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ABSTRACT
Double cycling improves efficiency by unloading and loading a ship simultaneously;
using wasted crane moves to transport containers.  This paper demonstrates that double
cycling can reduce ship turn-around time through this efficiency improvement.  The
paper describes the nature of the double cycling problem and, for a given loading-plan,
quantifies the benefits using a greedy algorithm.  The relationship between the benefits of
double cycling, and the problem parameters is analyzed using simple formulas and a
simulation program.  This paper demonstrates that double cycling can create significant
efficiency gains, and should benefit any party interested in improving port operations,
and reducing the cost of container shipping.
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1 INTRODUCTION

To date much research has focused on minimizing container ship turn-around time or the
amount of time a ship spends (unproductive) in port.  The research has focused on several
aspects of the problem including optimizing ship loading-plans, the use of landside
equipment, and berth scheduling (e.g. (1), (2), (3)).  In addition to this academic research,
there is much unpublished work in the industry and commercial software is readily
available to optimize loading-plans (4),(5).  To date, double cycling has not been
addressed in the academic literature.  This paper fills that gap by analyzing the
opportunity to reduce ship turn-around time using double cycling.

Ship turn-around time is dominated by the time necessary to unload and load
containers.  When unloading and loading a ship, most cranes spend only half of their
moves carrying a container.  During unloading, the crane is empty when moving to the
ship (FIGURE 1a).  During loading, the crane is empty when returning to the dock.
Double cycling is the practice of using these “empty” moves to carry a container, thus
making the crane more productive, and reducing turn-around time (FIGURE 1b).

With current single cycling or status quo methods, the number of moves
necessary to turn-around the ship is fixed, and does not depend on the order in which the
crane operates on the ship’s columns.  With double cycling, however, the number of
moves depends on the order of operations.  Therefore, the problem of double cycling is
one of scheduling jobs, or finding the order in which to operate on the columns that
minimizes ship turn-around time.

In this paper a move refers to one crane operation, from the ship to shore, or the
shore to ship, with or without a container.  A cycle is two consecutive moves.  This
research assumes a crane starts and ends on shore, so a complete unloading and loading
operation involves an even number of moves and a whole number of cycles.

The results of this work are generic in nature and will yield useful insights into
the potential for double cycling to reduce turn-around time.  The problem has been
simplified greatly in this analysis because attempting to model every detail of the
problem would cause the results to be less revealing of the big picture.  Specific problems
may need to be addressed on an individual basis, but the results presented here will
provide insight into the potential of double cycling to reduce ship turn-around time.

This paper uses a greedy strategy to analyze double cycling’s benefits.  At first
the analysis is done on a simplified version of the problem, but it is then extended to
consider many real-world complications.  The analysis allows us to comment on the
relationships between ship design, loading-plans, flexibility, size of hatch-coverings, and
double cycling opportunities.

Section 2 describes the nature of the problem and provides a simple example for
explanatory purposes.  Section 3 develops bounds on the number of cycles necessary to
turn-around a ship using double cycling.  Section 4 details the results provided by a
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problem-specific simulation program.  Extensions to the basic problem are covered in
sections 5 and 6; fixed ordering, and deck hatches.

2 NATURE OF THE PROBLEM

The layout of containers on a ship can be modeled as a 3-dimensional matrix.  Containers
are stacked on top of one another, and arranged in rows along the length of the ship.
FIGURE 2 gives a top view and side view of such a ship.  It is assumed that dockside
containers for loading are ready when required, and that containers being unloaded can be
easily removed from the immediate area.  In the initial analysis it will be assumed that
ships lack hatch-coverings, or doors on the deck that separate above deck and below deck
storage.  This assumption will be revisited in section 6 of this paper.

Consider the case where a large container ship arrives in a port with a set of
containers on board to be unloaded and a loading-plan for containers to be loaded.  The
loading-plan indicates the placement of containers on the ship.  Given are uc and lc, the
number of containers to be unloaded and loaded, respectively, in each column, labeled c.
FIGURE 3 is an example problem that will be used throughout the paper.  Note that if
any “rehandles” are necessary, these are included in the total number of imports and
exports.  A rehandle is a container than must be moved to access containers below it, but
will then be stowed again before the ship departs.  Thus, in FIGURE 3, uA = 3 and lA = 2.

The set of column labels, c, is called S.  An ordering of these columns can be
described by a permutation function, Π.  A permutation is a one-to-one correspondence
between i ∈ {1,…,N} and S such that Π(i) = c, or i = Π-1(c).

Turn-around time, which is assumed to be proportional to the number of cycles, will
be represented by the variable w.  We shall ignore for the moment the delays caused by
moving the crane sideways during each cycle and will return to this issue later.  The
general method for unloading and loading the ship with double-cycling is described
below:

• Choose a permutation, Π.  Unload all containers in the first column, then unload
all containers in the second column, proceed in this fashion until all columns have
been unloaded.

• Loading can begin as soon as at least one column has been unloaded or is empty.
Loading can proceed in any unloaded or empty column until loading operations
are complete.  If there is no column available, the loading operations must wait.
This is called blocking delay.

2.1 Example

Consider the ship of FIGURE 3.  FIGURE 4(a) is a queueing diagram for a single cycle
operation where columns are handled in the order {A,B,C,D} both for loading and
unloading.  Note that loading operations must wait until time w = 10, when unloading is
finished.  If double cycling was allowed we could have started loading as early as w = 4,
using the same sequence, {A,B,C,D} for unloading and loading.  The result it shown in
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FIGURE 4(b).  This requires 14 cycles.  The same number of cycles is obviously
obtained if we start loading each column as early as possible, as in FIGURE 4(c).  This
introduces some blocking but does not change the completion time, which is still 14
cycles.  With double-cycling, however, the completion time can depend on the sequence,
as illustrated in FIGURE 4(c).  In this case loading operations can be started as early as w
= 3 without any blocking delay, and the completion time is w = 13.

An objective of this paper is to determine loading and unloading sequences that
minimize the completion time.  Notice that in the example the same sequences have been
used for loading and unloading containers.  For the most part, this will be assumed
throughout the paper.  The assumption is reasonable because is ensures that the number
of lateral moves a crane must make does not get excessively large since the crane would
be working on nearby columns most of the time.  Further, it will be shown that this extra
restriction does not change the optimum turn-around time significantly for large
problems.

3 BOUNDS ON THE NUMBER OF CYCLES

A lower bound is now developed for the number of cycles necessary to unload and load a
ship using the status quo and double cycling techniques.  It is not assumed in the
development of this bound that the loading and unloading permutations, (Π and Π‘) are
the same.  Define:
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Recall from FIGURE 4(a) that using singe cycling, the number of cycles
necessary to turn a ship around is given by:

Y  + Λ .         (1)

This is intuitive; one cycle for each container.  Notice this is invariant to the ordering.

For double cycling, with a specific loading permutation, Π, and unloading
permutation, Π′ , the number of cycles must be at least )1('Π+Λ u  which satisfies:

)(min)1(' cc uu +Λ≥+Λ Π .        (2)

Then, the right hand side of (2) is a general lower bound for double cycling.  It is also a
lower bound if we force the same permutation for loads and unloads.  In other words, if
we define w1

* as the number of cycles with 1 optimal permutation for both loading and
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unloading and w2
* as the number of cycles with 2 optimal permutations (1 optimal for

unloading and 1 optimal for loading), we can write:

)(min*
2

*
1 cc uww +Λ≥≥ .        (3)

It is proven below that if Λ ≥ Y, a tight upper bound on the number of cycles is Λ
+ maxc(uc).  This is true even if we use the same permutation for loads and unloads.
Thus,

)()(max*
1 Υ≥Λ+Λ≤ ifuw cc .                 (4)

This tight upper bound is obtained by bounding from above the cycles of a sub-optimal
solution where the loading and unloading sequences are given by the same “greedy”
permutation, G.  This greedy permutation is obtained by ordering the columns in
ascending order of the variable dc where:

dc = lc – uc )( Υ≥Λif ,      (5a)
dc = uc - lc )( Υ<Λif .      (5b)

The rationale for (5a), which we are about to use, is that we want the unloading
operations to run ahead of the loading operations as much as possible.  Associated with
this strategy, we can define cumulative curves of columns completed, U(w) and L(w), as
in the top and bottom parts of FIGURE 5.  Define as well the horizontal steps of these
curves, Ui = uG(i) and Li = lG(i); see FIGURE 5.  Finally, we define L-1(i) and U-1(i) for
integer i to be at the left of each step (as shown by the solid dots of FIGURE 5 and the
notations along the bottom of the abscissas axis).  Note that U(Y) = L(Λ) = N.  We are
now in a position to prove (4).

Proof of (4):
Define wG as the number of cycles with G.  Since *

1wwG ≥  it suffices to show that

Gcc wu ≥+Λ )(max .  Consider a horizontal shift, L, to curve L, that will ensure curve L is

to the right of curve U (as in the dotted curve in the top of FIGURE 5), i.e. that L-1(i-1) +
L ≥ U-1(i) for i = 1,...N.  Obviously the least possible delay, L0, is maxi(U-1(i) – L-1(i-1)) =
maxi(Ui + (U-1(i-1)-L-1(i-1)).  Since Λ ≥ Y, the greedy strategy satisfies (U-1(i-1) –
L-1(i-1)) ≤ 0 ∀ i.  Hence L0 ≤ maxi(Ui).  Therefore maxi(Ui) + Λ is an upper bound to the
number of cycles.  QED.

In summary, we have shown that if Λ   ≥ Y, then

)(max)(min *
1

*
2 ccGcc uwwwu +Λ≤≤≤≤+Λ .      (6a)

It will now be shown that if Y > Λ then the symmetric result obtained by interchanging
load and unloads is obtained, i.e.:
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)(max)(min *
1

*
2 ccGcc lwwwl +Υ≤≤≤≤+Υ ,      (6b)

where G in this case is defined by (5b).  Hence, if we define

)(max),(max),(min),(min **
cccccccc llanduulluu ===′=′ , we can write:

),max(),max(),min(),max( ***
1

*
2 luwwwlu G +ΥΛ≤≤≤≤′′+ΥΛ .        (7)

Clearly, for ships where (Λ,Y) >> (u*, l*), the greedy strategy is very close to both the
upper and lower bound since all the members of (7) are relatively close to max(Λ,Y).  In
this sense, the greedy strategy is asymptotically optimal.  How quickly optimality is
approached will be demonstrated in the next section.

Proof of (6b):
That (6b) is true should be obvious by symmetry.  If one were to record the process of
unloading and loading the ship, and then play this recording in reverse, the reversed
movie would display a sequence of operations with the same total time for a problem in
which the role of imports and exports is switched.  Thus, for every problem instance with
exports greater than imports, there is a dual instance where imports are greater than
exports.  FIGURE 6(b) shows the reverse movie of FIGURE 6(a).  Note that the greedy
strategy of FIGURE 6(a) continues to be greedy in FIGURE 6(b) (with loads and unloads
reversed), and that everything said up to this point, including the bounds, continues to
hold with time running backward.  Note that in the case of FIGURE 6(b) the greedy
strategy (with time running backward) implies a reverse ordering of {dc}, as specified in
(5b), thus (6b) holds. QED

4 SIMULATION

A simulation program was developed that includes a meta-heuristic optimization module
to further understand how the greedy algorithm would perform relative to the upper and
lower bounds, and to the meta-heuristic benchmark.  It uses simulated annealing to search
for the minimum turn-around time.  The same ordering was assumed for imports and
exports.  The program provides turn-around times (in number of moves) using the status
quo, the greedy algorithm, simulated annealing, and a fixed ordering strategy (the
relevance of this result is discussed in section 5).

The simulator can generate data for many different ship designs and market
conditions (imports and exports, origins and destinations, and a range of realistic N’s).
Values of uc and lc are generated by sampling from a beta distribution, and altering the
parameters p and q.  Shallow, deep, large, and small container ships can be modeled by
altering the number of columns, and the maximum column height (h).
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The probability function of the beta distribution is 
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σ .  If we define each draw from the

beta distribution as x.  The number of containers for import or export in one column is
then [xh]+.  Parameters p, q, and h are set separately for imports and exports.  Notice
some columns will have 0 containers.

Each point in FIGURE 7,FIGURE 8, and FIGURE 10 are the result of one
simulation run.  These examples show a large range of ship sizes (4 to 600 or 1000
columns).  Ships of less than 10 columns can be considered as individual rows or
individual rows of hatches of a larger ship.  As expected, the simulated annealing and
greedy turn-around time provide significant savings over single cycling.

FIGURE 7(a) shows the percentage difference between the simulated annealing
turn-around time and the upper and lower bounds for varying number of columns.  Notice
the simulated annealing turn-around time is very close to the lower bound and is only
significantly different from the lower bound for very small ships.  Recall that the lower
bound is not necessarily achievable.

FIGURE 7(b) shows the percentage difference between the greedy strategy and
the upper and lower bounds.  It shows a very similar distribution of data to FIGURE 7(a).
For ships with many columns, the upper and lower bounds are both good estimates for
the total turn-around time using the greedy strategy.

Although the greedy strategy does not always provide the shortest turn-around
time, the results from the simulation show the difference between the greedy strategy
turn-around time and the benchmark is small (FIGURE 8(a)), and is negligible even for
medium sized ships.

FIGURE 8(b) shows using the greedy strategy can reduce turn-around time by as
much as 50% over the status quo.  The largest savings occur when the number of unloads
and loads are similar and column heights are consistent.  For small ships with very large
or very small load/unload ratios and/or very inconsistent column heights, the savings are
less.  Notice, however, that the performance improves even for these “lopsided” ships as
the number of columns increases.

5 FIXED ORDERING

The greedy algorithm may suggest a sequence of operations that requires an impractical
set of moves around the ship.  As an example, see FIGURE 9(a) which shows the number
of each step in the sequence.  Operating using this sequence requires double cycling
between one column and another many columns away.  It may not be possible to operate
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on the ship in this order due to crew availability, or impractical due to the time necessary
to move the crane laterally along the ship.  Therefore we consider here operating on a
fixed sequence of columns, determined on the basis of proximity (FIGURE 9(b)).

FIGURE 10 shows the results of the simulation for the fixed ordering algorithm
as compared to the greedy algorithm and the simple approximation.  For large ships (over
200 columns of containers) the greedy algorithm, restricted ordering, and simple
approximation are very close.  The reduction in turn-around time due to double cycling is
robust to restrictions on the sequence of operations.

6 HATCHES

Throughout the analysis presented above, it has been assumed that ships lack hatch
coverings.  This is a distinct simplification of reality; as most container ships currently
have hatch coverings, as shown in FIGURE 11.

Hatches may change the nature of the problem already addressed, because the
columns previously considered are no longer independent.  To access the containers
below a hatch all containers must be unloaded from above the hatch, and before loading
containers atop a hatch all columns of containers below the hatch must be loaded.  This
section considers how the introduction of hatches will impact turn-around time when
using double cycling.

The following algorithm (the greedy hatch strategy) will be considered.  As in the
hatchless case, assume that each column on the ship is given an initial label.  To carry out
the strategy it is necessary to:

1. Order the hatches using a greedy strategy.  This is accomplished through the same
method as for the hatchless case if the hatches are treated as columns, considering
only the containers atop the hatches.

2. Order the columns within each hatch using a greedy strategy, considering only the
containers below deck.

The algorithm is then carried out as follows:

1. Apply the greedy strategy to the containers above deck, treating hatches as
columns, pausing each time all containers above hatch i have been removed.

2. During the ith pause, unload and load the containers below the ith hatch using
double cycling.

Of course this method may not provide the shortest turn-around time, but the
value of its simplicity is that parts of the unloading and loading process are equivalent to
the hatchless ship problem already addressed.  Each piece below a hatch is equivalent to a
hatchless ship, and the containers above a hatch to a column of a hatchless ship.  These
relationships will allow us to the use the analysis of the hatchless ship to develop bounds
for the hatched case.  First it is necessary to define some notation.
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h – hatch label
Sh – the set of columns for hatch h
Nh – the number of columns of hatch h
H - the set of hatches
F – the number of hatches

hcu  - the number of containers to unload below hatch h in column c ∈ Sh

hcu  - the number of containers to unload above hatch h in column c ∈ Sh

hcl  - the number of containers to load below hatch h in column c ∈ Sh

hcl  - the number of containers to load above hatch h in column c ∈ Sh

∑
∈

=
hSc

hch uu  - containers to unload below hatch h

∑
∈

=
hSc

hch uu  - containers to unload above hatch h

∑
∈

=
hSc

hch ll  - containers to load below hatch h

∑
∈

=
hSc
hch ll  - containers to load above hatch h

∑∑
∈ ∈

=
Hh Sc

hc

h

uY  - containers for unloading below deck

∑∑
∈ ∈

=
Hh Sc

hc

h

uY  - containers for unloading above deck

∑∑
∈ ∈

=Λ
Hh Sc

hc

h

l - containers for loading below deck

∑∑
∈ ∈

=Λ
Hh Sc

hc

h

l  - containers for loading above deck

wA = the number of cycles above deck
wB = the number of cycles below deck
wB,h = the number of cycles below hatch h

Also define the greedy permutation for hatches;
P(i) = h; P-1(h) = i for i = 1...F;  h∈H

and the greedy permutation for containers below hatch, h∈H:
Π(ih) = c∈Sh;  Π

-1(c|h) = i for c∈Sh, {i = 1...Nh}

Note that:
YYY +=  - containers for unloading

Λ+Λ=Λ  - containers for loading
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It will now be shown that an upper bound on the optimum number of cycles is:

},{max},{max},max{},max{ hchcSchhh
Hh

hh lululu
h∈

∈

++ΥΛ+∑ .      (8)

Proof of (8):

We know from (7) that wA = number of cycles for a ship of F columns with data given by
{uh,lh} ≤ max{Λ,Y} + maxh{uh,lh}.  Likewise,

wB =∑
∈Hh

hBw , =∑
∈Hh

number of cycles for a ship of Nh columns with data given by

},{ hchc lu ∑
∈

∈+≤
Hh

hchcSchh lulu
h

},{max},max{ .

Obviously then, the total number of cycles with the algorithm satisfies wA+ wB ≤

},{max},{max},max{},max{ hchcSchhh
Hh

hh lululu
h∈

∈

++ΥΛ+∑ .  QED

As in the hatchless case, a lower bound can be determined by assuming there is no
blocking during double cycling.

Lower bound = },{min},{min},max{},max{ hchcSchhh
Hh

hh lululu
h∈

∈

++ΥΛ+∑ .      (9)

We have found that the gap between the upper bound and the lower bound is small for
large ships, unless the distribution of containers is very unusual.  Thus, the simple
algorithm is reasonably efficient.

Currently many ship operators are reluctant to operate on more than one hatch in
one cycle.  Therefore, it may not be feasible to unload atop one hatch, while loading atop
another as in the greedy hatch strategy.  If cranes can only operate on one hatch at a time,
the results from the hatchless case are still applicable but there will be no double cycling
above deck.  This should but the benefits of double-cycling roughly in half.

7 DISCUSSION

The analysis in this paper has been presented from the perspective of ship turn-around
time, but we have ignored the time necessary to make lateral moves along the ship.  One
could include a penalty for lateral crane moves in the calculation of ship turn-around
time, but given the slow nature of lateral crane moves, it is not realistic to think that
cranes will be double cycling between one row and another.  Therefore, the analysis in
this paper is most appropriate for application to just a single row on the ship.  Turn-
around time can then be considered as the sum of the turn-around time for each row, plus
the time necessary to move the crane laterally between one row and the next.
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In typical port operations, there is uncertainty as to which containers will be
present when the ship is loaded.  Although ports will develop a loading-plan, it needs to
be flexible to changes that occur just prior to the unloading and loading.  For example, a
container may not pass security checks, or a shipper may want specific containers
expedited.  These last minute changes are usually handled on a case-by-case basis.  The
greedy algorithms are very well suited to this need for flexibility.  First, there will be
many “free” moves that can be used to load containers onto the ship without increasing
turn-around time.  There will typically be as many free moves as the difference in imports
and exports.  Second, the sequence is easy to determine and can be quickly recalculated.
Third, the sequence determined by the greedy algorithm is not unique; there are many
sequences which will provide the same turn-around time, so there is some opportunity to
re-order the sequence if necessary.

As has been shown, the greedy algorithm can significantly reduce the number of
cycles necessary to unload and load all relevant containers.  This reduction in the number
of cycles will translate into a reduction in ship turn-around time.  A reduction in turn-
around time implies a cost savings for the ship operator, because more of the ship’s time
can be spent in a productive manner.  The extent to which a reduction in the number of
cycles affects turn-around time, and the extent to which a reduction in turn-around time
affects a ship operating company’s profitability will depend on the specifics of the port
and ship operator.  The reduction in the number of cycles gives an indication of the
significant opportunities double cycling provides for cost reduction.

8 CONCLUSIONS

The analysis proves that double cycling presents an exciting and significant opportunity
to reduce ship turn-around time.  The benefits of double cycling are significant for both
hatched and hatchless ships, and are robust to constraints on the sequence of operations.
A general approach has been used to study the nature of the problem rather than a
detailed approach that would specify the magnitude of the savings in specific cases.  With
this general approach the results are applicable to a wide range of situations including
large or small ships, those with many or few port visits, and a varying number of cranes
operating per ship.  The method requires only a small number of parameters to
understand the magnitude of savings double cycling provides.
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11 LIST OF TABLES AND FIGURES

FIGURE 1 (a) Unloading using single cycling (b) Unloading and loading with double
cycling.

FIGURE 2 Plan and side views of a container ship.

FIGURE 3 Import loading pattern and export loading-plan.

FIGURE 4 Queueing diagrams for single and double-cycling.

FIGURE 5  The curves U and L of the greedy strategy.

FIGURE 6(a) Definition of the greedy strategy (b) Rotated version of part (a).

FIGURE 7(a) Percentage difference between upper bound, lower bound and simulated
annealing turn-around time (b) Percentage difference between greedy strategy turn-
around time and the upper and lower bounds.

FIGURE 8 (a) Percent difference between the greedy and the simulated annealing turn-
around time for varying numbers of columns (b) Percentage difference between the
greedy strategy and the status quo turn-around time.

FIGURE 9(a) Sequence of operations as suggested by the greedy algorithm.  (b)
Sequence of operations with restricted ordering.

FIGURE 10 Percentage savings over the status quo for the restricted and greedy
algorithms, and the approximation based on the expected number of moves.

FIGURE 11 (a) Plan view and side view of a ship with hatch coverings (b) A simple
hatched ship.


























