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ABSTRACT OF THE DISSERTATION

Improving end-user video quality through error concealment and

packet importance modeling

by

Yueh-Lun Chang

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California San Diego, 2014

Professor Pamela C. Cosman, Chair

Professor Truong Q. Nguyen, Co-Chair

During video transmission, congestion and distortion in the network will

cause packet loss on the video content and degrade the video quality. Traditionally

the degradation is measured by mean-squared error or peak-signal-to-noise-ratio.

However, these measurements do not correlate well with human perception. In this

dissertation, we aim to improve the visual quality for end-users through packet

importance modeling and error concealment.

The visual impact to end-users differs based on the type of the packet

losses. We aim to predict how end-users respond to different losses. We start

with an objective experiment in which Video Quality Metric scores are computed

on fixed-sized IP packet losses for H.264/AVC SDTV video, and then construct a

network-based model to predict these scores.

We would like to further understand the real visual impact on the perceptual

xiv



quality, so we conduct a human subjective experiment on whole frame losses con-

cealed by different decoders. Whole B frame losses are introduced in H.264/AVC

videos which are then decoded by two different decoders with different common

concealment methods: frame copy and frame interpolation. The videos are seen by

human observers who respond to each glitch they spot. It shows that even when

there are more lost bits for a whole frame loss than a slice loss, the overall percep-

tual quality is often actually better due to the concealment that gives observers

less spatial misalignment. We develop network-based models which can predict

the visibility of whole frame losses. Based on the estimated visual importance, we

can prioritize packets in lossy networks. The models are deployed in intermedi-

ate routers to prioritize video packets and perform intelligent frame dropping to

relieve network congestion. Dropping frames based on their visual scores proves

significantly superior to random dropping of B frames.

Another key solution to reduce the visual impact of video packet losses is

effective error concealment methods and thus this is another focus in this disser-

tation. Here we work on both traditional 2D video and 3D stereo video. Among

formats that provide stereo effect, 2D+depth encoding for stereoscopic video is

one of the most compatible with current video content transmission systems. Tra-

ditionally the 2D and depth streams are independently coded, transmitted and

concealed separately if delivered through lossy networks. We propose a new en-

coding scheme that offsets the I frame between the 2D and depth sequences. When

a loss happens in either one, they could be concealed by the information from the

other, using the strong motion correlation.

Besides providing error concealment by postprocessing at the end-user side,

enhancing the error robustness of video from the encoder side is another approach.

We propose an end-to-end distortion model for rate-distortion optimized coding

mode selection of 2D+depth bitstreams. In our work, we first extend the encoding

mode, adding an extra motion information sharing mode for the depth stream,

and then improve the concealment methods. Based on these changes, we use the

proposed end-to-end distortion model and derive a new Lagrange multiplier for

rate-distortion optimized 2D+depth mode selection in packet-loss environments

xv



by taking account of the network conditions, i.e. the packet loss rate.

Other than the stereo video format, a new video coding technology “High

Efficiency Video Coding (HEVC)” has also been standardized in 2013. While

achieving 50% bitrate reduction compared to prior standards with equal percep-

tual video quality, HEVC is more sensitive to packet losses since each bit contains

more information. To alleviate this problem, we propose a motion-compensated

error concealment method for HEVC and implement the method in reference soft-

ware HM. The motion vector from the co-located block will be refined for motion

compensation. Based on the reliability of these motion vectors (MVs), blocks will

be merged and assigned new MVs. Our experimental result shows that not only

the subjective visual quality performs well but also there is a substantial PSNR

gain.

xvi



Chapter 1

Introduction

When video is transmitted through networks, it could suffer from packet

losses due to various reasons, such as congestion, or bit errors. Packet losses

cause perceptual degradation, but not every packet loss has equal visual impact.

Some packet losses are quite visible to end-users while some are hardly noticed.

Examples are given in Figures 1.1 and 1.2. In Figure 1.1(a), we show a compressed

and reconstructed frame where a single horizontal row of macroblocks has been

lost (the lost row is shown as a gray bar). In Figure 1.1(b) the compressed and

reconstructed frame is shown where the loss has been concealed by copying the

pixel values from the corresponding blocks in the previous decoded frame. The

glitch in this case is visible. Figures 1.2(a) and 1.2(b) show another pair of frames

with a loss and a concealed loss. In this case, no glitch is visible, because the loss

occurred in a background area which was not moving.

To improve the visual quality for end-users, first we aim to measure the

importance of each packet by performing objective and subjective experiments and

using the data to develop models to predict the probability that each individual

packet will produce an observable glitch if it is lost. The models can be deployed

to prioritize video packets over the lossy network to perform intelligent dropping.

Second we propose error concealment methods for several video formats to combat

the situation when packet losses happen, so the video content could be recovered

better for end-users. In the following, we introduce the background of quality

measurement, model assessment and error concealment for video communication,

1
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along with relevant literature.

(a) (b)

Figure 1.1: A visible case: a frame with packet loss (a) with no concealment (b)
after concealment.

(a) (b)

Figure 1.2: An invisible case: a frame with packet loss (a) with no concealment
(b) after concealment.

1.1 Objective video quality metrics

Subjective video quality reflects how video is perceived by a viewer and

designates his or her opinion on a particular video sequence. It is the ultimate

standard for video quality measurement, but the evaluation of subjective video

quality is quite expensive in terms of time (preparation and running) and human

resources. Several objective video quality measurements are often used instead [1].
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A few common metrics are introduced in this section.

1.1.1 Mean-squared Error (MSE) and Peak-Signal-to-Noise-

Ratio (PSNR)

As shown in Figure 1.3, the original image is denoted F and the recon-

structed one is denoted G. For images with size M by N, the mean-squared error

(MSE) is defined as follows:

Figure 1.3: Example of the original and reconstructed images.

MSE =
1

N ×M

N∑
i=1

M∑
j=1

(F (i, j)−G(i, j))2 (1.1)

Peak-signal-to-noise-ratio (PSNR) is then derived by setting MSE in rela-

tion to the maximum possible value of the luminance, which is 28 − 1 = 255 for

8-bit data. The PSNR value is calculated by:

PSNR = 10 log10
(PeakV alue)2

MSE
(1.2)

Although several objective video quality metrics have been developed in the

past few decades, PSNR continues to be a popular quality measure for pictures

due to its simplicity.

1.1.2 Video Quality Metric (VQM)

Though MSE or PSNR is often used for video quality evaluation, they

do not correlate well with human perception. Video Quality Metric (VQM) was

developed by the Institute for Telecommunication Science to provide an objective
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measurement for perceived video quality [2]. It is a computable quality metric to

evaluate a processed video version in comparison with the original lossless video. It

assigns a score to an entire video, or to a segment of video such as a GOP (group of

pictures). VQM scores range from zero to one, where a lower score means higher

quality with less degradation. It has been shown to correlate well with human

perception of the video quality and has been adopted by ANSI as an objective

video quality standard.

1.1.3 Structural Similarity Index (SSIM)

Instead of using traditional error summation methods, a different approach

is presented in [3]. The Structural Similarity Index (SSIM) is designed by mod-

eling any image distortion as a combination of three factors: loss of correlation,

luminance distortion, and contrast distortion. The index can be calculated as

SSIM =
(2x̄ȳ + C1)(2σxy + C2)

[(x̄)2 + (ȳ)2 + C1](σ2
x + σ2

y + C2)
(1.3)

where x̄, ȳ, σx, σy and σxy are the mean of x, the mean of y, the variance of x,

the variance of y and the covariance of x and y. C1 and C2 are constants. SSIM

has moderate correlation with subjective perception but it has less computational

complexity than VQM.

1.2 Classification of quality assessment methods

Based on the accessibility of information about the original (reference)

video, quality assessment methods can be categorized into four different types

as illustrated in Figure 1.4.
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Figure 1.4: FR, NR-P and NR-B methods

• If we have access to the reconstructed video at the encoder side as well

as the reconstructed video (with losses) at the decoder side, it is called a

Full-Reference (FR) method. It provides the most precise measurements on

the video quality difference, and the objective quality metrics introduced in

Section 1.1 are all FR methods.

• If we have access to the reconstructed video (with losses) at the decoder side

as well as some factors extracted from the reconstructed video at the encoder

side, it is called a Reduced-Reference (RR) Method.

• If we have access only to the reconstructed video (with losses) at the decoder

side, it is called a No-Reference Pixel-Based (NR-P) Method.

• If we have access only to the compressed bitstream information (with losses),

then it is called a No-Reference Bitstream-Based (NR-B) Method.

According to different assessment methods, we could have two types of

packet loss importance model: network-based models and encoder-based models.

A network-based model is built by NR methods, and it only uses information

available in the bitstream or the decoded pixels without reference video. There
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are many factors we could deploy in the network-based model, such as motion

information, packet size, frame type, loss location, etc. However, without the

ability to access the original video and to reconstruct pixel values in networks, many

of the video content characteristics are not available, for example, a salient region

in a frame. However, a network-based model can be deployed at different points

in the network in real-time with low computational complexity. This advantage is

useful to many Internet applications, such as streaming or videotelephony.

An encoder-based model is built by an FR or RR method, and it has access

to the original video. We could have a decoder implemented at the encoder side to

do all the decoding and error concealment functions which an actual decoder would

do, and thus we could calculate the MSE or PSNR of pixel values between original

and evaluated videos. An encoder-based model could use all of the network-based

factors plus many others, such as scene cut information. With all the network and

encoder factors, an encoder-based model provides the most precise prediction of

packet loss importance, but it is also complicated. Some main applications for an

encoder-based model are packet prioritization and unequal error protection.

In this dissertation, we will emphasize predicting packet loss importance

from a network-based model and its application to intelligent packet dropping.

1.3 Error concealment methods

When video suffers from packet losses, error concealment is a postprocessing

technique at the decoder to recover the damaged areas based on characteristics of

video signals. To obtain a close approximation of the original pixel values and to

make the reconstructed video less objectionable to end-users, several methods have

been proposed [4–10]. They can be divided into two main approaches: temporal

and sptial error concealment.

• Temporal error concealment (TEC): By utilizing blocks from other frames,

TEC either reconstructs the motion vector (MV) of the lost block or searches

for a block that has a good match to the sides and neighborhood of the

missing block. As shown in Figure 1.5, the MVs can be simply set to zeros,
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called zero motion error concealment (ZMEC) or copy, and this works well

for videos with relatively small motion. The MVs can also be estimated

by using the MVs of the corresponding block in the previous frame or the

average of the MVs from spatially adjacent blocks, as shown in Figure 1.6.

Figure 1.5: Zero-motion error concealment (ZMEC)

Figure 1.6: Temporal error concealment: using the MVs of the adjacent blocks.

• Spatial error concealment (SEC): The lost pixels can be interpolated directly

in the spatial domain. For lost blocks, we can construct the damaged area

with bilinear interpolation from the four nearest pixels that are not missing.

Other strategies deploy directional interpolation that seeks to preserve edges.

An example of SEC is shown in Figure 1.7. In general, SEC is used often on

intra frames since motion estimation is not implemented in intra frames.
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Figure 1.7: Spatial error concealment: spatial interpolation from pixels
above/below the lost block .

1.4 Thesis outline

In Chapter 2, we develop a network-based packet importance model for

fixed-sized IP packet loss. The objective experiment for packet importance evalua-

tion is presented. The detailed model building strategy and the factor descriptions

of the model parameters are discussed. We also analyze the effect of different IP

packet losses.

In Chapter 3, we develop a network-based packet loss visibility model for

whole frame loss based on a human subjective experiment. The design and setup of

the experiment is introduced. We cover the analysis of data, the whole frame loss

modeling process and feature selection. The model is then applied to intelligent

frame dropping.

In Chapter 4, we develop a depth-assisted error concealment for whole intra

frame loss in 2D+depth video. The depth map and stereo effect are introduced. We

present an encoding scheme that keeps the intra frames of 2D and depth sequences

offset with one another. The offset strategy provides more motion information for

error concealment.

In Chapter 5, we propose a joint source-channel encoding scheme for 2D+depth
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video. We impose a motion information sharing encoding scheme with an end-to-

end rate-distortion model for H.264/AVC coding of 2D+depth sequences. With

this encoding scheme, error concealment achieves higher PSNR without bitrate

penalty.

In Chapter 6, we propose a motion-compensated error concealment method

for HEVC and implement the method in reference software HM. Features of the

HEVC standard are introduced. We describe the detailed concealment algorithm

which combines motion vector refinement and block repartitioning.

In the Conclusions section, we summarize the contributions of this disser-

tation, and discuss possible future work. Partial conclusions are also given at the

end of each individual chapter.



Chapter 2

Network-based slice model

In this chapter, we conduct an objective experiment in which Video Quality

Metric (VQM) scores are computed on compressed video GOPs following fixed-

sized IP packet loss, and then construct a network-based model to predict these

VQM scores. VQM assigns a score to an entire video, or to a segment of video

such as a GOP (group of pictures). The scores range from zero to one, where

a lower score means higher quality with less degradation. Here we would like to

develop a model to predict VQM scores using simple features that can be extracted

from individual packets. The model is created for H.264 SDTV (720 × 480) videos

using a no-reference method, meaning that we only use the information from the

bitstream but have no access to the original video. The model can be computed

at the packet level and requires no frame-level reconstruction.

When video is transmitted through a network, it is crucial for an interme-

diate router to know the visual importance of each packet to decide which ones

to drop during congestion. Many of the previous research works have focused on

the average quality of video subjected to an average packet loss rate. However,

we would like to emphasize the influence on the video quality of an isolated or

individual packet loss. Previous work [11] built a generalized packet loss visibility

model using subjective tests for different encoding standards and GOP structures.

The model was applied to packet prioritization for a video stream. Each packet

was assigned a priority bit at the encoder so the router could perform smart drop-

ping when the network was congested. In [12], the authors allocated more Forward

10
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Error Correction (FEC) bits to high visibility packets to give them more protec-

tion, so as to minimize end-to-end video quality degradation due to packet losses.

The models in [11] and [12] are encoder-based models, which are assessed by full-

reference methods and need parameters such as MSE, type of camera motion, and

information on scene cuts. These demand access to the original video at the en-

coder and have high computational complexity. In contrast to an encoder-based

model, for a network-based model, the original video information is unavailable in

the network, and the computational capability is also limited.

In addition to making a network-based model, a second goal of this chapter

is to build a model for fixed-sized packets. In the network, video is typically

packetized in one of two ways: it can be segmented into a variable-sized packet

which contains a constant area in the frame; the other way is using fixed-sized

packets which may correspond to different pixel areas but whose sizes in bits are

the same, such as MPEG-2 Transport Stream packets. In previous work [13], the

authors proposed a packet loss visibility model for H.264 SD and HD videos for

variable-sized packets which contain one slice for each Network Abstraction Layer

(NAL) unit. In this chapter, we would like to construct a network-based model for

fixed-sized IP packets to predict visual importance using an objective experiment.

The chapter is organized as follows: In Section 2.1, the design of the objec-

tive experiment is described. In Section 2.2, we discuss the factors used to predict

the quality scores of a loss, and the model based on these factors. Section 2.3

presents results and discussions, while Section 2.4 summarizes our conclusions.

2.1 Objective experiment on fixed-sized slice loss

In this section, we conduct an objective experiment to construct a visual

importance model. Nine SD resolution H.264 videos with widely varying motion

and texture characteristics are used for our experiment, and their descriptions are

listed in Table 2.1. The encoder is H.264 JM9.3, and the settings can be found in

Table 2.2. These settings adhere to ITU and DSL Forum Recommendations [14,15].

It is high quality compression so there are few encoding artifacts between the coded



12

Table 2.1: Description of video clips used for the experiment.

1 earth nature documentary of wildlife in slow motion

2 Indianapolis crowds moving in an arena with some car racing scenes

3 formula racing cars on a racetrack

4 New York introduction to a city with bird-eye and street views

5 air show
air show scene with planes flying over the sky, and some
audience on the ground

6 golf broadcast golf game

7 Hawaiian
Hawaiian tourism of various scenes in shops and streets with
panning camera

8 soccer
high motion beach soccer game with crowded people in the
background

9 stories daily life such as friends talking and family reunion

videos and original ones. In these videos, each slice contains a horizontal row of

Macroblocks (16×16 pixels) in a frame, and each NAL unit contains one slice.

There are 300 frames in each video and the content includes various types of

motion, texture characteristics and camera operations. The decoder is FFMPEG

[16] due to its high efficiency and wide use in industry. For error concealment, the

FFMPEG decoder begins by estimating, for each lost macroblock (MB), whether

it is more likely to have been intra coded or inter coded. Based on the estimate,

the algorithm uses one of two different approaches to conceal each lost MB [17].

Table 2.2: Summary of the objective experiment setup for SD videos.

Resolution 720 × 480
Bitrate 2.1 Mbps
Profile Main profile, Level 3
Frame rate 30 fps
GOP IBBPBBPBBPBBPBB 15/3

2.1.1 Packetization

The detailed steps to packetize H.264 SDTV videos into fixed-sized packets

that can be transmitted through the network are described in this subsection.
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Figure 2.1: Example of transport stream packetization.

Transport Stream

The Transport Stream (TS) is defined in MPEG2-Part1 [18]. It is a digital

container format that encapsulates different types of information such as video,

audio or data. In [18], the authors describe how to mux several streams into a

single one. The transport stream uses fixed-sized packets as its basic transfer unit.

There are many advantages to using fixed-sized packets. It is convenient to detect

the start and end of a frame and also easy to recover from packet loss or corruption.

A freeware tsMuxer [19] developed by the company SmartLabs is used to

mux H.264 videos into regular TS packets. Each TS packet is fixed-sized with 188

bytes in length and only contains information from the same frame. An example

of TS packetization is shown in Figure 2.1.

2.1.2 IP Packet

Although the transport stream specifies how to packetize multimedia infor-

mation, the actual transmit unit over the network is an IP packet. Some major

applications of video transmission over IP are: conversational applications such as

video telephony and videoconferencing, the download of complete, pre-coded video

streams, and IP-based streaming such as YouTube [20].

By the protocol specification, the size of an IP packet is variable and can
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Figure 2.2: Example of IP packetization.

be up to 64 kbytes, but this size is rarely used. The reason is that a large IP

packet needs fragmenting in order to pass onto the Ethernet since the payload

size of the maximum transfer unit (MTU) for an Ethernet packet is 1500 bytes.

To avoid splitting and recombining IP packets larger than the MTU payload size,

we took the size of each IP packet to be less than 1500 bytes. Specifically, in

our experiment settings, one IP packet contains seven TS packets (188×7=1316

bytes). The packet size would exceed the limitation of 1500 bytes if more than 7

TS packets were included. An example of IP packetization is shown in 2.2. Figure

2.3 shows the entire encoding and packetization process from original video to IP

packets. Our goal is to construct a model to predict the VQM score associated

with each IP packet, that is, the VQM score for the GOP that would result from

the loss of that single IP packet.

2.1.3 Lossy Test Videos

In our experiment, we drop an IP packet from a GOP to create a lossy video

and use VQM to evaluate its quality after packet loss. There are three possibilities:

1) a packet contains only one slice or a part of one slice, 2) a packet contains more

than one slice, 3) a packet contains a frame header. These will cause the loss of 1)

one slice, 2) several slices, and 3) an entire frame.
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Figure 2.3: The encoding and packetization procedure from original video to IP
packets.

In order to calculate a VQM score, the number of frames in the original

video and in the lossy video must be the same. If a frame header is dropped, the

number of frames in the lossy video cannot be kept the same. Moreover, loss of a

slice header in an I frame will cause a serious degradation to the video due to the

way FFMPEG decodes (the decoder does not work properly when the first slice is

lost). For these reasons, the following two types of packets were considered to be

the most important:

1. An IP packet with any frame header

2. An IP packet with an I slice header

Among all the IP packets from our test videos, less than 5% of them contain

a frame header or I slice header, and these packets with the highest priority were not

dropped in our experiment. The reason for not including these in the experiment is

that our goal for predicting packet-level VQM scores is to allow a router to choose

which ones to drop. For these packets of highest priority, it is already known that

dropping them should be avoided if at all possible. The goal therefore is to guide

the router in choosing which of the other > 95% of packets should be selected for

dropping in case of congestion. After the dropping is performed for a GOP, the

FFMPEG decoding and error concealment are run, and then the VQM score is

calculated to obtain the objective video quality score for this GOP.
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The last three frames of every GOP are excluded from being the location of

the packet loss because the VQM algorithm ignores differences between the videos

under comparison which occur at the end of the GOP. A total of 931 IP packet

losses are divided equally and randomly among all the I frames, P frames, and B

frames.

2.2 Features and model building

Our network-based model is built by using a no-reference method that only

has access to the bitstream in the network while the original video is unavailable.

The information we use does not require pixel data. This is desirable because the

parameter extraction process can be made very efficient at a network node since it

does not involve motion compensation (requiring reference frame), deblocking filter

and frame reconstruction. In this section, the candidate features are described first

and then the modeling approach will be explained.

2.2.1 Features

The features used to construct the model are introduced here. They can be

classified into two categories: content independent and content dependent features.

A buffer is used to aggregate some number of IP packets for feature extraction.

Many IP packets contain no slice start code, so we have to gather information from

their adjacent packets. However, there is no need for frame level reconstruction.

Content independent features only require the general information of

the packet, for example, spatial and temporal location or frame type. The content

independent features we considered are the following:

1. TMDR stands for time duration. It is the maximum number of frames that

can be affected by the packet loss due to error propagation. TMDR=1 for

non-reference frames. For reference frames, TMDR depends on the distance

to the next I frame.
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2. DevFromCenter=abs(Height-floor(N/2)) indicates how far the loss is from

the center slice (in the vertical direction) of the frame. Height indicates the

spatial location of the packet, and N is the number of slices in a frame. In

our experiment, the number of slices for SDTV videos is 30.

3. IsIFrame, IsPFrame and IsBFrame are boolean factors which are set

when the packet is in an I, P or B frame.

4. NAL num is the total number of slices in the packet, and NAL size is the

aggregate size in bits for every slice contained in the packet. Recall that

a slice is one horizontal row of macroblocks. For example, consider an IP

packet which contains one partial I slice whose total size spanning across

several packets is 16000 bits. For this packet, NAL num is 1 and NAL size is

16000. For an IP packet which contains two partial P slices whose sizes are

8144 and 11488 bits, the NAL num is 2 and NAL size is 8144+11488=19632.

Content dependent features require the actual content of the lost packet,

such as the motion in each direction. The motion-related features take calcula-

tions over all macroblocks in the lost packet to get their mean, maximum, or

variance of motion information. MaxMotX, MeanMotX, and VarMotX are

the maximum, mean, and variance of the motion vectors in the x direction, while

MaxMotY, MeanMotY, and VarMotY are the maximum, mean, and vari-

ance of the motion vectors in the y direction. MaxMotA and MeanMotA are

the maximal and mean phase, where MotA = arctan(MotX/MotY ). MotM is

the mean magnitude of motion vectors. It equals
√
MeanMotX2 +MeanMotY 2.

MeanRSENGY is the mean residual energy after motion compensation. This

is calculated from the DCT coefficients, so no inverse DCT or pixel information

is needed [8]. We used the term after logarithm, and 10−7 is added before taking

the log to avoid a log of zero problem. MaxInterparts is the maximal number of

inter macroblock partitions in the lost packet.

To construct the model, the above features are used as well as their inter-

action terms, which are the products of two features.
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2.2.2 Modeling Approaches

To model the VQM score, i.e., the importance of a lost packet, Generalized

Linear Models (GLMs) provide one approach. GLMs are an extension of classi-

cal linear models [21, 22]. The packet loss importance is modeled using logistic

regression, a type of GLM which is a natural model to predict the parameter p

of a binomial distribution [21]. Let y1, y2, ..., yN be a realization of independent

random variables Y1, Y2, ..., YN where Yi has binomial distribution with parameter

pi. Let y, Y and p denote the N-dimensional vectors represented by yi, Yi and

pi respectively. The parameter pi is modeled as a function of P factors. Let X

represent a N ×P matrix, where each row i contains the P factors influencing the

corresponding parameter pi. Let xij be the elements in X. A generalized linear

model can be represented as

g(pi) = α +
P∑

j=1

xijβj (2.1)

where g(.) is called the link function, which is typically non-linear, and β1, β2, ...., βP

are the coefficients of the factors. Coefficients βj and the constant term α are usu-

ally unknown and need to be estimated from the data. Parameters xij are the

features in each packet, and pi is the expected value of the predicted term, i.e.,

VQM score in our experiment. For logistic regression, the link function is the logit

function, which is the canonical link function for the binomial distribution. The

logit function is defined as

g(p) = log(
p

1− p
). (2.2)

The simplest model is a null model which has only one parameter: the

constant term α. At the other extreme, the full model contains as many factors

as there are data points. The goodness of fit for a GLM can be determined by its

deviance, a generalization of variance. By definition, the deviance is zero for the full

model, while the deviance is positive for all the other models. A smaller deviance

means a better model fit. To obtain the model coefficients for the candidate factors,

an iterative feature selection technique is implemented by Matlab.
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To prevent overfitting, a 10-fold cross validation is applied. The data is

randomly segmented into 10 groups, and we use nine out of the ten sets as the

training set and the remaining as the test set. The procedure is repeated ten times,

each time choosing a different set for testing.

2.3 Results and discussion

Figure 2.4 shows the histogram distribution of the actual VQM scores in our

objective experiment. Higher VQM scores mean worse degradation of the video

quality. In Figures 2.5 and 2.6, the plots of deviance and correlation of the actual

and predicted VQM scores versus the factor numbers included are presented. While

the null deviance is 71.8, the deviance of the model can be reduced to less than

45. The correlation gets higher when more factors are included. In Figure 2.6,

however, there is a breakpoint when the factor number is around 10. The curve

becomes nearly flat after this point, which means there is little improvement of the

correlation even if more factors are added to the model.
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Figure 2.4: Histogram of VQM scores from the objective experiment.
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Figure 2.5: Deviance reduction as additional factors are included in the model.
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Figure 2.6: Correlation between predicted and actual VQM scores as additional
factors are included in the model.

The nine most significant factors are chosen for our final model. The factors

and their coefficients are listed in Table 2.3 in order of importance. The importance

of a factor can be defined by the amount of deviance reduced for GLM. Each factor
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Table 2.3: Table of factors in the order of importance. The × symbol means
interaction.

Factor Number Factors Coefficients
Intercept (γ) 1 -4.1445

1 IsPFrame × log(MeanRSENGY +10−7) 2.8457e-1
2 TMDR × NAL size -5.1068e-8
3 TMDR × NAL num 3.9130e-2
4 NAL num × IsPFrame -2.1074e-1
5 NAL size × MaxMotA 1.6223e-5
6 DevFromCenter × MotM 8.2868e-3
7 NAL num × IsIFrame 1.4706
8 NAL size × IsIFrame -6.0151e-5
9 DevFromCenter × MaxMotA -1.4744e-2

is the interaction of two features rather than a single term. It is sometimes hard

to directly interpret the meaning of factors by the sign of the coefficients since

these factors are not independent of each other. (Refer to [23], which explains why

sometimes the coefficient sign is not what we expect.)

We observed the following about the effect of factors on quality:

1. The frame type of the lost packet plays a crucial role in our model, and

losses in P frames were most damaging. This may seem counter-intuitive.

Typically one may consider that a packet loss from an I frame would cause

more degradation to the video quality, while in our model, a packet loss from a

P frame actually resulted in the worst quality. This is because we packetized

the video using fixed-sized packets. For SDTV videos in our experiment,

an I frame generally contains 200∼400 TS packets (approximately 30∼60 IP

packets), whereas a P frame contains less than 100 TS packets (approximately

15 IP packets). The detailed statistics of TS and IP packet numbers for each

video are shown in Table 2.4. So one IP packet from an I frame covers on

average 3.3% of the frame’s area, whereas one IP packet from a P frame

includes on average 13.3% of the frame’s area. Sometimes the corrupted

area could be as much as one-fourth or one-third of the whole frame, so the

damage is worse. Examples of one IP packet loss in I frame and P frame are
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given in Figure 2.7 The actual VQM scores from different frame types are

shown in Figure 2.8. The histogram of VQM scores in P frames is shifted to

the right compared to the histogram for I frames, and the mean VQM score

resulting from a packet loss in a P frame is 0.0886, higher (worse) than that

in I frames, 0.0718.

(a) (b)

Figure 2.7: Examples of one IP packet loss: (a) one IP packet loss in I frame (b)
one IP packet loss in P frame.

2. Residual energy is quite important as well. Higher residual energy usually

implies that the motion in the video is more complicated, or the texture is

widely varied. A positive sign of the coefficient means that a packet loss with

high residual energy will corrupt the video more and result in a higher VQM

score.

3. Two out of the top three factors relate to TMDR. This indicates that error

propagation duration is very important to determining packet loss impact on

quality. Higher TMDR means that the corruption lasts longer and in general

this causes worse quality with higher VQM score. Therefore TMDR should

be positively correlated with VQM score. For the two factor coefficients

related to TMDR, however, one has a positive sign and the other has a

negative sign. These terms can be factored to single features, and the effect

on TMDR is the combination of them. For example, in our model, the part
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Figure 2.8: Histogram of VQM scores from different frame types.

related to TMDR is:

−5.1068× 10−8(TMDR×NAL size) + 3.9130× 10−2(TMDR×NAL num)

This can be rewritten as:

TMDR(−5.1068× 10−8NAL size+ 3.9130× 10−2NAL num)

So the coefficient of TMDR can be considered a variable βTMDR, where

βTMDR = −5.1068× 10−8NAL size+ 3.9130× 10−2NAL num

Considering the range of NAL size and NAL num, βTMDR is always a positive

quantity, so that TMDR has an overall positive correlation with VQM score,

as expected.
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4. Not only the temporal but also the spatial information is important. Six

factors are associated with NAL size or NAL num. These terms correlate

with the corrupted area within one frame, and imply that the influence of the

spatial extent which could be affected by the lost packet is quite prominent.

Since NAL num is the total number of slices in the packet, a larger value

of NAL num means a larger contaminated area and should generally mean

higher VQM score. Since we do not drop packets with an I slice header, the

NAL num of a lost packet in an I frame is always 1, while it could be any

number from 1 ∼ 30 for a lost packet in a P or B frame. As we mentioned

before, packet loss in a P frame usually causes the worst degradation to the

quality and the highest VQM score, while the damage is less bad from a

packet loss in an I frame and it is the least in a B frame. Therefore, the

effect of NAL num is separated out by the boolean features IsI/P/BFrame.

Although the factor NAL num appears in the model in three different interac-

tion terms (TMDR×NAL num, IsIFrame×NAL num, and IsPFrame×NAL num),

the effect of NAL num can be explained simply according to frame type.

The coefficient of NAL num for a loss in an I frame is a constant number

βNAL num I since, for I frames, TMDR = 15 and IsIFrame = 1, so

βNAL num I = 3.913× 10−2TMDR + 1.4706IsIFrame = 2.0576

The coefficient of NAL num for a loss in a B frame is also a constant number

βNAL num B since, for B frames, TMDR = 1, so

βNAL num B = 3.913× 10−2TMDR = 0.0391

Comparing the values of these two constants, we see βNAL num I is greater

than βNAL num B, so that the average VQM score for a loss in an I frame will

be higher.

The coefficient of NAL num for a loss in a P frame is a variable βNAL num P

depending on TMDR, where

βNAL num P = 3.913× 10−2TMDR− 2.1074× 10−1IsPFrame
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Recall that VQM does not count quality degradation in the last three frames

of a sequence, so the TMDR value for a loss in a P frame could be 6, 9 or

12. This makes βNAL num P always a positive coefficient.

In summary, the coefficients of NAL num are positively correlated with VQM

scores, which means that a larger damaging area is always worse regardless

of the frame type.

5. The spatial location of the lost packet also plays a part. Analyzing the

coefficient of DevFromCenter by the same method for TMDR, it generally

carries a negative sign. Larger DevFromCenter means the damage is further

away from the center of the video, so it is less visible.

6. MotM, the magnitude of motion, has a positive coefficient sign in the model

since more movement means that a packet loss will cause a more serious

degradation in quality and hence a higher VQM score.

7. Since IsIFrame, IsPFrame and IsBFrame are boolean factors and only take

effect on a specific frame type, our model can be viewed in another way.

Factors 1 and 4 are used in the model only for P frames. Factors 7 and 8 are

used in the model only for I frames. These boolean factors (IsI/P/BFrame)

construct submodels for each frame type.

2.4 Conclusion

We propose a network-based visual importance model of fixed-sized IP pack-

ets for SD H.264 videos. The proposed model allows an intermediate node in the

network to efficiently estimate the visual importance of a packet by information

at the packet level. Our results from the objective experiment show that, for a

fixed-sized IP packet, frame type is a quite significant factor in the model. Our

most novel result is finding that a fixed-sized packet loss in a P frame is on the

average worse than one in an I frame. Previous studies found that I-packet losses

caused the worst degradation, but that result was for packets of fixed pixel area.
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Table 2.4: Table of the statistics for numbers of TS and IP packets in each video
by frame type.

Video Name
Avg. number of
TS / IP pkt in

I Frame

Avg. number of
TS / IP pkt in

P Frame

Avg. number of
TS / IP pkt in

B Frame
Air show 319.8 / 45.6 134.2 / 19.2 70.9 / 10.1
Earth 276.8 / 39.5 89.6 / 12.8 41.7 / 6.0

Formula 233.9 / 33.4 90.7 /12.9 32.7 / 4.7
Golf 377.6 / 53.9 74.7 / 10.7 20.6 / 2.9

Hawaiian 383.7 / 54.8 78.0 / 11.1 29.8 / 4.3
Indianapolis 382.4 / 54.6 74.6 / 10.7 23.3 / 3.3
New York 369.5 / 52.8 71.9 / 10.3 21.0 / 3.0
Soccer 236.5 / 33.8 79.8 / 11.4 31.2 / 4.5
Stories 271.7 / 31.1 85.4 /12.2 26.3 / 3.8

For our packets which are of fixed size in bytes, a P-packet covers a much larger

pixel area than an I-packet, and so causes more quality degradation when lost.

The temporal and spatial location are also noteworthy for prediction.

Changing the fixed size of the packet or changing the resolution of the video

would likely affect the model, and this would be of interest to study in the future.

Chapter 2 of this dissertation, in part, is a reprint of the material as it

appears in Y.-L. Chang, T.-L. Lin, and P.C. Cosman, “Network-based IP Packet

Loss Importance Model for H.264 SD Videos, IEEE Packet Video Workshop 2010.

I was the primary author and the co-authors Prof. Cosman directed and supervised

the research which forms the basis for Chapter 2. Prof. Lin also guided to the

objective experiment in this work.



Chapter 3

Network-based whole frame

model

In the previous chapter, we build a packet loss importance model based

on objective experiments. However, human subjective perception is the ultimate

ground truth for video quality measurement. In the research described in this

chapter, we conduct a subjective experiment to gather the data for network-based

whole frame models and apply the models in the networks for intelligent dropping.

While video quality monitoring in networks is an active research area, some

approaches predict the video quality using objective measures such as MSE (mean-

squared error) or PSNR [24–27]. However, MSE is not well correlated with human

perception [28]. Therefore subjective tests collecting direct responses from subjects

who watch impaired videos are necessary to understand how different packet losses

are perceived by people. The work in [29, 30] focused on modeling the average

quality of videos as a function of average packet loss rate. In [31], the authors

developed a model utilizing mismatched blocks to predict the subjective video

quality. The scene complexity and level of motion are used to predict perceptual

quality in [32].

These methods give an overall quality score for the sequence, but do not tell

us how to best drop packets in the router to minimize video quality degradation

during network congestion. In [11], packet dropping methods based on perceptual

video quality are discussed. The visual importance of each packet is evaluated

27
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in the encoder by an encoder-based packet loss visibility model. All information

available to the encoder can be used. Before the packet is sent to the network, a

single bit of priority score is added to the header based on the estimated packet loss

visibility. The router can then drop packets of lower priority during congestion.

In [11], the authors showed that the dropping policy that uses visibility-based

packet prioritization performs well compared to the common DropTail policy, and

compared to a prioritization method based on the induced MSE if that packet is

lost [33].

One limitation of [11] is that the priority score needs to be determined at

the encoder and added as one bit to the packet header. In [17], the authors do

not assume packets coming into the router are embedded with a visual priority

bit; for each packet, the visual importance is obtained by the network-based model

described in [13] which only requires information extractable within one packet

and no reference frame information. This is desired since in a router, the incoming

packets may be out of coding order or may be multiplexed with other video streams,

so the router may not be able to identify which is the reference packet of the current

packet. Also the authors want the complexity of the factor extraction process to

be low to be used in the network. Therefore the authors do not consider factors

such as initial mean square error or scene cut detection that require pixel domain

reconstruction by full decoding as used in [11].

Also in [17], the authors devise a packet dropping method for widely varying

packet loss rates including high rates. The packet loss visibility modeling was

designed for packets that contain individual slices (defined to be one horizontal

row of macroblocks) of a frame. For these slice losses, after error concealment,

spatial misalignment relative to the intact portion of the frame stands out. Spatial

misalignment artifacts can be more distracting than temporal frame freeze [34].

Therefore in [17], the algorithm drops the least visible frames, incurring fewer

blocky artifacts compared to dropping on a slice basis. The authors showed that

the frame-level temporal interpolation artifact is better than the slice-level spatial

misalignment artifact using the VQM [35]. VQM is a full-reference metric that

considers jerky motion, blocking, and blurring [36], and has been shown to correlate
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well with human perception [37].

Nevertheless, which whole frame to be dropped in [17] was estimated by the

network-based visibility model for single-slice packets described in [13]. That is, the

visibility score for the frame was taken to be the sum of the visibility scores for the

slices which compose the frame. And those visibility scores for slices came from

a model designed using a human observer experiment on slice loss data, which

do not directly reflect the frame loss visibility. This chapter aims at obtaining

and exploiting more meaningful scores for frame losses. We conduct a subjective

experiment on whole frame loss, and build a direct model for whole frame loss.

Two common concealment methods are used for whole frame losses: frame copy

and temporal frame interpolation. We analyze the experimental data, and model

the whole frame packet loss visibility based on information associated with the lost

frames. We use the model to intelligently drop frames, and compare performance

with [17] and [38].

Perceptual quality of frame losses is also discussed in the literature; [39]

concludes that viewers preferred a single but long freeze event to frequent short

freezes. In [40], different whole frame loss types were studied as a function of

frame loss burst length and distribution. The authors conclude that the visibility

of frame dropping is dependent on content, loss duration and motion. Later, in

[41], they built an assessment model for subjective video quality as a function of

frame loss burst length and distribution. However, the quantities are computed in

the pixel domain and require the original video, and the model aims to evaluate

the quality of an entire lossy video, and does not indicate the visual importance of

a specific frame.

This chapter is structured as follows: in Section 3.1, the setup of the

subjective experiment is introduced. Section 3.2 covers the analysis of data, and

Section 3.3 introduces the whole frame loss modeling process and feature selec-

tion. Section 3.4 proposes frame dropping algorithms using the whole frame loss

visibility model and the frame size, and gives the performance of various methods.

Section 3.5 concludes the chapter.
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3.1 Subjective experiment on whole frame losses

In this section, we introduce the subjective experiment setup, including the

encoding configuration, decoder concealment and experimental design. The video

encoder is H.264/AVC JM 9.3. Encoder settings (Table 3.1) adhere to ITU and

DSL Forum Recommendations [14, 15]. Each Network Abstraction Layer (NAL)

packet contains a horizontal row of Macroblocks (16× 16 pixels) in a frame. Our

tested resolution is SDTV, so we have 30 packets per frame. Nine videos we used

in Chapter 2 are concatenated into a 20-minute sequence.

The decoders we considered are the JM 9.3 standard decoder [42] which

produces frame copy artifacts, and FFMPEG [16] which conceals whole frame

losses using temporal frame interpolation. For the JM decoder, the lost frame

is concealed by copying the pixels from the previous reference frame. For the

FFMPEG decoder, a lost P frame is concealed by copying the pixels from the

previous reference frame, and a lost B frame is concealed by temporal interpolation

between the frame pixels of the previous and the future reference frames. These

two decoders are widely used in academia and industry.

In this experiment, we concentrate on B frames. We introduce whole frame

loss events once every 4 seconds to allow observers enough time to respond to each

individual loss event. There are two types of whole frame loss events: single whole

frame loss and dual whole frame loss; every loss event occurs in the first 3 seconds

of each 4-second interval. Among these intervals, we uniformly inject single or dual

whole frame losses in a GOP (in the dual cases, the distance between the two lost

Table 3.1: Summary of the subjective experiment setup. H is the height of the
video.

SDTV
Resolution 720× 480
Bitrate 2.1 Mbps
H.264 Profile Main profile Level 3
Viewing Distance 6H
Frame rate 30 fps
GOP IBBPBBPBBPBBPBB 15/3
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frames in one GOP could range from 1 to 13).

We create six different realizations of whole frame loss events of the 20-

minute video, producing 900 distinct single whole frame loss events and 900 dual

whole frame loss events. All the six lossy videos are decoded by FFMPEG and

JM decoders. A subject watches two different loss realizations of whole frame loss

events from the same decoder, so a session involves 40 minutes of actual watching

time per subject. The experiment takes one hour or less, including an introductory

session and a break. When viewers see a glitch, they respond to it by pressing the

space bar. If the response is within 2 seconds of the loss, the loss event is regarded

as visible. Each of the 40-minute lossy videos is watched by 10 people.

The ground truth loss visibility score for a specific loss event is calculated

as the number of people who see the loss artifact divided by 10. Since there are

six different realizations of the lossy videos and each is watched by 10 subjects, we

have a total of 60 people participating in the experiments, where 30 people watch

JM-decoded videos and 30 people watch FFMPEG-decoded videos. For each type

of loss event, 1800 ground truth visibility scores are obtained (900 for the JM

decoder and 900 for the FFMPEG decoder).

3.2 Data analysis

In this section, we analyze the two types of whole frame loss events: single

frame losses and dual frame losses. We examine the artifacts caused by the different

concealment methods of the JM and FFMPEG decoders, and then compare the

performance of the decoders.

3.2.1 Concealment methods of the decoders

JM uses frame copy and FFMPEG uses temporal interpolation for whole

frame loss concealment. For all B frames, JM conceals them by copying the pre-

vious intact reference frame, causing two types of temporal concealment artifacts:

freeze and jump. For example, in Figure 3.1(a), Frame 2 is lost and Frame 1 is

the reference frame for Frame 2. Frame 2, if lost, is concealed by copying Frame
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1; the visual artifact is a short freeze since Frame 1 is displayed twice, in two

consecutive frame time slots. In contrast, in Figure 3.1(b), if Frame 3 is lost, it

is also concealed by copying Frame 1. The displayed frames are 1, 2, 1, 4 rather

than 1, 2, 3, 4, which causes jerkiness or jumping visually. The FFMPEG decoder

conceals B frames by temporal interpolation most of the time, except for B frames

after an IDR frame which are concealed by copying the IDR frame. For temporal

interpolation, ghosting artifacts may appear when there is enough motion. The

above three types of artifacts are called “freeze”, “jump” and “interpolation” ef-

fects. A visual example is demonstrated in Figure 3.2. Frame 35 of video sequence

“Stefan” is lost and concealed by JM with frame copy in Figure 3.2(a) and by

FFMPEG with temporal frame interpolation in Figure 3.2(b).

(a) freeze effect

(b) jump effect

Figure 3.1: Different visual effects by frame copy concealment: (a) freeze effect
and (b) jump effect

Table 3.2 shows the mean visibility for the three types of effects, calculated

from the single whole frame loss events. The freeze effect has the lowest mean

visibility of 0.07, the jump effect has the highest of 0.29, and the visibility of
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(a) (b)

Figure 3.2: Frame 35 of video sequence “Stefan” is lost and concealed by the JM
decoder with frame copy in (a) and by the FFMPEG decoder with temporal frame
interpolation in (b)

Table 3.2: Three types of artificial effects and their corresponding mean visibility,
calculated from the single whole frame loss events

Effects Mean visibility
Freeze 0.07
Jump 0.29

Interpolation 0.19

interpolation is intermediate at 0.19.

Table 3.3 summarizes all the possible artifacts of dual whole frame loss

concealment for each decoder, and the corresponding mean visibility for each is also

shown. Figure 3.3 shows the visibility for different concealment artifacts. What

is plotted in each case is the mean visibility together with the 95% confidence

interval. The cross markers are for single frame losses, while the circle markers are

for JM dual frame losses and the triangle markers are for FFMPEG dual frame

losses. The 95% confidence intervals for the single frame loss concealments are non-

overlapping, meaning that the three effects (freeze, jump and interpolation) have

significantly different visibility. On the other hand, some of the 95% confidence

intervals for the dual frame loss concealments are overlapping because the artifacts

are the combination of two effects. The artifacts with jump effect have relatively

higher mean visibility while the artifact with mere freeze effect has the lowest
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Table 3.3: Possible artifacts for concealed dual whole frame losses and the corre-
sponding mean visibility for both JM and FFMPEG decoders.

Decoders Possible artifacts Mean Visibilty

JM

a freeze effect of three frames 0.22
a jump effect and then a freeze effect 0.28
a freeze effect and then a jump effect 0.25
two freeze effects 0.08
two jump effects 0.38

FFMPEG

a freeze effect of three frames 0.26
an interpolation effect and then a freeze effect 0.21
a freeze effect and then an interpolation effect 0.24
two interpolation effects 0.26
a jump effect and then an interpolation effect 0.37

visibility. The loss events with interpolation effect give an intermediate result.

About 30% of events are not seen by any observers, and on average 2.4 out of 10

observers see a dual frame loss event.
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Figure 3.3: Whole frame loss visibility showing means and 95% confidence inter-
vals, for different concealment artifacts.

We also look into the dual frame loss visibility versus frame distance, as

plotted in Figure 3.4. In our experiment, the frame distance for the two nearby

whole frame losses in one GOP ranges from 1 to 13. The mean visibility is peri-

odically higher for frame distances equal to 4, 7, 10 and 13. In the dual frame loss

events, for a certain frame distance there are several possible frame loss combina-

tions, which result in different artifacts since the concealments are not the same.

For instance, when frame distance equals 1, the visual artifacts are either two freeze

effects or two interpolation effects. The mean visibility of each frame distance is

a weighted average of the visibility for the various dual frame loss concealments

which can occur at that spacing. Statistically, when frame distance equals 4, 7, 10

and 13, their frame loss combinations result in a larger percentage of jump effect

compared to other frame distance cases, and it makes these four frame distance

cases have higher mean visibility.
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Figure 3.4: Dual whole frame loss visibility showing means and 95% confidence
intervals, for every frame distance

Another way to analyze the visibility is to group events into adjacent dual

frame losses and separate dual frame losses. The two lost frames are adjacent if

the frame distance equals 1, while they are separate if the frame distance is greater

than 1. Figure 3.5 shows the dual frame visibility for the adjacent and separate

cases. It is apparent that adjacent dual frame losses have lower visibility than

separate dual frame losses since the adjacent cases only lead to the two less visible

effects (freeze and interpolation) while the separate cases can lead to the jump

effect.
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Figure 3.5: Dual whole frame loss visibility showing means and 95% confidence
intervals, for the adjacent and separate cases

3.2.2 Comparison of the decoders

In this section, we compare the performance of the JM and FFMPEG de-

coders only for single frame losses since we would like to build models that predict

visibility for an isolated frame loss. Figure 3.6 shows the histograms of the single

whole frame loss visibility of the JM and FFMPEG decoders. For the JM decoder,

40.8% of the losses are not observed by any subjects (visibility is zero), and 62.4%

of losses are seen by 2 or fewer out of 10 people (i.e., have visibility less than or

equal to 0.2). For the FFMPEG decoder, 38.9% of the losses are not observed by

any subjects, and 58.3% have visibility less than or equal to 0.2. One implication

is that if we can identify these frames that are less visible to viewers when lost,

in the case of network congestion, we can choose to drop unimportant frames to

relieve network congestion, and not many end users will observe the losses.

In the design of our experiment, because there is a loss event in every 4

second interval, it could be a concern that viewers would begin to anticipate the

next loss event. However, we do not believe that viewers noticed the loss pattern

because there was such a high percentage of loss events which were invisible, so
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(a) (b)

Figure 3.6: Histogram of single whole frame loss visibility by (a) JM decoder, (b)
FFMPEG decoder.

viewers were not perceiving losses in each time slot.

Figure 3.7 is the 3-D histogram of the single whole frame loss visibility with

respect to the JM and FFMPEG decoders. This figure shows that the invisible

whole frame losses decoded by JM usually are also invisible by FFMPEG and vice

versa. The JM decoder has a better score than FFMPEG on 33.2% of cases, and

FFMPEG has a better score 29.6% of the time. The remaining 37.2% of the whole

frame losses are observed by exactly the same number of observers for JM and

FFMPEG. Among the tie cases, 79% represent losses with zero visibility for both

decoders. The average whole frame loss visibility over all the data is 0.1716 for JM

and 0.1879 for FFMPEG, indicating that on average, whole frame losses concealed

by JM are slightly less visible than by FFMPEG.

For a significance test between the visibility scores of FFMPEG and JM,

we can not perform a hypothesis test that assumes the data to be normal (e.g.,

t test) since from Figure 3.6, their distribution is far from normal. Therefore

we resort to nonparametric hypothesis testing. The Wilcoxon Signed Rank Test

(paired comparison) [43] compares paired data x and y in a two-sided test where



39

Figure 3.7: 3-D Histogram of single whole frame loss visibility by JM decoder and
FFMPEG decoder

the null hypothesis H0 is that the median of x− y is zero, against the alternative

that the distribution does not have zero median. Let xi and yi be the visibility for

FFMPEG and JM in the ith comparison set. Define w =
∑n

i=1 rizi where ri is the

rank of |xi − yi| among all |xj − yj|, and zi = 1 if xi − yi > 0 and zi = 0 otherwise.

Here n = 900, the number of losses. The statistic for the test,

Z =
w − [n(n+ 1)]/4√

[n(n+ 1)(2n+ 1)]/24
, (3.1)

distributes approximately as Normal(0,1) when n > 12. The p-value is 0.176

(> 5%), meaning that we cannot reject the null hypothesis at the 95% confidence

level that the visibility scores of FFMPEG minus JM come from a distribution

of zero median. From the previous section, we know that the freeze and jump

effects by JM cause the best and the worst visibility while the interpolation by

FFMPEG gives an intermediate result. This evens out the overall performance of

the two decoders so there is no significant difference between the visibility of JM

and FFMPEG. This motivates us to develop one model to predict the whole frame

packet loss visibility for both decoders. We discuss this in the next section.



40

3.3 Whole frame packet loss visibility model

In this section, we construct a prediction model for whole frame loss vis-

ibility using the data from the single whole frame loss events. To predict the

loss visibility, we consider network-extractable factors associated with a particu-

lar frame computed from a bitstream. The process of model building and feature

selection will be discussed.

3.3.1 Factors extractable from bitstream for predicting

frame loss visibility

From a frame, we want to obtain factors that can be extracted without the

need for other frames. Therefore, we do not consider initial MSE and other metrics

involving operations related to pixel domain reconstruction (as pixel reconstruction

would require access to the reference frame). By this, the frame loss visibility can

be determined even in the case that we do not have access to other frames.

Several factors are shown to be important to the prediction of slice loss

visibility in our prior study [11, 13]. For each MB in a frame, there are seven

features that we extract or compute from the bitstream. These areRSENGY (the

residual energy after motion compensation, obtained from the DCT coefficients),

QP, Interparts (the number of partitions of the MB), and four motion-related

parameters: motion in x and y directions, magnitude of motion (motM) and

angle of motion (motA). For each of these seven quantities, we include the mean,

maximum, and variance of the values (computed over all MBs in the frame) as

predictive features in our model. To compute motA, we only consider MBs with

non-zero motion, for which the phase is well defined. We also include the mean,

maximum, and variance of the slice sizes as predictive factors. For residual energy,

as in [11], we found that this factor after logarithm was more correlated with

frame loss visibility (where we add 10−7 before taking the log to avoid a log of zero

problem). Therefore we use this transformation.

In addition, MB modes might affect the frame loss visibility, thus we in-

clude the number of MBs that are coded as INTRA (NumIntraMB), INTER
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(NumInterMB), DIRECT (NumDirectMB) and SKIP (NumSkipMB) as

model factors. To include in a simple way the effects of concealment, we defined

boolean factors IsFreezeByJM, IsJumpByJM, IsInterpolation, IsFreeze-

ByFFMPEG and IsJumpByFFMPEG which are set when the certain effect

is possibly present for a frame. These five concealment-related factors could be

obtained by knowing the temporal location of a frame.

The motion information mentioned above is estimated by the network node

where reference frames are assumed to be unavailable; in some cases, the “true”

values for those quantities require the reference frames. For example, the “direct”

mode of coding a macroblock assumes that an object is moving with constant

speed, so the motion vector for the current MB is copied either from the spatial

neighborhood or from the previous co-located MB. Within a frame, we do not

have any information on the previous co-located macroblock. We instead copy the

motion vector from a spatial neighbor. This way, the model is fully self-contained

at the frame level, and can be implemented at a network node.

3.3.2 Modeling Process

As before, we choose a GLM with the logit function as link function to

predict the packet loss visibility, since it can predict a probability parameter in a

binomial distribution. We assume each viewer’s response is an independent obser-

vation of the average viewer (for whom we are developing the model). Therefore,

each viewer response can be considered i.i.d. with probability p for seeing a par-

ticular packet loss.

To prevent overfitting, a 4-fold cross validation is applied. The data is

randomly segmented into 4 groups, and we use three out of the four sets as the

training set and the remaining as the test set. The procedure is repeated four

times, each time choosing a different set for testing. We perform the feature

selection process on the responses collected from the subjective experiment and

the factor set described in Section 3.3.1, plus interaction terms between any two

factors in the set by multiplication between two factors.

If we have information about the user and know the exact decoder to be
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deployed, we could build models based on different decoders: JM Model and

FFMPEG Model. Figures 3.8 (a) and (b) show the plots of deviance versus the

number of factors included in the model. The concealment-related factors greatly

improve the deviance. Because most of the losses in the FFMPEG Model are

concealed by temporal interpolation with interpolation effect, the concealment-

related factors benefit the JM Model more since they correctly depict the visual

effects of freeze or jump, which are both caused by frame copy but with very

different influence on the visibility.

0 5 10 15 20 25 30

180

200

220

240

260

280

JM__Model

D
ev

ia
nc

e

Factor Number

 

 
without concealment factors
with concealment factors

(a)

0 5 10 15 20 25 30 35 40

200

220

240

260

280

300

FFMPEG__Model

D
ev

ia
nc

e

Factor Number

 

 
without concealment factors
with concealment factors

(b)

0 2 4 6 8 10 12 14 16

145

150

155

160

165

170

175

180

185

D
ev

ia
nc

e

Factor Number

AVG__JM__FFMPEG

 

 
without concealment factors
with concealment factors

(c)

0 5 10 15 20 25

200

205

210

215

220

225

230

235

240

245

250

D
ev

ia
nc

e

Factor Number

MAX__JM__FFMPEG

 

 
without concealment factors
with concealment factors

(d)

Figure 3.8: Deviance reduction as additional factors are included in
the (a) JM Model (b) FFMPEG Model (c) Avg JM FFMPEG (d)
Max JM FFMPEG model
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In case one does not know at an intermediate router which decoder will be

used ultimately at the receiver side, it is desirable to develop one model to predict

the whole frame packet loss visibility for both decoders. The data is combined in

two ways: taking the average of the JM and FFMPEG visibility scores associated

with the same whole frame loss, and taking the maximum of the JM and FFMPEG

visibility scores; the latter aims to predict the worst case visibility. The factors

in order of importance and the corresponding coefficients of the final models of

Avg JM FFMPEG and Max JM FFMPEG are listed in Tables 3.4 and 3.5

respectively. Their plots of deviance versus the number of factors included are

shown in Figure 3.8(c) and (d).

Table 3.4: Table of factors in the order of importance for Avg JM FFMPEGmodel.

Order Factors Coefficients
α 1 -3.8051
1 IsJumpByJM × MeanMotM -2.7522e-2
2 log(VarRSENGY +10−7) 1.6276e-1
3 IsJumpByJM × MaxMotA 4.4779e-1
4 MeanMotM 1.0879e-1
5 VarMotY -2.9205e-3
6 MeanSliceSize × IsJumpByFFMPEG 7.6570e-05
7 VarMotX -2.1337e-3
8 VarMotM 2.2820e-3
9 IsInterpolation × MaxMotY -8.3836e-3
10 IsFreezeByJM × MeanMotY -2.5011e-2

The first seven important factors are almost the same for both models, but

with a slightly different order. More than 70% of factors in the model involve mo-

tion vector computations. This indicates the amount of motion in the lost frame

dominates the visual performance. Figure 3.9 shows the scatter plots of visibility

score versus three of the top important factors: MeanMotM, VarMotX, and Var-

MotY. Since the visibility scores take on only 11 discrete values (0, 0.1, 0.2, ... 1)

which cause the dots to overlap in the scatter plot, we add random values between

0 and 0.095 to each visibility score for plotting. So the points with visibility score

of 0 are shown with y values randomly between 0 and 0.095, those with values
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Table 3.5: Table of factors in the order of importance for Max JM FFMPEG
model.

Order Factors Coefficients
α 1 -3.7488
1 MeanMotM 9.4095e-2
2 IsJumpByJM × MaxMotA 5.6668e-1
3 VarMotY -1.5806e-3
4 MeanSliceSize × IsJumpByFFMPEG 9.6291e-05
5 IsInterpolation × MeanMotA -9.1844e-2
6 log(VarRSENGY +10−7) 7.9889e-2
7 VarMotX -7.1111e-4
8 MaxMotM 9.4269e-3
9 MaxMotY -2.7974e-3
10 IsJumpByFFMPEG × MeanMotM -3.7718e-2

of 0.1 are shown with y values in the range of 0.1 to 0.195, etc. This makes it

easier to see the distinct dots. The trend in the plots shows that the visibility

tends to be larger when the three factors have higher value; the dots tend to be

more tightly clustered at the low visibility side when the factor values are small.

As in the separate model, the concealment-related factors are important. Without

these concealment-related factors, the best deviance for the Avg JM FFMPEG

and Max JM FFMPEG models are only 171 and 229, considerably higher than

when concealment-related factors are included. The 9 video clips used in the sub-

jective experiment included both high and low motion; we found that the model

accuracy was slightly higher for slow motion clips than for high motion clips.
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Figure 3.9: Scatter plots of visibility score versus three of the top important factors:
(a)MeanMotM, (b)VarMotX, and (c)VarMotY.

3.4 Whole frame dropping

In this section, we discuss an application of the whole frame visibility model.

We consider a situation in a network where the incoming video rate at a router

is higher than the outgoing rate. The router should perform video data dropping

to maintain the video quality as much as possible. If the router can accurately

measure the visual importance of each piece of data, it can decide what to discard.

In our experiment, bit reduction rate (BRR) is defined as the percentage of

bits that need to be dropped of the buffered data to alleviate the congestion. We

use the whole frame loss visibility models from the previous section to determine

the visual importance of the frames and design a dropping protocol. To achieve

better video quality under the constraint of a target dropping rate, the size of the

frame should be considered along with estimated visual scores.

3.4.1 Dropping algorithms under comparison

We use the proposed models in Tables 3.4 and 3.5 that directly predict the

whole frame visibility to perform the frame importance estimation. The model

in Table 3.4 is used to predict the frame importance, and drop frames until the

target BRR is achieved. This method is denoted FrameMean. When the model

in Table 3.5 is used, we denote it FrameMax.
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If there are two frames of the same size, to minimize the visual impact of

frame dropping, it is intuitive to drop the one with lower visual score. However, if

there are two frames of different sizes but with the same visual scores, it is better

to drop the frame with larger size. To include the size consideration, we drop

frames with least ratio of visual score to size. For the methods of FrameMean

and FrameMax, these versions are denoted FrameMeanBit and FrameMaxBit.

The experimental results show that this concept improves the video quality.

As a baseline for comparison, [38] discusses a dropping method that is im-

plemented in a video-aware digital subscriber line access multiplexer (DSLAM). It

inspects the nal ref idc (NRI) bit in every NAL unit header. Packets which do not

serve as reference pictures can be dropped during network congestion. That corre-

sponds to B frames in our case. We simulate this method by randomly dropping B

frames until the BRR is achieved. We denote this method by RandomBFrame

and define its performance by the results averaged over 50 random realizations.

A variation that considers size drops B frames in descending order of size. This

dropping method is denoted LargestBFrame.

3.4.2 Experimental results

In this section, we compare the six methods for different videos and different

levels of BRR. The lossy bitstreams which result from each dropping method and

network condition are decoded by the FFMPEG and JM decoders.

The video encoder is H.264/AVC JM9.3. The resolution is SDTV. The

tested videos are encoded at 2.5Mbps, 30 fps using Main profile Level 3. The

GOP structure is IBBP (18 frames). We perform each dropping algorithm in a

GOP, and the BRR is the percentage of bits to be dropped for this GOP. After the

dropping policy is performed for a GOP, the FFMPEG and JM decoding and their

corresponding error concealment are run, and then the VQM score is calculated to

obtain the video quality score for this lossy GOP.

Eight videos are tested in the simulation; they contain a wide variety of

scenes with different types of camera motion, object motion and spatial texture.

Golf has slow movement, and Soccer has fast motion; these two videos are among
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the sequences used in the subjective experiment in Section 3.1. Other clips are

News, Mother Daughter, Opening, which have low motion, and Stefan, Table Ten-

nis, Whale with high motion; these standard test videos were not used in the

subjective experiments.

The simulated BRRs are 0.5%, 5%, 7.5%, 10%, 15% and 20%. Note that

BRR can be very different from packet loss rate (PLR). For example, 20% BRR

can result in 50% PLR if the dropping algorithm drops B packets, which have much

smaller sizes than I or P packets on average. Therefore, BRR ranging from 0.5%

to 20% considers a very wide range of packet dropping levels. The BRR of 0.5%

causes only one frame loss most of the time. In this condition, RandomBFrame by

averaging over 50 random realizations could perform better than LargestBFrame

because deterministically selecting the largest B frame to drop will generally exceed

the 0.5% dropping target and not correspond to the lowest visbility. Based on this,

when BRR equals 0.5%, we do not use LargestBFrame and other visbility-per-bit

methods.
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Figure 3.10: Average VQM score over GOPs vs. BRR for the six packet dropping
policies for (a) FFMPEG for Golf, (b) JM for Soccer, (c) JM for Table tennis, (d)
FFMPEG for Mother Daughter, (e) FFMPEG for Opening and (f) FFMPEG for
Whale. Lower VQM scores correspond to higher quality.
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Figure 3.10: Average VQM score over GOPs vs. BRR for the six packet dropping
policies for (a) FFMPEG for Golf, (b) JM for Soccer, (c) JM for Table tennis, (d)
FFMPEG for Mother Daughter, (e) FFMPEG for Opening and (f) FFMPEG for
Whale. Lower VQM scores correspond to higher quality. Continued.

Figure 3.10(a) shows VQM score averaged over GOPs versus BRR for the

six dropping methods for the video Golf, where the lossy bitstream is decoded by

FFMPEG. We see that as the BRR goes up, the video quality deteriorates (the

VQM scores go up).

The non-visibility based methods RandomBFrame and LargestBFrame are

compared first. LargestBFrame beats RandomBFrame most of the time, so we

obtain a good VQM improvement by knowing the size of each frame. Especially for

network nodes with low computation ability, this primitive method could provide

some benefit.

We then compare the visibility based methods. FrameMean and FrameMax

perform better than our prior method in [17], which means the models directly built

from whole frame losses provide a better prediction of frame importance than es-

timating frame importance by summing the visibility of slices in a frame using the

slice loss visibility model. In addition, the visibility-per-bit methods provide fur-

ther improvement. FrameMeanBit and FrameMaxBit are better than FrameMean

and FrameMax respectively. These trends can be observed in Figure 3.10(a).

For all other videos shown from Figure 3.10(b) to Figure 3.10(f), there are

similar trends. For the comparison between the visibility and the visibility-per-bit
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methods, it is not consistent that one of them is superior; however, in more than

half of the cases, the visibility-per-bit method outperforms the visibility method.

Comparing the low motion clips (Golf, News, Mother Daughter, Opening)

and high motion ones (Soccer, Stefan, Table Tennis, Whale), the slow movement

clips have lower VQM scores than the fast movement clips for a given BRR. In the

simulation, the highest VQM scores for the fast clips are more than 0.3, while the

highest scores for the slow ones are less than 0.25. This indicates that the losses

are more concealable for Golf, News, Mother Daughter, and Opening. Comparing

the best dropping approach with the worst one, the fast motion videos have larger

gains. In Figures 3.10(b), (c) and (f), the improvement for high motion videos

increases more, up to 0.05∼0.08 VQM score whereas the slower videos have less

than 0.04 VQM score gain as in Figures 3.10(a), (d) and (e). It is important to

note that even the worst dropping method, RandomBFrame, requires some packet

inspection and decoding of a slice header within a packet. If a router does not do

any inspection, dropping effects would be worse.

3.5 Conclusion

In this chapter, we describe the results of a subjective test on whole frame

loss and concealment, the construction of models predicting the loss visibility, and

a packet dropping experiment based on these models. The contributions of this

research can be summarized as follows:

1. When isolated B frames were lost and concealed by either the JM standard

decoder or the FFMPEG decoder, about 40% of such losses were not seen by

any of the ten observers, and about 60% of such losses were seen by two or

fewer out of ten observers. This suggests that whole frame loss of isolated B

frames is highly concealable.

2. Although the JM and FFMPEG decoders had very similar overall perfor-

mance, this result hides the fact that, depending on frame position, JM

concealment produces freeze or jump artifacts, whereas FFMPEG conceal-

ment produces mostly interpolation artifact (and only rarely a freeze or jump
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artifact if a B frame after an IDR is lost). And these concealment approaches

do not have similar performance, as freeze is the least noticeable, and jump

is the most visible.

3. When two B frames are lost within the same GOP, about 30% of such events

are not seen by any observers. On average 2.4 out of 10 observers see a dual

frame loss event. The least visible type of dual frame loss event consists of

two isolated freeze artifacts. So if a router needs to drop two frames within

a GOP, the best choice would be to have two separate pairs of B frames in

a GOP each suffer the loss of the first B frame in the pair. This leads to the

least visible type of loss for the JM decoder, and among the least visible for

FFMPEG.

4. Visibility models which are specific for the JM and FFMPEG decoders

are more successful at predicting the frame loss visibility than are models

which attempt to predict the average or the worst case of the two decoders.

Nonetheless, a model designed to predict the average visibility score can pro-

vide improved frame dropping decisions compared to random B frame drop-

ping, and compared to slice-based visibility dropping decisions from [17].

5. In the condition where an intermediate router is congested and is forced to

drop frames (needing to achieve some target bit reduction rate), if for com-

plexity reasons one does not wish to drop frames using the visibility model,

there are still ways to improve over random B frame dropping. One way is

to drop the largest B frames until the target is met; this offers improvement

especially for larger bit reduction rates because one achieves the target with

a smaller number of total frames dropped. A second simple way to improve

over random B frame dropping is to avoid dropping the second B frame in any

pair of two consecutive B frames (this avoids the jump concealment artifact).

Chapter 3 of this dissertation, in part, is a partial reprint of the material as

it appears in T.-L. Lin, Y.-L. Chang and P. Cosman, “Subjective Experiment and

Modeling of Whole Frame Packet Loss Visibility for H.264”, IEEE Packet Video

Workshop, 2010, and in Y.-L. Chang, T.-L. Lin, and P.C. Cosman,“Network-based



52

H.264/AVC Whole Frame Loss Visibility Model and Frame Dropping methods”,

IEEE Transactions on Image Processing, 2012. Co-author Prof. Cosman directed

and supervised the research which forms the basis for Chapter 3. Co-author Prof.

Lin also contributed to the subjective experiment in this work.



Chapter 4

Depth-assisted error concealment

for whole intra frame loss in 3D

video

So far we have focussed on analysis and application of packet loss impor-

tance modeling in the network. When packet losses happen, error concealment at

the decoder side is one solution to reduce video quality degradation for end-users.

In this chapter, we propose a depth-assisted error concealment for whole intra

frame loss in 2D+depth video.

The chapter is organized as follows: In section 4.1, an overview of 2D+depth

video format is introduced. In Section 4.2, the proposed algorithm is described.

Section 4.3 presents the experimental results and discussion, while Section 4.4

summarizes our conclusions.

4.1 Overview of 2D+depth video format

Stereo effect is generated by creating the illusion of depth in an image by

means of stereopsis for binocular vision. Most stereoscopic methods present two

offset images separately to the left and right eyes of the viewer. These 2D images

are then combined in the brain to give the perception of 3D depth. Two of the

major 3D video formats are: multi-view video coding (MVC) and 2D+depth [44].

53
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Multiple view compression has been standardized as the MVC extension of

H.264/AVC [45,46]. An MVC coder consists of N parallelized single-view coders.

Each of them uses temporal prediction structures, where motion compensated

prediction (MCP) is deployed. The inter-view dependency of these picture are

also utilized for disparity compensated prediction (DCP). The simplest MVC will

have two views, i.e., left and right viewS, and the example of motion and disparity

compensated prediction for MVC are shown in Figure 4.1. MVC was adopted

to the 3D Blu Ray specification for coding 2-view stereo in 2009, but one of the

main restriction for MVC is the linear dependency of the coded data rate from

the number of cameras [47]. This makes MVC not that applicable when it has a

higher number of views.

Figure 4.1: Example of motion and disparity prediction for MVC.

Another popular 3D video format is multi-view video plus depth format

(MVD) [48]. By adding scene geometry, i.e., depth maps, MVD not only has

limited bitrate increase, but also allows rendering arbitrary numbers of additional

views via view synthesis. Depth data can be obtained in different ways. One can

estimate the depth value based on the acquired pictures or use special sensor to

record low-resolution depth maps, i.e., time-of-flight cameras. Synthetic sequences

made with 3D models can be re-rendered in stereoscopic 3D by adding a second

virtual camera, for example, computer generated scene content and animated films.
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A 2-view example, 2D+depth, is shown in Figure 4.2. In this format, only one

monoscopic video stream and an associated per pixel depth sequence need to be

encoded. The 2D sequence provides the surface, the color, the structure of the

scene, while the depth sequence represents the distance between the optical center

of the camera and a point in the visual scene. New views can be synthesized using

various depth image-based rendering (DIBR) approaches [49] at the decoder side.

Figure 4.2: Example of 2D+depth format for MVD.

A depth map can be thought of as a gray image, with characteristics very

different from normal 2D images. Depth images contain little texture and contain

predominantly flat patches with sharp edges marking boundaries between objects

at different depths. In [50], the 2D video and the depth map were shown to be

spatially correlated, and the MVs in the two sequences are highly correlated. How-

ever, it is the 2D video that dominates the view synthesis quality of the 2D+depth

format [51]. An overview of 2D+depth video transmission system is shown in 4.3
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Figure 4.3: Overview of 2D+depth video transmission system.

Whole frame loss is a troublesome problem in transmitting sequences over

error-prone networks. Especially when a loss happens to an intra frame in the 2D

sequence, it causes more damage than a loss in the depth sequence. Conventional

error concealment methods for intra frame loss are spatial interpolation [52] or

pixel copy from the co-located region in the previous frame. A better solution is

to use the temporal correlation of the sequence, such as decoder motion vector

estimation (DMVE) [53] and data hiding [54]. These methods have high computa-

tional complexity and are not suitable for intra frame loss in 2D+depth sequences

because they do not exploit the motion similarity. To ameliorate this problem,

previous work [55, 56] present a depth-offset encoding scheme to make 2D intra

frames correspond to inter-coded ones in the depth sequence. The MVs from the

inter frames could help conceal the intra frame slice loss. This work focused on

slice loss where the lossy region is only part of a frame and it relied on the bound-

ary match algorithm (BMA) [57]. It will not be applicable when an entire intra

frame is lost, since no remaining pixels could serve as the criterion for boundary

distortion measurement.
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4.2 Proposed depth-offset with motion compen-

sated encoding

As a stereoscopic video coding format useful for 3D displays, 2D+depth

coding is not yet standardized. Usually the 2D and depth sequences are coded

independently with aligned GOP structure, ignoring the fact that they are spatially

associated and the motion vectors are highly correlated. MV correlation mostly

benefits inter-coded frames rather than intra-coded ones. As an intra frame loss

generally causes more serious error propagation compared to an inter frame loss,

error concealment that could properly utilize the motion similarity is desirable for

2D+depth sequences.

Previous work [55, 56] imposed a depth-offset encoding scheme. The first

GOP of the depth sequence is shortened while the rest of the GOPs remain the same

length. The temporal offset will have intra frames of the 2D and depth sequences

not aligned with each other; every intra frame in the 2D sequence corresponds to

an inter frame in the depth sequence. Thus the authors could retrieve the MVs

from the depth sequence if a 2D intra frame slice is lost and deploy the information

to assist error concealment, using either boundary matching or a hybrid procedure.

In this section, this depth-offset encoding scheme is refined with motion

information sharing between the intra frame in the 2D sequence and its corre-

sponding inter frame in the depth sequence. As shown in Figure 4.4, to attain

an accurate motion description of the scene, an additional motion estimation is

performed on the 2D intra frame. Instead of coding this motion information in

the 2D stream, the frame is still solely intra-coded, but the MVs are delivered to

the depth sequence. The corresponding inter frame is then motion compensated

based on these shared MVs.
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Figure 4.4: Proposed encoding scheme of 2D and depth sequences.

When an entire intra frame loss occurs, conventional error concealment

can only utilize limited information. With our proposed encoding scheme, one

can conceal a lost 2D I-frame by extracting the MVs from the corresponding inter

frame in the depth sequence. Since the MVs are directly inherited from the motion

estimation of the 2D intra frame itself, they reflect the motion relation of the lost

intra frame and the previous decoded one. Consequently a straightforward motion

compensation error concealment (MCEC) without further MV refinement could

provide an excellent recovery.

4.3 Experimental Results

The proposed scheme was implemented in H.264/AVC reference software

JM15.1. Six 2D+depth sequences are tested: Balloons (512 × 384), Bookarrival

(512 × 384), Cafe (640 × 480), Mobile (720 × 480), Newspaper (512 × 384) and

Pantomime (640× 480). The lengths of the sequences are 300, 100, 300, 200, 300,
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and 500 frames, respectively. In order to have more intra frames for the generality

of the simulation, we successively shift the start frame for encoding so each frame

could be intra-coded. For example, in Figure 4.4, the frames with picture number

1, 6 and 11 are intra coded in the 2D sequence. If we shift the start frame by one

frame, then the frames with picture number 2, 7 and 12 will be the intra frames.

The sequences are encoded at 30 frames per second with “IPPP” GOP structure.

The GOP length of both 2D and depth sequences is set to GL = 15 while the first

GOP of each depth sequence is shortened to GL0 = 5 to create non-alignment.

The quantization parameters (QPs) are set to 28 for the 2D sequences and 38 for

the depth sequences.

The proposed encoding scheme was implemented in two versions: 1) Basic:

motion estimation is only done at MB size 16 × 16 without further partitioning.

2) Advanced: motion estimation is processed at partition sizes from 16 × 16 to

8× 8. For both Basic and Advanced, the intra frame error concealment of the 2D

sequence is MCEC with direct MV reuse from its corresponding inter frame of the

depth sequence. The methods are denoted Basic and Adv.

Three other methods with different encoding schemes are compared for

intra frame error concealment. 1) Zero motion error concealment: use the co-

located pixel value of the previous decoded frame to conceal the lost frame. This

is used when the 2D and depth sequences are coded conventionally with no offset

between GOPs. 2) MCEC with average MVs: though we can not access the motion

information from its corresponding frame in the depth view, we could still utilize

the MVs from the 2D sequence itself. By gathering the MVs from the previous

and next decoded frame, the average of the forward and backward MVs can be

deployed. Furthermore, if the depth sequence is coded with the offset GOP but no

motion sharing, we could have extra MVs from the depth sequence to assist MCEC.

3) MCEC with median MVs: the median among the MVs from the corresponding

inter frame in the depth view, and the forward and backward MVs from the 2D

sequence are used. The above three methods are named “Copy”, “MCavg” and

“MCmed” respectively.

Each intra frame is tested independently, except for the first IDR frame
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of the sequences. The average PSNR of all the concealed intra frames and the

lossy GOPs are listed in Table 6.2. It shows that our proposed basic and advanced

methods significantly outperform the copy and other MCEC algorithms. The

proposed basic version can give a PSNR increase from 2.5dB up to 10dB, though

the motion compensation is only done unsophisticatedly at 16×16 MB size level. In

the case when further partition is deployed for the proposed advanced scheme, an

extra 0.7 ∼ 1.8 dB PSNR improvement is attained. By simply having the motion

information from the 2D sequence itself, the MCEC based methods easily surpass

the copy method. The MCmed method with depth offset encoding only provides a

small gain compared to MCavg, since some additional depth motion information is

known for MCmed. However, the large improvement appears when the proposed

scheme has the combined advantage of frame offset and motion compensation.

Table 4.1: Comparison of the average PSNR performance over all dropped frames
and GOPs for different error concealment methods.

Sequence
(error free PSNR)

PSNR
Error Concealment Method

Copy MCavg MCmed Basic Adv.

Balloons
(40.03)

I 28.58 32.80 32.82 35.96 36.65
GOP 28.74 32.62 32.61 35.12 35.60

Bookarrival
(39.53)

I 26.11 29.05 28.69 33.27 34.89
GOP 25.09 28.67 27.94 32.97 34.47

Cafe
(39.06)

I 32.20 34.87 35.16 36.88 37.67
GOP 31.94 34.58 34.82 36.49 37.17

Mobile
(39.40)

I 30.50 32.35 32.81 35.16 36.00
GOP 28.85 31.73 32.32 34.65 35.53

Newspaper
(38.20)

I 28.21 32.57 32.68 34.66 35.48
GOP 27.29 31.64 31.60 33.50 34.22

Pantomime
(41.55)

I 21.02 26.69 25.34 31.99 33.83
GOP 21.50 27.52 25.86 32.75 34.32

Since I frames on average require many more bits than P or B frames,

the instantaneous output bitrate of a video encoder can be highly uneven. As

stated in [55], the frame offset feature of the proposed encoding scheme could

help to stabilize the instantaneous bitrate of the coded 2D+depth sequences. The
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comparison of the total bitrate for each encoding scheme is shown in Table 4.2. The

conventional scheme with aligned 2D and depth GOP is denoted “Orig.”, and the

frame offset encoding method is denoted “Offset”. Our proposed encoding schemes

with MV sharing are called “Basic” and “Advanced”, based on the partition size

level at which motion estimation is deployed. The proposed methods bring a bitrate

penalty of 1.3 ∼ 2.2%, producing a tradeoff between encoding efficiency and error

concealment improvement. However, 2D intra frames occupy a large portion of

the total 2D+depth bit usage, about 30% in our experimental settings. When

network traffic is congested, we could alleviate the situation by dropping some

intra frames and incorporating the proposed algorithm at the same time to release

more available bandwidth and effectively prevent prominent quality degradation

in the case when congestion makes a loss inevitable.

Table 4.2: First column is the total bitrate(kb/s) of the conventional scheme with
aligned 2D and depth GOPs. Remaining columns are the percentage increase in
bitrate for different encoding schemes.

Sequence
Encoding Scheme

Orig. Offset Basic Advanced
Balloons 975.32 0.12 1.34 1.78

Bookarrival 832.82 0.39 1.65 2.00
Cafe 929.45 0.17 1.48 1.74
Mobile 1151.77 0.15 1.54 1.82

Newspaper 856.08 0.16 1.14 1.49
Pantomime 2108.61 0.02 1.91 2.25

4.4 Conclusion

We presented an effective algorithm for recovering whole intra frame loss

in 2D+depth video. The error concealment cooperates with a proposed encoding

scheme that exploits the motion correlation between the 2D and depth sequences.

Experimental results show that our method results in significant PSNR improve-

ment.
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Chapter 4 is adapted from Y.-L. Chang and P.C. Cosman, “Depth-Assisted

Error Concealment for I-frame loss in 2D+depth Coded Stereoscopic video”, sub-

mitted to IEEE Signal Processing Letters, 2014. I was the primary author. Co-

author Prof. Cosman directed and supervised the research which forms the basis

for Chapter 4.



Chapter 5

2D+depth video in packet loss

environments

In order to combat packet losses over erroneous networks, we often have

to pay a bitrate penalty to enhance the robustness of video communications, as

does, for example, our work in Chapter 4. One of the approaches for error resilient

video coding is to consider both source and channel distortion at the same time

and to find a balance between encoding bitrate penalty and error resistance of the

transmitted sequences. In this chapter, we propose a motion information sharing

encoding scheme with an end-to-end rate-distortion model for H.264/AVC coding

of 2D+depth sequences. Experimental results show that the proposed encoding

scheme improves PSNR performance for the depth sequence under a packet loss

environment without increasing encoding bitrate.

Many techniques have been proposed for error resilient video coding over

lossy networks. For some more advanced algorithms, the end-to-end distortion due

to compression and packet loss is estimated, and then utilized for mode selection

with rate-distortion optimization (RDO) [58–60]. A recursive optimal per-pixel es-

timate (ROPE) algorithm estimates the pixel level end-to-end distortion by keeping

track of the first and second moments of the reconstructed pixel value [58]. An er-

ror robust RDO method (ER-RDO), developed for packet-loss environments [59],

was adopted in the H.264/AVC test model. ER-RDO estimates the expected over-

all end-to-end distortion by decoding K random realizations of the lossy channel

63
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at the encoder. This approach could be very accurate if K is large enough, but

the computational complexity is extremely high. All of the above work focussed

on traditional 2D video. In this chapter, we aim to extend this RDO research to

2D+depth video transmission.

As mentioned in Chapter 4, a depth map contains little texture and pre-

dominantly flat patches with sharp edges marking the boundary between objects

at different depths, and it is spatially correlated with its corresponding 2D image.

In [61], it was shown that direct mode is selected most often in the depth video

encoding, but the bits are mostly generated by inter-predicted modes, which take

65% of the overall bitstreams. In addition, motion information takes 59% of the

bits in the inter-predicted coding. Conventionally the 2D and depth sequences

are independently encoded, and the high similarity between the two sequences is

not utilized. However, several works have been done to make use of this correla-

tion [61–65]. In [62], the authors proposed a coding structure for depth map coding

with H.264/AVC to share the motion information of the corresponding 2D video

by exploiting the similarity of motion vectors between 2D and depth sequences.

In [63], motion sharing schemes were implemented in the scalable video coding

(SVC) structure and utilized for error concealment; however, the shared MVs were

sent repeatedly for both streams and only two encoding modes were used, namely

‘macroblock (MB) skip’ and ‘motion estimation’. As intra mode was not included

in R-D optimization, error propagation could be serious under this setting due to

the lack of intra refresh. Both [64] and [65] introduced joint motion estimation

techniques. In [64], the authors took the means of a joint estimation of the MV

field for the texture motion information and depth map sequence while [65] further

applied the joint MVs on error concealment, but again, only inter and skip mode

were considered for encoding. In addition, none of the above methods included the

channel distortion for encoding mode selection in lossy networks.

We would like to address the problem of transmitting 2D+depth sequences

over error-prone networks using rate distortion optimized mode selection in this

chapter. The chapter is organized as follows: In Section 5.1, the proposed algorithm

is described. Section 5.2 presents the experimental results and discussions, while
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Section 5.3 summarizes our conclusions.

5.1 Overview of the Proposed Method

5.1.1 End-to-End Distortion Model

Video standards such as H.264/AVC provide various intra and inter modes

to encode a MB. In order to select the best mode for each MB, a Lagrangian

optimization technique is used to minimize the distortion subject to a rate con-

straint [66]. Based on the following equation, the coding mode that minimizes the

Lagrangian cost is chosen to code the macroblock m in frame n,

min
mode

(J(n,m,mode)) = min
mode

(D(n,m,mode) + λR) (5.1)

where λ is the Lagrangian multiplier for the mode decision given by λ = 0.85 ×
2(QP−12)/3 in H.264/AVC. R denotes the number of bits needed for coding the

MB in the specified mode, which includes the bits for the MB header, motion

vector, reference frame, and transformed coefficients. D(n,m,mode) represents

the distortion of the MB.

In [60], the authors used an end-to-end distortion for mode selection that

consists of source, error-propagated, and error concealment distortions. Suppose

p is the packet loss rate, REF lists the reference frames and mJ lists the motion

vectors of all subblocks in macroblock m in frame n in terms of coding option

mode. The end-to-end distortion is:

D(n,m,mode) = (1− p)(Ds(n,m,mode) +Dep(REF,mJ)) + pDec(n,m) (5.2)

where Ds(n,m,mode), Dep(REF,mJ) and Dec(n,m) denote the macroblock-level

source distortion, error-propagated distortion, and error concealment distortion

respectively. The error propagated distortion Dep can be recursively calculated

after the current frame has been encoded, and stored as a distortion map for

further reference. The new Lagrange multiplier in a packet loss environment was

also derived as (1− p)λ. Since Dec(n,m) is independent of mode, it is unnecessary



66

to calculate for the mode selection. Therefore, the final formula for the Lagrangian

cost is:

J(n,m,mode) = (1− p)(Ds(n,m,mode) +Dep(REF,mJ)) + (1− p)λR

= (Ds(n,m,mode) +Dep(REF,mJ)) + λR
(5.3)

5.1.2 Proposed Motion-Sharing Encoding Scheme

The proposed encoding scheme of video-plus-depth sequences is illustrated

in Fig 5.1. The 2D sequence is encoded first, and the intra or inter prediction is

performed as in the conventional H.264/AVC, which does the motion compensation

prediction (MCP) between each frame. We also employ the end-to-end distortion

model in Sec. 5.1.1 for the mode selection.

Figure 5.1: Encoding scheme of 2D+depth sequences

For the depth sequence, one extra mode is introduced to the mode selection

process, which is the motion information sharing mode. After encoding the 2D

sequence, if inter-prediction mode is selected for a certain MB, its motion informa-

tion will be passed to the corresponding MB in the depth sequence as a candidate

MV for mode selection. In the motion information sharing mode, we do not need

any bits to represent the MV since it is shared from the texture sequence. The

end-to-end distortion model is used for mode selection for the depth sequence also,

with the addition of the motion sharing mode.

Moreover, in [60], for a lost pixel in frame n, the error concealment is de-

fined as copying pixels from frame n−1. Given that we could have motion vectors
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from both texture and depth sequences, for a lost MB in the depth sequence, the

error concealment is ameliorated by gathering the MVs from the surrounding MBs

and the corresponding MB from the texture sequence, and then using boundary

matching to find the best MV for motion compensation. Under the considera-

tion of the end-to-end distortion model with the extra mode and the ameliorated

concealment, the best mode will be selected from intra, inter, skip and motion

sharing.

5.2 Experimental Results

The proposed algorithm was implemented in H.264/AVC reference software

JM15.1. The error-resilient video coding algorithm proposed in [60] is taken as a

reference in the comparison. Three 2D+depth sequences are used for experiments,

namely Cafe, Dancer, and Balloons. In our experiments, we focus the performance

on the depth sequence. These three depth sequences represent different types of

depth maps. The depth maps of Cafe and Dancer both have smooth edges; the

former is calculated by a state-of-the-art stereo matching algorithm from multiple

views, while the latter one is the ground truth from computer graphics. The depth

map of Balloons is also calculated but with very coarse boundaries. The difference

between smooth and coarse depth maps is shown in Figure 5.2.
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(a) Dancer: 2D image (b) Dancer: depth map

(c) Balloons: 2D image (d) Balloons: depth map

Figure 5.2: Examples of different types of depth maps; (a) 2D image from Dancer
sequence and (b) corresponding depth map: smooth edge, ground truth. (c) 2D
image from Balloons sequence and (d) corresponding depth map: coarse boundary,
calculated.

The sequences are encoded at 30 frames per second (fps) for 100 frames,

and only the first frame is encoded as an I frame and the remaining frames are

encoded as P frames. Each row of macroblocks composes a slice and is transmitted

in a separate packet. Hence each packet is independently decodable. We assume

that the first frame is conveyed reliably. The packet loss situation is simulated

according to the error resilience testing condition specified in [67]. The packet loss

rates (PLR) at 0%, 5%, 10%, 15% and 20% are tested for 100 lossy realizations on

each.
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Distributions of Coding Modes with Packet loss:

The percentage of time that a coding mode is optimal is determined by its R-

D behavior. In Tables 5.1 and 5.2, we present these distributions. Table 5.1 shows

the distribution of the conventional encoding method, which is without motion

information sharing, and Table 5.2 presents the result with the new encoding

scheme. For depth map encoding, these results show that skip mode is dominant

due to the nature of the simple content. For both methods, intra mode is selected

the least, and these intra-coded MBs are mostly located at the edges of objects.

Comparing the two tables, we observe that motion sharing mode mostly replaces

inter mode in the proposed encoding scheme. For higher packet loss rates, the

usage of intra mode increases while the motion sharing mode is used less.

Table 5.1: Distribution of various coding modes in packet loss environments (%)
without motion sharing- Cafe depth sequence

Loss Rate Skip Inter Intra
0% 85.43 14.41 0.15
5% 85.55 13.01 1.43
10% 85.82 12.04 2.13
15% 86.27 11.07 2.65
20% 86.45 10.40 3.19

Table 5.2: Distribution of various coding modes in packet loss environments (%)
with motion sharing- Cafe depth sequence

Loss Rate Share Skip Inter Intra
0% 7.88 84.30 7.68 0.13
5% 5.50 85.02 8.14 1.34
10% 4.73 85.49 7.80 1.98
15% 4.21 85.41 7.81 2.56
20% 3.35 85.80 7.71 3.12
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Performance Evaluation for the Proposed Scheme:

We assume that the texture sequence is transmitted correctly and the depth

sequence is transmitted with packet loss. Under this condition, error propagation

only comes from the depth stream itself. Figures 5.3, 5.4 and 5.5 show the PSNR

performance results of the proposed and reference methods under the given con-

dition. In Figures 5.3 and 5.4, the proposed method with motion sharing mode

has 0.2-1.0 dB performance improvement over the reference scheme. In Figure 5.5,

the proposed method is slightly worse than the reference scheme. The degradation

is caused by the nature of the Balloons depth map. As mentioned before, the

Balloons depth map has coarse boundaries due to the depth calculation method it

employed. This decreases the advantage of the motion sharing mode since object

edges in the depth map will not be accurately aligned with those in the 2D image.

Consequently the selected mode will not be resilient to losses.
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Figure 5.3: Average PSNR(dB) performance comparison of proposed and reference
methods, Cafe (320×240), 64kbps
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Figure 5.4: Average PSNR(dB) performance comparison of proposed and reference
methods, Dancer (480×272), 64kbps
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Figure 5.5: Average PSNR(dB) performance comparison of proposed and reference
methods, Balloons (512×384), 96kbps

5.3 Conclusion

We present a novel method for coding the 2D+depth sequences by intro-

ducing an extra motion sharing mode to the depth stream. The extra mode is

generated by utilizing the MV from the texture stream. By sharing the MV, we

not only save bits but also make use of the shared MV as error concealment. The
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mode selection process is implemented based on the estimation of end-to-end R-D

cost. For sequences with precise depth calculation, our proposed method achieves

a better PSNR performance in packet loss environments.

Chapter 5 is adapted from Y.-L. Chang, Y. Zhang and P.C. Cosman, “Joint

Source-Channel Rate-Distortion Optimization with Motion Information Sharing

for H.264/AVC Video-plus-Depth Voding” submitted to Asilomar Conference on

Signals, Systems and Computers, 2014. I was the primary author. Co-author Prof.

Cosman and Prof. Zhang directed and supervised the research which forms the

basis for Chapter 5.



Chapter 6

Motion compensated error

concealment for HEVC based on

block-merging and residual energy

High Efficiency Video Coding (HEVC) is the latest coding standard in 2013.

Though the main goal of the HEVC standardization effort is to enable significantly

improved compression performance, up to 50% bitrate reduction, relative to ex-

isting standards for equal perceptual video quality, error recovery for HEVC has

not been addressed yet. In this chapter, we propose a motion-compensated error

concealment for HEVC that can preserve edge and object structure information

without involving motion estimation or object detection at the decoder. First,

residual energy of each block is analyzed to determine the reliability of each MV.

Instead of refining the motion field by further partitioning each block into smaller

blocks, we merge adjacent blocks that have unreliable MVs into a larger region.

The merged block is assigned one single motion vector. Since the blocks with un-

reliable motion vectors are concealed using the same motion vector, the edges and

the structure of the objects can be kept.

The chapter is organized as follows: In Section 6.1, an overview of HEVC

is presented. In Section 6.2, we present the proposed algorithm in detail. The

experimental results are demonstrated in Section 6.3. Section 6.4 summarizes our

conclusions.

73
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6.1 Overview of HEVC

High Efficiency Video Coding (HEVC) is the latest video coding technology

standard. As a joint project of the ITU-T Video Coding Experts Group (VCEG)

and the ISO/IEC Moving Picture Experts Group (MPEG), the Joint Collabora-

tive Team on Video Coding (JCT-VC) was formed for HEVC development, and

the standard was approved and formally published in 2013. As a successor to

H.264/AVC, HEVC promises to reduce the overall cost of delivering and storing

video assets without decreasing the quality of experience delivered to the viewer,

and two key issues have been a particular focus: increased video resolution and

increased use of parallel processing architectures [68].

Though HEVC is designed to achieve multiple goals, including coding effi-

ciency and ease of transport system integration and data loss resilience, it provides

no guarantees of end-to-end reproduction quality and does not suggest any conceal-

ment when the bitstream is lossy. Various error concealment methods have been

proposed to overcome packet loss in video transmission for prior standards [9].

In [69] and [70], the pixel values were recovered by spatially interpolating avail-

able pixels in neighboring macroblocks (MBs). The boundary matching algorithm

(BMA) [57] and decoder motion vector estimation (DMVE) estimated lost motion

vectors (MVs) based on taking the candidate MVs from its spatial and temporal

neighbors, by minimizing a given distortion measure between the correctly received

pixels. These spatial and temporal error concealment schemes were addressed to

the coding characteristics of the MB-based codec by exploiting the correlation

between a damaged MB and its adjacent ones in the same or previous frame.

However, though HEVC is still under the block-based motion-compensation and

transform coding structure, there is no MB in the codec. The macroblock concept

has been extended by defining three types of variable size unit: Coding Unit (CU),

Prediction Unit (PU) and Transform Unit (TU).

Starting from the largest CU (LCU), each CU allows recursive quadtree

splitting into multiple sub-CUs, for sizes from 64 × 64 (CU depth=0) to 8 × 8

(CU depth=3). Each sub-CU can be further split into multiple PUs. PUs are

the basic unit for motion prediction. After PU segmentation, a proper size of TU
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is determined for residual coding. Two encoding modes are supported in HEVC:

intra- and inter-picture prediction. The mode is specified at the CU level, meaning

all the PUs in a CU will be predicted under the same mode. In HEVC, a slice is the

data structure that can be delivered and decoded independently, and it can either

be an entire frame or a region of a frame. Slices are a sequence of LCUs, while they

are composed of MBs in the prior standards. The hierarchical decision level for

HEVC is shown in Figure 6.1. LCUs are usually set to be the size of 64×64, which

is sixteen times larger than a 16× 16 MB in the prior standards, thus slice losses

from a HEVC bitstream will generally involve a vaster area of a frame. Under this

condition, many of the prior error concealment methods would not be applicable,

since they were usually designed for smaller lost blocks and often took the nearby

correctly received pixels as reference. Because a loss in HEVC contains at least one

LCU, the large lost block makes most of the lost pixels distant from the correctly

received pixel border, thus the distortion measure between the block edge no longer

serves as a good criterion for recovery.

Figure 6.1: Hierarchical decision level for HEVC.
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Few studies have been done regarding error concealment in HEVC. In [71],

a motion vector extrapolation based method was proposed for whole frame loss.

MV correlation from the co-located LCU was calculated for deciding whether to

divide a large block into smaller ones or not. However, in block-based motion

estimation at the encoder, the motion vector field is generated by minimizing the

energy of prediction residuals and the rate-distortion cost, which may make those

estimated MVs fail to represent the true motion [72–74], thus it could be improper

to take every MV from the co-located LCU. In addition, a loss is not necessarily

a whole frame loss and could be partial, which we call a slice loss in this chapter.

For slice loss, spatial misalignment is more likely to happen and degrades the video

quality.

Currently in HEVC reference software HM [75], only frame level conceal-

ment is implemented, where pixel copy from the previous frame is used. A slice loss

is not yet detected and concealed. Among all types of error concealment, motion

trajectory reuse from the co-located LCUs will be a relevant approach since the

coding structure of HM preserves the information from the adjacent and co-located

LCUs. In this chapter, we propose a motion-compensated error concealment that

can preserve edge and object structure information without involving motion es-

timation or object detection at the decoder. First, residual energy of each block

is analyzed to determine the reliability of each MV. Instead of refining the mo-

tion field by further partitioning each block into smaller blocks, we merge adjacent

blocks that have unreliable MVs into a larger region. The merged block is assigned

one single motion vector. Since the blocks with unreliable motion vectors are con-

cealed using the same motion vector, the edges and the structure of the objects

can be kept.

6.2 Proposed method

In this section, we propose a motion-compensated error concealment scheme

based on the classification map of residual energy associated with each motion

vector, and based on a block-merging algorithm.
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Although network applications are one of the targets of HEVC, HEVC has

not yet addressed transmission in networks other than to mandate byte stream

compliance with Annex B of H.264/AVC. In [76], a streaming framework is de-

signed and implemented. However, it used pre-generated encoder trace files and

receiver trace files to detect loss, which is not a very realistic approach. The cur-

rent HM so far is not able to detect and conceal a slice loss. However, a syntax

element in HEVC, slice segment address, specifies the address of the first LCU in

the slice segment, in a coding tree block raster scan of a frame. By modifying

HM and tracking this syntax, we could detect a slice loss without auxiliary files.

If the correctly decoded LCU number in a frame is discontinuous with the next

slice segment address value in the same frame, a slice loss is detected.

Fig. 6.2 shows the block diagram of the proposed method. Each lost LCU

will be concealed sequentially.

Figure 6.2: Block diagram of the proposed method.



78

Step 1: CU and PU segmentation:

For a lost LCU, its CU/PU partition information is lost. In [77, 78], the

authors showed that much of the time, the CU depth is highly correlated with

its co-located one in the previous frame, and so is PU segmentation. In the first

step of the block diagram, the algorithm assumes the lost LCU has the same CU

partition and PU segmentation as the co-located one.

Step 2: Motion vector classification based on residual energy:

As HEVC still uses block-based motion estimation, it is possible that an MV

is selected for reasons of rate-distortion efficiency rather than because it represents

the true motion. Therefore, when a PU has high residual energy, we can reasonably

argue that the MV may not be reliable for representing the true motion. In our

proposed method, we assume that the motion of the lost CU will follow the same

trajectory as its co-located one, so the motion vector field from the co-located CU

will be utilized for error concealment. In the second step in Figure 6.2, to classify

the candidate MVs from the co-located CU as reliable or not, the residual energy,

E, of the co-located CU is calculated for each 4× 4 block, bm,n, by taking the sum

of the absolute value of the luma reconstructed prediction error for each pixel.

E =
∑

(i,j)∈bm,n

| rY (i, j) |

rY (i, j) is the reconstructed residual signal of the Y component. If E is

smaller than a threshold, the 4×4 block is classified as a reliable region, otherwise

it is classified as unreliable. The threshold is selected from a heuristic search. In

addition, an intra CU will also be categorized as unreliable. If any 4 × 4 block

in a PU is unreliable, the whole PU is signaled as an unreliable PU, thus the

corresponding MV of this PU is also unreliable. Fig. 6.3 demonstrates an example:

an 8×8 CU is divided vertically into two 4×8 PUs, and there are two 4×4 residual

blocks in each PU. The yellow denotes an unreliable block while blue stands for

reliable ones. For the right PU, one of the residual block is unreliable, so the whole

PU is defined as unreliable.
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Figure 6.3: Example of unreliable PU classification.

Step 3: PU merging and MV reassignment:

In the last step of Figure 6.2, unreliable PUs will be merged and reassigned

with refined MVs. When there is a group of adjacent PUs that have unreliable

motion vectors, misalignment happens easily along the edges, and the shape of the

objects usually could not be maintained. To keep the integrity of the object, it

would be beneficial to group these units with one MV, so the structure would not

be deformed. The merging process only happens between PUs in the same CU

depth, so the merged PUs would not be too different in size. This reduces the

blockiness effect. There is no merging at CU size 32 × 32 and 64 × 64 to refrain

from losing too much detailed motion. Starting from the very top left point of a

lost region, whenever we encounter an unreliable PU, we check its right, bottom,

and bottom-right PUs. If any of these PUs are both unreliable and within the

same CU level, they are merged into a larger piece. For each PU, it will only be

merged once to keep the size of the group in a reasonable range. Figure 6.4 depicts

an example: Four 16× 16 CUs contain five PUs. Three of the PUs are unreliable,

so they are merged into one piece.
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Figure 6.4: Example of merging unreliable PUs.

After PU merging, the reliable MVs from its adjacent PUs are collected,

and the average of these reliable MVs will be assigned. For a reliable PU, the MV

from the co-located area will be used directly.

6.3 Simulation

In this section, we present experimental results to evaluate the proformance

of the proposed method. The proposed method will be compared with two other

schemes:

1. Pixel copy

2. Basic motion compensated error concealment (MCEC), where the MV from

the co-located CU is applied directly with no refinement. For an intra CU,

pixel copy is used.

Two video sequences, Soccer (720×480) and Drill (832×480) , are encoded

by HM11.0 for 120 frames. The frame rate is 30 frame per second (fps) for Soccer

and 50 fps for Drill; the intra period is every 20 frames with only P frames in

between. The QP is 28 and each slice has a fixed 20 LCUs to simulate the loss of

a region of a frame.

The proposed algorithm is implemented in HM10.0. We use the packet loss

simulator developed by AHG14 to facilitate G.1050/TIA 921 packet loss simula-

tions for HEVC [79]. The loss is randomly distributed in all the P frames. The
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packet loss rates (PLRs) of 1%, 3%, 5%, and 10% are tested, and each sequence is

decoded for 100 random realizations.

Table 6.1 presents the average PSNR of the first erroneous frame in each

GOP, and hence the influence of the error propagation is excluded; also the PSNR

value does not decrease with higher PLR. As shown in the table, the proposed

method yields higher PSNR than the copy and MCEC algorithm by up to 1.2 dB.

Table 6.2 presents the PSNR performances averaged over all frames for different

sequences with different PLRs. As shown in the table, the proposed method out-

performs the copy and MCEC algorithm up to 0.26 dB. Since the error propagation

of HEVC is quite severe and the quality of succeeding frames degrades very fast

for all types of concealment methods, the gain of the proposed method is not much

in terms of the PSNR over the whole sequence. However, if we only look at the

erroneous frame itself, the PSNR gain is much prominent and the visual quality

is also better. In both Tables 6.2 and 6.1, MCEC performs the worst because the

improper reuse of the co-located MVs makes the concealed area quite blocky. The

copy method roughly maintain the shape of the object but fails at the boundary

of the corrupted area.

Table 6.1: Comparison of the average PSNR performance over the first erroneous
frame in each GOP for different PLRs

Sequence Method
Packet Loss Rate

1% 3% 5% 10%

Soccer
copy 28.63 28.93 28.80 28.99

MCEC 28.45 28.79 28.71 28.91
proposed 29.82 30.00 29.82 29.63

Drill
copy 31.31 30.96 31.05 30.60

MCEC 31.08 30.75 30.92 30.50
proposed 32.51 32.22 32.21 31.5

The visual comparisons are presented in Figures 6.5 and 6.6, demonstrating

examples of frame 87 of the Soccer sequence and frame 24 of the Drill sequence,

where (a) is the original compressed frame without loss, (b) is the corrupted frame

and (c)-(e) are the frames concealed using copy, MCEC, and the proposed algo-
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Table 6.2: Comparison of the average PSNR performance over all frames for dif-
ferent PLRs

Sequence Method
Packet Loss Rate

1% 3% 5% 10%

Soccer
copy 28.63 24.58 22.07 19.84

MCEC 28.56 24.51 21.99 19.77
proposed 28.84 24.74 22.28 20.02

Drill
copy 30.93 27.05 25.32 23.13

MCEC 30.86 26.97 25.25 23.06
proposed 31.17 27.31 25.58 23.34

rithm respectively. In both figures, the visual quality of our method is significantly

better than the others. Our method successfully preserves the shape of the moving

objects with smooth edges while the copy and MCEC methods fail to maintain the

structure of moving objects with blockiness and deformed boundary. Comparing

with two other methods, the PSNR value of the proposed method is up to 2.9 dB

higher for Soccer and 4.5 dB higher for Drill in these cases. This again proves the

effectiveness of our algorithm.
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(a) original (b) corrupted

(c) copy (d) MCEC

(d) proposed

Figure 6.5: Reconstructed results of frame 87 of the Soccer sequence: (a) original
frame, (b) corrupted frame, (c) concealed by copy, PSNR: 22.58dB (d) concealed by
MCEC, PSNR: 22.57dB (e) concealed by the proposed method, PSNR: 27.16dB.
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(a) original (b) corrupted

(c) copy (d) MCEC

(e) proposed

Figure 6.6: Reconstructed results of frame 24 of the Drill sequence: (a) original
frame, (b) corrupted frame, (c) concealed by copy, PSNR: 30.62dB (d) concealed by
MCEC, PSNR: 30.54dB (e) concealed by the proposed method, PSNR: 33.58dB.
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6.4 Conclusion

We propose a motion-compensated error concealment method for HEVC

and implement the method in reference software HM. Based on the received resid-

ual information, the motion vector reliability is analyzed and classified. The CU

with unreliable MVs will be merged and assigned with one new MV to maintain

the structure of the moving object and edge information. Our method is effective

yet simple without doing edge or object detection explicitly. Though the achieved

gain in terms of PSNR appears marginal, the improvement of visual quality is

prominent.

Chapter 6 of this dissertation, in part, is a reprint of the material as it

appears in Y.-L. Chang, Y. Reznik, Z. Chen, P.C. Cosman, “Motion Compensated

Error Concealment for HEVC Based on Block-Merging and Residual Energy,”

IEEE Packet Video Workshop, 2013. I was the primary author and the co-authors

Prof. Cosman, Dr. Reznik and Dr. Chen directed and supervised the research

which forms the basis for Chapter 6.



Chapter 7

Conclusion

In this dissertation, we have proposed a network-based packet loss impor-

tance model, a network-based whole frame loss visibility model and several error

concealment methods. We deploy these approaches either in the networks or at

the decoder side to improve the visual quality of end-users.

In Chapter 2, we develop a network-based model for fixed-sized IP packets

to predict visual importance using an objective experiment. Our results show that,

for a fixed-sized IP packet, the most significant factors in the model are frame type,

and temporal and spatial location. Since the packets are fixed size in bytes, a P-

packet covers a much larger pixel area than an I-packet, and so causes more quality

degradation when lost.

In Chapter 3, we develop a network-based packet loss visibility model for

whole frame loss. We present a subjective experiment and its results on whole B

frame loss visibility for H.264/AVC encoded bitstreams. We examine the visual

effect of whole frame loss by different decoders. We find that about 39% of whole

frame losses of B frames are not observed by any of the subjects, and over 58%

of the B frame losses are observed by 20% or fewer of the subjects. Using simple

predictive features which can be calculated inside a network node with no access

to the original video and no pixel level reconstruction of the frame, we developed

models which can predict the visibility of whole B frame losses. The models are

then used in a router to predict the visual impact of a frame loss and perform

intelligent frame dropping to relieve network congestion. Dropping frames based

86



87

on their visual scores proves superior to random dropping of B frames.

In Chapter 4, we develop an error concealment method with a refined

2D+depth encoding scheme to combat whole intra frame loss in the 2D sequence.

The frame offset encoding technique is deployed with motion vector sharing be-

tween the 2D and depth sequences so that the inter frame in the depth stream has

MVs that describe the scene in its corresponding 2D frame more precisely. These

accurate MVs will assist the recovery of an entire intra frame loss by a simple

motion compensation error concealment. The proposed algorithm has significant

PSNR improvement in our simulation with little bitrate penalty.

In Chapter 5, we develop a joint source-channel coding scheme for 2D+depth

video format, to extend the encoding modes for depth sequences based on an end-

to-end distortion model. We first add an extra motion information sharing mode

for the depth sequence, and then improve the error concealment methods. Based

on these changes, we use a distortion model that considers both encoding and

channel distortion for Rate-Distortion optimized video-plus-depth mode selection

in packet-loss environments by taking account of the network conditions, i.e. the

packet loss rate. Experimental results with the proposed encoding scheme show

PSNR gains of up to 1 dB for the depth sequence under a packet loss environment.

In Chapter 6, we develop a motion-compensated error concealment method

for HEVC and implement the method in reference software HM. The motion vector

from the co-located block will be refined for motion compensation. Based on the

reliability of these MVs, blocks will be merged and assigned with new MVs. The

experimental result shows that not only the visual quality performs well but also

a substantial PSNR gain.

7.1 Future work

The future work related to packet importance modeling and video trans-

mission for improving end-user perceptual quality includes:

• Improving error resilience for HEVC: Since HEVC achieves higher compres-

sion factors, on average each bit in HEVC contains more information than
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prior codecs. This causes HEVC to have more serious error propagation when

packets are lost. This drawback could be compensated by employing better

channel coding. A joint source and channel coding can help to increase its

error robustness and to minimize the bitrate increase at the same time.

• Versatile packet loss experiment for HEVC: HEVC can be transmitted in

either a slice format or a tile format. A slice refers to a horizontally scanned

area in a frame, while a tile refers to a rectangular region in a frame. The tile

design benefits parallel hardware implementation. However it could bring a

quite different visual impact to end-users when a tile is lost. Conducting a

packet loss experiment for different packetization to evaluate the lossy effect

of slices and tiles is an important goal.

• Network-based packet loss visibility model for HEVC: Since the HEVC stan-

dard was just finalized in 2013 with many different encoding features from

prior standards, its perceptual quality performance in the presence of packet

losses is not yet well understood. A subjective experiment for packet loss vis-

ibility in HEVC is a direction to extend our packet loss importance modeling

work. The data from the experiment can help us analyze the lossy effect

for HEVC and can be used to build a visibility model. As a large part of

the HEVC design goal is to focus on low-delay applications, a network-based

model will be our next approach.
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