
Lawrence Berkeley National Laboratory
Recent Work

Title
CODATA TOOLS: PORTABLE SOFTWARE FOR SELF-DESCRIBING DATA FILES

Permalink
https://escholarship.org/uc/item/86p7p1tj

Authors
Merrill, D.
McCarthy, J.L.

Publication Date
1982-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86p7p1tj
https://escholarship.org
http://www.cdlib.org/

LBL-15441
~~

1L21wrr®IDl®® Iffi®rrtelley 1LSLfrn«Drr21~«Drry
UNIVERSITY OF CALIFORNIA

Computing Division

RECEIVED
~ ·-· --

BERKELEY LABOR.ATORY

MAY 1 1984

LIBRARY AND
DOCUMENTS SECTION

Presented at Computer Science and Statistics:
15th Symposium on the Interface, Houston, TX,
March 16-19, 1983; and published in the
Proceedings

CODATA TOOLS: PORTABLE SOFTWARE FOR
SELF-DESCRIBING DATA FILES

D. Merrill and J.L. McCarthy

------------------~-~
I December 1982

TWO-WEEK LOAN COPY :

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

I

\
I
I
I

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

-~ . -

CODATA TOOLS: PORTABLE SOFTWARE FOR SELF-DESCRIBING DATA FILES*

Deane Merrill and John L. McCarthy

Computer Science Department
University of California

Lawrence Berke~ey Laboratory
Berkeley; California 94720

December 1982

LBL-15441

1

Codata Tools: Portable Software for Self-Describing Data Files*

Deane Merrill and John L. McCarthy

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

This paper describes the Codata tools, a set of programs which read, write, and restructure self­
describing Codata (common data format) files. These tools manipulate both data and data description,
so that the the output of any operation is itself a Codata file. Semantics of results and descriptions of
derived Codata files are inherited from descriptions of input Codata files. Following the Software Tools
philosophy, the Codata tools are modular - each tool performs a specific limited task. They follow the
UNIX and Software Tools conventions of standard input and output. The output of any module can
automatically serve as the input of another, and they can be ''pipelined" or "chained" together. Codata
tools can be used to extract specified rows and/or columns from a file, to sort a file, to perform rela­
tional joins, to perform tabulations by aggregating on common key values, and to perform other opera­
tions. The Codata tools are written in RATFOR (a transportable FORTRAN preprocessor), and can be
easily adapted to run on any computer where the Software Tools have been implemented. Work is
currently under way on substantial enhancements to the Codata file format and the Codata tools to
provide for more efficient physical storage formats, more complex data structures, and more extensive,
open-ended data description.

1. Introduction

In this paper we discuss a simple.self-describing file format
and associated software developed and used extensively in
the Lawrence Berkeley Laboratory (LBL) Computer Science
and Mathematics (CSAM) Department since early 1978. The
file format is known as "Codata" (common data format) and
the associated software tools are known as the "Codata
Tools" (MERR81). These developments have been closely
associated with that of SEEDIS (LBL's Socio-Economic
Environmental Demographic Information System), but the
potential applications are much more general (COMP82,
MCCA82B). The Codata format and tools are sufficiently
simple and useful that they have been used extensively out­
side SEEDIS. One purpose of this paper is to make them more
generally known and available to other researchers.

Another purpose of this paper is to point out the need for and
importance of tools for statistical data management and
analysis that both use and produce self-describing data
files. Statistical package programs pioneered the use of
self-describing data files over the past two decades. But
with the notable recent exception of SystemS (BECK78),

they have been deficient in several important respects:

• most of them use internal self-describing files, but do not
produce such files as a routine part of any given data
analysis or manipulation routine (hence it is often difficult, if
not impossible to make the output of one routine easily avail­
able as input for another)

• those that do produce ··savefiles" of some kind do not do
so in terms of a neutral, non-procedural interchange format,
but rather in terms of their own idiosyncratic procedural
language.

• they do not provide facilities to easily expand or operate
on the meta-data or data de:;cription portions of self­
describing files

• This work. ..vas supported by the Office of Health and Environmental
Rese,arch ~nd the Office of Basle Energy Sciences of the U.S. Department of
Ec.ergy unoer Contract D£-AC03-763F0009a; and the Department of Labor,
~n-.;;loyrnent and Training Admir11~tratlon under Interagency t.,wreement No.
06-2063-36.

The remainder of this introductory section describes the
SEEDIS Project and motivations that led to development of
the Codata File Format and Codata Tools. Section 2 explains
the general requirements, design principles, and implementa­
tion strategies that underlie the Codata File Format and the
Codata Tools. Section 3 describes the Codata Format in
some detail, while Section 4 describes the Codata Tools and
summarizes the specific operations which they perform. Sec­
tion 5 describes new enhancements to the Codata File For­
mat and Codata Tools which are currently being designed and
Implemented. Section 6 is a concluding summary.

1.1. Background: The SEEDIS Project

In the early 1970's, LBL contracted with the Department of
Labor, the Bureau of the Census, and the National Technical
Information Service to produce the Urban Atlas Metropolitan
Map series and a number of Manpower Planning reports for
use in the Department of Labor Employment and Training
Administration (then the Manpower Administration). Important
resources resulting from this effort were databases from the
1970 Census of Population, geographic base map files of the
35,000 ·,census tracts defined by the 1970 Census, and
associated software for managing and displaying these data.
Under supplementary funding from the Army Corps of
Engineers, other socioeconomic databases such as the
City-County data book and the Census of Agriculture were
acquired and made available for automatic retrieval by
remote users.

In 1975 the name SEEDIS (Socio-economic Environmental
Demographic Information System) was invented to describe
what gradually. evolved into an integrated system combining
lnformatton retrteval, data analysis, and display capabilities in
a user-friendly environment. A prototype system was imple­
mented on LBL's CDC computer system. Beginning in 1976.
the PAREP (Populations at Risk to Environmental Pollution)
project began adding environmental and health-related data
bases in order to analyze the relationships between human
health and air pollution (MERR82). But further data aevelop­
ment was hampered by the lack of adequate data manage­
ment tools. Even relatively simple data manipulation tasks
required the writing of special-purpose programs.

1.2. Statistical Data Management Problems

By the late 1970's it was evident that further development
of SEEDIS required more systematic data management.
Motivating factors included data documentation require­
ments, the need for different applications programs to share
data without being constrained to a single physical file for­
mat, and the need to carry out simple data manipulation
operations without writing special-purpose programs.

Data documentation was a primary concern. Important data
files were bemg developed whose usefulness would outlive
the projects for which they were originally acquired. ··code­
books" were frequently inadequate and idiosyncratic. People
who had originally worked with given data files usually forgot
important undocumented details once they stopped working
with a file on a regular basis. Since documentation was
almost always separate from the data, it was easily mis­
placed or destroyed.

Second, with continuing addition of new data flies, applica­
tions programs needed to be independent of minor changes in
physical file formats. Without such data independence,
adding a new data field or changing the length or position of
a data field might require every program using that file to be
modified.

Third, a number of existing data analysis and display pro­
grams required a standard communications file format in order
to communicate with one another simply and effectively. For
example, CHART, used to make bar charts, line graphs, etc.
and CARTE, a thematic mapping program, required different
forms of input files. Even the simplest task, such as making
a bar graph and a choropleth map from the same data, could
not be performed without writing a program.

The situation clearly called for data standards and data
management tools, but there were few statistical packages,
let alone data management packages, that could run on LBL's
CDC computers and the locally developed BKY operating sys­
tem. Most of the available statistical and database pack­
ages lacked sufficient capacity for databases larger than a
few megabytes. Statistical package programs did not pro­
vide an efficient means for local applications to communicate
with one another. Available data management software was
slow, complex, and expensive -- particularly for Interactive
applications -- and it lacked adequate facilities for data
description and documentation.

2. Statistical Data Management Requirements

The problems described above did not justify acquisition or
development of a full-featured database management sys­
tem. Data files were archival, with very infrequent updates.
Updates did not ·have to be made by multiple users simultane­
ously. Security requirements were minimal.

On the other hand, it was clear that the system had to be
relatively flexible to permit continuing addition of new files.
It also had to be able to handle very large numbers of
records (cases), attributes (variables), and databases for
different types of entities (primarily geographic areas such
as states, counties, census tracts, etc.).

2.1. Design Principles for Codata Files

The solution that SEEDIS project staff adopted was to
design and implement a simple, standard, self-describinq fliP.
format pius a set of tools to perform basic operations on
such files. Both the file format and associated tools would
be as modular as possible, in order to provide flexibility and
to permit further gradual and evolutionary change.

Based on experience with statistical packages, database
management software, and applications programs for graphi­
cal display, project staff decided that the standard SEEDIS
file format should be self-describing. That is, data files would
contatn essential descriptive information such as data types,
missing data conventions, labels, etc. A standard library of

2

input-output routines would be implemented to read and write
such flies, and applications could use such routines to
access both data and data descriptions for a given file.
Some additional standards were agreed upon as part of the
implementation strategy, as follows:

•• data and description would be stored as ASCII text in lines
no longer than 132 characters, in order to permit easy
inspection and modification of files with standard text­
editing tools;

• descriptive items would be stored in "!keyword{= fvaluej''
format, for ease of reading and understandability;

• data would be stored in fixed-format fields to permit easy
access via conventional fixed-format read and write rou­
tines as well as via soecial Codata input-output subrou­
tines.

2.2. Codata Tools Development

Beginning in 1979, the Codata Tools were originally designed
to sattsfy the data management requirements of the PAREP
project, including sorting, row and/or column selection, and
relational joins. They proved useful enough that the user
interface was substantially enhanced, in imitation of the LBL
Software Tools and the UNIX operating system. UNIX input­
output conventions were adopted, and documentation was
brought" into conformity with UNIX/Software Tools formats.

At the same time, SEEDIS was being adapted to a network
environment of VAX 11/780 computers running the VMS
operating system. Applications modules to perform such
operations as the reading and writing of computer­
independent compressed data records, information retrieval
(by geographic area), user-prompted data entry, on-line
browstng of data dictionaries, extraction of selected vari­
ables from different databases, data transformation, table
construction, and thematic mapping were linked via a menu­
driven command monitor and the underlying Codata inter­
change file format.

Experience with the new integrated system suggested that
SEEDIS itself required a rather general set of transformation
routines for dealing with Codata files. The Codata Tools
were further developed and incorporated into SEEDIS at
points where data transformations were required, for exam­
ple in combining data being extracted from more than one
data source. Between 1 979 and 1982, The standard Codata
file format and input-output routines to read and write such
files became the nucleus of a new and substantially more
integrated SEEDIS system.

3. The Codata format

Codata files are fixed-format ASCII text files containing two
logical parts: the data description file (DDF), and the data
file (OF), as pictured schematically in Exhibit 1.

Exhibit 1: Schematic Diagram of CODATA File

Data Description File (DOF) Part

Data File (OF) Part

In Codata files. both the data definition file (DDF) and the
data fi!e (OF) reside in a single physical data file, with infor­
mation stored in character representation within fixed-length
loaical records as defined in the DDF. The DDF includes file­
le~el information, such as the number of data records (rows),

..

3

and the number of data elements (columns). It also contains
information about each data element, including a short name,
a descriptive label, data type (integer, floating point, or
alphanumeric), field length, location in the record and other
Information. The data file (OF) portion of a Codata file is a
simple "flat" file with fixed-length data elements (fields) in
fixed-length records.

The primary virtue of the Codata format is its simplicity.
Since both data and description are simple ASCII text, both
can be read, written, and modified using either a text editor
or formatted read and write statements from a programming
language. Codata files are easy to read and understand, to
transport between dissimilar computers, and to convert to
other file formats. They can be easily printed, edited, or
read by a user-written program. Most simple formatted data
files can be converted to the Codata format simply by
prepending a hand-edited DDF (data description file). Con­
versely, Codata tools are provided which will strip off the
DDF and produce a FORTRAN format statement, for example
to read a Codata file into a program like MINITAB or SPSS.

The logical view of a Codata file is that of a table (or flat
file) with a fixed number of rows (records) and columns
(fields), as pictured in exhibit 2.

Exhibit 2: Codata File Logical Structure

Record

=====Data Definition Fi Ia {DDF)======
I File Laval lnformat ion I

I DE 1 Info I DE Z Info I DE 3 Info I
=====Data F i Ia {OF)==================

I E I amen t 1 I E I emen t Z I E I em en t 3 I

Record Z I Element 1 I Element Z I Element 3 I

Record 3 I Element 1 I Element Z I Element 3 I

Record 4 I Element 1 I Element Z I Element 3 I

Data are arranged so that each logical row of the table con­
tains all the attributes (data elements, columns, fields, or
variables) of a named entity (e.g., Alameda County, person
number 2037). Data elements include keys necessary for
data access and matching, a row label or "stub", and ordi­
nary numeric or alphabetic data values. The number of logi­
cal records (rows) is equal to the number of entities in the
data file, and the number of columns is equal to the number
of data elements in each record.

3.1. A Simple Codata File Example

Exhibit 3 shows a small example file in Codata format. The
actual data are contained in the last six lines. The remainder
of the file is meta-data, i.e. descriptive information about the
data that can be used by programs and people. Explanatory
comments in italics at the right. are not part of the Codata
file but simply for purposes of this illustration.

Exhibit 3: Example Codata File

NDE = 6 file level information
AREAS= 3
CARDLENGTH : 30
MISSING: -999 -991
DE= FIPS.STATE 1st data element information

TYPE: A
USE= K
START: 1
LENGTH: 2
HEADER : #FIPS state code#

DE= STUB.GEO 2nd data element information
TYPE= A
USE: S
START: 3
LENGTH: 5
HEADER =#state name#

DE: POP80
TYPE: I
USE= D
START: 8
LENGTH: 9
HEADER =#1980 population#

DE: POP70
TYPE: I
USE :0
START: 17
LENGTH: 9
HEADER =#1970 population#

DE= POP60
TYPE= I
USE= D
START: 31
LENGTH: 9
HEADER =#1960 population#

DE : LAND.AREA 6th data element information
TYPE= I
USE= 0
START: 40
LENGTH: 8
HEADER =#land area#
HEADER =#in square miles#

END OOF beginning of data (OF) pan
191owa 2913808 2825368

2757537 55941
48Texas 14229191 11198655

9579677 262134
49Utah 1461037 1059273

-999 82096

The first four lines constitute the global section of the DDF,
and they apply to the file as a whole. The first specifies
that the number of data elements (NOEl or columns in the file
is six. The second specifies that the file contains three
records (AREAS). CARDLENGTH specifies that physical
records (lines) in the DDF and OF each contain a maximum of
30 characters of data. MISSING specifies that any numeric
data value between -991 and -999 should be considered
missing.

The second section of the DDF, through the "END DDF" line,
contains a set of meta-data information for each data ele~
ment (column) in the data file. DE is a unique identifier or
name for each data element. TYPE specifies whether the
data element values are alphanumeric (A), integer (1), or
floating point (D). U~E distinguishes between keys (K), row
labels or "stubs" (S), and ordinary data elements (0). START
gives the byte position for the data element (field) within
each logical record. LENGTH specifies the number of bytes
allocated to the data element. Each element can have one or

4

more HEADER lines containing descriptive information. for the
use of application programs such as the SEEDIS thematic
mapping program.

In the example file of Exhibit 3, the six data elements
(columns) are named FIPS.STATE, STUB.GEO, ..• through
LAND.AREA. FIPS.STATE and STUB.GEO are alphanumeric
(type A); the others are integer (type 1). FIPS.STATE is a key
(use K); STUB.GEO is a row label or stub (use S); the others
are ordinary data (use D). The column labels (headers) are
Indicated with each data element. FIPS.STATE starts in
column 1 and occupies two characters. STUB.GEO starts in
column 3 and occupies five characters. POP60 starts in
column 31 , which means the first position of the second line
of each record (since the line length is 30 characters).

3.2. Data Definition Details

As shown in exhibit 3, the data description file (DDF) or
meta-data part of a Codata file contains textual specifica­
tions in "!keyword~= !valuer· format. This data description is
stored in line-image form. No meta-data field can exceed the
line length specified by CARDLENGTH, which is limited to a
maximum of 132 characters. Blanks and upper-lower case
distinctions are significant only within the text of HEADER
lines. Keywords occurring before the first data element
definition have global effect. That Is, they hold for all data
elements, unless specifically overridden by keyword defini­
tions within the local environment of a data element defini­
tion.

3.3. Data File Details

The OF is the set of fixed length records following the "END
DDF" line. As in the DDF, data fields in the DF cannot exceed
the specified line length, and can never exceed 132 charac­
ters. Upper-lower case distinctions and blanks in
alphanumeric fields of the DF are significant, unlike those of
the DDF. The Codata Tools expect key elements (USE=KEY)
to be alphanumeric (TYPE=A), without blanks. Missing data
values (for example data suppressed for reasons of confi­
dentiality) can be indicated by values defined in the MISSING
line or by leaving the field blank (blanks are not interpreted
as zeros on input. as in FORTRAN). Codata write routines
automatically right- justify numeric data fields In the DF,
preserving as many significant figures of information as pos­
sible. Exponential notation (e.g. 1 .3E5) is not allowed.

A more complete description of the Codata format Is Included
in [MERR 81].

3.4. DDF's for Other Data Files

The DDF syntax just described is a subset of a more general
data definition language (DOL) being developed in connection
with the SEEDIS project. In addition to the fixed-length.
line-image, eye-readable codata files described here, the
same DOL is used to describe variable-length, binary,
compressed data files used for space-efficient storage of
archival data. In both cases, a data set consists of two logi­
cal components -- a data definition file (DDF) and a data file
(DF). Translation programs convert SEEDIS compressed files
to Codata files and vice-versa. A discussion of the SEEDIS
compressed data format is in preparation [GEY 83].

4. The Codata Tools

As stated in sections 1 and 2 above, development of the
Codata format was primarily mativated by needs for data
independence amvng SEED IS. applications programs.
Development of the Codata Tools followed shortly thereafter
due to the need for general data manipulation routines to
deal with Codata files. The "tools" approach to data manipu­
lation for SEEDIS was inspired and aided by the modular
Software Tools implementation efforts that were already
underway in connection with other projects at LBL,

4. 1. Design Philosophy

The Codata Tools were designed and written in accordance
with principles outlined by Kernighan and Plauger in The Ele­
ments of Programming Style (KERN74], and Software Tools
[KERN76]. In addition, the Codata Tools utilize conventions
and extensions to the original Software Tools that have been
implemented at Lawrence Berkeley Laboratory [HALL81,
SVEN82]. In particular, the following principles were
observed:

1. Most of the Codata Tools have one input, one output, and
perform a transformation on the data passing through. Such
programs are known as "filters." The output from one program
can be directly "pipelined" into another. For example, the
command line

cocol <file1 countyname income I cosort income llpr

extracts the variables "countyname" and "income" from
file1, sorts the records in order of income, and prints the
resulting file.

2. Each Codata Tool does a specific job. In the preceding
example, variable extraction is performed by COCOL while
sorting is performed by COSORT. The principle of modularity
has been observed down through low-level subroutine calls.

3. On-line documentation in a standardized format is obtained
by typing "coman <toolname>". Invoking a Codata Tool with a
question mark (e.g. "cocci ?") causes a one-line reminder of
the expected command syntax to be printed.

4. The Codata Tools are written in a simple extension of For­
tran known as "Ratfor'' (Rational Fortran). Fortran is widely
available and well supported, but is a poor language for pro­
gramming or describing programs. We avoid the major
ideosyncrasies of Fortran, and hide the unavoidable ones in
well- defined modules.

5. Input and output and low-level functions such as string
manipulation are performed via standard Software Tools
library subroutines.

As a result of points 4 and 5 above, the Codata Tools are
easily transported to different computers and operating sys­
tems where the Software Tools primitive functions have been
implemented.

4.2. Functions performed by the Codata Tools

Here we describe each of the Codata Tools individually, in
order of increasing complexity. In this discussion. "H" means
"value of". For example "!file~" is an arbitrary file name, not
literally "file". Arguments in square brackets "[]" are
optional.

Following UNIX conventions, "<in" and ">out" indicate stan­
dard input and standard output, respectively. Including
"<!file1 {" in the command line causes input to be read from
file !file1!; omitting it causes input to be read from the termi­
nal. Including ">!file2{" in the command line causes output
to be written to file !file2~; omitting it causes output to be
written to the terminal.

4.2. 1. Reformatting Functions

The first three tools perform simple reformatting functions,
changing neither data values or their order in the file:

• COCAT: check and reformat.

cocat <In >out [!filen

COCAT copies a Codata file to standard output. In general
the output is not strictly identical to the input, as COCAT
manipulates all data fields internally. Thus COCAT may be

..

used to checlc the validity of the input file format. If !file! is
not specified, COCAT reads standard input.

• CCCL: change tine length.

cocl <in >out [!linetengthj]

COCL changes the line length of a Codata file, reading from
standard input and writing to standard output. Unused space
between data fields is removed, and all data elements are
repositioned. If !linelength(Is unspecified, the output line
length is equal to the tine length of the input file.

• CODDF: modify ODF attributes.

coddf <in >out trnodfile!

CODDF reads a Codata file from standard input and writes a
new Codata file to standard output. Changes to the DDF are
specified in !modfilej. The OF portion of the output Codata
file corresponds to the revised DDF.

Columns can be renamed, modified, or added; but not deleted
or reordered. New columns are added at the end; the
corresponding data values are written as blanlc if type=A. or
as a missing data value if type=! or type=D. For further
details, consult (MERR81].

4.2.2. Interfaces to External Applications

The next three tools can be used to provide an interface
between Codata files and external applications:

• COSPLIT: partition into OF and DDF.

cosplit <in >out [!areafile((!ddffile!]]

COSPLIT reads a Codata file from standard input and writes
the OF portion to standard output. One or two file names may
be specified as optional arguments. The first file, if speci­
fied, receives a copy of the "AREAS=!nl" line from the DDF.
The second file. if specified, receives a copy of the
remainder of the Codata DDF, up through the ""END DDF" line.

• DDFFMT: make FORTRAN format from DDF.

ddffmt <in >out

DDFFMT reads a Codata file, or the DDF portion of a Codata
·file, from standard input. A corresponding Fortran format
specification is written to standard output.

Type A, I, and D fields are respectively translated to "An",
"Fn.O", and "Fn.O", where n is an integer. The output format
specification includes surrounding parentheses "()". A new
line is begun after every 60 characters.

• CONAME: list data element names.

coname <in >out (-h](!c!] [!file!]

CONAME reads a Codata file and writes the names of the
columns (data elements) to standard output. If !filej is not
specified, CONAME reads from standard input.

If the "-h·· flag is present, data element headers are also
written. If the "-h" flag is followed by a character "!c(",
header break characters (normally"#") are changed to "!c!"
on output.

4.2.3. Data Manipulation Functions

The five remaining tools perform data manipulation functions:

• COSORT: sort rows.

cosort <In >out [-d) [icolnamel ...]

COSORT sorts the rows of a Codata file on standard input,
and writes the resulting Codata file to standard output. The

5

command line optionally specifies the names of columns
whose values comprise the sort key. If no column names are
specified, the sort key is the concatenation of ail columns
having use=K.

Rows are put out in ascending order of the sort key unless
"-d" (decreasing order) is specified. In alphabetic (type=A)
data elements, blanks are significant. Upper/lower case
differences are ignored.

• COCOL: select columns.

coco! <In >out !denamej
• •. or cocot <in >out -fcottilel

COCOL reads a Codata file from standard input and writes a
Codata file to standard output. Only specified columns are
copied to the output file. The command line specifies either
(a) a list of column names !denamej ... , or (b) the name of a
file !colfilej containing the list of column names. In mode (b),
a minus sign precedes the file name. Upper flower case
differ~nces are ignored. In the output file columns appear in
the order requested.

• COROW: select rows.

corow <in >out !keyvaluej
... or corow <In >out -!keyfite!

COROW reads a Codata file from standard input and writes a
Codata file to standard output. Only specified rows are
copied to the standard output. The command line specifies
either (a) a list of key values !lceyvalue) ... , or (b) the name
of a file !keyfile(containing the list of key values. In mode
(b), a minus sign precedes the file name.

In both mode (a) and (b), the key value of a row is the con­
catenation of all data elements having use=K and type=A.

• COMRG: relational join of two files.

comrg <in >out !file2([(colnamej ...]
. .. or comrg <in >out)file2([-)colfile!J

COMRG performs a relational outer join of two Codata files
which are on standard input and !file2l respectively. A
resulting Codata file is written to standard output.

The rows in standard output correspond to those in standard
input; row matching is performed for the keys defined 1n
!file2L The {file2(rows must be uniquely identified by
columns having use=K and type=A. Standard input must con­
tain corresponding columns.

Both standard input and)file2(must have been previously
sorted (for example by COSORT) in ascending order of the
values of these elements. (These elements need not have
use=K in standard input, nor do they need to un1quely specify
the rows of standard input.) ·

Each row of standard output corresponds to one row of stan­
dard input. All elements of standard input are copied
unchanped. In addition. standard output contains additional
columns corresponding to the non-key columns of)file2j. The
unique keys occurring in)file2(determine which row of
!file2~ contributes to a row of standard output. A row of.
!file2(need not be used. or can be used more than once.

Optionally, the command line may specify either (a) a list of
!file2(column names (!colfile(...) or (b) the name of a file
!colfile(containing a list of)file2(column names. In mode (b),
a minus sign precedes the file name. If either option (a) or
(b) is used, only the specified !file2j columns are written to
standard output.

Other COMRG options are available to control the handling of
missing data and the renaming of duplicate column labels.
For further details, consult (MERR81].

• COROAGG: aggregation on specified keys.

corosgg <in >out [!col! •••] [-c!ctcol!] [-z]

COROAGG reads a Codata file from standard input and writes
a Codata file to standard output. The output fiie contains the
total of all the rows of the input file or (optionally) a number
of subtotals.

If one or more !cot! arguments are specified, these must
correspond to type=A column names In standard Input. In
standard output, the specified !cot! elements, and no others,
have use=KEY.

Each row in standard output corresponds to a unique value of
the specified)colj element(s). If no !coil arguments are
specified, standard output contains a single row, with no
use=KEY columns.

Standard input need not be sorted. Standard output is sorted
in ascending order of the specified)coil elements.

If present, the optional argument !ctcoll preceded by ··-c" is
the name of a new column in standard output , which con­
tains the number of input rows that contributed to the output
row in question.

Numerical fields (type=l or type=D) are added. If an input
data value is missing, a warning message is issued. Any
missing data on input will produce a missing value in the
corresponding sum, unless the ··-z" option is specified. In
this case missing input data values are assumed to be zero.
Character (type=A) fields are copied to standard output if all
contnbuting rows of the input file have the same value. Oth­
erwise the corresponding output field is filled with blanks.

Other COROAGG options are available to provide weighting of
each row by a specified variable, and to fill type=A fields
with a character other than blanks. For further details, con­
sult (MERR81].

4.2.4. Other Codata Tools

Other Codata tools, of a more experimental nature, are avail­
able. For complete documentation, consult [MERR81].

A notable omission is the lack of a Codata tool to calculate
new data values (columns) as functions of other data values.
A tool COCOCAL written to fill this need did not perform suc­
cessfully. Though not following the documentation and
input-output conventions of the other Codata tools, the
QUERY moduie reads and writes Codata files and provides the
required functionality in SEEDIS. QUERY uses the lANGPAC
compiler generator to evaluate general algebraic and logical
expressions.

4.3. Composite Example

One of the most powerful features of the Codata Tools is the
Idea, taken from the UNIX operating system, that output from
one program can se!'Ve dire~tly as·input to another. The use
of several Codata tools connected by ''pipes" is illustrated in
the following example. From the file listed in Exhibit 3, it is
desired to list the three states in ascending order of 1 980
population.

Example:

cocol <file2 stub.geo pop80 j cosort pop80 I cospllt >flle20

Standard input (file2) is the same as shown in Exhibit 3.

6

Standard output (file20) contains:

Utah 1461037
Iowa 2913808
Texas 14229191

5, Limitations end Future Directions

As noted earlier, the primary virtue of the Codata format is
its simplicity. Since 1978 it has served as the primary
SEEDIS inter-module data interchange fonnat and as a means
for inexperienced users to get data in and out of SEEDIS.
The Codata tools, with their extremely simple user interface,
have been crucial in the development of major data files for
many applications.

On the other hand, the present Codata Format and Codata
Toois have inherent limitations which are being addressed in
order to aid the future development of SEEDIS. Dynamic
stack allocation will replace fixed-size arrays in order to
efficiently handle large data files without repeated recompi­
lation. New binary file formats are being developed in order
to reduce the input-output and processing time required by
the Codata tools. Input-output routines are being developed
to read and write these new file formats; these will be used
first in file translation utilities, and later linked directly to the
major SEEDIS data manipulation and display modules. The
data definition language (DOL) is being enhanced in order to
provide economical description of large multi-dimensional
data arrays and multiply-occurring and/or variable-length
data elements (MCCA82AJ.

6. Summary

The Codata tools, developed in connection with the SEEDIS
project at Lawrence Berkeley Laboratory, are a set of pro­
grams which read, write, and restructure self-describing
Codata (common data format) files. These tools manipulate
both data and data description, so that the the output of any
operation is itself a Codata file. The Codata tools can be
used to extract specified rows and/or columns from a file, to
sort a file, to perform relational joins, to perform tabulations
by aggregating on common key values, and to perform other
operations.

Codata files have two basic parts: data and data descrip­
tion. The data portion is a simple ''flat" file with fixed-length
data elements (fields) in fixed-length records. The data
description portion consists of line images in ")namej =
!valuel" format. Codata files can be read, written. and modi­
fied using either a text editor or formatted READ and WRITE
·statements from a programming language. They are easy to
read and understand, to transport between dissimilar com­
puters, and to convert to other file formats.

Following the Software Tools philosophy, the Codata tools
are modLilar - each tool performs a specific limited task.
They follow the UNIX and Software Tools conventions of
standard Input and output, so that the output of one module
can automatically serve as the input of another. They are
written in RATFOR (a transportable FORTRAN preprocessor),
and can be easily adapted to run on any computer where the
Software Tools have been implemented.

Work is currently under way on substantial enhancements to
the Codata file format and the Codata tools to provide for·
more complex data structures, more extensive, open-ended
data description, and more efficient operation.

7. Acknowledgments

Carl Quang, head of the LBL Computer Science and
Mathematics Department, is responsible tor the stable and
productive research environment in which this work was con­
ducted. Among many others who made these results possible.

..

the authors wish to thank especially Fred Gey and Harvard
Holmes for sustained interest and valuable suggestions. Bill
Hogan's QUERY module fulfilled a need not met by the other
Codata tools. Unda Wong wrote the Codata tool DDFFMT.
Bill Benson, Peter Wood, and Bob Healey wrote the low-level
read and write routines used by all the Codata tools and
SEEDIS applications modules.

This work was supported by the Office of Health and
Environmental Research and the Office of Basic Energy
Sciences of the U.S. Department of Energy under Contract
DE-AC03-763F00098; and the Department of Labor, Employ­
ment and Training Administration under Interagency Agree­
ment No. 06-2063-36.

8. References

BECK78 Becker, R.A., and J.M. Chambers. Design and Im­
plementation of the S System for Interactive Data
Analysis, Proc. I.E.E.£. Compsac78, (7978), pp.
626-629.

COMP82 Computer Science and Mathematics Department,
SEEDIS Release Notes version 1.3, February,
1982; version 1.4 (preliminary), March, 1983.

GEY83 Gey, F., McCarthy, J.L. and Merrill, D.; Computer­
Independent Data Compression: A Space-Efficient,
Cost-Effective Storage Mechanism for Large Sta­
tistical Data Bases; Lawrence Berkeley Laboratory
Report LBL-15824; submitted to the Second
International Workshop on Statistical Database
Management, Los Altos, California, 27-29 Sep­
tember 1 983 .

7

HALL81 Hall, D .• Scherrer, D. and Sventek, J.; A Virtual
Operating System, Comm. ACM, Vol. 23 (1980),
pp. 495-502.

KERN74 Kernighan, B.W., and P.J. Plauger, The Elements of
Programming Style, New York, N.Y.: McGraw-Hill,
1974.

KERN76 Kernighan, B.W., and P.J. Plauger, Software Tools,
Reading, Mass: Addison-Wesley, 19 76.

MCCA82AMcCarthy, J. L., Enhancements to the Codata Data
Definition Language Lawrence Berkeley Laboratory
Report LBL-14083, February, 1982.

MCCA82BMcCarthy, J. L, et al., The SEEDIS Project: A Sum­
mary Overview, Lawrence Berkeley Laboratory Re­
port PUB-424, April, 1982.

MERR81 Merrill, D., CODATA Users' Manual, Lawrence
Berkeley Laboratory Internal Document LBID-021,
revised August 31, 1982.

MERR82 Merrill, D. and Selvin, S.; Populations at Risk to En­
vironmental Pollution (PAREP): Project Overview,
1976-1982; Lawrence Berkeley Laboratory Re­
port LBL-15321, December 1982. Included in An
LBL Perspective on Statistical Database Manage­
ment, H. Wong, editor, Lawrence Berkeley Labora­
tory Report LBL-15393, December 1982.

SVEN82 Sventek, J. et al, Software Tools Vlnua/ Oper/Sllng
System User's Manual (VMS Version), Lawrence
Berkeley Laboratory internal documentation, re­
vised 1982.

I

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

~l. - - ...

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

-- .

