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Abstract

The ability to set and achieve a wide range of goals
is one of the principal hallmarks of intelligence. The
issue of goals, and of how they can be achieved, has
been one of the major foci of Artificial Intelligence
(AI), and the understanding of how to construct sys-
tems that can accomplish a wide range of goals has
been one of the major breakthroughs provided by the
study of symbolic processing systems in Al. Neural
networks, however, have not shared this focus on the
issue of goals to any significant extent. This article
provides a progress report on an effort to incorporate
such an ability into neural networks. The approach we
have taken here is to implement a symbolic problem
solver within a neural network; specifically we are cre-
ating Neuro-Soar, a neural-network reimplementation
of the Soar architecture. Soar is particularly appro-
priate for this purpose because of its well-established
goal-oriented abilities, and its mapping onto levels of
human cognition — in particular, the ways in which it
already either shares, or is compatible with, a number
of key characteristics of neural networks.

Introduction

An ability to set and achieve a wide range of goals is one of
the principal hallmarks of intelligence. The issue of goals,
and of how they can be achieved, has been one of the major
foci of Artificial Intelligence (Al), and the understanding of
how to construct systems that can accomplish a wide range
of goals has been one of the major breakthroughs provided
by the study of symbolic processing system in Al. Neural
networks have not shared this focus on the issue of goals to
any significant extent. However, if neural networks are to
be serious contenders as the basis for a complete intelligent
system, they must eventually incorporate the ability to set
and achieve the full range of goals faced by such systems.
This article provides a progress report on an effort to
incorporate such an ability into neural networks. The ap-
proach we have taken here is to implement a symbolic
problem solver within a neural network; specifically we are
creating Neuro-Soar, a neural-network reimplementation of

*This research was partially supported by a gift from
the Artificial Intelligence Center of the Hughes Aircraft
Company.

673

Charles P. Dolan
Al Center, Hughes Research Labs
3011 Malibu Canyon Rd.
Malibu, CA 90265
Email: cpd@aic.hrl.hac.com

Soar — a symbolic architecture for intelligence that inte-
grates basic mechanisms for problem solving, use of knowl-
edge, learning, and perceptual-motor behavior [Laird et al.,
1987]. Soar! is particularly appropriate for this purpose be-
cause of its well-established goal-oriented abilities, and its
mapping onto levels of human cognition [Newell, 1990] — in
particular, the ways in which it already either shares, or is
compatible with, a number of key characteristics of neural
networks [Rosenbloom, 1989]. Work to date on Neuro-Soar
covers the lowest three levels of Soar — memory accessing,
decision making, and (problem space) operations. Together
these capabilities are sufficient to enable goal-oriented be-
havior in a single problem space, but are not yet sufficient
to enable higher-level search and learning behaviors. One
of the key developments in accomplishing this is the im-
plementation of a novel neural-network-based production
system that allows multiple variables per production, and
parallel matching and firing of multiple productions.

From Soar to Neuro-Soar

In Soar, all symbolic goal-oriented behavior is formulated
as steps in problem spaces. A problem space is a uniform
task representation that allows Soar to be applied to a wide
range of goals. The problem space determines the set of
states and operators that can be used during the process-
ing to attain a goal. Goals, problem spaces, states, and
operators exist as data structures in Soar’s working mem-
ory — a transient declarative memory. Each goal defines a
problem solving context which contains roles for a problem
space, a state, and an operator.

Problem solving is driven by the acts of selecting prob-
lem spaces, states, and operators for the appropriate roles
in the context; where each selection is accomplished via
a two-phase decision cycle. First, during the elaboration
phase, the description of the current situation (that is, the
content of working memory) is elaborated with relevant in-
formation from long-term memory — an associative mem-
ory, constructed as a parallel production system. The rules
contain variabilized conditions that are matched against
the contents of working memory, and actions that add el-
ements to working memory when all of the conditions are
met. One important type of knowledge that may be added
during the elaboration phase is preferences. There is a fixed

'In this article, we focus on Soar version 4.
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language of preferences which is used to describe the ac-
ceptability and desirability of the alternatives being consid-
ered for the selection. There are two types of preferences,
unary and binary. The former states an absolute prefer-
ence to all others (e.g., “best”), while the latter states a
preference between two objects (e.g., “better”). In the sec-
ond phase, the decision phase, the preferences in working
memory are interpreted by a fixed decision procedure. If
the preferences uniquely specify an object to be-selected
for a role in a context, then a decision can be made, and
the specified object becomes the current value of the role.
However, if the preferences for a decision are either incom-
plete or inconsistent, then an impasse occurs. Soar auto-
matically generates a subgoal for the task of resolving the
impasse and creates a new problem solving context within
which it can be resolved. Soar learns by acquiring new
productions which summarize the processing that leads to
results of subgoals, a process called chunking.

Soar has been used to implement goal-oriented systems
in a wide variety of domains: immediate reasoning tasks,
simple puzzles and games, classical expert system domains,
robotic control tasks, and natural language understanding,
It has also demonstrated the ability to utilize a wide va-
riety of problem solving methods. However, despite all
of this high-level symbolic capability, much of the archi-
tectural functionality described above can be mapped to
corresponding neural network concepts (at least at a gross
level). In particular, Soar’s production memory is just a
fine-grained parallel associative memory — though it does
work with graph-structured objects and does allow multi-
ple variables — and its decision procedure is just a method
for locally integrating together multiple constraints on se-
lection, as is generally done via activation combination in
neural networks. The need to allow parallel matching and
firing of productions over graph-structured objects with
multiple variables adds some complexity to this mapping;
however, in contrast to traditional production systems, a
novel formulation — that restricts attributes to having at
most one value at a time (referred to as the unique-attribute
formulation) — has been developed for Soar that greatly
simplifies implementation in neural networks by guarantee-
ing both linear-time match complexity and a maximum of
one binding per variable [Tambe et al., 1990].

In the remainder of this article we focus on how Soar’s
production system and decision procedure can be imple-
mented in a neural network, and how these two capabil-
ities can be combined to enable the selection and appli-
cation of sequences of problem-space operators that solve
simple blocks world problems. Impasse detection, subgoal
generation (with the concomitant abilities of using multi-
ple problem spaces and searching), and learning are left for
another day.

Representing Problem Solving
Knowledge

In problem solving behavior in a simple blocks world
problem (Sussman’s anomaly) three blocks are arranged
on a table, and there are operators that allow blocks to
be moved onto either other blocks or the table. In the
first situation, three operators are suggested, and sufficient
preferences are retrieved from long-term memory to allow
the correct operator to be selected. Once it is selected,
further memory retrieval effectively applies the operator
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Figure 1. A. Problem space representation for operator applica-
tion. B. Corresponding production rule. C. The graph view. One
unit will be assigned to each number. Some edges for the working
memory and bindings are not shown for clarity.

by modifying the problem solving state (moving block C to
the table) Problem solving then continues by repeating the
entire process.

Figure 1A focuses on a fragment of this overall behavior
— the application of the selected operator to modify the
state. In the remainder of this section we focus on how
the knowledge is represented in Soar and the transforma-
tions that lead from this representation to the one used in
Neuro-Soar. Figure 1B provides a tezt view of how this
is represented in Soar (in a slightly simplified form) as a
production. The conditions are prior to the arrow and the
actions after. Symbols preceded by “ ° 7 and bounded by
“ <> ” are attributes and variables, respectively.

To get from this text view of the information to the neu-
ral view, it is useful to go through an intermediary graph
view, as shown in Figure 1C. In the graph view, each in-
dividual triple of an object, attribute, and value is repre-
sented by a labeled directed edge from the object to the
value. In the working memory, a solid edge indicates a
working memory element and a dashed edge indicates an
element that potentially could be in working memory, but
currently isn’t. This distinction is not needed in the text
view, but is crucial for the neural view. In production
memory, there are two types of edges, one for the condi-
tions (denoted with straight edges), and the other for ac-
tions (denoted with jagged edges). Solid and dashed edges
denote matched and unmatched triples, respectively. The
bindings are represented by undirected edges between the
vertices of the working memory graph and the production
memory graph. A solid edge indicates a binding of a pro-
duction variable to an object in working memory, and a
dashed edge indicates a potential binding.

A match between the working memory and a production
occurs when there is an exact match between a subgraph of
working memory and the production graph through a set
of bindings?. For a successful match, there will be exactly
one solid edge from each vertex in the production to some
vertex in the working memory.

Production systems in the neural view are composed of
relatively simple, neuron-like processing units (“units” for

2In contrast to Soar 4, preferences are not in working
memory, instead they exist in preference memory, which
cannot be matched by productions.
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Figure 2. Network Architecture of Neuro-Soar.

short) and weighted connections between them. In the neu-
ral view, there is one unit for each edge in the graph view.
The details are provided in the following section.

Representation in Neuro-Soar

Neuro-Soar is composed of four sub-networks and con-
nections between them (see Figure 2). Three of the sub-
networks correspond to the three components described in
the previous section: the working memory network, the
production network, and the binding network. The fourth
sub-network is the preference network, which did not ap-
pear in the previous section because it is used in the selec-
tion of operators, but not in their application.

The role of the working memory network (WMN) is to
represent the contents working memory as a combination of
unit activations. In the neural view, each WMN unit cor-
responds to an edge in the graph view. WMN units are ac-
tivated by production actions, and deactivated when there
is no longer an activated path between them and the goal
node. This deactivation process corresponds to a garbage
collection process in the symbolic implementation of Soar.

The production network (PN) is actually a set of net-
works, one for each production. Each network can be ac-
tivated individually, in parallel, by the active segments of
WMN via the binding network. To create a PN for a partic-
ular production, condition and action units are created for
the condition and action edges in the graph view (one unit
per edge). Each production also needs a rule unit to detect
the joint activations of all the condition units. Each condi-
tion unit is connected to the rule unit, and the threshold of
the rule unit is simply the number of condition units. The
rule unit activates the action units, which in turn activate
working memory units.

The binding network (BN) is the vehicle by which condi-
tions are matched to working memory, and by which actions
have their effects on working memory. In so doing, it com-
putes variable bindings between the PN and WMN, and
ensures their consistency — each instance of the same vari-
able in a production must bind to the same object, each
object must bind to no more than one variable”, and no
more than one object can be bound to any variable at the
same time. The basic binding units are obtained from edges
in the graph view of binding. Each binding unit represents
a particular instantiation of a variable of a production to a
(potential) object in working memory.

Figure 3 shows how consistent bindings are computed.

3Soar actually enforces this restriction in learned rules,
but not in programmed rules. In Neuro-Soar it is enforced

for all rules.
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Figure 3. A. Matching mechanism in Neuro-Soar. Units 4 and 25
are WMN and PN units, respectively. Units 49 and 55 are binding
units. Units 92 and 93 are instantiation units. B. Mutual inhibition
among units whose bindings are contradictory to each other,
through which consistent variable bindings are computed.
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Figure 4. Neuro-Soar decision procedure. A. Problem space rep-
resentation for operator selection. B. Corresponding graph view.
C. Neural network implementation of corresponding preference
information. A new layer of units (76,77,78,79) is introduced
where mutual inhibitory connections exist by default. Preferences
are stored in sigma-pi units (small units). A selection of unit 77 by
the neural decision procedure will feed back to unit 17 in the
WMN.
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The binding of at most one object to a variable is en-
forced by mutually inhibitory connections among the bind-
ing units for the variable (Figure 3B). Likewise, the binding
of an object to at most one variable is enforced by mutual
inhibition among the binding units for the object. Consis-
tent bindings across multiple occurences of the same vari-
able are enforced as shown in Figure 3A. This fragment of
the binding network exists to match the working memory
triple (BlockA "~ on BlockB) to the condition (<blk-1> -
on <blk-2>). As before the units in the figure are identi-
fied by their numbers: 4 is the working memory unit, 25
is the condition unit (in PN), 49 and 55 are binding units,
and 92 and 93 are (partial) instantiation units. In the cur-
rent situation, both unit 4 (representing that BlockA is on
BlockB) and unit 49 (representing the binding of BlockA
to <blk-1>) are active. This combination then activates
unit 92, which represents a partial instantiation of condi-
tion unit 25; that is, that the appropriate element is in
working memory, and its first symbol is bound to the first
variable in the condition. To pursue the match further, unit
55 (representing the binding of BlockB to <blk-2>) needs
to be activated. This unit receives activation from unit 92,
so if there is no competition from other binding units for
<blk-2> — or if unit 55 simply wins the competition —
unit 55 will become activated. Unit 93 is analogous to unit
92, but it represents a complete instantiation of condition
unit 25 — there would be one unit like 93 for each possible
instantiation of condition unit 25. This then activates con-
dition unit 25, thus successfully completing this segment of
the match.

The overall match starts with an initial binding between
the goal object in working memory and the first condition
in each production. From there, the match ripples down
the networks, with each new binding that is established en-
abling further matches to proceed (or be inhibited). When
all of the conditions of a production are matched, the pro-
duction unit becomes active, and in turn activates the ac-
tion units. The action units then modifly working memory
activations through an inverted binding network.

In addition to the straightforward effect of action units
on working memory, action units can also modify working
memory indirectly by asserting preferences among units in
WMN — this is how problem solving operators are selected.
The role of the preference network (FN) is to reflect these
current preferences (during the elaboration phase) and to
select a unit out of the competing candidate units, based
on their preferences (during the decision phase).

Figure 4A shows the operator selection episode, elab-
orated with the preferences that lead to the selection of
Op002 (put Block C on the table). This operator is se-
lected because it is better than Op001, and the other candi-
date (Op004) is worst. Figure 4C shows how this behavior
is implemented as a neural decision procedure in the pref-
erence network. The FN is built on top of the WMN as an
additional layer that stores and processes preferences (see
units 76, 77, 78, 79 in Figure 4C)*. The FN is basically
formed as winner-take-all network with a guide of prefer-
ences. Unary preferences are encoded as wieghts between
the WMN units and the FN units, while binary prefer-
ences are encoded as weights between the competing units
in FN. The use of Sigma-Pi units{[Rumelhart et al., 1986)

*In reality, there is also one additional layer that handles
indifferent preference.
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is required for this (see small units in Figure 4C).

At first, each competing unit in FN receives a level of
activation from the correponding unit in WMN that is a
function of its unary preferences. Prodded by these acti-
vations, competition then occurs in the binary preference
layer, which then feeds back to the WMN units. If a selec-
tion can be made, processing continues with another elabo-
ration phase. Otherwise, the resulting impasse leads to ter-
mination (though ultimately Neuro-Soar must be extended
perform subgoal generation instead).

The Neuro-Soar approach of encoding preferences as
constraints on activation combination is not guaranteed
to yield the same outcome as would be achieved through
Soar’s decision procedure, but it does capture the spirit of
their meaning. The extent to which the Neuro-Soar scheme
is actually better or worse than the symbolic approach is
still to be determined.

Experiments and Analysis

So far, Neuro-Soar has been applied in two domains: the
blocks world and the tower of Hanoi. In this section, we
focus on results from the blocks world. The implementation
consists of 8 productions. Two test problems have been run
— Sussman’s anomaly and a simpler problem of unstacking
a tower of three blocks. In both cases Neuro-Soar solved the
problem by replicating the sequence of operator selections
and applications that were produced by Soar when it was
given the same knowledge.

Since Neuro-Soar employs a local representation scheme,
a sufficient number of units in working memory must be
preallocated. This number is dependent on the number of
objects in working memory and their attributes. The num-
ber of units in PN is dependent on the number of condi-
tions and actions in the productions. Likewise, the number
of units in the binding network is related to the number
of objects in working memory and the productions. Only
a small number of units are required in FN since they are
built on top of a small part of working memory. The blocks
world implementation requires 135 WMN units, 119 PN
units (of which there are 8 production units, 48 condition
units, and 63 action units), 2148 BN units (of which there
are 185 binding units and 1963 instantiation units), and
10 FN units. More generally, the worst space complex-
ity of a task implemented in Neuro-Soar is as follows. Let
nlUNIThetwrok be the number of units in network network.
nUNITpn = O(nTrp)
nUNITwmn = O(an_ nObjHasaeer » nObjO farer)
nUNITgny = O(nOBJwmn +nOBJpn +

Zaltr nWMNattr * “PNattr]

nUNITen = O(nOBJwmn)

where nTrp is the number of triples in productions;
nObjHasaier and nObjOf are the number of objects of
working memory that can have attribute attr and can be
the value of attr, respectively; nOBJnetwork 1s the number
of objects in network; and nW M Naeer and nPNayr are
the number of units which have attribute attr.

The time complexity for matching a production in
Neuro-Soar is on the order of the maximum depth of the
graph representation of the production. The depth of
the graph representation is approximately log(nTrp). The
matching process is relatively fast and efficient in terms
of neurosimulation cycles, not only because the rules are
fired in parallel, but also because the valid partial matches



are kept (analogous to state saving in the Rete algorithm
[Forgy, 1982]).

Related Work

The two classes of related work to which it is most
important to compare Neuro-Soar (other than Soar it-
sell) are: other attempts at constructing neural produc-
tion systems, and other attempts at constructing neural
problem solvers. On the former, two previous systems
have implemented production systems using neural net-
works, the Distributed Connectionist Production System
by Touretzky and Hinton[Touretzky and Hinton, 1988]
and the Tensor Product Production System by Dolan and
Smolensky[Dolan and Smolensky, 1988, both of which used
distributed representations. Neuro-Soar, though simpler in
that it uses a local representation, goes significantly beyond
these two systems in allowing parallel matching and exe-
cution of productions, (unique-attribute) graph-structured
representations, and multiple variables per production.

Ajjanagadde and Shastri[Ajjanagadde and Shastri, 1990]
have developed a connectionist system that represents
knowledge as rules and facts with multi-place predicates.
A multi-phased clock is proposed as a solution to the vari-
able binding problem. The system produces answers, when
given 'yes/no’ questions, based on the knowledge. How-
ever, the system lacks a capability to create and alter the
content of its temporary knowledge so that situation de-
pendent firing of rules (or planning) is not possible.

This is by no means the first effort to construct a neural-
network-based problem solver (see, for example, [Sutton
and Barto, 1981, Anderson, 1989]). However, the current
effort differs from most of the earlier approaches in adding
representational and structural complexity — specifically,
graph-structured objects and the decomposition of the
overall memory into four specialized subnetworks — in ser-
vice of domain generality. The hope is that this will allow
Neuro-Soar to be extended up to Soar’s full level of capa-
bility, without ultimately sacrificing learnability or neural
plausibility.

Conclusions and Future Work

Work to date on Neuro-Soar has demonstrated that it is
possible to reproduce key aspects of Soar’s general goal-
oriented ability even when the implementation technology
is shifted from “symbolic” to “neural network”. In particu-
lar, we have demonstrated a domain-independent approach
to knowledge-driven operator selection and application.
To accomplish this, we have developed a preference-based
neural-network decision procedure, and a novel neural-
network production system that allows parallel matching
and firing of rules, graph structured objects, and multiple
variables per rule.

However, much remains to be done in three general ar-
eas. The first area is the completion of Neuro-Soar with
respect to Soar’s functionality. This primarily involves the
incorporation of impasse detection and subgoaling, use of
multiple problem spaces, and learning. The second area
is the loosening up of the design so that it less slavishly
follows how things are currently done in Soar, and more
takes advantage of the strengths of neural networks. We
have begun with the conservative approach of trying to
model the existing Soar architecture as closely as possi-
ble; however, we eventually want to get to where we can
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ask whether the specification of Soar ought to be altered
because of the advantages accruable from using neural net-
works. For example, what would happen if we were to shift
to a distributed representation for memory, based perhaps
on a tensor-product formulation [Smolensky, 1990], or if
we were to shift from a neural-network analogue of chunk-
ing to a more typically neural learning algorithm. Would
such changes result in a more robust system that can learn
more effectively? The third area is to see whether Neuro-
Soar provides leverage in interfacing Soar to external envi-
ronments. Would encoding the required signal-to-symbol
transducers in neural-networks that are directly connected
to Neuro-Soar provide a more seamless interface than is
now provided by the use of Lisp code for the transducers?
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