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HIGH-ORDER RESONANCE FOR DUFFING'S DIFFERENTIAL EQUATION

by Loren P. Meissner

1. Introduction. The Duffing Problem. The motion of a mass

under the influence of a nonlinear restoring force and a periodic ex-
ternally-applied force is described by Duffing's differential equation
(Duffing, [l]). We restrict our attention to the case where no damping

is present and write the differential equation in the following form:
(1) v y"(0) + y(0) + g(y(8)) = £(6).

We further focus our attention on the case where y(@) has a representation
as a sum of odd cosines; this restriction introduces the boundary

conditions

(2) y(m/2) = 0, y'(0) = o.

In the formulation most often;investigated (Duffing, (1]; Heinbockel,

Struble [2]), eq; (1) is written with g(y(6)) = p - yB(G) and £(8) = cos O.
We shall consider this case in detail as a specific example, bﬁt many of
the results developed here apply equally well in the more general case

so long as f£(6) and g(y(8)) can be represented as sums of odd cosines,

and subject to some restrictions on g' which we will enéounter as we
proceed and which are summarized among the hypéthesesof Theorém 1.

Note especially that we are not restricting our attention to the "weakly

nonlinear" case: that is, we are not assuming that g is "small".

2. Pertwbation analysis when 7y is small: High-order resonance.
We seek to determine the behavior of solutions to egs. (1, 2) when vy is
small: in particular, the relation of such solutions to the solution

fory = 0. When 7y = O, we have the "reduced eguation" (which is not
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even a.differential equation), whose solution we call Vot

(3) v (0) + ey (0)) = 2(6).

Linear perturbation of eq. (1) about y, produces the following "variational

equation,'" which is a special case of Hill's equation:

O "w>+u+g<ywn> 2(0) = 05 (056 sn/2)
Z(W/E) }{ z (O)

We summarize certain results obtained by applying standard methods

(Magnus, Winkler [3], p. 51) to this case. Let

(5) - u'(e)

1+ g'(y,(0)). (0 =6 =m/2)

Assume that MLL > 0 on (O, ﬂ/2). Then, the Liouville transformation,

normalized so that t(O).=.O and t(n/2) = w/2, is

il

(6) 5(9) (1/0)‘f9 W(s) de;

(e/rr f M2(9 o .

Q
1!

This transformation brings the differential equation into the canonical

Sturm-Liouville form

(7) w'(t) + (A + a(t)) - w(t) = 0 (0 st =sm/2)
W(W/Q) = 0, Wx(o) = 0,

where -

N

M(6(t)) - 2(6(t)),
(1/u(8(£))) L w(6(2)).

at”

(8) : w(t)
a(t)

]
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If g is bounded on (0, m/2) by ky = a(t) = k,, then we may apply the

Comparison Theorem (Ince [M], P. 2%2) with the boundary condition
1
cos (C®/ngy + K2)2 . (n/2) = 0 to show that the values y = Ay, &t which

eq. (4) Hhs a non-trivial solution, satisfy the conditions

(9) (en - 1)° - K, ce/xn < (2n - 1)° - k.

and és n —« we have the asymptotic behavior A\, ~ Ce/h ne.

The standard "singular perturbation" analysis for problems of
this type, where the order of the differential equation changes by more
than one at the'limiting value of a parameter, is given by Wasow [5].
However, Wasow's "assumption C" (page 322) requires thatwr(-Mu) must
never be purely imaginary. This assumption is directiy éontfadictory
4 > 0, which is the essential condition for the existence of
real eigenvalues. In fact, it should not be considered surprising that
"smoofh" behavior as Y — O may be incompatible with the existence of
arbitrarily small values of ¥y at which the variational egquation has'é

non-trivial solution.

The phenomenon called "nonlinear resonance' is associated with the

existence of these non—trivial solutions of the variational equation. A

gualitative description of the differeﬁce between this phenomenon and
ordinary (linear) resonance is given by Stoker [6] (see page 88) for
some examples including the Duffing problem with 7Y near 1. Resonance
when ¥ is small (compare Hayashi [7], page 35) is assoclgted with large
amplitudes in the higher harmonics pf y, even though f may consist only
of the single "base' frequency; hence, in this case, the phenomenon is
often called "superharmonic" or "higher-order" nonlinear resonance.

Actually, in this paper, we are interested in locating these regicns of
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high-order resonance only in order to avoid them.
From eq. (9), we derive the following lower bound for the

separation between adjacent eigenvalues:
(10) Ay - Mo 2 C(Bn + X )/((2n - 1)° ) ((2n + 1) = k)
n = Myl = 17 - - ko RSRE

which is positive for suffiéiéntly large n and asymptotically

(. - A

n n+l) ~ 02/2 n5. Thus, if we choose 7y, halfway between A, and A

n+1’
we have a lower bound (whicﬁvdepends upon n, and is asymptotically

Cg/h n5) for the distance of yn from its nearest eigenvalue. Subject to
the assumptions used in establishing thesé bounds we shall use them to
demonstraté (see Theorem 1) that a solution to the Duffing problem
exists'for each vy, sufficiently far out in this sequence and, further-
mare, that these solutions tend to the solution Yo of the reduced
equation, eq. (3), as Vn'ﬁ‘ 0.

5. The Duffing problem in operator form. We now find it necessary

to introduce some notational Conventions.
Let o be the interval (0, m/2) and let E be the following subset

of Q?(a):

0}.

(11) By = lyge £a) = v (1/2) = 0, y}(0)

S5

Then Eb is a Banach space, with “yEH = (fa yEg) « Let the operators

Gg» Dgr, Iy, and finally Py be defined on Ey 'as Tollows:
(12a) (Cg vg) (8) = ye(0) + &(yg(0)) - £(8);

(120) (D2 yp) (8) = (- &P/9?) yy(0); (6 ¢ )

v
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Then the Duffing problem may be written as: Pp yp = O.

Subscripts in this notation will be used to indicate the domain
of an operator or function, and we will use a superscript with number
sign as an index; that is, to specify a particular element of a space
#2

’

or of & set of operators; for example, y#l, P etc. The superscript

(#0) will be reserved to indicate the solution of the reduced equation,

eq. (3)
(14) G yi° = 0;
Py YE#O = <y Dy’ YE#O-

We also need fo be able to discuss the first derivative of
Vg € Ey- Although, the second derivative, whicﬁ appears in eq. (1),
causes no special difficulty, the first derivative of our odd cosine
series is a series of odd sines. These satisfy a different'set of
boundary conditions and, hence, lie in a different space. We call this

space Ej and we define the operators DFE and DEF as follows:

(152) (Dpg vg) (0) = (- ¢/®) yg (0), (vp € E))
(DEFV XF) (6) = (d/d@) XF (9)' (XF € Fa)
Now-(DFE yE) € Fd and (DEF XF) € E&,'so DE2 = DEF o DFE' The inverses

of these operators are the integral operators JEF = (DFE)'l, Jpgp = (DEF

0 - 2)-1
and JEF JFE = (DE )

s, Where

Gs)  Ggre) O - vp (e, (pen)

. 0 .
(JEF XF) (6) = 1fo X (s) ds. » (XF £ EJ)
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L. Normal and self-adjoint operators. Let us review some properties of

linear operators on E& Ciig(a). We define the norm of a linear operator HE as

(16a) gl = sup lug ygl/llygll : vge By}

The adjoint of Hg is the operator Hg* such that for any yﬁ#l, yE#Q invﬂi,

(65) [, Uiy (0)) - wP0) @ = [, v @) - (g P00 w0,

2 - .
We know that [|Hgl is equal to the 1.u.b. of the eigenvalues of Hy o Hy

and HHEH is not less than the l.u.b. of the eigenvalues of ﬁE' It HE is a
- normal opérator; that is, HE o-HE* = Hﬁ* ° HE’ then ”HEH is equal to the l.u.b.
of its eigenvalues and so, in this case, we‘can'bound HHﬂ‘ if we can bound the
eigenvalues. We shall be especially interested in self-adjoint operators;

that 1s, normal operators. in the special case HE* = HEf

A linear operator of the form

(16¢) (Hg y5)(0) = r(8) - yg(6)

is obviously self-adjoint. Furthermore, if HE is a self—adjoint operator on

Ea’ then JFE o HE ° Jgpp 1s self-adjoint on Fd. For, any 1inear operator HE
has the following effect:

(164) H(cos (25 - 1) 8) = 3, hsk cos (2k - 1) 6 - - 1, 2,

and the self-adjoint of Hp 1s equivalent to the condition hjk = hkj for all

3

j, k. But we may see that this same condition on Hp 1s exactly what is

needed to show that the composite operator is self-adjoint on ¥,.
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5. Kantorovich's Theorem: Solutions of an operator equation in
)

a. Banach space. The following theorem is given by Kantorovich [vef. 8, p.

Hypotheses:
P is defined on a neighborhood S(y#o, p) in a Banach space T'.
Thelliﬁear operator F#O = (DP(y#O))—l exists, where DP(y#O)
is the Frechét dérivative (see Dieudonne [9], p. 1k41)

of P at y#o.

(178) I o 29 = o

(17) HI‘#O o 9°P (/)| = K for a1l y#pe s(7°, o)
(17¢) n=K.ns1/e
pEp = (L-v(1-2-1) -n/n.
Conclusion: |

A solution to Py: O exists and is in s'(y#O, o).
Furthermore, if |
for h < 1/2, p < p#l = (1+Jy(-2-n))n/, or
for b = 1/2, p = oL, |
" then the solution is unique in S(y#o, o). |
We note, as a particular consequénce of Kantorovich's theorem, that

the solution exists and is unique if
(18) - " p =27 = 1/K.

6. Existence of Solutions as Y 2 0. We apply this theorem to the

Duffing problem in the operator form PE Yg = 0, where PE is given by

eq. (13) and

2

iy : :
0y - Doglyy ) - YDy -

(12) DPg( VA5

7067 .
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Here DGE(yE#O), the Frechet derivative of Gp at yE#O, is a linear operator
on the Banach space ﬂj and since g is an ordinary function of a real

variable, it follows from eq. (lEa) that

(20)  (005(y ) v) (€) = (1+ &' (y5™ (0))) - y,(0). (6 € a)

Comparing eq. (16c), we see that DGE(yE#O) is self-adjoint.

We introduce the operator TF#O:

' #O— ° #O ° - = o #O o
(21) T = Jpy o DGylyg" ) © Tgp - VIp = gy © Pplyg ) o I

We see that TF#O is also self—adjoinf and, furthermore, that (7- n)
is an eigenvalue of TF#O whenever A\ is an eigenvalue of Jpp © DGE(yE#O)o
JEF; that is, whenever there is a nontrivial solution of (JFE o DGE(yE#O)VO
Jgp - Mp) xp = 0, or of (DGE(yE#O) - I@?) yg = 0. But, we see from
eq. (20) that the latter equation is the same as the variational equation,

eq. (4), whose eigenvalues we estimated in Section 2. Let k#n be the

eigenvalue of the variational equation nearest to 7y; then
oo Oy-1 N
(52) 1) = 1/ 1y - 7.

Ly(a + v 1) to write:

Il

(23) (Tt = (Tp+y - (TP o (Jyg o DGE<yE#O> o Igp)

= (1p+ v - (0™ o Dy o (O0p(ys™0)) T o D
()t o N a1 g

- T e (Ipt v o ()™ o Dpg e @ag(yy 0N

Because of eg. (22), we can expect trouble (resonance) when ¥ is too

[al

<o
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close to an eigenvalue of the variational'equation and it is not surprising
that Kantorovich's theorem fails to prove the existence of solutions
near yE#O in these cases. On the other hand, if we can choose a sequence
of values'y#n, each of which is sufficiently far from the nearest eigen-
value x#n, then we may be éble to meet the conditions of Kantorovich's
theorem as‘y#n-% 0. These observations are made precise in the following
theorem:

Theorem 1. Let Mu be given by eq. (5), C by eq. (6), and q by
eq. (8), and suppose that Mh > 0 and k] £ q s ky; also, let yy 70 be the
solution of the reduced equation; eq. (3). If the operator DGr(yg #O) is

self-adjoint, and if bounds A, B exist such that

(252) gl - Iny, 0eg(rgto) ™ v Il < a,
(o) g - oy, 0oy o2e (v O < B,
(25¢) ABC® < 2,

then there exists a sequence of values {V#n} tending to zero, such that

#n

a solution to egs. (1, 2) in the operator form Pp yg = O exists aty = ¥

for each sﬁfficiently large n; and, furthermore, the solution, for each

#m

Y in this sequence, exists and is unique in a neighborhood S(y #O o)

i

where p ~.0 as n >,

0
Proof: Note that Py ygf0 =y yg0, and D PE(yE# ) =9 GE(y #0.

According to the estimates of egs. (9, lO) we may, by choosing V#n half-

n

way between A and x#(n+l), use the following asymptotic formulas for

sufficiently large n:

[
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(26) V]~ P /i o

™ )= e D 2D

Hence, we have

(27) Iz + g0 U 1+ WPy - AP
| ~ 1+ (Cg/h n®) - (L ni/CE) ~ n,

I o pp g Ol () n o,
'||rE#°@ SQPE(yE#p)II ~n - B,

[

and ((Ce/u ne) -n - A) - (nB)= ABCE/M, independent of n. Hence,
in Kantorovich's theorem we may take

-
(28) > ACT /b on,

K> B n.

Then K » 1 :'ABQE/A, so that K - n <

ol

so it suffices in estimating DEPE to consider the single element (yEﬁo)

rather than.all of S(yﬁ#o, p) in establishing the bound for K, provided

that we make ABC2 strictly less ihan 2f _
Remark: The requirement that DGE(yE ) be self-adjoiht, Which makes
it possible to e@uate_the norm:of (TF#O)'l wiﬁh its largest eigenvalue'is,.
of course, satisfied automaticélly since the theorem refers explicitly to
eq. (1) where g is assumed to be aﬂ ordinary function of a real variable.

This may not be the case,ihowever, in generalizations- of this investigation

to other kinds of operators.

if ABC® < 2. Also p = (1/K) ~ (1/nB) ~o0

d-;.
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7. Numerical Example. Some calculations have been made for the

case g(y(0)) = ¢ - yB(S), f (6) = cos A, to see how large B can be made
without viclating the hypotheses of Theorem 1. |

We repfesent yE#O by the vector of coefficients of its odd-cosine
expansion. Of course, we must truncate this vector to some finite number
of components; we determine this number by repeating all of the calculations
with various vector lengths until no further change appears in the results.
All of the functions in E, and F, are represented by coefficient vectors
and the linear operators are replaced by matrices.

In order to numerically exécute a nonlinear operation upon a coef-
ficent vector, we first perform discrete harmonic synthesis to obtain a
function in véampled” farm; that is, defined af a number of equally-spaced
éample points. We thenvapply the nonlinear operation to the sampled
function and perform discrete harmonic ahalysis upon the result.

The first calculation is the solution of the reduced equation, .
eq. (3), by Newton's method iﬁ the Banach space of coefficient vectors.
The procedure, which is described in greater detail in the author's Ph.D.

thesis [10], involves the nohlinear oﬁerator DGE(_E#O) (compare eq. 20):
(29)  (0og(y0) ¥p)(8) = (1 + B - (70 (0))7) « y(6). (6 ea)

We note that the function (1 + £ - (§E#O)2) consists of EXEE cosines and
we find that the matrix which corresponds to this operator can be generated
from thé even-cosine harmonic coefficiénts: the element in row 1 and
column j isvone—half ﬁhe sum of the coeffivient of cos (2 - ]i-3]) -0 |

.

and of cos (2 - (i + 3 - 1)) - 6.
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#0

From the sampled function y”~, the related functions (1 + g'(y#o)) =
(L+38B - (y#o)e),ff(l + g'(y#o)), and y#o/(l + g'(y#o)) are also obtained.
The qguantity C involved in the eigenvalue estimates is the average
value (see eq. (6)) of S+ g'(y#o)); it is convenient to obtain this
value from the first coefficient (the constant term) in the "even-cosine™
discrete harmonic analysis of the sampled function.

Differential and integral operators in the coefficient vector spaces
have particularly simple forms. The operator Dpp (see eq. 15a) operates
on cos (2k - 1)0 to produce (2k - 1) sin (2k -1)0. When this calculation
is.performed upon the vector corresponding to yﬁKV(l + g‘(y#o)), we obtain
the odd-sine coefficieﬁt vector for Dpp (D’G(yE#O))’l yE#O. The norm which -
appears in eq. (25a) is obtained directly from this coefficient vector.

The norm of Dy (DGE(yE#O))-l DEGE(yE#O), which is a bilinear operator,

is the maximum on (o, ﬁ/2) of the magnitude of the function

(29) a@) = & () o (70,
: ' : w2
5o Moo= (e - e - P0) @)D,
and this norm is largest with Hx#l“ = Hx#é“ = 1 when x#l = x#2 and
G H0) - 2(6) =86 - %),
where 0% is the value of 6 at which a(f) attains its maximum magnitude. *

It is:- easy to show that q(W/E) = -1; when the leading term of the odd-
sine expansion is sufficiently dominant (as in our case), this is the
point of maximum magnitude. Since “JEEM = 1, we thus obtain the bounds

"A and B for Theorem 1.

[A J
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Numerical values for B = 1.0 and B8 = O.4 are shown in Tables 1 and 2.
Column 1 contains the coe%ficients of cos (2k - 1)0, for k = 1, 2; ce.y 20,
in the expansion Qf yE#o, and Column fI shows the corresponding sampled
function at 6 = k - /40 for k = 0, 1, 2, ..., 20. In Columns TTI and IV
are the sampled functions (1 + g'(y#o)) and Nf(l + g'(y#o)). Columii V
lists the sampled function g defined in eq. (29). The numerical values of
A, B, and C for Theorem 1 are also shown. The quantity A302 is labelled
"TEST". We find that this quantity is almost directly.proportional to B,
and is less than 2 for B = O.k.

8. Note. The studies reported here were inspired by the author's
ealier research on the Duffing problem, which was suggested by
Professor R. J. DeVogelaere of the University of California, Berkeley.
These earlier results (see the aﬁthor's Ph.D. thesis [10]) include a
theorem inferior to Theorem 1, along with a detailed examination of
some low-order and intermediaﬁe—order resonances (up to lSth hafmonic,

v = 0.089). |
Some effort has been made to obtain a résult similar to Theorem 1,

but with Jgp and D "in adjacent positions so that théir effects would

FE
cancel. (It is conjectured that the theorem, if it could be so modified,
would hold for B = 1 or larger.) No succesé has been achieved in this
direction since the obvious procedures applied to eq. (2&) destroy the
normality of (TF#O)'l upon which is based the estimation of the norm
of this operator from the eigenvalues of the variational equation.

This research was supported by the Atomic Energy Commission under

contract W-7405-eng-48.

~
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








