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Molecular processes of creep in metallic glass thin films are sim-
ulated at experimental timescales using a metadynamics-based
atomistic method. Space–time evolutions of the atomic strains
and nonaffine atom displacements are analyzed to reveal details
of the atomic-level deformation and flow processes of amorphous
creep in response to stress and thermal activations. From the sim-
ulation results, resolved spatially on the nanoscale and tempo-
rally over time increments of fractions of a second, we derive a
mechanistic explanation of the well-known variation of creep rate
with stress. We also construct a deformation map delineating the
predominant regimes of diffusional creep at low stress and high
temperature and deformational creep at high stress. Our find-
ings validate the relevance of two original models of the mech-
anisms of amorphous plasticity: one focusing on atomic diffusion
via free volume and the other focusing on stress-induced shear
deformation. These processes are found to be nonlinearly coupled
through dynamically heterogeneous fluctuations that character-
ize the slow dynamics of systems out of equilibrium.

creep | molecular simulation | deformation mechanism | atomistic
modeling | metallic glass

Deformation and flow are fundamental in the rheological
behavior of many materials (1–4). For the molecular under-

standing of plastic response under stress (creep), a standing
challenge is to know the details by which the constituent atoms
rearrange themselves individually and collectively in a local envi-
ronment of stress and temperature. Creep experiments have
been extensively reported on amorphous materials, including
metallic glasses and colloidal systems (5–9). Yet, the relationship
between stress and temperature effects on creep and the under-
lying microscopic processes remains an open question. Theo-
retical models have been proposed to describe the mechanisms
of molecular deformation and flow responsible for amorphous
plasticity. Spaepen (10) considered the distinction between
homogeneous and inhomogeneous flows in metallic glasses and
introduced the concept of the local free volume as an order
parameter. In this view, local strain production and dissipa-
tion are assumed to be associated with individual atomic jumps.
Argon (11) proposed a plastic deformation model of metallic
glasses based on the notion of local shear transformations driven
by stress and in the presence of thermal fluctuations. The atoms
participating in such processes essentially undergo an inelastic
shear deformation. Falk and Langer (12) later introduced the
term shear transformation zone (STZ) in interpreting simula-
tion results of viscoplastic deformation of amorphous solids. The
STZ theory was further extended to be capable of describing
temperature- and rate-dependent amorphous plasticity (13, 14).
The term STZ has become widely adopted in studies of amor-
phous materials. (4, 8, 15–20).

We seek to identify the elementary processes of deforma-
tion and flow in amorphous creep through atomistic simulation.
A bottleneck well-known in the literature is that the temporal
scales relevant to creep are beyond the reach of traditional
molecular dynamics (MD). To compensate for its inherently
microscopic timescales, MD simulations of creep had to resort

to extreme conditions of stress, temperature, and strain rate
(21, 22). Here, we implement a metadynamics formulation that
allows transition-state trajectories to be generated on apprecia-
bly longer timescales on the order of fractions of seconds. By
analyzing the distributions of atomic strain and nonaffine particle
displacement, we observe the effects of stress and temperature
on the evolution of activated states at the microscale. We find
that the processes of single-particle diffusion and of shear defor-
mation of small clusters of particles are both active in steady-
state creep; in particular, their interplay gives rise to a char-
acteristic upturn behavior of stress effects on creep rate. The
simulation results also support a mechanism map showing a
regime of low stress and high temperature where diffusional
creep dominates and a high-stress regime governed by shear
deformation creep. Our findings suggest that, while the two orig-
inal models of amorphous plasticity (10, 11) are complementary
in their individual focus, their combined effects need to be ana-
lyzed using more fundamental theories capable of treating the
effects of nonlinear feedback.

Simulation Methods and Model
We consider a model Cu50Zr50 metallic glass system in two
dimensions. The atoms interact through a Lennard–Jones poten-
tial (23, 24), which has been used to study plastic deforma-
tion (25) and thermally activated flows in metallic glass (26).
Two amorphous structures with different sizes, 39.5 × 19.7 nm
(containing 10,000 atoms) and 62.5 × 31.2 nm (25,000 atoms),
are prepared by quenching from a high-temperature liquid state
(Materials and Methods has additional details). We apply uniaxial
tensile stress to the system and follow the procedure described in
Materials and Methods to simulate the time evolution of creep.

Significance

The individual and collective molecular displacements in an
amorphous solid undergoing plastic deformation are simu-
lated by an atomistic method that allows incremental motions
to be observed over a time window of fractions of sec-
onds. Because the timescale matches well with the condi-
tions of experimental measurements, simulation details pro-
vide dynamical evidence for the fundamental mechanisms of
amorphous creep. In particular, knowledge of the interplay
between diffusion (flow) and mechanical deformation pro-
cesses enables us to explain the stress and temperature behav-
ior of the experimental data as well as the validity of model
descriptions of molecular mechanisms in terms of spatially and
temporally heterogeneous fluctuations.
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The algorithms allow us to investigate creep strain evolution and
the corresponding molecular mechanisms at various stresses and
temperatures, in particular at low stress and slow creep rate. To
quantify the atomic-level plastic deformations in creep, we com-
pute two local strains: deviatoric strain D2

min and von Mises strain
ηMises . In addition, we compute nonaffine displacement as a mea-
sure of single-particle dynamics. Detailed descriptions of atomic
strains and displacement are discussed in Materials and Methods.
We find negligible system size effects on the results; therefore,
our discussions will refer to the larger system unless explicitly
stated otherwise.

Creep Curves
Fig. 1 shows the time development of the system strain deter-
mined by metadynamics simulation. The creep curve shows the
classical behavior of three stages of strain evolution. The initial
period of strain nucleation and distribution, consisting of a steep
increase followed by a gradual approach to saturation, is known
as primary or transient creep. The secondary stage of steady-state
creep is a period of linear strain increase in time. The extent
of this stage depends on the combination of applied stress and
system temperature. For relatively low stresses, the secondary
stage may have a considerable extent before the onset of ter-
tiary creep, where the strain rate increases without apparent limit
(Fig. 2). In the case of Fig. 1, the onset of structural instability at
a strain level of ∼2.5% is readily observed. Notice that the rel-
evant timescale of creep is of the order of fractions of seconds,
comparable with those of laboratory measurements and beyond
the capabilities of traditional MD.

Fig. 2 shows a series of creep curves spanning the stress range
from 42 to 258 MPa simulated at a temperature of 0.68Tg . At
low stresses, one sees only the primary and secondary stages of
creep during the simulation. For these cases, the creep rate given
by the slope in the secondary stage is sufficiently small that the
system remains in steady-state creep throughout the simulation.
In contrast, for the two highest stresses, one sees the onset of
tertiary creep. While our interest is in the mechanisms sustain-
ing steady-state creep, nevertheless, it is pertinent to note that
tertiary creep will be triggered by the appearance and persistent

Fig. 1. Simulated creep curve: time evolution of system strain ε at stress
198 MPa and temperature 0.68Tg. The creep rate ε̇ of the secondary stage
is essentially constant and at a minimum. The background colors are drawn
schematically to denote the creep rate.

Fig. 2. Simulated creep curves at indicated stress levels at a temperature
of 0.68Tg.

growth of a localized region of high strain, leading to structural
instability (failure) of the system (a discussion of atomic strains
evolution in creep is in Supporting Information) (8, 27).

Nonaffine Displacement and Deviatoric Strain Distributions
(Dynamical Heterogeneities)
Fig. 2 indicates that the applied stress has a significant effect
on the time evolution of the creep (system-level) strain. One
can ask for the atomic rearrangements and displacements asso-
ciated with the observed deformation. In Fig. 3, we show how
the probability distributions of nonaffine particle displacement
δx in the tensile direction vary with stress. Each distribution
is seen to be composed of a Gaussian core and exponentially
varying wings. This behavior has been observed previously both
in simulations (22, 28) and in experiments (29) of glassy mate-
rials close to jamming and glass transitions. They have been
interpreted as local fluctuations known as dynamical hetero-
geneities. Here, as stress increases, we observe that the exponen-
tial wings become broader and that a significantly larger fraction
of atoms undergoes large displacement. The increasingly more
pronounced non-Gaussian behavior can be interpreted as stress-
reinforced dynamical heterogeneities. The coexistence of atoms
moving appreciably faster or slower than the average is regarded
as a characteristic attribute of space–time fluctuations in driven
systems. From inspection of Fig. 3, one can also see a change
in the overall shape of the probability distributions starting from
143 MPa.

The nonaffine displacement δx plays the role of a dynami-
cal order parameter for single-particle diffusion. Similarly, the
atomic strains, ηMises and D2

min , could be associated with local
collective deformation. We will focus on D2

min as a more discrim-
inating indicator for local plastic rearrangement (a discussion of
D2

min and ηMises is in Supporting Information). Fig. 4 shows the
variation with stress of the distributions of D2

min . The distribu-
tions of small D2

min follow a power law decay with different expo-
nents, and at large D2

min , the distributions show a fall off that is
decidedly slower for larger stress, implying more numerous acti-
vations of high-strain sites. Fig. 4, Inset shows that the number of
atoms participating in large strain deformation indeed increases
sharply with increasing stress. Corresponding to the stress regime
separation noted in Fig. 3, an appreciable increase in the number
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Fig. 3. Statistical distributions of nonaffine particle displacement p(δx) at
0.68Tg and the various stresses indicated. The solid line represents the fitted
Gaussian function, whereas the dashed line is exponential function used to
guide the eye. The displacements δx are measured with a time interval of
δt = 0.01 s.

of atoms involved in shear transformations is seen starting at a
stress of 143 MPa. This suggests that stress plays a fundamental
role in the physical manifestation of deformation and flow behav-
ior in driven systems.

To see what molecular mechanisms could be associated with
Figs. 3 and 4, we show in Fig. 5 the local space–time distribu-
tions. The spatial maps are resolved at the nanoscale and tempo-
rally measured over a time interval of 0.01 s. Maps of nonaffine
displacements δx are shown in Fig. 5 A and B. Correspondingly,
maps of D2

min (local deformation) are seen in Fig. 5 C and D. Fig.
5 A and C refers to low (64 MPa) stress, and Fig. 5 B and D for
high (258 MPa) stress.

In Fig. 5A, the features of the nonaffine displacement map
can be essentially attributed to thermally activated atomic dif-
fusion, as initially proposed by Spaepen (10). It could serve as
the baseline for measuring responses through single-particle dis-
placements at higher stress. Fig. 5B indicates that the displace-
ment magnitude of the sites of high mobility is about a factor of
three larger than the displacements at low stress. Moreover, we
see the presence of bidirectional flow (red–blue interface in Fig.
5B), as several such active zones appear along the 45◦ direction.
When looking at Fig. 5D, these activated events appear as local
strain bursts, a striking effect of stress-induced deformation. We
regard this to be a specific simulation result, obtained at a physi-
cally meaningful timescale, that illustrates the synergistic effects
of stress activation.

In Fig. 5C, we see little or no local shear deformation activ-
ity, which suggests that thermally diffusional rearrangements at
the temperature of the simulation produce relatively small local
plastic strain. These weak events seem quite random in space and
do not align in any particular direction. We conclude that, at low
stress, creep proceeds mostly by single-particle diffusion rather
than cooperative atom deformation. However, at high stress, Fig.
5 B and D implies that diffusive and deformation processes are
both activated and coupled through heterogeneous stress fields
in the driven system.

We apply the above findings to predict the variation of creep
rate with tensile stress, a behavior of fundamental interest in
the mechanics and physics of creep (30, 31). At very low stress,
we expect the effects of thermal activation to dominate, which

should lead to a mild increase of creep rate with stress. As stress
increases, both flow and deformation mechanisms contribute
smoothly until the stress exceeds a threshold, at which point ther-
mal and stress activations accelerate. The significant increase in
shear transformation deformation events, shown in Fig. 4, Inset
and the gap noted in Figs. 3 and 4, are hallmarks of a threshold
(cross-over) behavior that is widely observed in experiments (Fig.
6B). We consider this stress threshold to reveal a regime of non-
linear response, which has not been previously interpreted at the
molecular level.

Creep Rate Upturn
The simulated creep curves allow us to determine a steady-
state creep rate at each stress. Plotting the results in Fig. 6A,
we see a bimodal behavior in the monotonic variation of creep
rate ε̇ with stress σ, a behavior visible in both the large and
small systems. At low stress, ε̇ is characterized by a creep
rate slope of n ∼ 1.5, where n is known as the stress expo-
nent. At high stress, n increases to ∼5. Notice that the stress
value for the change in index n coincides with the stress gap
mentioned in the discussions of Figs. 3 and 4. The transition
in creep rate behavior is well-known in experiments on dif-
ferent materials (32–34). It is generally understood to signify
thermal activation processes at low stress, changing over to
stress activation for reasons that have not yet been resolved
particularly regarding the roles of atomic diffusion and shear
deformation.

To compare our results with experiments, the simulation data
are shown again in Fig. 6B along with two sets of measurements
(9, 33). Reduced stress σ/σ0 and strain rate ε̇/ε̇0 are plotted,
where σ0 and ε̇0 are threshold values for creep rate upturn. The
upturn in creep rate indicated by the simulation data matches
well with the experiments. Our discussions concerning Figs. 3–
5 lead us to interpret the creep rate behavior as evidence of the
nonlinear response involving the coupling of the atomic diffusion
and shear transformation deformation.

Creep Mechanism Map
The creep simulations that we have conducted cover three tem-
peratures, 0.57, 0.68, and 0.91Tg , and stress values ranging

Fig. 4. Statistical distributions of deviatoric strain p(D2
min) at a temperature

of 0.68Tg and the various stresses indicated. The strains are calculated with
the time interval δt = 0.01 s. Inset shows variation of the number of shear
transformation deformation (STD) atoms with strain that is larger than 0.05.
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Fig. 5. Spatial distributions of nonaffine dis-
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and D). All measures are time incremental taken
over a time interval of 0.01 s. Atoms are colored
according to the magnitude of their displace-
ments or strains. At each level, A and C denote
low stress (64 MPa), and B and D denote high
stress (258 MPa).

from 15 to 290 MPa. At each temperature, a stress-dependent
creep rate (the rate for steady-state creep) curve was obtained,
from which the stress exponent n was determined. The stress–
temperature values of our simulations are plotted in Fig. 7 using
squares and circles to denote whether the corresponding value of
n is ∼1 or > 5, respectively. Fig. 7 is effectively a creep mecha-
nism map for our model metallic glass. It delineates the stress–
temperature regimes, where single-particle diffusion and shear
transformation deformation are the limiting behaviors.

Looking at the simulation data across the temperature range,
one can visualize a mechanism boundary separating the map into
two domains, where either diffusion or shear deformation pre-
dominates. To motivate such a boundary, we recall well-known
empirical expressions based on transition-state theory for the
limiting behavior of strain rate in amorphous systems. At low
stress, the creep rate ε̇ is written in the form (10)

ε̇= γ0 · exp(−
Qd

kT
)
Vd

kT
σ, [1]

where Qd and Vd are the activation energy and activation vol-
ume for diffusion, respectively. This is derived based on the free
volume diffusion model. At high stress, a more appropriate form
is (8, 11)

ε̇= γ0 · exp
(
−Qst −σVst

kT

)
, [2]

where the subscript st denotes shear transformation. This is com-
patible with the shear transformation deformation model. Set-
ting Eq. 1 equal to Eq. 2 and treating these activation parameters
numerically, we find the locus of (σ, T) values for the mechanism
boundary to be essentially a straight line: σ(T )= a + bT (Sup-
porting Information has details). The red dashed curve in Fig. 7 is
drawn having this functional form and adjusted to separate the
groups of squares and circles. Thus, the simulation data are able
to accommodate a boundary that would have the two limiting
behaviors described by Eqs. 1 and 2.

For experimental validation, we show in Fig. 7 mechanical
deformation measurements on a five-component metallic glass
(9). Except for an overall shift, the experimental and simula-
tion results both display the same predominant domains of dif-
fusional and deformational creep. One can offer only qualitative
reasons why a comparison between this simulation and experi-
ment should be considered meaningful. For example, differences
between the simulation system and the experimental samples
can be quite significant. These could arise from their respective
preparations, such as cooling rate and casting defects and sur-
face polish imperfections. Another factor is that an idealized 2D
binary mixture model is being compared with measurements on

a 3D five-component material. Although a 2D model could be
capable of capturing aspects of thermally activated diffusion and
stress-induced shear transformation processes, one could argue
that the system dimensionality could affect activation energy

A

B

Fig. 6. (A) Stress dependence of creep rate from simulations with two dif-
ferent system sizes of 25,000 and 10,000 atoms. (B) Stress variation of creep
rate. The two sets of experimental data 1 (crosses) and 2 (triangles) are
adapted from refs. 9 and 33, respectively; σ0 and ε̇0 are threshold values
in the creep rate–stress curve.
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barriers of elementary processes, which in turn, could influence
the creep rate. In addition, the cooling rate in sample prepara-
tion will affect the underlying potential energy landscape, and
therefore the creep rate response. Indeed, we have performed
additional simulations at a cooling rate three orders of magni-
tude higher and found the mechanism boundary to shift down-
ward in a manner that brings experiments and simulations in
Fig. 7 closer together (a discussion of cooling rate is in Support-
ing Information). Other than sample preparation, the shift of the
mechanism boundary also may be rationalized by noting that dif-
ferent spatial correlation lengths are involved in single-particle
jumps vs. collective distortions of particle clusters, the former
being more short-ranged and therefore less cooling-rate sensi-
tive than the latter (35).

Discussion
In this work, we relate the simulation results to the mecha-
nisms proposed by Spaepen (10) and by Argon (11), because
each provides a clear-cut physical description for identifying the
molecular processes governing creep under varying stress and
temperature conditions. An appropriate next step would be to
connect the simulation results to theoretical analysis, such as
the STZ concept of plastic deformation in amorphous materi-
als. The term STZ, initially conceived to describe a transient
flow defect, has evolved as a statistical thermodynamics-based
theoretical description of system-level response in a thermal and
stress environment. The original theory (12) has been reformu-
lated (14), reviewed (36), and updated (37). At the this time,
STZ seems to play two different roles: a mechanism combining
the ideas of Spaepen (10) and Argon (8, 11, 38) or a theoretical
framework for interpreting experiments or simulations (39, 40).

In discussing Fig. 6, we have regarded the creep rate upturn
as signifying the synergistic actions involving single-particle dif-
fusion and shear-induced deformation. One can imagine quan-
tifying this interpretation by using STZ theory to explicitly cal-
culate the creep rate response to stress. Recently, Langer (37)

Fig. 7. Creep mechanism map showing normalized stress–temperature
regions of dominance; µ represents the elastic modulus of materials. Sim-
ulation data are denoted as circles (n< 2) and squares (n> 5). The bound-
ary separating the predominant shear transformation deformation (STD)
mechanism from atomic diffusion mechanism regions is indicated by the red
dashed curve. Also shown are experimental data (9) with diamonds (n> 5)
and crosses (n ∼ 1).

has reported a study of a similar problem, in which the density of
STZs and an effective thermodynamic temperature were intro-
duced as dynamical variables in a set of coupled equations of
motion with a stress-dependent deformation rate.

We believe that the increase of the stress exponent from approx-
imately two to five delineates a regime of nonlinear response in
the rheological behavior of amorphous materials, a consequence
of the nonlinear coupling between atomic diffusion and shear-
induced deformation. More generally, it indicates an interplay
between thermal and stress-activated processes, involving loading
effects, thermal noise, and stress-induced fluctuations (41).

In summary, we present findings to quantify the molecular
mechanisms of steady-state creep in a model metallic glass. At
low stress and high temperature, the dominant mechanism is
observed to be thermally activated particle flow, while at high
stress, the mechanism is a more complex process of stress-
induced enhanced local shear deformation and atomic diffu-
sion. Taking these processes together leads to an interpretation
of the experimentally observed stress and temperature behav-
ior of amorphous creep as well as a unifying picture of single-
particle diffusion and collective atom rearrangements. This per-
spective motivates revisiting the existing notion of dynamical
heterogeneities (42–44) and a variant of self-organization in
slowly driven threshold systems (45) in the spirit of assessing
various theoretical frameworks, such as the STZ theory (37),
expanded mode-coupling formalism (46), mean field approaches
with weakening mechanism (47), and time-dependent transition
theory modeling (48).

Materials and Methods
Model Metallic Glass. To prepare the metallic glass thin film configura-
tion for atomistic simulations, we quench from a high-temperature, well-
equilibrated liquid state at 0.14 K/ps at zero pressure using MD with peri-
odic boundary conditions in all directions. We observe an inflection point in
the volume–temperature curve at 440 K, which is regarded as the glass tran-
sition temperature Tg (Supporting Information). To model a uniaxial stress
experiment, two free surfaces in the y-direction are created by removing
periodic boundary conditions, so that the stress is free in that direction. We
perform another 400-ps MD simulation to relax the system to zero average
stress. The mechanical properties of the thin film, such as elastic modulus
and yield strength, are then characterized (Supporting Information).

Metadynamics Simulation of Creep. To simulate creep using a metadynamics
algorithm, we apply a prescribed uniaxial tensile stress to the system and
execute the following steps.

i) Perform energy minimization on the relaxed system to bring it to the
nearest local energy minimum.

ii) Apply the autonomous basin climbing (ABC) algorithm (49, 50) to
obtain the transition-state pathway and determine the neighboring
local energy minimum state.

iii) Compare the internal stress of the new state with the prescribed tensile
stress. If the two stresses deviate by more than 1%, perform step iv;
otherwise, go back to step ii.

iv) Perform cell relaxation in the presence of the external stress. The atoms
are rescaled to new positions whenever the size of simulation cell is
changed, and the final configuration converges to a new local minimum.

The output of ABC is a set of transition-state pathway trajectories, each
being an ordered sequence of energy minima and saddle points. The sys-
tem evolution is then determined by examining the newly sampled config-
urations of the local energy minima. The activation time of each evolution

step is estimated through transition-state theory, ∆ti = [v0 exp (−∆Ei
kBT )]

−1
,

with the attempt frequency v0 typically taken to be 1012 s−1. ∆Ei is the
energy barrier of activation path i. ∆Ei could be overestimated by ABC, and
therefore, we use the nudged elastic band method (51) to refine the barrier
connecting the two neighboring energy minima. The metadynamics simu-
lation is terminated when either tertiary failure occurs or 15,000 activation
pathways have been explored.

Atomic-Level Strain and Nonaffine Displacement. We consider two atomic-
level strains, the deviatoric strain D2

min and the local von Mises strain ηMises ,
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as measures of local plastic deformation (12, 52). Imagine that a region
surrounding an atom undergoes a strain deformation during a time interval
δt. The deviatoric strain is defined as

D2
min (δt) =

n∑
i=1

[Xi (t + δt) −X0 (t + δt) − J× (Xi (t) −X0 (t))]2, [3]

where X (t) is the reference configuration at time t, X (t + δt) is the current
configuration at time t + δt, and the index i runs over all atoms within the
interaction cutoff relative to the reference position of atom zero. J is the
affine deformation tensor that transforms a nearest neighbor separation,
Xi (t) −X0 (t), to what would be expected under an affine deformation.
The deformation tensor J is determined by minimizing D2

min, with the min-
imum value being the atomic-level deviatoric strain. For each J, a Green
strain tensor η can be written as η = 1/2(J • JT − I). The local atomic strain
invariant ηMises in two dimensions is computed by

ηMises =

√
η2

xy +
η2

xx + η2yy − η2
xxη

2
yy

3
. [4]

Note that ηMises is directly derived from J, while D2
min is a measure of the

deviation from deformation tensor J. The atomic strains ηMises and D2
min are

computed by considering all of the n neighboring atoms. Both can serve as
an indicator for cooperative local rearrangement.

The nonaffine displacement is useful for tracking single-atom dynamics.
For a time interval (t, t + δt), it is defined as

δuα(t, t + δt) = Xα(t + δt)− FαβXβ (t), [5]

where the Greek indices α and β indicate the Cartesian components and
the deformation gradient F is related to the system-level creep strain εαβ

by Fαβ = 1 + [εαβ (t + δt)− εαβ (t)] = 1 + ∆εαβ (t, t + δt). In the simulation,
the nonaffine displacement in the tensile direction δx is calculated for char-
acterization of single-atom dynamics.
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