other two continents (Fig-

ure 1e–g). This is possibly because herbivores (unaccounted for in our

statistical models) play a bigger role in determining tree abundance

when MAP < 1500 mm (Dantas et al., 2016; Hempson et al., 2015),

and megafauna are more abundant in Africa than elsewhere. In con-

trast, the MAP value of peak PV contribution is lower in the American

tropics because fire effect became dominant at high MAP (Figure 1j).

The effects of fire in the American tropics can be rather strong in terms

of shaping ecosystem structure (Supporting Information Figure S6b)

FIGURE 3 Continental differences in tree cover are explained by tree–grass competition. The average values ofModerate-resolution Imaging Spec-
troradiometer (MODIS) tree cover (TC; a) within eachmean annual precipitation (MAP) rolling window are comparedwith the simulated equilibrium tree
leaf area index (SIM LAI) in log-scale from simulationswith competition from grass (b) andwithout competition (c) for Africa (green), America (blue) and
Australia (magenta). The average values of mean annual burned area fraction (BAF; d), wet season length (Tw; e), wet day frequency (k; f) within each
MAP rollingwindow are shown for each continent. AF5Africa; AM5America; AU5Australia

FIGURE 2 The sensitivity of tree cover to precipitation variability depends onmean annual precipitation (MAP). (a–c) Multiple regression coefficients
of wet season length (Tw, a), wet day frequency (k, b) and rainfall inter-annual variability (CVP, c) as a function of the centre ofMAP rolling windows.
Black lines represent results that incorporate data from all three continents. Coloured shading represents the 95% confidence interval with the consid-
eration of heteroscedasticity for each continent (green – Africa, blue – America andmagenta – Australia). Themissing values indicate that the variable
was not selected by stepwise regression in those rolling windows. Regression coefficients of other predictors included in the regression are shown in
Supporting Information Figure S6. AF5Africa; AM5America; AU5Australia
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despite the fact that the frequency of fires can be low (Supporting

Information Figure S1), probably because trees in the Amazon have

thinner barks compared with other tropical areas (Pellegrini et al.,

2017) and thus are more vulnerable to fire.

PV can determine tree cover through different ecological path-

ways. Intra-annual PV such as Tw and k can influence the temporal dis-

tribution of plant soil water stress and thus influence tree performance

(Rodriguez-Iturbe & Porporato, 2004). For instance, longer Tw allows

for less seasonal water stress and longer growing seasons for trees

(Guan et al., 2014). At inter-annual time-scales, large fluctuations in

annual rainfall can bring extreme droughts that severely damage trees

(Phillips et al., 2009) as well as wet pulses that facilitate tree seedlings’

escape from the demographic bottleneck and create new canopies

(Holmgren et al., 2013; Sankaran, Ratnam, & Hanan, 2004). Our results

suggest that the benefits of wet pulses may be dominant in the African

and Australian tropics while the damage from droughts dominates in

the American tropics. In addition, PV can interact with other climate

factors shaping tropical ecosystems such as fire. Longer dry seasons

and infrequent rainfall events can favour the occurrence of fires that

reduce tree cover (Hantson et al., 2016; Lehmann et al., 2014; Staver

et al., 2011b; Van Der Werf, Randerson, Giglio, Gobron, & Dolman,

2008).

4.2 | Tree-grass competition explains the PV effects

on tree cover

Tree–grass competition can play a critical role in determining the struc-

ture and dynamics of tropical ecosystems, especially for savannas (San-

karan et al., 2004; Scholes & Walker, 1993). Trees and grasses differ

drastically in various structural and functional traits, leading to distinc-

tive water use strategies. Field experiments have shown that the pres-

ence of grasses can greatly impact tree performance (February et al.,

2013; Holdo & Brocato, 2015). Previous theoretical modelling analysis

has also shown that tropical C4 grasses, which usually have an aggres-

sive water use strategy, have a competitive advantage over trees when

rainfall comes as intense but infrequent pulses because these grasses

can obtain a large share of water within a short period of time (Xu

et al., 2015). Using the same theoretical tree–grass competition model,

we show that the observed continental differences in tree cover were

reproduced in the model only when tree–grass competition was

included (Figure 4). Meanwhile, this continental difference in tree cover

contradicts variations in continental fire regime because BAF is higher

in Africa compared with Australia (Figure 4d), which suggests that fire

is unlikely to explain the continental patterns of tree cover.

One challenge to the tree–grass competition theory is that the

reported response of tree–grass competition to k variations differs sub-

stantially among studies. Trees have been reported to benefit from

either increased (Good & Caylor, 2011) or decreased k (Kulmatiski &

Beard, 2013). In this study, the effect of k on tree cover also shows

opposite signs across continents and the MAP gradient (Figure 2b).

Here we argue that such mixed effects are because tree cover

response to k can result from complex tree–grass competition proc-

esses. High k can benefit trees over grasses because grasses are

aggressive water users and better at exploiting intense but less fre-

quent rainfall when grasses and trees have similar rooting depths (Xu

et al., 2015). However, high k can also favour shallow-rooted grasses

over deep-rooted trees because less water can seep into deeper soil

layers (Kulmatiski & Beard, 2013; Sankaran et al., 2004). The overall

effect of k on tree cover is probably contingent on the rooting profiles

of trees and grasses. Rooting profiles of both trees and grasses in tropi-

cal ecosystems are correlated with total rainfall, rainfall seasonality and

soil texture (Schenk & Jackson, 2002a). However, trees develop shal-

lower roots under more seasonal rainfall while grass rooting depth is

relatively insensitive to rainfall seasonality (Schenk & Jackson, 2002b).

We thus expected that the effect of k on tree cover depends more

strongly on Tw, compared with MAP and the topsoil sand fraction.

FIGURE 4 Large potential decreases in tree cover (TC) under
projected reduction of rainy days. Histograms of potential tree cover
change under two scenarios – a 20% reduction in wet day frequency
(k; blue) and a 20% reduction in wet season length (Tw; red) are shown
for tropics in Africa (a), America (b), Australia (c) and all three
continents (d). Average tree cover change is shown in upper right
corner of each panel. AF5Africa; AM5America; AU5Australia
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We further performed a multiple regression over the sensitivity of

tree cover to k Ł(regression coefficients shown in Figure 2b) against

the average MAP, Tw, and topsoil sand fraction within each rolling

window. We combined global and continental regression results but

only included rolling windows where the sensitivity of tree cover to

k is significantly different from zero. In total, 239 rolling windows

were selected. The regression results confirmed this expectation and

show that the sensitivity of the effect of k on tree cover to Tw is

positive and significantly different from zero while the sensitivity of

the effect of k on tree cover to MAP and the topsoil sand fraction is

not significantly different from zero (Figure 5a). Moreover, our anal-

ysis implies that a significant positive effect of increased k on tree

cover occurs when Tw is longer than c. 150 days (Figure 5b). Inter-

estingly, the study that reports a negative effect was conducted in

South Africa (Kulmatiski & Beard, 2013) with Tw similar to or shorter

than 150 days (Supporting Information Figure S1) while a positive

effect was reported for a pan-African analysis (Good & Caylor, 2011)

that covers a wider range of Tw values. These results provide

additional evidence that the response of tropical ecosystems to PV

is driven by tree–grass competition.

5 | CONCLUSIONS

The on-going climate changes include not only the changes in mean

state but also changes in variability. Such changes in environmental var-

iability can exert significant impacts on terrestrial ecosystems even if

the average environmental state does not change because ecosystem

responses to environment are often nonlinear (Knapp et al., 2008;

Medvigy, Wofsy, Munger, & Moorcroft, 2010). While it is widely

known that precipitation extremes such as drought can catastrophically

disturb tropical ecosystems (Doughty et al., 2015; Phillips et al., 2009),

we here demonstrate that tree abundance can respond to a spectrum

of PV, which is likely driven by tree–grass competition. Our results help

to explain the spatial patterns of tropical tree abundance and also pro-

vide novel insights into the fate of tropical tree cover and ecosystem

structure under future climate projections with empirical estimates of

ecosystem sensitivity to PV. We further show that tropical tree cover

will likely suffer from the projected changes in PV, which may reduce

or even cancel the beneficial effect of the concurrent increases in

atmospheric CO2 concentration (Higgins & Scheiter, 2012; Stevens

et al., 2016). It is also noteworthy that changes in PV can also affect

tree cover indirectly through interacting with other environmental fac-

tors such as fire (Hantson et al., 2016), which requires further research

from field experiments and data synthesis. Altogether, our work high-

lights the importance of accurately monitoring and predicting PV for

understanding future vegetation dynamics and carbon cycles in the

tropics.
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