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Nguyen1, Cheolhong An1

1Electrical and Computer Engineering Department, University of California San Diego, La Jolla, 
CA 92093 USA.

2Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of 
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Abstract

Multi-modal retinal image registration between 2D Ultra-Widefield (UWF) and narrow-angle 

(NA) images has not been well-studied, since most existing methods mainly focus on NA image 

alignment. The stereographic projection model used in UWF imaging causes strong distortions 

in peripheral areas, which leads to inferior alignment quality. We propose a distortion correction 

method that remaps the UWF images based on estimated camera view points of NA images. In 

addition, we set up a CNN-based registration pipeline for UWF and NA images, which consists 

of the distortion correction method and three networks for vessel segmentation, feature detection 

and matching, and outlier rejection. Experimental results on our collected dataset shows the 

effectiveness of the proposed pipeline and the distortion correction method.

I. Introduction

Multi-modal retinal registration aligns fundus images of a same eye which are captured 

by different instruments, in order to provide a complete view of pathologies for 

ophthalmological diagnosis. In recent years, Ultra-Widefield (UWF) imaging becomes a 

popular option for retinal imaging, due to its larger field of view than conventional narrow-

angle (NA) images. Therefore, UWF images can provide a more comprehensive view of 

retina and help with diagnosis and early screening of a variety of diseases [1]. In this paper, 

we investigate the multi-modal registration task between 2D UWF and NA images.

There have been extensive works on multi-modal retinal registration. Some approaches 

proposed complete registration pipelines [2], [3] consisting of steps for feature detection, 

description, and outlier rejection, while others improved only the feature detectors [4], 

descriptors [5], [6] or outlier rejection modules [7] in existing pipelines. Recently, multiple 

Convolutional Neural Networks (CNN) approaches have been proposed. Some works [8], 

[9] replaced certain modules in conventional pipelines with CNN, and other approaches 

[10]-[12] set up fully-CNN-based pipelines for this task. Nevertheless, none of the existing 
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works have proposed to align retinal images with large differences in view angles (e.g., 200° 

Optos UWF Colormaps and 55° MultiColor images).

A major challenge in aligning UWF and NA images comes from the perspective distortions 

in the UWF modality. Since retina is on the surface of a sphere (eyeball), it involves a 

projection process to capture and visualize the 3D retina on a 2D flat array, which introduces 

distortions. Although retina images always suffer from distortions from the projection, 

the distortions of UWF images are significantly more visible than those of NA images. 

For example, the stereographic projection in Optos’s UWF system sets the cornea as its 

camera view point, which leads to significant distortions in peripheral retina area, such that 

peripheral patterns appear larger than their actual sizes. On the other hand, NA images 

are projected based on more distant view points, and thus bear less perspective distortions. 

Therefore, different projection methods between UWF and NA make registration more 

difficult, since the peripheral distortions cannot be corrected by a conventional 2D-to-2D 

planar transformation model (e.g. perspective transformation).

The distortion correction for UWF images is also related to retinal curvature estimation and 

3D reconstruction. For example, Chanwimaluang et al. [13] proposed to estimate retinal 

curvature from NA image sequences through Structure From Motion which incorporates 

constraints on ellipsoid surface and lens distortions. Ataer-Cansizoglu et al. [14] set up a 

3D fundus reconstruction method from image sequences, where the 3D surface parameters 

and camera poses are estimated by minimizing re-projection errors. They also explored 

different 3D models for reconstruction. Probst et al. [15] applied a 3D reconstruction model 

to stereo microscope for retinal microsurgery. Dan et al. [16] set up a 2D registration and 

3D reconstruction pipeline, where their reconstruction model was merely based on existing 

camera parameters and was apart from their registration pipeline. However, these methods 

mainly focus on building 3D models from single-modal NA images, and the multi-modal 

registration between 2D UWF and NA images has not been investigated.

In order to reduce the projection distortion of UWF images in multi-modal registration, we 

propose a distortion correction method on UWF images. Specifically, the 2D UWF pixels 

are first projected back to their 3D positions on the eyeball through the inverse stereographic 

projection, and then remapped to a 2D plane based on the average projection parameters for 

NA images. Since most of the UWF and NA images are centered on the fovea, we assume 

that they share a same optical axis in projection. The assumption simplifies the 3D-to-2D 

remapping process, so that we only need to estimate the view point of the NA images, as 

shown in Fig. 3.

Besides, we propose a complete CNN-based registration pipeline for UWF and NA images, 

which consists of networks for vessel segmentation, feature detection, and outlier rejection 

in addition to the distortion correction. We also set up a new training scheme for the vessel 

segmentation network on NA images, and adopt the polynomial transformation model to 

improve registration performance.

Zhang et al. Page 2

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. Proposed Registration Pipeline

Fig. 1 shows the proposed registration pipeline where the vessel structures from both input 

images are first extracted using two independent segmentation networks. Next, keypoints 

from both images are detected by a feature detection network, and then paired through 

a matching process. Furthermore, the UWF image and its coordinates in the matched 

keypoints are corrected through our proposed distortion correction module, which is detailed 

in Section III. Finally, a transformation matrix is estimated by an outlier rejection network 

from the corrected matched keypoints, and the UWF image can be aligned with the NA 

image.

A. Vessel Segmentation Network

We adopt the pre-trained vessel segmentation network [17] for the UWF modality. In order 

to train the other segmentation network for NA images, we build a modified learning 

framework based on [18] as shown in Fig. 2, where the weights of the segmentation network 

for UWF are frozen during the training process. The input UWF images are coarsely aligned 

to NA images based on manual labels, and then cropped to the overlapped area as in the NA 

images. We train the vessel segmentation network for NA image with a combination of two 

loss terms as

ℒseg = λpcℒpc + λsmℒsm . (1)

where ℒpc and ℒsm are photometric consistency loss and smoothness loss in the optical 

flow networks [19], respectively. The loss function enables the segmentation network to 

predict NA’s vessel maps that can be aligned with the UWF vessels. As shown in Fig. 1, 

the vessel segmentation results are denoted as Iuwf-s and Ina-s for UWF and NA images, 

respectively. The UWF vessel map Iuwf-s will be corrected to remove distortion in the 

following distortion correction module, which is denoted as Iuwf‐s′ .

B. Feature Detection and Matching Network

In this paper, we adopt the SuperPoint [20] network as the feature detection network. 

The network is pre-trained on a multi-modal retinal image dataset with color fundus and 

infrared reflectance images [12]. It takes an uncorrected vessel map (Iuwf-s or Ina-s) as 

an input, and outputs a keypoint heatmap and its corresponding descriptor tensor. Then, 

the keypoints are obtained through Non-Maximum-Suppression on the heatmap, and their 

coordinates are denoted as (m, n) and (u, v) in the UWF and NA images, respectively. 

The correspondence p = m, n, u, v , … ∈ ℝN × 4 between the two images is established by 

a bi-directional matching algorithm for the keypoints, where N is the number of matched 

keypoint pairs. In a matched pair, the UWF’s feature should be a best match for the NA’s 

feature, and vice versa. Readers can refer to [12], [20] for more details.

After keypoint matching and before the outlier rejection network, the UWF keypoints’ 

coordinates (m, n) are corrected by the distortion correction method as (m′, n′). Therefore, 

the correspondence is updated as p′ = [(m′, n′, u, v), …].
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C. Outlier Rejection Network

We use the outlier rejection network structure [21], which was pre-trained on the 

other retinal dataset [12] and then fine-tuned on our dataset. The network takes the 

correspondence p′, and outputs scores s ∈ ℝN × 1 for all correspondences, which is similar 

to RANSAC [22]. Then, the scores are translated into weights as w = tanh(ReLU(s)), where 

wi ∈ [0, 1). Finally, transformation matrices are estimated based on p′ and w using weighted 

least square methods, where both affine transformation matrix Maff ∈ ℝ2 × 3 and 2nd-order 

polynomial transformation matrix Mpoly ∈ ℝ2 × 6 are obtained. The affine matrix is only used 

in ℒr of Eq. (5) during training, because we only have ground-truth for it. Meanwhile, the 

polynomial matrix is used for image warping, since it has shown advantages in retinal image 

registration [23].

During network training, we define the loss function as

ℒoutlier = λcℒc p′, s, Mgt + λrℒr Mgt, Maff +
λd 1 − Dice STN Mpoly, Iuwf‐s′ , Ina‐s

(2)

where Mgt ∈ ℝ2 × 3 is a ground-truth affine matrix, and STN(·) is an image warper [24]. ℒc
is a classification loss (Binary Cross Entropy Function) between the estimated scores s and 

ground-truth inliers

ℒc p′, s, Mgt = 1
N ∑

i = 1

N
γiBCE yi, σ si (3)

where σ(·) is a sigmoid function, γi is a balancing factor for positive and negative samples, 

and yi ∈ {0, 1} is the inlier ground-truth. The inliers are computed from Mgt as

yi = 1, T m′, n′ , Mgt − u, v ≤ 5 pixels
0, otherwise

(4)

where T(·) translates a UWF keypoint (m′, n′) into NA’s coordinate based on Mgt. A 

keypoint pair with distance less than 5 pixels in NA’s coordinate is considered as an inlier. 

Next, ℒr is a regression loss between Maff and Mgt, which is defined as

ℒr = MSE Mgt − Maff . (5)

Finally, Dice is derived to measure the overlapping degree between two vessel maps, which 

is written as

Dice I1, I2 = 2 ⋅ ∑ ele_min I1, I2
∑I1 + ∑I2

. (6)

Readers can also refer to [12] for more details.
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D. Learning Process

First, we train the segmentation network for NA images using manually aligned image 

pairs as described in section II-A. Then, the outlier rejection network in Section II-C is 

trained without the distortion correction module, i.e., using the uncorrected UWF vessel 

maps Iuwf‐s′ Iuwf‐s and keypoints p′ ← p. Finally, with all networks’ weights frozen, the 

view point of the NA images is estimated in the distortion correction module on the training 

dataset, which will be detailed in the next section.

III. Distortion Correction

The distortion correction process can be separated into two steps, i.e., a 2D-to-3D projection 

which maps the original UWF image back onto the eyeball, and a 3D-to-2D projection that 

casts a 3D point on the eyeball to a 2D image plane based on a new view point.

A. 2D-to-3D Projection

Optos’s instruments comply with the DICOM standard for Wide Field Ophthalmic Images 

[25] for UWF imaging and storage. The captured 3D retinal data are transformed into the 

2D UWF images based on stereographic projection. When comparing this projection to a 

pinhole camera projective model, the view point (lens) is located at the cornea, and the 

optical axis is from cornea to fovea.

We set up a 3D coordinate system as shown in Fig. 3. Specifically, we set the zero point 

(0, 0, 0) at the sphere center and the sphere radius as 1 (i.e. a unit sphere) for convenience, 

which is different from the mathematical derivations in the DICOM standard [25]. The 

coordinate for UWF’s view point (cornea) is (0, 0, 1). Besides, in order to reduce peripheral 

patterns instead of enlarging the fovea in the correction process, we set the UWF imaging 

plane (sensor) at the back of the eyeball. Therefore, in the 2D-to-3D projection process, 

the mapping functions between a 2D point (X, Y, −1) on the UWF image plane and its 3D 

position (x, y, z) on the sphere are written as

x, y, z = 4X
4 + X2 + Y 2 , 4Y

4 + X2 + Y 2 , −4 + X2 + Y 2

4 + X2 + Y 2 (7)

X, Y = 2x
1 − z, 2y

1 − z . (8)

B. 3D-to-2D Projection

We assume that the 3D-to-2D projection process uses a same optical axis as the 

stereographic projection, since most of our UWF and NA images are centered on fovea. 

We set (0, 0, d) as the position of the new viewing point, i.e., the lens position of the NA 

imaging system, where d ≥ 1. The 3D point (x, y, z) on the sphere is remapped to (X′, Y′, 
−1) on the image plane based on NA’s view point (0, 0, d). We have equations from two 

pairs of similar triangles (shown by red lines in Fig. 3) as
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x
X′ = y

Y ′ = d − z
d + 1, (9)

and the remapped 2D point is derived as

X′, Y ′; d = d + 1
d − z ⋅ x, d + 1

d − z ⋅ y . (10)

Inversely, to obtain (x, y, z) from (X′, Y′, −1), we can combine Eq. (9) with the unit sphere 

constraint x2+y2+z2 = 1, and derive

az2 + bz + c = 0, (11)

where a = (X′2+Y′2)/(d+1)2+1, b = 2d(X′2+Y′2)/(d+1)2, and c = d2(X′2+Y′2)/(d+1)2−1. 

The solution to z is

z = −b − b2 − 4ac
2a , (12)

where only the point closer to the image plane is used. Finally, we can write the 3D 

coordinate as

x, y, z; d = d − z
d + 1X′, d − z

d + 1Y ′, z . (13)

C. Coordinate Conversion

In the correction process, a scaling conversion is needed between (m, n) in the image pixel 

coordinate and (X, Y) in the sphere coordinate (or between (m′, n′) and (X′, Y′)). α and 

β are the view angles (with regard to the sphere center) of the 2D image center pixel in the 

x and y directions respectively, as shown in Fig. 4. Then, the width and height of the center 

pixel are 4·tan(α/4) and 4·tan(β/4), which are used as the scaling factors for the conversion. 

Consequently, the conversion is written as

X, Y m ⋅ 4tan α 4 , n ⋅ 4tan β 4 , (14)

m, n X 4tan α 4 , Y 4tan β 4 . (15)

In Optos’s UWF DICOM files, α and β are defined in tags (0028,1528) and (0028,1529) 

as Center Pixel View Angle of X and Y coordinates. In our dataset, we set α = β = 

0.08596515° for all UWF images, since they are from a same instrument model.

D. Correction Process

To correct the correspondence, i.e., p → p′, we

a. first scale (m, n) in p into (X, Y) by Eq. (14),
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b. then obtain its 3D location (x, y, z) via Eq. (7),

c. next remap it to a new position (X′, Y′) for a given d via Eq. (10),

d. finally get the corrected keypoint (m′, n′) by Eq. (15).

Meanwhile, to correct the UWF image pixels (e.g., Iuwf‐s Iuwf‐s′ ), we need to get the 

interpolation position (m, n) in the original image, from every pixel (m′, n′) in the corrected 

image. We

a. first scale (m′, n′) into (X′, Y′) via Eq. (14),

b. then get the 3D position (x, y, z) by Eq. (13),

c. next obtain (X, Y) via Eq. (8),

d. finally get the sampling position (m, n) via Eq. (15).

Bilinear interpolation and STN(·) are used in image warping.

E. View Point Estimation

The optimal view point position d = doptimal is derived through Algorithm 1. The NA 

vessel map Ina-s, the uncorrected UWF vessel map Iuwf-s and their correspondence p are 

pre-computed on the training set to avoid repeated computation. The algorithm searches 

for doptimal in multiple loops with decreasing step (i.e., increasing searching accuracy). 

In a current loop, it searches over several candidate view point positions dc. At each 

dc, the algorithm corrects UWF vessel maps Iuwf-s and correspondence p, then estimates 

transformation matrix Mpoly for each image pair, and warps the corrected UWF vessel map 

again with the matrix. An average Dice value over all training pairs is computed and stored 

for each dc. At the end of each loop, doptimal is updated as the dc with the highest Dice. In 

the next loop, loop + 1, we search around doptimal in a smaller range [be, en] but with a finer 

step. We do not use Gradient Descent algorithms due to their low speed.

For simplicity, an optimal d is found by searching over the whole training dataset, and then 

applied for all testing UWF images. We initialize the algorithm by be = 1, en = 3, step = 1/4, 

ext = 4, and loop = 4.

IV. Experiments

A. Settings

We collected 116 image pairs, consisting of 200° Optos UWF Colormaps as well as 55° 

MultiColor (MC) images from Heiderburg’s Spectralis platform for the NA modality. The 

resolution of the MC images is 768 × 768, and most MC images are centered around 

the fovea. The original resolution of UWF images is 4000 × 4000. For each pair, we 

manually label 3 pairs of corresponding points, and then estimate the 2D affine matrix Mgt 

as ground-truth.

In the experiments, we crop the center 2000 × 2000 part of UWF images to remove most 

non-retina patterns. We randomly separate the dataset by half as Set 1 and 2. We use Set 1 

for training and Set 2 for testing, which is denoted as Set 1-2, and vice versa as Set 2-1.
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Algorithm 1: Searching for optimal d

Result:An optimal d = doptimal .
Initialization: 1 Pairs of UWF and NA vessel maps

Iuwf‐s
i , Ina‐s

i , … , and correspondence pi, … ;

2 Outlier rejection network (trained and frozen);
3 A dictionary D k :v for storing results;
4 Searching range be, en , step, ext, and loops;

for loops do
for dc = be :step :en do

if dc exists in D then
∣ Go to Next loop;

end
for i‐th image pair & correspondence do

Image correction with dc:

Iuwf‐s
i Iuwf‐s

i ′ ;

Keypoint correction with dc: pi pi′;
Get transformation matrix from outlier
rejection network: pi′ w Mpoly;

Warp Iuwf‐s
i ′ based on Mpoly;

Compute and save Dice value between

Ina‐s and the warped Iuwf‐s
i ′ ;

end
D dc = Average Dice over all pairs;

end
Find doptimal from the largest Dice value in D;
step = step 2;
be = doptimal − step × ext;
en = doptimal + step × ext;

end

In the learning process, the networks are trained separately as described in Section II-D. (1) 

In the segmentation network for MC images, we adopt a network [26] pre-trained on Color 

Fundus images [12], [18] and finetune it on our dataset for 2000 epoches. We set learning 

rate as 1e-3, batch size as 1 with λpc = 1e-3 and λsm = 5e-4. (2) In the outlier rejection 

network, we use the 2000 × 2000 UWF images for training and testing. The network is 

trained for 1000 epoches with learning rate as 1e-4, batch size as 8, λc = 1, and λr = λd = 

0.1. The model with the highest Dice value on the training set is saved for testing. For both 

networks, Adam optimizer [27] is used.

In testing, we estimate three transformation models (Affine, Perspective, and Polynomial) 

from w and p (or p′), with/without distortion correction, which results in six settings in 

evaluation results.
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The networks are implemented in PyTorch and trained on a GTX 1080 Ti GPU. It takes 

about 18 hours to train the segmentation network and about 10 hours to train the outlier 

rejection network.

B. Evaluation Results

Table I shows the average Dice values and their standard deviations on the two testing 

sets. We compare our method with a conventional registration pipeline [3] that translates 

multi-modal images into Monogenical Phase signals [28] for registration. The results of our 

proposed network (Affine) are better than those in the conventional method by over 0.06 

in Dice value. Besides, as the complexity of the transformation model increases (Affine 

→ Perspective → Polynomial), the average Dice also improves. This indicates that more 

non-linear transformation is required to correctly align UWF images with narrow-angle MC 

images. Finally, comparing the results with distortion correction to those without correction, 

the average Dice improves around 0.03. Especially, the results of Affine + Correction (6+1 

parameters) even rivals those of Polynomial (12 parameters), i.e., +0.03 on Set 1-2 and 

−0.04 on Set 2-1. It demonstrates the effectiveness of our proposed distortion correction 

scheme.

In Fig. 5, which shows the registration results on a testing image pair, the alignment 

quality is improved by incorporating the proposed distortion correction module, especially in 

MC’s peripheral areas where misalignment is reduced after correction as indicated by white 

arrows.

Fig. 6 shows the searching process for the optimal d on the two training sets. All searched dc 

and their corresponding average Dice values are plotted. As shown, the optimal d is achieved 

at 50/32 for Set 1-2 and 46/32 for Set 2-1. In addition, both curves are monotonically 

increasing and then monotonically decreasing in general.

V. Conclusion

In this paper, we proposed a multi-modal registration pipeline based on CNN for UWF 

and NA retinal images. We also proposed a distortion correction module that remaps the 

UWF images from the NA images’ view point, so that peripheral distortions in the UWF 

images are reduced and the registration performance can be improved. In the future, we 

would extend our method into 3D space incorporating more parameters for UWF distortion 

correction, and find the optimal viewing distance for each image pair.
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Fig. 1. 
Proposed registration pipeline for UWF and NA retinal images.
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Fig. 2. 
Training scheme of the vessel segmentation network for NA images.
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Fig. 3. 
Illustration for the distortion correction process. On the left side, the original UWF pixel (X, 

Y, −1) (blue dot) is first mapped to its 3D position (x, y, z) on the eyeball (red dot), and then 

projected to a new 2D position (X′, Y′, −1) on the image plane (green dot). The blue and 

green stars are the view points of UWF and NA images respectively. Right side shows the 

2D UWF images before and after correction.
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Fig. 4. 
Conversion between pixel coordinates and sphere coordinates (in x − z plane).
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Fig. 5. 
Registration results (cropped 800 × 800). Left column shows mosaicked overlay of aligned 

images. Right column shows overlay of vessels (red for UWF, green for MC, and yellow for 

the overlapping parts).
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Fig. 6. 
Searching process for d on the training sets.
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TABLE I

Average Dice Values (Standard Deviation) on Testing Sets

Methods Set 1-2 Set 2-1

Before Registration 0.1727 (0.0208) 0.1841 (0.0246)

Phase-HoG-Ransac (Affine) [3] 0.3555 (0.1065) 0.3476 (0.0982)

Ours (Affine) 0.4244 (0.0990) 0.4151 (0.0728)

Ours (Affine + Correction) 0.4651 (0.1101) 0.4462 (0.0784)

Ours (Perspective) 0.4455 (0.1087) 0.4409 (0.0759)

Ours (Perspective + Correction) 0.4791 (0.1136) 0.4644 (0.0841)

Ours (Polynomial) 0.4620 (0.1251) 0.4501 (0.0991)

Ours (Polynomial + Correction) 0.4955 (0.1323) 0.4818 (0.1089)
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