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HIGH-ORDER RESONANCE FOR DUFFINGIS DIFFERENTIAL EQUATION 

by Loren P. Meissner 

• 1. Introduction. The Duffing Problem. The motion of a mass 

under the influence of a nonlinear restoring force and a periodic ex-

ternally-applied force is described by Duffingls differential equation 

(Duffing, [}]). We restrict our attention to the case where no damping 

is present and write the differential equation in the following form: 

(1) 'Y • Y II (8) + y( 8) + g( y( 8)) := f( 8) . 

We further focus our attention on the case where y(8) has a representation 

as a sum of odd cosines; this restriction introduces the boundary 

conditions 

(2) y( 7T/2) 0, 

In the formulation most of ten. investigated (Duffing, [1); Heinbockel, 

Struble [2)), eq. (1) is written with g(y(8)) := ~ • y3(8) and f(8) := cOE.8. 

We shall consider this case in detail as a specific example, but many of 

the results developed here apply equally well in the more general case 

so long as f(8) and g(y(8)) can be represented as sums of odd cosines, 

and subject to some restrictions on gl which we will encounter as we 

proceed and which are summarized among the hypothesesof Theorem 1. 

Note especially that we are not restricting our attention to the IIweakly 

nonlinear ll case: that is, we are not assuming that g is IlsmalJ_ll. 

2. Perturbation analysis when'Y is small: High-order resonance. 

We seek to determine the behavior of solutions to eqs. (1, 2) when 'Y is 

small: in particular, the relation of such solutions to the solution 

for'Y = 0. When'Y = 0, 'Ire have the Ilreduced equation ll (whi(~h is not 
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even a differential equation), whose solution we call Yo: 

y (e) + g( Y (e)) = f( e) . o 0 

Linear perturbation of eq. (1) about Yo produces the following "variational 

equation," which is a special case ,of Hill t S equation: 

(4) 'Y • z1t(e)~;\l+ g'(Yo(e))) . z(e) = OJ (0 ~ e ~ rr/2) 

z(TI/2) = 0,' ' zt(O) = o. 

We summarize certain results obtained by applying standard methods 

(Magnus, Winkler [3], p,. 51) to this case. Let 

Assume that M4 > 0 on (0, rr/2). Then, the Liouville transformation, 

normalized so that teO) = 0 and t(TI/2) = rr/2, is 

(6) t(e) 
e 

(l/C) J rvf(s) dSj 
o 

, .TI/2 
C (2jrr) J rvf(e) de. 

o 

This transformation brings the differential equation into the canonical 

Sturm-Liouville form 

where' 

(8) 

w"(t) + (C2 jy + q(t)) • wet) = OJ 

w( rr/2) = 0, wt(O) :'-0 0, 

wet) = M(e(t)) . z(e(t)), 

q(t) = (l/M(e(t))) d
2 

M(e(t)). 
, dt2 

(0 ~ t ~ TI /2) 
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If ~ is bounded on (0, n/2) by kl ~ ~(t) ~ ~, then we may apply the 

Comparison Theorem (Ince [4], p. 232) with the boundary condition 

2 l 
cos (C2 /tn + k )2 . (n/2) = ° to show that the values 'Y = tn, at which 

e~. (4) hOas a non-trivial solution, satisfy the conditions 

(9) 

and as n ~oo we have the asymptotic behavior tn ~ c2 /4 n
2 

The standard ttsingular perturbationtt analysis for problems of 

this type, where the order of the differential e~uation changes by more 

than one at the limiting value of a parameter, is given by Wasow [5]. 

However, Wasow's ttassumption Ctt (page 322) re~uires that.[(-M4 ) must 

never be purely imaginary. This assumption is directly contradictory 

to our M4 > 0, which is the essential condition for the existence of 

real eigenvalues. In fact, it should not be considered surprising that 

"smooth tt behavior as 'Y -7 ° may be incompatible with the existence of 

arbitrarily small values of 'Y at which the variational e~uation has a 

non-trivial solution. 

The phenomenon called ttnonlinear resonance tt is associated with the 

existence of these non-trivial solutions of the variational e~uation. A 

~ualitative description of the difference between this phenomenon and 

ordinary (linear) resonance is given by Stoker [6] (see page 88) for 

some examples including the Duffing problem with 'Y near 1. Resonan2e 

when ~ is small (compare Hayashi [1], page 35) is associated with large 

amplitudes in the higher harmonics of y, even though f may consist only 

of the single ttbase tt fre~uency; hence, in this case, the phenomenon is 

often called "superhe,rmonic" or tthigher-order tt nonlinear resonance. 

Actl121J y, in this p2.per, we are interested in locating the se regions of 
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high-order resonance only in order to avoid them. 

From eq. (9), we derive the following lower bound for the 

separation between adjacent eigenvalues: 

(10 ) 

which is positive for suffic iently large n and asymptotically 

. 2 3 
(~n - ~n+l) ~ C /2 n. Thus, if we choose ~n halfway between ~n and ~n+l' 

we have a lower bound (which depends upon n, and is asymptotically 

C2/4 n3) for the distance of ~ from its nearest eigenvalue. Subject to 
n 

the assumptions used in establishing these bounds we shall use them to 

demonstrate (see Theorem 1) that a solution to the Duffing problem 

exists for each ~n sufficiently far out in this sequence and, further-

mare, that these solutions tend to the solution Yo of the reduced 

equation, eq. (3), as ~ n -:-7 O. 

3. The Duffing problem in operator form. We now find it necessary 

to introduce some notational conventions. 

Let a be the interval (0, 11/2) and let E be the following subset 
a 

2 
of r.: (a): 

( 11) YE (n/2) = 0, YE(O) = o}. 

1 

Then Ea is a Banach space, with IlyEIl = (fa YE2 Y2. Let the operators 

~, ~2, IE' and finally 'fE be defined on Fa as follws: 

( 12a) 

( 12b) (8 E a) 

• 

~, 

\ 
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Then the Duffing problem may be written as: PE YE == O. 

Subscripts in this notation will be used to indicate the domain 

of an operator or function, and we will use a superscript with number 

sign as an index; that is, to specify a particular element of a space 

f t f t f 1 #1 p#2 t Th . t or 0 a se 0 opera ors; or examp e, y, ,e c. e superscrlp 

(#-0) will be reserved to indicate the solution of the reduc ed equation, 

eq. (3): 

(14 ) 

We also need to be able to discuss the first derivative of 

YE E. Ea' Although, the second derivative, which appears in eq.(l), 

causes no special difficulty, the first derivative of our odd cosine 

series is a series of odd sines. These satisfy a different set of 

boundary conditions and, hence, lie in a different space. We call this 

space Fa and we define the operators DFE and DEF as follows: 

(D:FE YE) (e) (- d/de) YE (e), 

(DEF xF ) (e) == (d/de) xF (8). 

Now (DFE YE) E. Fa and (DEF xF) E. Ea , so DE2 == DEF 0 DFE. The inverses 

of these operators are the integral operators J EF == (~) -1, J FE == (DEF) -1, 

and J EF 0 J FE == (~2)-1, where 

e 
(15b) (JFE YE) (e) == J / 

7T 2 YE (s) ds, (YE E. Eo) 

e 
(JEF xF ) (e) == -J xF (s) ds. (xF c Fa) 

0 
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4. Normal and self-adjoint operators. Let us review some properties of 

linear operators on ~ c £2(a). We define the norm of a linear operator HE as 

( 16a) 

The adjoint of HE is the operator HE* such that for any YE#l, yr in ~', 

(16b) 

2 
We knO'd that II HEll * is equal to the l.u.b. of the eigenvalues of HE 0 HE 

and IIHEII is not less than the 1.u.b. of the eigenvalues of HE. If HE is a 

normal operator; that is, HE () HE* = HEo)(- 0 HE' then II HEll is equal to the lou. b. 

of its eigenvalues and so, in this case, we can bound IIHJI if we can bound the 

eigenvalues... We shall be especially interested in self-adjoint operators; 

that is, normal operators. in the special case HE* = HE. 

A linear operator of the form 

(16c) 

is obviously self-adjoint. Furthermore, if HE is a self-adjoint operator on 

Ea , then J FE 0 HE 0 J EF is self-adjoint on Fa. For, any linear operator HE 

has the following effect: 

( 16d) HE(cos (2j - 1) e) = ~k hjk cos (2k - 1) e j= 1,2, ... 

and the self-adjoint of HE is equivalent to the condition hJok = h for all 
k,j 

j, k. But we may see that this same cOhdition on HE is exactly what is 

needed to shmr that the composite opera tor is self -adjoint on lie):" 

• 

('­
\ 
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5. Kantorovich's Theorem: Solutions of an operator equation in 

" a Banach space. The following theorem is given by Kantorovich [Lef. 8, p. 708J. 

(17a) 

(17c) 

Hypotheses: 

P is defined on a neighborhood S(y#O, p) in a Banach space F. 

The linear operator r#O = (DP( y#O)) -1 exists, where DP( y#O) 

is the Frechet derivative (see Dieudonne [9J, p. 141) 

of P at y#O. 

h = K • T] ;£ 1/2 

p ;£ P = (1 - .[ (1 - 2 . h)) • T] /h. 
o 

Conclusion: 

A solution to Py-= 0 exists and is in S(/fO, p). 

Furthermore, if 

for h< 1/2, 
#1 (1 + .[(1 - 2 h)) T)/h, p < p = . or 

for h = 1/2, p ~ p#l - , 
then the solution is unique in S( /fO , p) . 

We note, as a particular consequence of Kantorovich's theorem, that 

the solution exists and is unique if 

(18 ) p 2T) l/K. 

6. Existence of Solm ions as 'Y ~ O. We apply this theorem to the 

Duffing problem in the operator form P
E 

YE = 0, where PE is given by 

eq. (13) Emd 

( 10 ) 
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,Here 'DGE(YE#O), the Frechet derivative of ~ at YE#O, is a linear operator 

on the Banach space ~ and since g is an ordinary function of a real 

variable, it follows from eq. (12a) that 

(20 ) (8 E 0:) 

Compar~ng eq. (16c), we see that'DGE(YE#o) is self-adjoint. 

We introduce the operator TF#O: 

We see that TF#O is also self-adjoint and, furthermore, that b- r-..) 

is an eigenvalue of TF#O whenever r-.. is an eigenvalue of J FE 0 'DGE(YE#O) 0 

JEFj that is, whenever there is· a nnntrivial solution of (JFE 0 'DGECyE#O) 0 

J EF - r-..IF) xF = 0, or of ('DGE(YE#O) - r-.. DE2) YE = 0. But, we see from 

eq. (20) that the latter equation is the same as the variational equation, 

eq. (4), whose eigenvalues we estimated in Section 2. Let r-..#n be the 

eigenvalue of the variational equation nearest to ~j then 

(22) 

. We use the decomposition A- l (I + ~ A-l)(A + ~ 1)-1 to write: 

(24) r #0 
E 

C IF + ~ • (TJy#O) -1) 0 DpE 0 ('D~C yE#O)) -1 0 ~j 

C C· #0))-1 C #0);"1 'DP YE = J EF 0 TF 0 JFE 

Because of eQ. C 22), '·!e can expect trouble C resonance) when ~ is too 

I 
I 

,~ 

\1 
! 

{ri, 
I 

I 
J 
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close to an eigenvalue of the variational equation and it is not surprising 

that Kantorovich's theorem fails to prove the existence of solutions 

near yE#O in these cases. On the other hand, if we can choose a sequence 

of values ~#n, each of which is sufficiently far from the nearest eigen­

value ~#n, then we may be ~ble to meet the conditions of Kantorovich's 

theorem as ~#n ~ o. These observations are made precise in the following 

theorem: 

Theorem L Let M4 be given by eq. (5), C by eq. (6), and q by 

·4#0 eq. (8), and suppose that M > 0 and kl ~ q~~j also, let YE be the 

solution of the reduced equation, eq. (3). If the operator DGE(YE#D) is 

self-adjoint, and if bounds A, B exist such that 

(25a) 

(25c ) 

then there exists a sequence of values b#n} tending to zero, such that 

a solution to eqs. (1, 2) in the operator form PE YE = 0 exists at -y 0= ~#n 

for each sufficiently large nj and, furthermore, the solution, for each 

-y#n in this sequence, exists and is unique in a neighborhood S(YE#O, p) 

where p#n ~ 0 as n ~ 00. 

Proof: 

According to the estimates of eqs. (9, 10) we may, by choos ing ~#n half­

way between ~#n and ~#( n+ 1 ), use the following asymptotic formulas for 

sufficiently large n: 
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Hence, we have 

(27) IIIF + )'#n(TF#o)-lll ~ 1 + h#n// h - :\#n/ 

1 + (c2 /4 n2 ) • (4 n3/C2 ) ... n, 

Ilrf 0 PE YE#o II ~ (c
2 /4 n

2
) • n . A, 

and ((C2/4 n2 ) . n . A) • (n B) = ABC2/4, inde'pendent of n. Hence, 

in Kantorovich' s theorem W'e may take 
., . ~ . 

(28) / .-'1) > Ac2/4 n, 

K> B n. 
.",' 

Then K • 1) = ABc
2/4, so that K • 1) < ! 1-1 ABC

2 < 2. Also p = (l/K) ... (l/n B) ... ° 
so it suffices in estimating f)2PE to consider the single element (yE#o) 

rather than. all of S(YE#o, p) in ,establishing the bound for K, provided 

that we make ABC2 strictly less than 2. 

Remark: The requirement that f)~(YE#O) be self-adjoint, which makes 

it possible to equate the norm of (TF#O)-l with its largest eigenvalue is,. 

of course, satisfied automatically since the theorem refers explicitly to 

eq. (1) where g is assumed to be an ordinary function of a real variable. 

This may not be the case,;however, in generalizations of this investigation 

to other kinds of operators. 

i 
I 
! 

i 

I 
I 
I 
I 
~' 
! 

II 
V 

\ 



-11- UCRL-180n 

7. Numerical Example. Some calculations have been made for the 

case g( y( 8)) := p • y3( S ), f (8) := cos e, to see how large f3 can be made 

wi thly~t v:i.olating the hypotheses of Theorem l. 

We represent yE#o by the vector of coefficients of its odd-cosine 

expansion. Of course, we must truncate this vector to some finite number 

of components; we determine thi s number by repeating all of the calculat ions 

with various vector lengths until no further change appears in the results. 

All of the functions in Fa and Fex are represented by coefficient vectors 

and the linear operators are replaced by matrices. 

In order to numerically execute a nonlinear operation upon a coef-

ficent vector, we first perform discrete harmonic synthesis to obtain a 

function in "sampled" form; that is, defined at a number of equally-spaced 

sample point s. We then apply the nonlinear operation. to the sampled 

function and perform discrete harmonic analysis upon the result. 

The first calculation is the solution of the reduced equation, 

eq. (3), by Newton's method in the Banach space of coefficient vectors. 

The procedure, which is described in greater detail in the author's Ph.D. 

thesis [10], involves the nonlinear operator 'DGECiE#O) (compare eq. 20): 

(29) (8 E ex) 

We note that the function (1 + P' • CiE#o)2) consists of even cosines and 

we find that the matrix which corresponds to this operator can be generated 

from the even-cosine harmonic coefficients: the element in row i and 

column j is one-half the sum of the coeffi':ient of cos (2 • ! i - j!) . 0 

and of cos (2 • (i + j - 1)) • 8. 
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From the sampled function y#o, the related functions (1 + g.(y#o)) = 

(1 + 3 t3 • (y#o)2),,f(1 + g.(y#o)), and y#o/(l + g.(y#o)) are also obtained. 

The quantity C involved in the eigenvalue estimates is the average 

value (see eq. (6)) of ..[(1 + g'(y#o))j it is convenient to obtain this 

value from the first coefficient (the constant term) in the "even-cosine" 

discrete harmonic analysis of the sampled function. 

Differential and integral operators in the coefficient vector spaces 

have particularly simple forms. The operator ~ (see eq. 15a) operates 

on cos (2k - 1)8 to produce (2k - 1) sin (2k -1)8. When this calculation 

is performed upon the vector corresponding to y#o/(l + g.(y#o)), we obtain 

the odd-sine coefficient vector for ~ (DG(YE#o) )-1 yE#o. The norm which 

appears in eq. (25a) is obtained directly from this coefficient vector. 

The norm of D:FE (VGE(yE#o))-l V
2

GE(YE#0), which is a bilinear operator, 

is the maximum on (0, T./2) of the magnitude of the function 

(29 ) 

since 

(30) 

and this norm is largest with II x#lll = II x#211 = 1 when x#l = x#2 and 

where 8* is the value of 8 at which q(8) attains its maximum magnitude. } 

It is easy to show that q(n/2) = -lj when the leading term of the odd-

sine expansion is sufficiently dominant (as in our case), this is the 

point of maximum magnitude. Since II J ~I = 1, we thus obtain the bounds 

A 9.rid B for Theorem 1. 

~~i 
\i 
i 

!Ii 
I 
i 
I 
I 
1 
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Numerical values for ~ = 1.0 and ~ = 0.4 are shown in Tables 1 and 2. 

Column 1 contains the coetficients of cos (2k - l)e, for k = 1,2, ... ,20, 

in the expansion of YE#O, and C oluinn II shows the corresponding sampled 

function at e = k • TI/40 for k = 0, 1, 2, •.. , 20. In Columns III and IV 

are the sampled functions (1 + g' (y#O)) and ,[(1 + g' (y#O)). Colurmi V 

lists the sampled function q defined in eq. (29). The numerical values of 

A, B, and C for Theorem 1 are also shown. The quantity ABC2 is labelled 

"TEST". We find that this quantity is almost directly proportional to ~, 

and is less than 2 for ~ = 0.4. 

8. Note. The studies reported here were inspired by the author's 

ealier research on the Duffing problem, which was suggested by 

Professor R. J. DeVogelaere of the University of California, Berkeley. 

These. earlier results (see the author's Ph.D. thesis [101) include a 

theorem inferior to Theorem 1, along with a detailed examination of 

some low-order and intermediate-order resonances (up to 15th harmonic, 

-y = 0.089). 

Some effort has been made to obtain a result similar to Theorem 1, 

but with J EF and DFE in adjacent positions so that their effects WOQld 

cancel. (It is conjectured that the theorem, if it could be so modified, 

would hold for ~ = 1 or larger.) No success has been achieved in this 

direction since the obvious procedures applied to eq. (24) destroy the 

normality of (TF~Jo)-l upon which is based the estimation of the nonn 

of this operator from the eigenvalues of the variational equation. 

nlis research was supported by the Atomic Energy Commission under 
.\ 

contract W-7405-eng-48. 
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I I I III IV V 

C .6823 2.3967 1.5481 .0000 
\J 1 7.28C:;SE-Ol .6810 2.3914 1.5464 .0022 

2 - 5.6189 E- 0 2 .6772 2.3757 1.5413 .0044 
3 1.2145 E- 02 .6707 2.3495 1.5328 .0063 
4 - 3.4453 E- 03 .6615 2.3129 1 .5 208 .0078 
5 1. 1130E- 03 .6497 2.2662 1.5054 .0088 
6 -3.8820E-04 .6350 2.2096 1.4865 .0088 
7 1.4244E-04 .6174 2.1434 1.4640 .0076 
8 - 5. 41 81 E- 05 .5966 2.0679 1.4380 .0045 
9 2.11 72 E- 05 .5726 1.9837 1.4084 -.0014 

Ie -E.44E5E-06 .5451 1. 8915 1.3753 -.0113 
11 3.4281E-06 .5138 1. 7920 1.3387 -.0275 
12 - 1. 4 1 C 1 E- 06 .4783 1.6864 1.2986 -.('52<1 
13 5.8667 E- 07 .4383 1. 5763 1.2555 -.C922 
14 -2.4644 E-07 .3932 1.4638 1.2099 -.11)23 
I5 1.0437E-07 .3425 1.3519 1.1627 -.2423 
16 -4.4504E-08 .2857 1.244q 1.1157 -.3723 
17 1.9057 E- 0 8 .2224 1.1484 1 .071 7 -.5467 
18 -8.1190 E-09 .1529 1. 07C)l 1.0345 -.74 Q 5 

,~ 19 3. 2795E- 09 .0780 1.0182 1.0091 -.9~71 

20 -E.7723E-I0 .0000 1 .0000 1.0000 -1.0000 

A= 6.0000 
B= .4389 
C= 1.3295 

TEST= 4.6549 

TABLE 1 • NUMERICAL PE SUL TS FOR BETA=I.0 
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.~ 

~ 
I I I III I V V 

0 .7973 1.7628 1.3277 .0000 \. 
1 E. 33 C; 5 E- 01 .7955 1. 7594 1.3264 -. on 35 
2 -it.1713E-02 .7903 1.7494 1.3227 -.0073 
3 5. c; 8 2 1 E- 03 .7815 1.7328 1.3164 -.0120 
it -1.131cE-03 .7691 1.7098 1.3076 -.0179 
5 2. 4424E- 04 .7531 1.6805 1.2963 -.0258 
6 -5.6971E-05 .7333 1.6453 1.2827 -.0362 
7 1.398EE-05 .7097 1.6044 1.2666 -.0501 
8 - 3. 56 14 E- 06 .6821 1. 5583 1.2483 -.0686 
S S.3178E-07 .6504 1.5076 1 .2278 -.0933 

10 - 2 • 4 8 S e E- 07 .6144 1.452S 1.2054 -.1261 
11 6.7657E-08 .5739 1.3952· 1.1812 -.1694 
12 - 1 • 864 C E- 08 .5287 1.3354 1.1556 -.2258 •. ~ 

13 5.1945E-09 .4786 1.2749 1.1201 -.2983 'l. 
l'/,., 

1 it -1.4617E-09 .4236 1. 2153 1.1024 -.3395 .. 

15 4. 1472 E- 10 .3635 1. 1585 1.0764 -.4999 
16 - 1 • 1 8 5 1 E- 10 .2984 1. 1068 1.0521 -.6264 
17 3.4076E-ll .2287 1.0627 1.0309 -.7593 
18 - S • 834 2 E- 12 .1549 1.0288 1.0 ]43 -.8809 

I"- 19 2. 7915 E-12 .0783 1.0074 1.0037 -.9681 
20 - 5 • 9 1 67 E- 13 .0000 1.0000 1.0000 -1.0000 

A= 2.4000 
B= .5454 
C=·-..:L.1855 

TEST= 1.8394 

TABLE 2. NUMERICAL RESULTS FOR BETA= .4 
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This report was prepared a~ an account of Government 
sponsored work. Neither the United States, nor the Com­
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com­
mis~ion, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 






