
UC Davis
IDAV Publications

Title
A Tetrahedra-Based Stream Surface Algorithm

Permalink
https://escholarship.org/uc/item/86z9x1cc

Authors
Scheuermann, Gerik
Bobach, T.
Hagen, Hans
et al.

Publication Date
2001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86z9x1cc
https://escholarship.org/uc/item/86z9x1cc#author
https://escholarship.org
http://www.cdlib.org/

A tetrahedra-based stream surface algorithm

Gerik Scheuermann1;2 Tom Bobach1 Hans Hagen1 Karim Mahrous2 Bernd Hamann2

Kenneth I. Joy2 Wolfgang Kollmann3

Abstract

This paper presents a new algorithm for the calculation of stream
surfaces for tetrahedral grids. It propagates the surface through the
tetrahedra, one at a time, calculating the intersections with the tetra-
hedral faces. The method allows us to incorporate topological in-
formation from the cells, e.g., critical points. The calculations are
based on barycentric coordinates, since this simplifies theory and
algorithm. The stream surfaces are ruled surfaces inside each cell,
and their construction is started with line segments on the faces.
Our method supports the analysis of velocity fields resulting from
computational fluid dynamics (CFD) simulations.

Keywords: vector field visualization, flow visualization, tetrahe-
dral grid, unstructured grid, flow surface

1 Introduction

We are interested in the structure of 3D vector fields, especially the
velocity fields of fluid flows. Most visualizations use streamlines
to look for flow field structures. More sophisticated methods ana-
lyze the field by searching for line-type features [7, 10]. One can
obtain substantial information from these visualizations, but many
unsolved questions remain. We strongly believe that these prob-
lems stem partly from the concentration on streamlines. Stream
surfaces provide much more information if one uses a precise algo-
rithm for their calculation. A former algorithm from Hultquist [6]
yields good results if the stream surface does not enter regions with
strong twist or related problems that result in folding of the surface.
Unfortunately, these complicated regions are typically of major in-
terest in fluid dynamics. This paper presents a new algorithm for
stream surfaces in tetrahedral grids. Our algorithm assumes piece-
wise linear interpolation over the tetrahedral grid. This assump-
tion allows us to precisely describe the surface in each cell, since
there is a cellwise analytic description for the whole stream surface.
Therefore, we can also control the local error of stream surfaces and
incorporate information about the flow structure in the cells. This
yields more precise calculations than previous approaches, which
is especially important for the calculation of stream surfaces ap-
proaching vortices. Figure 1 illustrates the basic idea for the stream
surface construction inside a single tetrahedron.

1Computer Science Department, University of Kaiserlautern, PO Box 30
49, 67653 Kaiserslautern, Germany,
fscheuer,tbobach,hageng@informatik.uni-kl.de

2Center for Image Processing and Integrated Computing (CIPIC), De-
partment of Computer Science, University of California, Davis, CA 95616-
8562, fmahrous,hamann,kijoyg@cs.ucdavis.edu

3Department of Mechanical and Aeronautical Engineering, University
of California, Davis, CA 95616, fwkollmanng@ucdavis.edu

Figure 1: Stream surface construction inside tetrahedron. The end-
points are traced as streamlines. Each intermediate point is con-
nected to its counterpart by a line on the surface. Clipping against
the tetrahedron’s faces yields the surface.

2 Stream Surfaces of Piecewise Linear
Vector Fields in 3D Space

Not many papers exist concerning the construction of stream sur-
faces. At least this is true for the visualization research community.
Hultquist [6] traces multiple streamlines and connects calculated
points on the lines by triangles. Since converging and diverging
flow presents a major difficulty for this procedure, he introduces
additional points in case of diverging neighboring streamlines and
removes traces in converging flow. Van Wijk [13] creates implicit
stream surfaces by calculating streamlines starting at all grid points.
He assigns values to the stream lines in a region of interest defining
a scalar function that is constant on the stream lines so that one can
obtain stream surfaces as isosurfaces of this function. He presents
a second construction in the same paper based on the convection
equation. This requires a large number of calculations and setting
the right values in a region of interest. Our approach is more related
to Hultquist’s algorithm: We are also using a parametric approach
to define the stream surface.

In the following, we shall denote vector fields, vectors, and
points using 3D Cartesian coordinate notation. For example, �v 2
IR3 denotes a vector in 3D space. Thus, we can distinguish these
quantities from their corresponding barycentric coordinate tupels
that we view as elements in 4D space. For example, v 2 IR4 de-
notes the 4D barycentric parameter tuple associated with the vector
�v 2 IR3. Scalar parameters are written as greek symbols, e.g., �
denotes time, � denotes the 1D barycentric parameter along a line
segment, and �1; �2 and �3 represent the eigenvalues of the Jaco-
bian of a vector field. We review some necessary definitions and
theorems. Let D � IR3 be the domain. A vector field on D is a

map

�v : D ! IR
3
; (1)

�x 7! �v(�x):

Physicists and engineers are mainly interested in the stream lines
and surfaces of a vector field. A stream line passing through a point
�x 2 D of �v is a continuous map

�s�x : J ! IR3 ; (2)

where 0 2 J � IR is an interval and

�s�x(0) = �x and _�s�x(�) = �v
�
�s�x(�)

�
8 � 2 J: (3)

A stream surface is defined as the union of all streamlines through
the points of a generating curve �c : I ! IR3, � 7! �c(�) where
I � IR is an interval. In parametric form we get

�f�c : I � J ! IR
3
; (4)

(�; �) 7! �f�c(�; �);

with the conditions

�f�c(�; 0) = �c(�) (5)
@

@�
�f�c(�; �) = �v(�f�c(�; �)) (6)

Existence and uniqueness can be proved provided that �v is
Lipschitz-continuous. We consider only piecewise linear vector
fields. One reason for this restriction is the existence of exact ana-
lytic solutions for the stream lines for linear elements. This fact has
been used before [8, 9, 11]. Since each linear tetrahedral element
of the field is defined by four values �v0; : : : ; �v3 2 IR3 at the four
vertices �p0; : : : ; �p3 2 IR3, we can use barycentric coordinates as
was done by Nielson et al. [9]. A linear vector field is defined on
the hyperplane

IB3 =

(
x 2 IR4

����X
i

xi = 1

)
� IR4 (7)

by the four values

v(1; 0; 0; 0) = v0 = (�00 ; : : : ; �
3
0) ; (8)

v(0; 1; 0; 0) = v1 = (�01 ; : : : ; �
3
1) ; (9)

v(0; 0; 1; 0) = v2 = (�02 ; : : : ; �
3
2) , and (10)

v(0; 0; 0; 1) = v3 = (�03 ; : : : ; �
3
3) : (11)

These values are computed by adding each velocity vector to its
corresponding vertex, computing the barycentric coordinates with
respect to all four vertices �p0; �p1; �p2; �p3 2 IR3, and finally sub-
stracting the barycentric coordinates of the corresponding vertex,
i.e.,

�vi + �pi =
3X

j=0

�
�
j
i + Æ

j
i

�
�pj ; (12)

where Æji is the Kronecker delta and
P3

j=0

�
�
j
i + Æ

j
i

�
= 1. Since

the vector field is parallel to IB3 in IR4, we set

v(0; 0; 0; 0) = 0 (13)

and define the linear vector field as

v : IR4 ! IR
4 (14)

x 7!
�
v0 v1 v2 v3

�
x = V x:

This corresponds to the affine linear vector field

�v : IR3 ! IR
3 (15)

�x 7! A�x+�b ;

where �v(�p0) = �v0; : : : ; and �v(�p3) = �v3. We are concerned with
the stream lines

sa : J ! IB
3
; (16)

� 7! sa(�; �) ;

where

sa(0) = a and (17)

_sa(�) = v
�
sa(�)

�
: (18)

The solution to this initial value problem is given by

sa(�) = e
V �

a; (19)

see [2, 5]. For a stream surface

fc : J � I ! IB
3
; (20)

(�; �) 7! fc(�; �);

we obtain
fc(�; �) = e

V �
c(�) : (21)

One can prove that V has the same eigenvalues as A, and an ad-
ditional eigenvalue that is zero. When a vector field has a critical
point in 3D space, the position vector of this critical point in IB3 is
an eigenvector associated with the additional zero eigenvalue. The
normal form of V allows a direct computation of eV � , and 21 cases
are possible. The first two cases are common. All other cases are
exceptional cases characterized by A having a zero eigenvalue or
two equal eigenvalues. We give the formulae for the two common
cases. The remaining formulae can be easily derived from the for-
mulae below and Nielson’s paper [9]. The first case C1 is character-
ized by three different eigenvalues �1; �2, and �3 and can be solved
by the following formulae:

(C1) V = S

0
B@

0
�1

�2
�3

1
CAS

�1
;

e
V � = S

0
BB@

1
e�1�

e�2�

e�3�

1
CCAS

�1
;

fc(�; �) =
�
e
�1� � 1

�
e1 + (e�2� � 1)e2 +�

e
�3� � 1

�
e3 + c(�) ;

e1 =
V

�1

�
V � �2I

�1 � �2

��
�3I � V

�3 � �1

�
c(�) ;

e2 =
V

�2

�
V � �3I

�2 � �3

��
�1I � V

�1 � �2

�
c(�) ; and

e3 =
V

�3

�
V � �1I

�3 � �1

��
�2I � V

�2 � �3

�
c(�) :

S =
�
z e1 e2 e3

�
z denotes the critical point. The dependence of the vectors e1; e2;
and e3 on c(�) is limited to the magnitude, since the vectors ei are
eigenvectors of the corresponding eigenvalues. Figure 2 illustrates

Figure 2: Vector field for case C1 with different signs of eigenval-
ues; the critical point outside the tetrahedron is shown to simplify
interpretation.

the vector field in this case by drawing streamlines. If all eigenval-
ues have the same sign, all stream lines start or end at the critical
point.

The second case is characterized by a complex-conjugate pair of
eigenvalues and one real eigenvalue. Complex eigenvalues indicate
rotations, as shown in Figure 3. The corresponding formulae for
case C2 are:

(C2) V = S

0
B@

0
�1

� ��
� �

1
CAS

�1
;

e
V � = S

0
BB@

1
e�1�

e�� cos(��) �e�� sin(��)
e�� sin(��) e�� cos(��)

1
CCAS

�1

fc(�; �) =
�
e
�1� � 1

�
e1 +

�
e
�� cos(��)� 1

�
e2 +

e
�� sin(��)e3 + c(�) ;

e1 =
V

�1

�
V 2 � 2�V + (�2 + �2)I

�21 � 2��1 + (�2 + �2)

�
c(�) ;

e2 = V

(2�� �1)V

2 + (�21 � 3�2 + �2)V

(�2 + �2)
�
2��1 � �21 � (�2 + �2)

�+
�1(3�

2 � �2 � 2��1)I

(�2 + �2)
�
2��1 � �21 � (�2 + �2)

�
!
c(�) ;

e3 = V

(��1 � �2 + �2)V 2 + (�3 � 3��2 � ��21)

�(�2 + �2)
�
2��1 � �21 � (�2 + �2)

� +

(�21(�
2 � �2)� �1(�

3 � 3��2))I

�(�2 + �2)
�
2��1 � �21 � (�2 + �2)

�
!
c(�) :

S =
�
z e1 e2 e3

�
Similarly to case C1, e1 is an eigenvector associated with the real
eigenvalue �1. The vectors e2 and e3 lie in the eigenplane of the
two complex eigenvalues � � i�. Figure 3 illustrates the spiraling
motion around the e1-axis by drawing streamlines.

We are concerned with stream surfaces in a tetrahedral grid.

Figure 3: Vector field for case C2 exhibiting spiraling behavior
around axis given by eigenspace of real eigenvalue. Critical point
and rotation axis are stream lines themselves.

Such a stream surface is defined by a curve

�c : IR � I ! IR
3
; (22)

� 7! �c(�):

Since we have an analytic formula for a stream surface in each sin-
gle tetrahedron �T , we intersect the curve �c with the tetrahedron:

�c �T : I � IT ! �T ; (23)

� 7! �c(�):

Then, we transform �c �T in barycentric coordinates with respect to �T
and call it cT .

cT : IT ! IB
3
; (24)

� 7! c(�):

As stream surface, we find

fT : IT � J � DT ! IB
3
; (25)

(�; �) 7! e
V �

c(�):

(We have to limit IT � J to DT to keep fT inside the tetrahedron.)
In our barycentric coordinates, we have

T = fx 2 IB
3jxj � 0; j = 0; 1; 2; 3g (26)

and for the faces Fi, i = 0; 1; 2; 3,

Fi = fx 2 IB
3jxi = 0; xj � 0; j 6= ig : (27)

Therefore, we have to choose Di such that fT (DT) � fx 2
IB3jxj � 0; j = 0; 1; 2; 3g.

Since we are interested in the whole stream surface in the grid,
we have to calculate the exit curves where the stream surface leaves
the tetrahedron. These curves are the starting curves for the surface
in the neighboring tetrahedra. For the exit curves, we have

dT;i : IT � IT;i ! Fi � IB
3
; (28)

� 7! fT (�; ��):

�� is the smallest value such that the trace for � leaves the tetra-
hedron, i.e. �� := minf� jfT (�; �) 2 T; 9� > 0 80 < Æ <
� : fT (�; � + Æ) 62 Tg. ITi

is the set of subintervals of I where
the trace leaves the tetrahedron through face Fi, so ITi

:= f� 2
IT jfT (�; ��) 2 Fig. From the formula for the stream surface
above we see that we have only an implicit definition of �� which
we will solve only approximately in the algorithm.

If Ti is the neighboring tetrahedron along face Fi of T , dT;i de-
scribes the starting curve for the continuation of the surface through
Ti. In this way, we can propagate the surface through the whole
mesh. The propagation ends if the surface reaches the boundary of
the mesh or a critical point. If the critical point is a sink, at least part
of the stream surface will end there. It is possible that the surface
is split here in two parts that are propagated further and a third part
in the middle that ends at the sink. The next section describes the
necessary approximation of all curves by polylines and resulting
simplifications in the algorithm.

3 Linear Stream Surface Calculation

We assume that the generating curve �c consists of connected line
segments which is quite typical for a visualization application.
Since the calculation treats each tetrahedral cell separately, we have
to intersect the generating line segments with the tetrahedra. For the
calculation, we focus our description now on a single line segment
in a single tetrahedron. Let

c : [0; 1] ! IB
3
; (29)

� 7! (1� �)a+ �b

be the generating line segment. A key idea of our algorithm is that
the stream surface defined by the line segment is

F : [0; 1]� IR
3 � DT ! IB

3
; (30)

(�; �) 7! (1� �)eV �
a+ �e

V �
b:

This is valid because for stream lines in linear vector fields holds

s(1��)a+�b(�) = (1� �)sa(�) + �sb(�) (31)

which can be checked by directly using equations (3). Formula (30)
describes a ruled surface, i.e. a surface that is generated by two
parametric curves blended by line segments. This can be seen eas-
ily, since for fixed � , we get a line segment with parameter �. We
compute the stream lines (traces) through points a and b by stepping
forward with a fixed stepsize Æ� . We set �i = i�� . By connect-
ing sa(�i) and sb(�i), we obtain line segments lying on the actual
stream surface. If the trace through a or b leaves the tetrahedron, we
call this an exit point, see Figure 4. An exit point marks the begin of
an exit curve. If the trace through a or b is outside the tetrahedron,
we clip the line segment against the faces yielding line segments on
the stream surface inside the tetrahedron. Since the faces Fi of the
tetrahedron are defined by a zero in the i-th coordinate (see previ-
ous section), we only need to check for zero crossings to obtain the
line segment inside a tetrahedron. Since we need the intersections
of the stream surface with the edges as end points of the exit curves,
we have to find these split points, see Figure 5. The whole process
is illustrated in Figure 6.

But there is an exception to this rule: We are not allowed to
define points on an inflow part of a face. Obviously, no part of the
stream surface can leave the tetrahedron here. The problem arises if
on a boundary face, a line (switch line) with flow vectors tangent to
the face can be found, see Figure 7. Therefore, we define points on
the outflow part as described above, but once we cross the switch
line, we compute the intersection of the stream surface with this
line and call the intersection switch point, see Figure 8. For �

larger than the parameter for the switch point, we have to replace a
resp. b with the switch point. (In the unlikely case of parts of the
switch line being part of the stream surface, we take the point where
we leave the switch line as switch point.) The exit curves consist of
all the segments generated on the faces of the tetrahedra. We will
see in the next section that one has to remove too small segments to
avoid a fast growing number of segments.

exit point

a

b

trace inside tetrahedron

Figure 4: An exit point is a point where a trace leaves a tetrahedron.

split point

Figure 5: A split point is a point where a stream surface intersects
an edge of a tetrahedron.

Figure 6: Stream surface defined by a line segment (ruled surface)
inside a tetrahedron. We advect end points of the segment through
the flow and connect them by lines. After clipping the lines against
the faces of the tetrahedron, we triangulate the stream surface.

4 Algorithm

Our algorithm requires the propagation of stream surfaces through
a tetrahedral grid. In contrast to very general methods like the
method from Stämpfle [12], it is advantageous to use the grid struc-
ture and its influence on the vector field directly to control error.

Figure 7: A switch line is defined as border between inflow and
outflow on a tetrahedron face. As a result of linear interpolation,
there can be only one switch line per face.

switch line

switch point

Figure 8: At a switch point a surface intersects a switch line. The
trace must be continued from the switch point.

Previous visualization methods, see for example [4], [6], demon-
strate the problems arising from “folding”, “turning”, “widening”,
and “stretching” of stream surfaces. Our method overcomes these
difficulties naturally by using the understanding of the affine linear
flow in our tetrahedral cells. We now describe our data structure
and algorithm.

4.1 Representation of the Surface

Our representation of the surface is based on a two-step construc-
tion. First, we keep an advancing front of line segments and parts of
stream lines, called traces. This approach models the boundary of
the surface to be constructed at every moment and is used to extend
the surface to its final form. Second, we define a triangulation of
the surface for the OpenGL rendering pipeline. This triangulation
is the approximation of the constructed part of the surface. Similar
ideas have been introduced by Hultquist [6]. The basic difference
is that our algorithm uses the grid and the topological information
about the structure of linear vector fields to solve the problems of
folding, converging, diverging, and winding in an accurate manner.

Triangles are generated and passed to the OpenGL rendering
pipeline. We focus our description on the advancing front. The
front is implemented as a double-linked list of points, where the
connections are marked as “line segment,” “forward trace,” or
“backward trace” with respect to the point that carries the label.
We store, for each connection, the tetrahedron the front is about to
penetrate (either in flow direction or reverse flow direction, depend-
ing on the direction of surface integration). We describe in the next
sub-section how the links provide all the information necessary for
surface propagation and updating the front. For practical purposes,
we store only the segments that will be advanced through the field
and the traces between these segments. Thus, when a segment ap-

proaches the boundary, we remove the corresponding connection
from the list. At first glance, it might appear strange that we al-
low the traces to be part of the front, since the flow will usually
be transversal to the generating polyline c, and we will not have
any traces. We discuss in the following sub-section that traces are
created naturally by our algorithm, and we need to keep them to
determine when one can remove a point from the front. We attempt
to minimize the number of segments, considering the fact that we
might be dealing with massive data sets.

4.2 Segment Propagation

The basic step of our algorithm advances a line segment

jabj = f(1� �)a+ �bj� 2 [0; 1]g (32)

through a tetrahedron T . Three tasks have to be accomplished:

(i) Calculate the stream surface as described in Section 3.

(ii) Create the triangles for the OpenGL rendering pipeline.

(iii) Update the advancing front.

Before we start, we calculate the switch lines on the faces (where
the flow is tangential to the face). For face Fi, the intersection x of
the split line with edge k 6= i is defined by

v(x)i = (V x)i =
3X

j=0

vijxj with xk = xi = 0 : (33)

This leads to 12 linear equations for all edges of all faces and 24
comparisons with zero to determine whether or not the point is on
the actual edge or only on the line through that edge.

After this, we start the integration at the points a0 := a and
b0 := b using uniform time steps �� . With M := eV�� , we
obtain series of points

a
n = M

n
a
0

b
n = M

n
b
0 (34)

defining line segments on the exact stream surface. For the trace a
and b, each point has to be clipped against the terahedron. Besides,
we have to find exit points, split points, switch points and figure
out that the whole segment has left the tetrahedron. The following
pseudo-code describes this process in detail.

// The following variables need valid values
bool trace_a_was_outside_tet;
bool trace_b_was_outside_tet;
int a_was_on_face;
int b_was_on_face;
// Calculate the next segment
a = M * a;
b = M * b;
// Clip against the tetrahedron
k = 0;
l = 1;
FOR (i=0; i < 4; i++)
IF (a[i] < 0)

trace_a_outside_tet = TRUE;
IF (b[i] < 0)

line_outside_tet = TRUE;
ELSE

temp = a[i] / (a[i] - b[i]);
IF (temp > k)
k = temp;
a_on_face = i;

END IF
END IF

ELSE IF (b[i] < 0)
trace_b_outside_tet = TRUE;
temp = a[i] / (a[i] - b[i]);
IF (temp < l)

l = temp;
b_on_face = i;

END IF
END IF

END FOR
aa = (1 - k) a + k b;
bb = (1 - l) a + l b;
// Check for line outside tet
IF (k > l) line_outside_tet = TRUE;
// Check for exit points and split points
IF trace_a_outside_tet

IF NOT trace_a_was_outside_tet
calulate exit point;

ELSE IF (a_was_on_face != a_on_face)
calculate split point;

END IF
END IF
IF trace_b_outside_tet

IF NOT trace_b_was_outside_tet
calulate exit point;

ELSE IF (b_was_on_face != b_on_face)
calculate split point;

END IF
END IF
// Check for switch points
IF trace_a_outside_tet

v = V aa;
IF (v[a_on_face] > 0)
calculate switch point;

END IF
IF trace_b_outside_tet

v = V bb;
IF (v[b_on_face] > 0)
calculate switch point;

END IF

The split points define new segments in the front since they define
the line segment that has to be propagated through a neighboring
tetrahedron. The switch points are also defining new segments. We
have to follow the two traces until the connecting line segment be-
tween two points of the same time is completely outside the tetra-
hedron. Then we create the triangles for the OpenGL rendering
pipeline. We start with a0 and b0, add a1; : : :, b1; : : :, exit points,
split points, and switch points from both traces in the order of their
creation into a triangle strip (for reduction of points, see sub-section
4.5).

Finally, we have to update the surface front representation. We
have to add all the exit points, split points, and switch points to-
gether with the connecting traces and new segments. Traces are
created by integrating inside a tetrahedron (either at the beginning
or after a switch point). Segments are created by integrating out-
side a tetrahedron between the exit points, split points, and switch
points. If a had a forward trace inside the current tetrahedron be-
fore we started propagation, this trace and a will be removed from
the list. (We can do this after we have re-calculated this trace and
replaced the new exit point by the one already in the front.) b is
handled in the same manner.

4.3 Special Case Treatment

In the previous sub-section, we have made three assumptions:

(A1) Each stream line leaves the tetrahedron.

(A2) The stream surface can be triangulated by the end points, exit
points, and split points.

(A3) The front does not split into isolated pieces in the tetrahedron.

The presence of critical points inside a tetrahedron can make any
of these assumptions invalid. For example, a sink attracts stream
lines; thus, part of the segment may end in the tetrahedron. We
calculate the part of the segment that enters the critical point and
propagate the remaining parts. This causes the front to split into
two parts. The same observation holds for a saddle point, where a
finite number of stream lines (often one) in the surface enters the
critical point. In the absence of critical points, a stream line leaves
the tetrahedron, as does the whole stream surface defined by a line
segment.

4.4 Termination Conditions

We have discussed situations where parts of a segment or a whole
segment end at a critical point. The typical case is that a segment
ends at a boundary face. In our representation, we remove the seg-
ment from the front and split the front into two lists. A list is re-
moved when no segment is left. Unfortunately, stopping only at
critical points and the boundary may lead to infinite loops of prop-
agating segments. It is possible that a stream surface “rolls” around
a closed stream line or torus forever, see [1], [3]. Besides, it is de-
sirable to provide an upper bound on run time. We accomplish this
by limiting the number of intersections of a stream surface with any
triangular face to one in each direction. Other conditions are pos-
sible, and reducing the number of resulting triangles is an obvious
topic for further research.

4.5 Merging

Sub-section 4.2 implies that each split increases the number of seg-
ments, so do the switch points. Also, the exit lines consist of several
segments resulting in an incrase of the number of segments. There
is no step so far that removes segments (only traces) except the ter-
mination conditions. Therefore, the number of segments increases
except when reaching the boundary or a critical point. For this rea-
son, we always try to remove intermediate points on the exit curves.
If the error induced by replacing (an�2; an�1; an) by (an�2; an)
is smaller than our error bound �, we remove an�1 from the exit
curve. Of course, we can never remove exit points, switch points
and split points, since they are end points of exit curves on faces.

5 Results

We have tested our algorithm on a simple grid and random vector
field to detect problems by creating strong twists in the surface. The
grid contains 4�4�20 points on a regular grid split into 1026 tetra-
hedra. A stream surface is shown in Figure 9. The surface shows
twists and exhibits convergent regions. This type of vector field
causes no problems for the algorithm since it concentrates on one
tetrahedron at a time and we can obtain all information about the
surface in this tetrahedron. We have included two streamlines cal-
culated with an adaptive Runge-Kutta-Fehlberg method to illustrate
the expected relationship between surface and streamlines.

Our second test used the well known bluntfin data set, courtesy
of NASA. The stream surfaces shown in Figures 10 and 11 are all
started at the boundary of the grid by performing integration against
the flow direction into the interesting region around the fin. One
can clearly see the flat, uninteresting area in the back as well as

the winding and twisting close to the fin. We hope to analyze the
surfaces further in the future to obtain structural information.

It is not difficult to see that our algorithm is slower than
Hultquist’s method if precision is not much of an issue. Hultquist’s
method can give nice looking surfaces using only about one single
point evaluation per cell. Since we need the exit, switch and split
points, we have to calculate more points. In our experiments, we
have had reasonable results with about 5 points per trace per tetra-
hedron. For a comparison of the precision of the two algorithms,
we use a second small data set with random vector data. The data
set does not contain critical points which are especially difficult for
the Hultquist algorithm to deal with. The idea of the test is to calcu-
late a stream surface generated by a single line segment, reverse the
direction of flow and use the end of the first stream surface as start-
ing segments for the second stream surface. In theory, one should
get the original single line segment back. In Figure 12, we show
the first surface for our algorithm. Then, the direction of flow is
reversed and a second stream surface using the intersection of the
shown surface with the boundary is used as start segment. For a bet-
ter comparison, we presented only the final intersection of this sec-
ond stream surface with the boundary and the original line segment
in Figure 14. There are some numerical errors visible, especially
around the center of the line segment. Now, we look at Hultquist’s
method. Figure 13 shows the surface generated by our single line
segment. Again, we reverse the flow and use the intersection of the
presented surface as input. In Figure 15, we show the result of the
test in this case. It is clearly visible that the error is much larger. For
an evaluation, it is important to note that we used a very small error
bound for the adaptive integration, so that the Hultquist algorithm
took four times longer than our algorithm to produce this result.

Acknowledgements

The work was supported by the Deutsche Forschungsgemeinschaft
(DFG) under the program “Visualisierung nichtlinearer Vektorfeld-
topologie,” awarded to the University of Kaiserslautern, Germany.
We thank all members of the Computer Graphics Group at the Uni-
versity of Kaiserslautern for many fruitful discussions.

This work was also supported by the National Science Founda-
tion under contracts ACI 9624034 (CAREER Awards), through the
Large Scientific and Software Data Set Visualization (LSSDSV)
program under contract ACI 9982251, and through the National
Partnership for Advanced Computational Infrastructure (NPACI);
the Office of Naval Research under contract N00014-97-1-0222;
the Army Research Office under contract ARO 36598-MA-RIP; the
NASA Ames Research Center through an NRA award under con-
tract NAG2-1216; the Lawrence Livermore National Laboratory
under ASCI ASAP Level-2 Memorandum Agreement B347878 and
under Memorandum Agreement B503159; and the North Atlantic
Treaty Organization (NATO) under contract CRG.971628 awarded
to the University of California, Davis. We also acknowledge the
support of ALSTOM Schilling Robotics, and Silicon Graphics. We
thank the members of the Visualization and Graphics Research
Group at the Center for Image Processing and Integrated Comput-
ing (CIPIC) at the University of California, Davis.

References

[1] R. H. Abraham and C. D. Shaw. Dynamics, the Geometry of
Behavior I–IV. Aerial Press, Santa Cruz, CA, 1982, 1983,
1985, 1988.

[2] V. I. Arnold. Ordinary Differential Equations. Springer-
Verlag, Berlin, 1992.

[3] J. Guckenheimer and P. Holmes. Dynamical Systems and Bi-
furcation of Vector Fields. Springer-Verlag, New York, NY,
1983.

[4] J. L. Helman and L. Hesselink. Visualizing Vector Field
Topology in Fluid Flows. IEEE Computer Graphics and Ap-
plications, 11(3):36–46, May 1991.

[5] M. W. Hirsch and S. Smale. Differential Equations, Dynami-
cal Systems and Linear Algebra. Academic Press, New York,
NY, 1974.

[6] J. P. M. Hultquist. Constructing Stream Surfaces in Steady 3D
Vector Fields. In A. E. Kaufman and G. M. Nielson, editors,
Proceedings of IEEE Visualization ’92, pages 171 – 178, Los
Alamitos, CA, 1992. IEEE Computer Society.

[7] D. N. Kenwright and R. Haimes. Vortex Identification - Ap-
plications in Aerodynamics: A Case Study. In R. Yagel and
H. Hagen, editors, Proceedings of IEEE Visualization ’97,
pages 413–416, Los Alamitos, CA, 1997. IEEE Computer So-
ciety Press.

[8] D. N. Kenwright and D. A. Lane. Optimization of Time-
Dependent Particle Tracing Using Tetrahedral Decomposi-
tion. In G. M. Nielson and D. Silver, editors, Proceedings
of IEEE Visualization ’95, pages 321 – 328, Los Alamitos,
CA, 1995. IEEE Computer Society Press.

[9] G. M. Nielson and I.-H. Jung. Tools for Computing Tangent
Curves for Linearly Varying Vector Fields over Tetrahedral
Domains. IEEE Transactions for Visualization and Computer
Graphics, 5(4):360 – 372, 1999.

[10] R. Peikert and M. Roth. The ”Parallel Vectors” Operator-a
Vector Field Visualization Primitive. In Proceedings of IEEE
Visualization ’99, pages 263–270, Los Alamitos, CA, 1999.
IEEE Computer Society.

[11] G. Scheuermann, B. Hamann, K. I. Joy, and W. Kollmann. Vi-
sualizing Local Vector Field Topology. Journal of Electronic
Imaging, 9(4):356 – 367, 2000.

[12] M. Stämpfle. Dynamical Systems Flow Computation by
Adaptive Triangulation Methods. Computing and Visualiza-
tion in Science, 2(1):15–24, 1999.

[13] J. J. van Wijk. Implicit Stream Surfaces. In Proceedings of
IEEE Visualization ’93, pages 254 – 252, Los Alamitos, CA,
1993. IEEE Computer Society.

Figure 9: Stream surface calculated in random vector field. Ran-
dom data creates a maximum on twisting, folding, and parts with
converging and diverging flow. Example data set used for testing
and debugging purposes.

Figure 10: This stream surface in the bluntfin data set (courtesy of
NASA) starts along a grid line at the rear. This surface exhibits
“simple behavior” in the back, but it starts to wind and climb up the
wall near the fin, indicating more complicated behavior.

Figure 11: Stream surface in the bluntfin data set with a view on the
whole grid.

Figure 12: Stream surface from our algorithm in the precision test.

Figure 13: Stream surface from Hultquist’s method in the precision
test.

Figure 14: Our result in the precision test.

Figure 15: Hultquist’s method in the precision test.

Figure 1: Stream surface construction inside tetrahedron. The end-
points are traced as streamlines. Each intermediate point is con-
nected to its counterpart by a line on the surface. Clipping against
the tetrahedron’s faces yields the surface.

Figure 3: Vector field for case C2 exhibiting spiraling behavior
around axis given by eigenspace of real eigenvalue. Critical point
and rotation axis are stream lines themselves.

Figure 7: A switch line is defined as border between inflow and
outflow on a tetrahedron face. As a result of linear interpolation,
there can be only one switch line per face.

Figure 9: Stream surface calculated in random vector field. Ran-
dom data creates a maximum on twisting, folding, and parts with
converging and diverging flow. Example data set used for testing
and debugging purposes.

Figure 10: This stream surface in the bluntfin data set (courtesy of
NASA) starts along a grid line at the rear. This surface exhibits
“simple behavior” in the back, but it starts to wind and climb up the
wall near the fin, indicating more complicated behavior.

Figure 12: Stream surface from our algorithm in the precision test.

