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Abstract: Per- and polyfluoroalkyl substances (PFAS) are highly persistent synthetic organic con-
taminants that can cause serious human health concerns such as obesity, liver damage, kidney
cancer, hypertension, immunotoxicity and other human health issues. Integrated crop–livestock
systems combine agricultural crop production with milk and/or meat production and processing.
Key sources of PFAS in these systems include firefighting foams near military bases, wastewater
sludge and industrial discharge. Per- and polyfluoroalkyl substances regularly move from soils to
nearby surface water and/or groundwater because of their high mobility and persistence. Irrigating
crops or managing livestock for milk and meat production using adjacent waters can be detrimental
to human health. The presence of PFAS in both groundwater and milk have been reported in dairy
production states (e.g., Wisconsin and New Mexico) across the United States. Although there is a
limit of 70 parts per trillion of PFAS in drinking water by the U.S. EPA, there are not yet regional
screening guidelines for conducting risk assessments of livestock watering as well as the soil and
plant matrix. This systematic review includes (i) the sources, impacts and challenges of PFAS in
integrated crop–livestock systems, (ii) safety measures and protocols for sampling soil, water and
plants for determining PFAS concentration in exposed integrated crop–livestock systems and (iii) the
assessment, measurement and evaluation of human health risks related to PFAS exposure.

Keywords: forever chemicals; livestock contaminations; chronic kidney disease; remediation; envi-
ronmental justice; groundwater contaminants; exposure pathway; foaming agent; renal dysfunction

1. Introduction

The burgeoning global population has increased the need for maximizing food produc-
tion while simultaneously minimizing its ecological footprint. Climate change challenges
demand resilient, sustainable and economically competitive agricultural practices such as
integrated crop–livestock systems. Integrated crop–livestock systems (ICLS) have played
an important role in enhancing practices to improve soil health, nutrient cycling, patho-
logical management, weed infestation and optimizing the nutrient losses from the system.
We define ICLS as a combined system including plant and livestock components that have
synergistic impacts on agricultural, economic and environmental outcomes. Here, we
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discuss ICLS in the context of environmental exposure pathways for contaminant mobility
from sources such as soil and groundwater, which eventually affect crop biomass, livestock
and dairy products, as well as human health. Managing and regulating contaminants in
ICLS are a major challenge. In developed countries such as the United States, federal regu-
lations, such as the National Pollutant Discharge Elimination System (NPDES), and state
regulatory orders, keep track of exposure pathways in ICLS and ensure they remain below
the allowable screening limits for environmental and human exposure. These screening
and regulatory limits are defined for commonly occurring contaminants such as nitrate
and metal(loid)s; however, the risk and extent of impacts from emerging contaminants
such as per- and polyfluoroalkyl substance (PFAS) compounds are unknown and still
require extensive research. Research and decisions regarding PFAS currently focus on
regulatory studies for drinking water and food products. This paper highlights PFAS
exposure in the environment as a holistic pathway affecting soils, water, plants, livestock
and dairy products.

Per- and polyfluoroalkyl substance compounds are among the most pervasive envi-
ronmental contaminants which bio accumulate, move long distances in the environment
and persist through the food chain [1–3]. They are a class of fluorinated synthetic com-
pounds with unique multiple carbon–fluorine bonds, which are highly polar and display
amphiphilic properties [4]. Approximately 4700 of these compounds were developed
in the late 1940s and are used in various industrial and commercial processes. Because
of their strong carbon chain, in addition to fluorine atoms, they do not degrade easily
and remain in the environment for a long time. Therefore, it is difficult to estimate the
environmental half-life of these compounds. They originate from regular use and disposal
of consumer products such as non-stick cookware, clothes and carpets resistant to stains
and the formulation of aqueous fire-fighting foams. Fire-fighting foams are retardants used
for fires and a variety of other industries, including aerospace, automotive, construction,
electronics and military. In agroecosystems, abiotic or biotic degradation of PFAS release
various other impurities into the environment commonly containing perfluorooctane sul-
fonic acid (PFOS), perfluorooctanoic acid (PFOAs), perfluoro hexane sulfonic acid (PFHxS),
perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDeA), and many more [5,6].

PFOS and PFOA are the contaminants commonly studied for their long-term persis-
tence, and they are commonly detected in wastewater treatment, fresh water and ground
water systems during environmental risk analysis [7–12]. Their sources of origin (Table 1)
include industrial emissions, consumer products, contaminated drinking water, surface
water and house dust [11,12]. We conducted a systematic analysis of published research
and review articles over the last two decades (2000–2021) on 14 November 2021, using the
Web of Science search engine. Our analysis indicated that the number of research articles
published on PFAS in ICLS increased over the last two decades (Figure 1). More specifically,
there was roughly a four-fold increase in PFAS research work in ICLS over the last decade.
Moreover, we observed an increasing trend in published work on PFAS remediation in
ICLS over the last nine years (2012–2021) based on our search criteria. However, the articles
published on PFAS remediation in ICLS were limited in both spatial and temporal scales to
laboratory experiments or other emerging techniques. Therefore, this emerging need for
PFAS assessment and remediation in ICLS warrants an extensive review and discussion.

Table 1. Summary of major point and nonpoint production and manufacturing sources of PFAS released to the environment.

Industry/Source PFAS Compound(s) Uses Reference

Textile, electrical, metal, laundry
and cleaning industries

PFOA, PFOS, PFBA and
other PFAS Industrial, commercial and consumer products [13,14]

Aqueous Film Forming
Foams (AFFFs)

PFOA, PFOS, PFBA and
other PFAS Fire training facilities/airports, military bases [15–17]
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Table 1. Cont.

Industry/Source PFAS Compound(s) Uses Reference

Landfill leachate/
waste disposal

PFOA, PFOS, PFBA,
PFHxS and other PFAS

Reservoir for products containing PFAS
chemicals that undergo decomposition, disposal

of waste during primary and secondary
manufacturing process using PFAS

[15,18,19]

Printing/paper
product production

PFOA, PFOS, PFBA and
other PFAS Surface coatings to repel grease and moisture [13,20]

Wastewater treatment
plants/biosolids, recycled water

PFOA, PFOS, PFBA and
other PFAS

Application of treated wastewater especially in
agricultural lands water from manufacturing,

industrial and household wastewater which are
sources of PFOA and PFOS

[15,17,21–24]

Commercial and
industrial products

PFOA, PFOS, PFBA and
other PFAS

Products that repel water and oil in the textiles,
paper industries (paper and packaging, clothing,
carpets, nonstick cookware, pharmaceutical and
personal care products (cosmetics, toothpaste),
agricultural products (pesticides, herbicides),

industrial (wire coating and insulation, corrosion
prevention, surfactant, fluoroplastics,

fluoropolymers, rubber)

[14,16,25]
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using Web of Science search engine using keywords with Boolean operations as (PFAS OR PFOS
OR PFOA OR PFBA OR PFBS OR PFPeA OR PFHxS OR PFHxA OR GenX OR PFHpA OR PFNA)
AND (Environment OR Human exposure OR Livestock OR Soil OR Milk OR Crop OR Dairy)
AND (Remediation).

2. “Forever Chemicals”: Persistence and Mobility

Anthropogenic activities are widely regarded as the major source of PFAS contam-
ination. The sources of PFAS in the environment depend on production methods or
application during the manufacturing of other products [26]. Primary manufacturing
industries produce PFAS and secondary production facilities use PFAS to produce goods
for industrial, commercial and consumer applications [27]. Point source facilities include
industrial and military training sites as well as wastewater treatment plants [16]. Industries
of the military, textiles, leather and paper products often require PFAS in either training
programs (military) or in production processes. As a result, PFAS are often present in
surface water and groundwater near industrial, military and wastewater treatment sites.
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Aqueous Film Forming Foam (AFFF) is a major compound in combating fires and its
effectiveness as a fire retardant is often attributed to the presence of PFAS [28]. Other
sources of PFAS in agriculture include sewage sludge, bio-solids and treated wastewater,
which become inadvertent point sources for PFAS contamination even when judiciously
used [29]. Ubiquitous in the environment, PFAS are found in air, water, soil, vegetation and
livestock, and thus can be threat to human health if not properly regulated and managed.

Acquiring the epithet “forever chemicals” is not a coincidence. Per- and polyfluo-
roalkyl substances are tremendously resistant to biological and chemical degradation [30].
The persistence of PFAS in the environment is strongly associated with the length and
strength of carbon fluorine chain structures where strength increases with increasing chain
lengths [30]. Additionally, PFAS with five or more carbon atoms tend to have higher
octanol-water partitioning coefficients than short chain PFAS compounds, which make
short chain PFAS compounds more soluble than their long chain counterparts [23]. A
negative consequence of the unique physical and chemical properties is the provision of
several pathways of PFAS to have long-term stability in soils. Additionally, being biotically
stable, they are impervious to both metabolic and bacterial breakdown [31]. Since PFAS
are resistant to biotic degradation, once in water or soil, humans and wildlife can have
direct or indirect contact through their diets from bioaccumulation in the food chain. In
fact, PFAS were added to the Persistent Organic Pollutant (POPs) list under the Stockholm
Convention in 2009 for their persistence and subsequent negative environmental and
health impacts [32]. There is evidence of biological degradation of perfluorinated chains
by breaking bonds one carbon at a time starting at the carboxyl end, with carbon dioxide
and fluoride as end products [33]. There is research underway explaining the biological
and enzymatic degradation of the “forever chemicals”. Destructive methods can also be
based on photolysis, enzymatic reduction or supercritical water oxidation. The bacterial
degradation of PFOA and PFOS compounds by Acidimicrobium sp. led to the buildup of flu-
oride, short-chain perfluorinated products and acetate in pure and enriched culture using
ammonium or hydrogen as the electron donor [34]. In addition to microbial degradation,
the carbon–fluorine bond cleavage is also documented due to reductive defluorination by
an organohalide-respiring microbial community [35].

PFAS contamination in soil has received much attention because of the role soil
structure plays in PFAS chemical and physical transformation, as well as PFAS movement
within or between environmental media. The protein component of soil organic matter
(SOM) serves as an excellent sorption site for PFAS making SOM a significant PFAS
reservoir [36]. PFAS persistence in soil is also attributed to its ability to partition in
soils [37]. Brusseau et al. referred to soils as a long-term source of contamination because
SOM serves as a sink to collect and store PFAS from industrial sources as well as a conduit to
transfer PFAS to drinking water sources (rivers, lakes, surface water and groundwater) [38].
This leads to a cyclical exposure pathway of contaminations across soil, biota and the
atmosphere [25]. Once in soils, PFAS compounds are soluble and can be transported into
surface water or leach into groundwater, which leads to bioaccumulation in plants and
animals, especially in ICLS. There is a high potential for PFAS uptake by forages and
tubers [39]. Additionally, PFAS can be transferred from soil to plant roots via diffusion
and sorption [40]. Based on a plethora of research data, it is evident that the occurrence of
PFAS concentration in soils is a global issue as distribution of PFAS were more prominent
in soils when compared with other media such as air, surface water, or groundwater [25].
Moreover, it was observed that PFAS not only occur at varying levels in both urban and
rural areas, but also among diverse soil types over prolonged periods [41–45]. Total
continental PFSAs concentration ranged between 29–14,300 and 7–3270 pg/g for PFCA
and PFSA, respectively [46].

The physical and chemical behavior of PFAS in soils has been linked to specific
PFAS manufacturing and production processes. One type of PFAS production process
results in a molecular structure with significant side chains or branching, whereas another
produces linear molecules with little or no branching. For example, Washington et al., in a
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study in Decatur, Alabama, USA, observed the persistence of PFAS in sludge-applied soils
correlated to the length of the carbon–fluorine bonds—longer chained bonds resulted in
less mobility, and vice-versa [47]. On contrary, polluted groundwater was associated with
shorter chained (<8) PFAS carbon–fluorine bonds [31]. The production processes affect
the surface-active behavior, and determine if PFAS compounds are either hydrophobic,
oleophobic, lipophobic, or hydrophilic [48]. Uncertainty and complexity of PFAS behavior
can be explained in part by the hydrophobic backbone, polar or ionic head structure
and functional group of the head structure. Both the hydrophobic C-F backbone and the
hydrophilic functional head can control sorption/solvation in environment [49].

3. Human Health Impacts and Exposure

In our exploration of PFAS impacts on ICLS, it is crucial to consider how PFAS
exposure can adversely impact human health. The changing composition of PFAS during
use, cumulative nature of bioaccumulation, potential for delayed and/or long-term health
effects, as well as the modification of effects by coexisting environmental factors make it
challenging to study the health effects of PFAS. However, several studies have shown an
association with various adverse health issues in humans with exposure to PFAS. Effects
on renal health, endocrine function, metabolism and bone health have been well studied
and reported [50–60]. The health effects of intrauterine exposure to PFAS have also been
investigated [50,61–64].

A growing body of literature suggests that PFAS exposure disrupts endocrine function
and metabolism. Dysregulation of thyroid hormones have been studied most frequently.
Exposure to PFAS has been positively associated with free thyroxine levels, though there
has been no demonstrated association with Thyroid Stimulating Hormone levels [51].
The association varies with different PFAS, gender, iodine levels and smoking status [52].
Changes in glucose and lipid metabolism are also noted with PFAS exposure [53,54]. The
prevalence of metabolic syndrome and its individual components have been found to have
an association with PFAS exposure though the results are only consistent across studies for
PFNA (perfluorononanoic acid) [53]. An effect on glucose metabolism may be particularly
relevant in pregnancy, where PFOS exposure has a positive association with increased
glucose levels, although overt gestational diabetes mellitus has not been seen [54].

Adverse kidney health has also been linked with exposure to different types of PFAS.
Kidneys are the major route of elimination for PFAS, particularly short carbon chain, car-
boxylic acid functional group or branched isomer forms [55]. Three studies based on the
National Health and Nutrition Examination Survey cohort found an association between
direct PFOA and PFOS exposure, renal dysfunction (decreased Estimated Glomerular
Filtration Rate) and prevalence of chronic kidney diseases among both adults and chil-
dren [55]. Another cohort study noted an inverse relationship between serum perfluoro
hexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid
(PFDeA) levels and Estimated Glomerular Filtration Rate [56]. The effects of PFAS exposure
in renal health may go beyond chronic kidney disease. An association has been postulated
with renal and genitourinary cancers, though the data remain sparse and large-scale cohort
studies with longer follow-up are required to further elucidate the role [55,57].

Toxicological studies have demonstrated several cellular and metabolic derangements
associated with short- and long-term PFAS exposure, which provide insight into possible
mechanisms. In animal models, exposure to PFOS in particular has been shown to cause
cell death by inducing enzymes of cell apoptosis such as capsases and cytochrome c, and
reduce antioxidant enzymes leading to oxidative stress [55,65]. This alteration in nuclear
transcription may be mediated by the dysregulation of PPAR (peroxisome proliferators-
activated receptors) pathways, which are involved modulation of gene expression in
cells [55]. Enhanced endothelial permeability through actin filament remodeling has also
been demonstrated with PFAS exposure, which could be a key mechanism of podocyte
injury leading to chronic kidney disease [66].
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Prenatal exposure to PFAS has been associated with reduced bone mass in young
females and was attenuated when adjusted to body composition [50]. In addition, early
childhood exposure has also been associated with lower bone mineral density (BMD) with
a possible response related to the intensity and/or magnitude of exposure [58]. Repeated
exposure to PFAS is also associated with worse bone health [59]. In a small sample of
young male subjects, PFAS exposure was also associated with increase in osteoporosis
risk and risk of fracture [60]. A mechanism suggested has been the affinity of PFAS to
hydroxyapatite in bones [60]. Endocrine modifying effects have also been suggested to
play a role [59]. The findings of the effects of PFAS on skeletal health in early life are
particularly important as childhood and youth are important determinants of fracture risk
later in life [58].

Different PFAS have been found in maternal blood and cord blood, indicating pla-
cental transmission [67–69]. Maternal exposure to PFAS is widespread, with detectable
levels found in serum in 98% of studied pregnant women in one study [61]. Exposure
to higher levels of PFOA and PFHpS (Perfluoroheptanesulfonic acid) have been found
to be associated with higher odds of miscarriage [62]. Perfluorononanoic acid (PFNA)
exposure has been linked to risk of preterm birth [61]. Prenatal PFAS exposure may also be
associated with both maternal and fetal thyroid dysfunction though the effect seemed to
vary with individual compounds [63]. A large epidemiological study in Italy also noted
higher rates of severe small-for-gestational-age (SGA) births among populations living
in PFAS-contaminated regions, though no link with SGA was found with maternal PFAS
exposure in a small cohort of pregnant women in USA [61,64].

There is increasing recognition that human health does not exist in a void, but is
interconnected with the health of the shared environment with soil, plants, water and
livestock [70]. A ‘One Health’ approach involves combining the institutional knowledge
of professions in these interconnected fields [70]. This is particularly relevant to PFAS,
where a variety of human activities lead to PFAS generation, environmental contamina-
tion, exposure to ICLS and human exposure pathways simultaneously occurring in close
geographical proximity.

4. Fate of PFAS Compounds in Integrated Crop–Livestock Systems

The PFAS group of chemicals cycle through water, soil, crops, dairy and meat products
in ICLS and impact human health through various exposure pathways (Figure 2). Diet
and drinking water are the main routes of human exposure to PFAS [71]. The presence of
PFAS has been reported in the surface/subsurface water and groundwater of leading dairy
producing countries such as India, the United States and China, including drinking water
supplies [72,73]. According to research based on a recursive regression model of India’s
ICLS, groundwater use accounts for 38% of the total value of milk output, whereas surface
water use accounts for 15% of the same output [74]. However, water from the Ganges river
of India has detectable concentrations of PFAS chemicals, mainly PFOA and PFOS [75,76].
The flux estimates of PFAS chemicals from Ganges River is reported to be in the range
of several hundreds of kilograms per year [77]. Although these chemicals are reported
below international standards, their persistence poses danger for biomagnification and
accumulation at higher trophic levels in harmful concentrations, specifically for cattle and
crop production.
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Figure 2. Potential human exposure pathway of PFAS contaminants from commercial/industrial
sources through crop livestock agroecosystems (Artwork by Dawson Diaz).

As of January 2021 in the United States, 2337 locations from 49 states were known to
have PFAS contamination in water samples from military sites [78]. Most humans in the
United States are exposed to PFAS, with blood, serum and urine containing PFOA and
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PFOS compounds [79]. In 2017, a well water district was shut down in Maine after PFAS
were identified in the water samples, which also lead to the shutdown of a nearby ICLS
with detectable levels of PFAS in soils, hay, milk and human blood samples [80]. The United
States Food and Drug Administration has reported levels of PFAS in milk samples analyzed
from one of the New Mexico dairies possessing potential human health concerns [81]. The
PFAS compounds found in the milk samples from this dairy were PFOA (47-169 parts per
trillion) and PFOS (881–5680 parts per trillion) [81]. Approximately 5000 cattle consumed
PFAS-contaminated groundwater in this dairy [81]. The contamination emerged from
a foaming agent used in the nearby air force base [81]. The Food Safety and Inspection
Service of the United States Department of Agriculture ceased dairy production and
shipment of cattle from the contaminated NM dairy until a baseline analysis and further
research data on PFAS depletion kinetics are produced [82]. Well samples monitored
in Madison, Wisconsin (the second largest dairy producing state in the United States),
reported the presence of 18 different types of PFAS compounds across domestic, municipal
and agricultural wells, ranging from 2.5 to 47 parts per trillion [83].

The PFAS contamination emerges from industrial wastes, contaminated sludges or
foaming agents and infiltrates into the soil matrix, surface water and groundwater. Ground-
water that is used for irrigating forage crops in ICLS can integrate PFAS into the leaf tissue
through bioaccumulation [84]. Feeding hay to cattle contaminates dairy products that are
consumed by humans [85]. PFAS can be associated with microplastics in lake environments
and PFAS sorption onto microplastics can be enhanced in the presence of organic mat-
ter [86]. Once incorporated into food webs, PFAS compounds move across different trophic
levels of food webs accumulating in different concentration ranges. Table 2 provides the
examples of studies that reported different levels of PFAS compounds (mainly PFOS and
PFOA) in different components of ICLS. Bioaccumulation of PFAS is related to the con-
centration and type of PFAS in cattle feed or forage. Long chain PFAS (10–20 fluorinated
carbons) compounds ingested through livestock feed or watering have lower potential for
removal from urine or milk and higher potential for accumulation and biomagnification in
beef/tissue of cattle than short chain (nine fluorinated carbons) compounds [87–89]. The
estimated half-life of PFOS in dairy cows is approximately 56 days based on a pharmacoki-
netic model describing the uptake of contamination by cows through contaminated forage
vs. its elimination from milk [89]. However, this conclusion was based on assumption
of complete elimination of consumed contamination through milk samples [90]. More
research on accumulation and biomagnification factors in meat is required for developing
regulatory policies for different groups of PFAS compounds based on its half-life, retention
and assimilation in cattle.

Table 2. Examples of reported levels of PFOS and PFAS in individual components of ICLS.

Component Description PFOS PFOA Source

Soil Includes agricultural, background and
secondary-source contaminated soils 3–5,500,000 ng/kg 10–2,531,000 ng/kg [38,91]

Water Rainwater and groundwater used for
irrigation and or livestock 0.073–113 ng/L 23–2752 ng/L [89,91,92]

Milk Includes raw, retail and full-cream milk n.d.–9060 ng/L n.d.–151.8 ng/L [88,89,93–95]

Meat Beef Muscle
Beef Liver

21–2700 ng/kg
24–91,000 ng/kg

7–500 ng/kg
9–114,000 ng/kg

[89,96]
[89,96,97]

Crops Cereal grains (silage, wheat, barely, maize) 3.9–860 ng/kg 8.3–39,300 ng/kg [89,91]

5. Limited Global Regulations and Standards to Address Environmental Concerns

Toxicological impacts of PFAS are site-specific, and regulations depend on socioe-
conomic and political factors [25]. The U.S. EPA has developed sampling methods for
potable and non-potable water. However, there are no published protocols for analyzing
bioaccumulated PFAS in forage crops or soil samples. There are currently no residential
or regional screening levels available through federal guidelines for PFAS compounds in
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soils in the United States for agricultural or industrial limits. Agricultural, industrial and
commercial soil screening levels for different PFAS compounds have been identified and
defined by Health Canada [98]. For example; soil screening values for PFOA and PFOS
in agricultural soils are 0.70 and 2.1, respectively [98]. In 2009, the United Nations Envi-
ronment Programme’s Stockholm Convention listed PFOA (salts and related compounds)
and PFOS in Annex A and C [99–101]. Annex A aims at eliminating the production and
use whereas Annex C aims at restricting the production and use of chemicals [99–101].
The current health advisory levels of PFOA and PFOS from drinking water developed
by the U.S. EPA have been established at a lifetime exposure of 70 parts per trillion [102].
However, it is important to develop limits, regulatory guidelines and screening levels for
livestock watering to reduce the accumulation and transport of PFAS compounds in milk,
meat and other dairy products to eliminate pathways to human exposure.

Investigations of PFOS, PFOA and PFBS in the United States take place under the Com-
prehensive, Environmental Response, Compensation and Liability Act, Toxic Substances
Control Act, the Safe Drinking Water Act and the Defense Environmental Restoration Pro-
gram. The Compensation and Liability Act follows investigation of PFOA and PFOS under
EPA’s residential screening levels for tap water (0.4 ppb at hazard quotient = 1) and soil
(1.3 ppm at hazard quotient = 1). The research underway by the U.S. EPA has validated test
methods for 29 PFAS compounds, facilitated the clean-up of contaminated groundwater
sites, developed the significant new use rule to regulate manufacture and import of PFOA
and PFOS and provided assistance to more than 30 states for developing new tools for
research and communications [103]. Research findings to date have focused widely on
the need for regulation standards in drinking water; however, it is important to expand
monitoring and develop regulatory standards for milk, meat and agricultural commodities.
The sampling methods that are currently used for soil, potable and non-potable water,
milk and human serum are listed in Table 3. Various agencies have developed unique
sampling methods (Table 3) from simple liquid chromatography to isotope dilution to
carefully separate out contaminants. These technologies are continually advancing to
achieve higher efficiency.

Table 3. Sampling methodology and storage techniques for PFAS contaminants in soil, water, milk, meat and human serum.

Matrix Method Name Developed by Technology or Instrumentation Sampling and Storage Methods Remarks

Soil ASTM D7968 17a ASTM International Liquid Chromatography/Tandem
Mass Spectrometry (LC/MS/MS)

1. Sampled in polypropylene containers
2. 2 g soil required per analysis
3. Sample should be shipped on ice below 6 degrees
4. Analysis should be completed in 28 days

This method is applicable to
determine 21 PFAS compounds

Non-potable water SW-846 Method 8327 USEPA

Multiple Reaction Monitoring
(MRM) Liquid

Chromatography/Tandem Mass
Spectrometry (LC/MS/MS)

1. Samples should be collected in HDPE containers.
2. Samples should be immediately freezed below 6 degrees

Celsius until analyzed
3. Non-formal holding time by USEPA is 28 days

This method measures
24 PFAS compounds.

Matrix-Groundwater, surface
water and wastewater

SW-846 Method USEPA Isotope Dilution Method Research underway

Collaborative efforts of USEPA
and Department of Defense to
analyze non-drinking water,

biosolids and sediments

Potable or drinking water Method 537.1 USEPA
Solid Phase Extraction and Liquid
Chromatography/Tandem Mass

Spectrometry (LC/MS/MS)

1. Samples should be collected in polypropylene bottles
2. 5 g/L Preservation reagent “Trizma” should be added to

each sampling container
3. Sample extraction should take place within 14 days of

sampling

This method is applicable to
determine 18 PFAS compounds

Milk C-010.01 USFDA

Liquid Chromatography/Tandem
Mass Spectrometry (LC/MS/MS);

modified QuEChERS
extraction technique

1. Collected in 500 mL LDPE bottles
2. Preserved below −20 degrees Celsius until analyzed

This method is applicable to
determine 16 PFAS compounds
and can be used for milk, bread,

lettuce and fish as matrices.

Meat (beef) USDA

Methanolic Extraction analyzed
by Liquid

Chromatography/Tandem
Mass Spectrometry

1. Meat and plasma samples collected at slaughter or
processing industry.

2. Approximately 5 g of sample collected in homogenized
tube mill and ground at 5000 rpm for 2 min.

It is applicable to bovine muscle
and plasma and can be analysed

for 16 PFAS compounds

Several cases of milk contaminants have been reported in the US states such as Maine,
New Mexico, Wisconsin, Alabama, but to date, no guideline values have been developed
by regulatory agencies. In 2017, the Maine Center for Disease Control developed an action
level for PFOS in cow’s milk of 210 ppb after contaminated samples were found in hay, mon-
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itoring well samples, milk and groundwater used for drinking and livestock watering [104].
Maine CDC developed this action level based on the U.S. EPA’s recommendations of a
reference dose of 20 ng/kg of body weight per day for PFOS in drinking water [105]. Maine
Department of Environmental Protection has also developed remedial action guidelines
for soil in crop-based dairy systems considering a soil-hay-cow-milk exposure pathway
model of 1,700,000 ng/kg dry weight [105]. The remedial action guidelines are based on
an EPA reference dose for drinking water that uses an incidental soil ingestion exposure
pathway for children [105]. The current discrepancies and knowledge gaps in formulating
the action and guideline values require more research on residual toxicity in environment
and biomagnification on different trophic levels.

The European Commission severely restricted the use of PFOS in Europe, except for
the space industry. However, in 2020 the EU banned the production and marketing of
PFOA salts and precursors for all industrial uses including space exploration [106]. The
PFAS contaminants (PFOA, PFOS, PFNA and PFHxS) are now restricted under regulatory
framework on food contaminants by the European Union [107]. The German Ministry of
Health proposed regulatory guidelines of maximum 300 parts per trillion of combined
PFOA and PFOS for human health exposure.

6. Remediation and Preventive Strategies

Soil and water are precursors to plant and animal food chains. The use of PFAS-
contaminated soil and water can lead to entry of PFAS compounds into leaf tissues (forage,
pasture or vegetables/fruits), edible produce, meat and dairy products. These chemicals cy-
cle through water, soil, crop, dairy and meat products in an integrated livestock system and
impact the human health. Assessing the risks and levels of PFAS in soils and water could
help prevent the bioaccumulation in crops and livestock used for human consumption.
Therefore, most of the remediation and preventive techniques presented here are more
focused on soil and water. These measures are intended to prevent the migration of PFAS
compounds into crops and livestock products by keeping the levels of these contaminants
below the guideline values/residential screening levels.

In addition to conventional remediation techniques, new techniques are constantly
being developed for PFAS remediation in soils and water. Most of the previous tech-
niques, such as incineration and adsorption using activated carbon, have known challenges
such as cost, energy consumption, difficulty with disposal and extreme operating condi-
tions [108,109]. Many passive approaches have had partial success such as adsorption,
filtration, reverse osmosis, enhanced photolysis, electrochemical oxidation and sonochemi-
cal destruction.

Conventional soil PFAS remediation methods include soil washing, excavation and
thermal oxidation, chemical oxidation, ball milling, electron beams, immobilization meth-
ods, excavation and landfilling (Table 3). Some of the most effective PFAS remediation
strategies known as ‘treatment train processes’ have been in use for in situ remediation
which uses multiple synergistic technologies [110]. Some partially effective treatment
methods were anion exchange, granular activated carbon (GAC) and reverse osmosis [111].

The manipulation of materials and structures at nanoscale dimensions, i.e., nanotech-
nology, has recently been used as one of the most innovative and promising technologies
for PFAS remediation. As an example, engineered nanomaterials use a large specific surface
area and the quantum nature of energy states to have more accessible adsorption sites and
higher surface reactivities [112,113]. This enables effective remediation of contaminated
water by adsorbing the PFAS compounds in the exposed surfaces of the nanomateri-
als [112–114]. Another technique with great potential for replication to remove PFAS is the
use of modified nanosized iron oxides with high adsorption capacity and magnetic prop-
erties which serve as ideal sorbents for PFAS under multiple conditions [115]. Similarly,
nano-photocatalysts under UV irradiation can be used to decompose PFOA in the presence
of TiO2-based, Ga2O3-based, or In2O3 catalysts [115]. Research on remediation of PFAS
in water is underway and evolving every day. Techniques for PFAS remediation include
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physical, chemical and biological approaches integrated within ICLS. These remediation
techniques can be classified into three major categories: (a) soil and sediment remediation,
(b) water remediation and (c) biological remediation.

6.1. Soil and Sediment Remediation Methods

Soil remediation techniques are based on adsorption/separation behavior, soil wash-
ing and thermal treatment, soil liquefaction, excavation and placement in impermeable
materials or offsite disposal in landfills, sonochemical destruction, advanced oxidation
or reduction processes, ball milling or vapor generation methods [116,117]. Soil adsorp-
tion/separation methods commonly use soil stabilization [116], where the PFAS sorbents
are added and mixed with soil to stabilize and immobilize PFAS compounds [117]. In
general, the sorbent adsorbs PFAS and reduces the potential of PFAS leaching to the
groundwater. However, this approach works best in soil compared with water because
PFAS release tends to occur on the surface, and some PFAS chemicals have a strong affinity
to soil [16]. This method has significant importance in managing PFAS contamination in
military bases. Alternatively, powdered or granular activated carbon (e.g., carbon fibers,
BioNuchar etc.) with a porous structure and strong heterogeneous surface is used to sorb
and remove harmful compounds [118–120]. Soil washing involves the separation of con-
taminants from soil and sediments through the application of water, solvents or air bubbles
on the contaminated soil or water [121]. Thermal treatment involves increasing the soil
temperature to 500–600 ◦C to vaporize organic contaminants and break PFAS compounds
in the gas stream at a temperature of 1200 ◦C [122,123]. Another useful technique named
soil liquefaction uses foam fractionation techniques to detach PFAS from liquefied soil and
water to the induced bubbles [124].

In recent years, other in situ and off-site ways to remediate PFAS have been developed.
One such technique is excavation, which can be used in two different ways. First, excavating
and placing soils in impermeable materials reduces infiltration, isolates impacted material
and controls seepage by a proper drainage system. It is a short-term, uncertain solution.
Often, contamination may still be present on-site, and any small physical disturbance can
spread the contaminants. Thus, the impermeable materials require continuous monitoring
and long-term management [125,126]. On the contrary, excavation and offsite disposal in
landfills involves reduction in the volume and concentration of PFAS and immobilization
before locating in an offsite landfill. However, this process needs additional steps to collect,
destroy and monitor all PFAS separately, and should not be considered as a preferred
remediation technique from a management standpoint [127,128].

Ex situ methods such as sorption, filtration and sonochemical destruction methods
help lower toxicity by degradation of PFOS and PFOA in soil and water [129]. One such
technique includes sonolysis, which uses sound waves at 20–1100 kHz frequencies to facili-
tate cavitation in water and create bubbles with large surface area enabling decomposition
of PFAS [130,131]. In the advanced oxidation/reduction process, contaminants (phenols,
endocrine-disrupting chemicals) are destroyed either by direct anodic oxidation or in solu-
tion using strong oxidants generated by cathodic electrochemical reactions [132,133]. In
general, this process is versatile, has a long life span, is energy efficient, automated and
cost-effective [134]. In addition, ozonation is a commonly used advanced oxidation process
for water treatment plants in the United States [135]. In recent times, use of an electron
beam is considered as a more advanced oxidation-reduction process, involving irradiating
material with accelerated electrons to destroy PFAS. However, this electron beam approach
has been used only on wastewater and aqueous solutions, thus warrants further testing
for its applicability to ICLS [136,137]. Another common method similar to ball milling
is a mechanochemical (MC) destruction method, which employs mechanical force such
as shaking to allow reactions on the surface of ball mills to effectively destroy PFOS and
PFOA [138]. In addition, vapor energy generators use 1100 ◦C steam to destroy PFAS from
impacted soils in an ex situ treatment chamber [139].
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6.2. Water Remediation Methods

The principal techniques in remediation of water from PFAS include adsorption and
separation using foam fractionation, reverse osmosis or nanofiltration, resin membrane-
based ion exchange, incineration, electrochemical oxidation (ozonation and ozofractiona-
tion), photolysis, enzymatic reduction and water oxidation. In adsorption and separation,
PFAS adsorbent materials are introduced into the contaminated waters to immobilize
PFAS using adsorption and separation techniques. This method can also use foam frac-
tionation to detach PFAS from liquefied soil and water with induced bubbles [124]. The
advanced oxidation process of PFAS contaminant removal can be destructive by direct
anodic oxidation—contaminants (phenols, endocrine-disrupting chemicals) adsorb onto
the anode surface and are destroyed by an electron transfer reaction or oxidation reaction
through strong oxidants generated by cathodic electrochemical reactions [135]. It is an
evolving destructive technology for many PFAS. Ozonation is a commonly used advanced
oxidation process method for water treatment plants in the United States. This method
treats liquid waste by chemically oxidizing organic contaminants and forming concentrated
foam fractionates, which can be separated from the treated water [140,141].

There are some economically feasible and environmentally sustainable water reme-
diation methods which have been developed in recent years. For example, photolysis
in aqueous solutions involves producing products such as carbonates and bicarbonate
radicals which react to produce PFAS molecules with shorter chains [142]. Another tech-
nique called supercritical water oxidation uses the super critical state of water (water at
temperature 373.9 ◦C and pressure of 221.1 bar), where the chemical oxidation process
breaks down strong carbon fluorine bonds and decomposes various hazardous organic
pollutants into non-toxic steam waste [143–145].

6.3. Microbial and Phytoremediation

Phytoremediation could be an effective approach for controlling PFAS, as with many
other contaminants of concern in the environment. Limited information on plant accumula-
tion and analytical techniques for bioavailable fractions in plant roots have restricted these
remediation methods. However, research and protocols for monitoring PFAS exposure
pathways have initiated some concepts and principles to apply in remediating the contami-
nants from rhizosphere using degradation techniques. Some of these techniques include
rhizodegradation, phytoextraction, phytotransfer, mycoremediation and biodegradation.
Rhizodegradation is a plant-assisted bioremediation in which organisms residing in the
root zone alter or degrade chemicals [146]. It is an aerobic process facilitated by enzyme
catalyzed (oxidative) degradation [147]. Rhizodegradation is cost efficient, low mainte-
nance and most sustainable for PFAS-contaminated sites; however, the process can be a
slow and long-term approach [148]. Some phytoremediation candidate species include
(a) the wetland species Juncus effuses, that has been demonstrated to accumulate 11.4% of
seven PFAS compounds from PFAS-spiked soil [146], and (b) Betula pendula and Picea abies,
which were reported to accumulate up to 97 and 94 ng g−1 of PFAS compounds at a
firefighting training site near Stockholm, Sweden [147]. The PFAS contaminants can also
be degraded by lignolytic fungi or via biodegradation by aerobic bacteria into non-toxic
compounds such as carbon dioxide, water and ammonia [149,150]. The ability of Gram-
positive and Gram-negative bacteria to break down PFAS depends on soil organic matter
content, and involves electrostatic and hydrostatic connections in the bacterial sorption of
compounds [151].

7. Exposure and Equity

Human exposure to PFAS has been a public health concern due to its high environ-
mental persistence. Research on location or clusters of certain industries in low income,
underserved communities and related adverse health impacts has expanded significantly
over recent years, raising issues of environmental justice [152,153]. PFAS contamination is
also an environmental justice problem. Accumulating scientific evidence has linked adverse
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outcomes in community health of low-income households and underserved communities
inhabiting within five miles of PFAS sites [154,155]. A comparison of over 70 non-military
sites found that 39,000 more low-income households and 295,000 more underserved peo-
ple were within five miles of sites contaminated with PFAS [156]. In the US state of
Michigan, environmental inequities are even more pronounced, with 36,170 more low-
income households and 134,488 more underserved people living within five miles of a
PFAS-contaminated site [156].

Public policy initiatives have been increasingly investigating environmental quality
as an indicator of individual human health and well-being [157]. As environmental risks
are not evenly distributed across socioeconomic groups, additional considerations for
exposure assessment have included socioeconomic factors of affected populations [158].
Framed as environmental justice or the inequitable distribution of risks and exposure,
numerous studies have reported detrimental environment effects that have disproportion-
ately affected socially disadvantaged and underserved populations. Whereas a myriad of
factors affect health outcomes, socioeconomic status and race have been found to highly
correlate with health and environmental inequalities showing strong associations and
translating inequalities to inequities [159,160]. Studies have also shown that socioeconomic
factors influence contaminant exposure and specific health outcomes [158]. Disparities
in human exposure to harmful chemicals such as PFAS have also been shown to exist
among educational statuses. For example, underserved communities with lower levels of
educational attainment and political capital often have less access to funding to conduct
hazard identification, exposure analysis and health related effects [161]. Moreover, it was
observed that poor access to health care information and healthcare means lower health
promotion rates, lower risk avoidance, a less healthy diet and more adverse conditions that
increase susceptibility to exposure [162]. Underserved communities are underrepresented
in media and underserved by government entities [163]. Other factors include polluting
industries or those with the greatest risk to produce harmful chemicals and pollute the
environment are more likely to be located near low-income communities. These groups are
often placed at a disproportionately higher risk for environmental chemical exposure [164].
Therefore, accounting for institutional differences and understanding actions by govern-
ment entities in perpetuating resource injustice, is a prerequisite for advancing equitable
solutions related to PFAS contamination and exposure [165].

In our systematic review, we did not find any studies examining the impact of PFAS
exposure related to soil, plants, livestock, and water adjacent to underserved communi-
ties. Moreover, we did not find any studies examining the feasibility and any additional
challenges for PFAS remediation in socially and economically disadvantaged agricultural
communities. This is an important area for future interdisciplinary work in order to avoid
further inequities from arising related to exposure, remediation and monitoring.

8. Conclusions

In integrated crop–livestock systems, PFAS compounds are impacting surface water
and groundwater by infiltrating through soils from industrial sources of contamination.
Once groundwater is contaminated, it can lead to exposure pathways of bioaccumula-
tion in plants and cattle contaminating the entirety of farm produce and dairy products.
Consumption of these contaminated products leads to severe human health issues. There
is evidence of PFAS contamination in milk and meat samples from dairies in countries
such as the United States and China. Therefore, more vigorous research and regulatory
guidelines are critical and required for monitoring and developing screening guidelines
not only for the dairy products but also for soil, groundwater, forage and crops. Lack of
assessment of the extent of exposure pathways in underserved communities living near
PFAS sites may be further advancing disparate adverse health impacts. However, more
research is required to understand the combined agronomic and epidemiological impacts
for developing diet regulatory guidelines.
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