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Abstract

Purpose

Digital methods to augment traditional contact tracing approaches were developed and

deployed globally during the COVID-19 pandemic. These “Exposure Notification (EN)” sys-

tems present new opportunities to support public health interventions. To date, there have

been attempts to model the impact of such systems, yet no reports have explored the value

of real-time system data for predictive epidemiological modeling.

Methods

We investigated the potential to short-term forecast COVID-19 caseloads using data from

California’s implementation of the Google Apple Exposure Notification (GAEN) platform,

branded as CA Notify. CA Notify is a digital public health intervention leveraging resident’s

smartphones for anonymous EN. We extended a published statistical model that uses prior

case counts to investigate the possibility of predicting short-term future case counts and

then added EN activity to test for improved forecast performance. Additional predictive

value was assessed by comparing the pandemic forecasting models with and without EN

activity to the actual reported caseloads from 1–7 days in the future.

Results

Observation of time series presents noticeable evidence for temporal association of system

activity and caseloads. Incorporating earlier ENs in our model improved prediction of the

caseload counts. Using Bayesian inference, we found nonzero influence of EN terms with

probability one. Furthermore, we found a reduction in both the mean absolute percentage
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error and the mean squared prediction error, the latter of at least 5% and up to 32% when

using ENs over the model without.

Conclusions

This preliminary investigation suggests smartphone based ENs can significantly improve

the accuracy of short-term forecasting. These predictive models can be readily deployed as

local early warning systems to triage resources and interventions.

1. Introduction

In the 1530 rhymed account of epidemic disease, Giralamo Fracastoro gave name to the great

pox “Syphilis sive morbus Gallicus” (Syphilis or the French Disease) and perhaps the earliest

Western account of what is now referred to as contact tracing (CT) [1]. Even as many nations

have implemented manual CT programs in response to COVID-19, SARS-COV-2 dynamics

and global reach have quickly overwhelmed most traditional approaches, though there are sig-

nificant bright-spots [2]. To meet this challenge, new solutions that synergize with CT have

been developed employing surrogates of contact such as anonymous proximity notification

utilizing smartphones; creating digital systems that emulate and potentially go beyond tradi-

tional public health practices [3]. These systems have now been deployed globally, yet there

remain significant gaps in our understanding of impact. Further, there are no reports demon-

strating that privacy preserving strategies that are foundational to the GAEN platform may still

allow for epidemiological forecasting or spatiotemporal prediction models.

In April 2020, Google and Apple jointly released the Google Apple Exposure Notification

(GAEN) API built with the “Private Automated Contact Tracing” (PACT) protocols [4], to

scale contact tracing through smartphone-based proximity sensing and ENS [5]. Early evi-

dence supported epidemiological impact [6], leading to reports that modeled EN’s effect in the

context of other public health interventions [7, 8]. California leveraged the GAEN platform for

its exposure notification system, and launched CA Notify statewide on Dec 10, 2020 [9]. As of

this writing, the system has been activated nearly 17million times. With over one year of data,

we can now explore the potential contribution of EN data for predictive modeling.

1.2 Evidence before the study

There have been significant advances in how non-exposure notification data are used for epi-

demiological forecasting, however, to date there are no reports employing EN data to predict

future caseload counts. Numerous other forecasting models have been deployed that can be

categorized into three different model types: i) Susceptible-Exposed-Infected-Recovered

(SEIR) or Susceptible-Infected-Recovered (SIR) models [10, 11]; b) Agent-based models [12];

and c) Curve-fitting models [13–15]. The majority of the predictive models use parameters

such as number of confirmed cases and deaths, masking guidelines, vaccinations and other

public health intervention measures for prediction [16]. However, these types of data are com-

monly incomplete, hard to collect, and error-prone, forcing models to make a variety of

assumptions to improve accuracy of the predictive models and to avoid overfitting. Moreover,

other factors such as i) hospital settings/capacity; ii) test capacity/rate (on a daily basis); iii)

demographics; iv) population density; v) income/poverty are still unexploited in most of the

COVID-19 prediction models [17]. At the same time, data collected from ENs such as CA
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Notify, while limited by privacy preserving policy, still have the potential to provide massive

amounts of data that are available in near-real time, because they are collected faster and

updated more frequently than traditional sources.

1.3 Added value of this study

This study presents a first examination of how EN data may be employed to predict future case

rates. Our analyses go beyond existing modeling approaches, which have only considered ENs

impact estimation, and we show that such data are highly predictive of near-term cases. Future

work should employ more detailed modeling methods, add other time series to enhance pre-

diction power, and explore longer prediction horizons.

1.4 Implications of all the available evidence

New digital public health tools such as EN systems present new opportunities to improve

health outcomes and disease prediction, yet the limitations and potential hazards of data use

remain under explored.

2. Methods

In this study, our goal was to investigate the potential to short-term forecast COVID-19 case-

loads using data from the implementation of CA Notify in California. Aggregate system statis-

tics (2020–2021) were extracted and analyzed for potential predictive power of EN activities to

future caseload counts.

Anonymous aggregate state level code usage data (described below), and state and county

level exposure notification web traffic statistics were obtained under the data use agreement

with the California Department of Public Health (CDPH). This study was deemed to be IRB

exempt (no human subjects research from institutional review by the Committee for the Pro-

tection of Human Subjects at the University of California San Diego. The data were collected

and shared in compliance with the CA Notify privacy policy. Reported case counts (containing

only test report date) and hospitalization data were obtained from open access CDPH data

[18]. We plotted raw data and applied a 7-day right-aligned moving average, due to known

weekly reporting artifacts and potential intrinsic positive time correlations between case

counts, which initialize system activity.

The collection of case count data fall under mandatory reporting guidelines for infectious

diseases, however there are a number of days for which there are no reports for one or more

days, with the subsequent report covering the case counts from the missing days. These “inter-

val-reported” case counts were modeled via a non-homogeneous Negative Binomial regression

model for the full data record with non-parametric trend and day-of-the-week effect. We sto-

chastically imputed the individual non-reporting days from the model, conditioning that the

totals by each "catch-up day" match the raw data.

To investigate the relationship of EN system activity and future case rates, we assume the

following: 1- A user who has activated CA Notify and tests positive (index case) receives a code

to enter into the system. 2- Code use triggers ENs to other users who have been in proximity

for a certain time, and whose phones have exchanged anonymous keys. 3- Those who receive

an EN are prompted to visit a non-searchable “hidden” CDPH website to access instructions

on the next steps after potential exposure. Only daily total codes used (state aggregate) and

count of visits to the notification webpage are captured. To model the relationship between C

(Cases) and E (Exposure Notifications with visits to hidden website), we implemented a Bayes-

ian predictive model for future values of C and showed that prediction could be improved by

incorporating E.
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We first developed a model for short-term forecasting of COVID-19 case counts based on

work published by Oiviera et al [19]. We used a log-normal variant of their negative binomial

model as the latter is over dispersed for our situation. We introduced a fixed-effect regressor

on day-of-the-week into the mean function to account for known reporting artifacts. This

model was used to forecast case counts 1–7 days in advance of the reporting data. Next, we

modeled exposure notifications via a parallel log-normal autoregressive process with its own

fixed-effect day-of-the-week regressor for reporting artifacts. The mean of log C on day t was

then regressed on the underlying exposure process on day t as well as the prior 6 days, with

corresponding coefficients vlf g
6

l¼0
. The posterior distributions of those coefficients yield infor-

mation on the forecasting influence of E. Values of Vlf
greater than zero with high posterior

probability provide prima facie evidence of the forecasting value of E l days in the past. We fit

the model using Bayesian inference, implemented via the Markov Chain Monte Carlo method.

To compare the forecasting performance of the models with and without E, we consider

forecasting days based on their history. Specifically, we fit the model based on data from day 1

to day t and then forecast days t + 1, t + 2, . . . t + 7. Each of these forecasts can then be com-

pared to the recorded case counts for those days. To quantify performance, we computed the

mean-squared error (MSE) and the mean absolute percentage error (MAPE) of the posterior

mean forecast from that recorded over the days t = 150, 151, . . .. ,388.

The methods were implemented in R and Stan and we have made the code available [20].

3. Results

Fig 1 shows the raw and 7-day average for EN, reported case counts and hospital admissions

from Dec 15, 2020 to Jan 9, 2022. Noting artifacts, early system equilibration in Dec 2020- Jan

2021 and change in CA Notify risk model settings in March (i.e., resulting an increased num-

ber of ENs being sent out per code used), we observe an intuitive temporal relationship

whereby increases in EN activity are seen to precede reported case increases, and more subtly

hospitalizations; notification inflection is observed prior to case peaks, and the downward

trend of activity presages declining case rates.

Fig 2 depicts a sequence of forecasts made using each model. The black line shows C from

late March 2021 to early January 2022. For each sequential day in this range, both models were

fit using all data up to that day, then forecasts were made for the subsequent 7 days and com-

pared against the actual values of C. The mean squared prediction error of the base model

(without E) ranged from 0.05 at 1 day ahead to 0.38 at 7 days ahead, while that of the model

with E ranged from 0.04 to 0.26. The mean absolute percentage error of the base model ranged

from 1.0% to 6.4% and that of the model with E ranged from 1.8% to 5.0%. The figure shows

Fig 1. Raw and 7-day averaged data plotted versus time. Note initial equilibration time from Dec 10 launch into January, CA Notify proximity threshold setting change

on March 17, 2021 date that led to a brief artificial increase in EN activity. Likewise, a server outage April 1, 2021 and October 11 to 19, 2021 led to a number of days

without code issuance.

https://doi.org/10.1371/journal.pone.0287368.g001

PLOS ONE Exposure notificaiton indicator for future caseload

PLOS ONE | https://doi.org/10.1371/journal.pone.0287368 August 18, 2023 4 / 8

https://doi.org/10.1371/journal.pone.0287368.g001
https://doi.org/10.1371/journal.pone.0287368


each group of forecasts connected back to the day on which the forecast is made. Note that

while a few of the predictive paths from the model with E strongly diverge, the majority of

them appear to adhere more closely to C than the forecasts from the model without E.

To characterize this observable trend, we estimated vl for 0–6 days of lag (Fig 3A presents

the credibility intervals). The estimated posterior probability that at least one of the coefficients

corresponding to positive lags was greater than zero was one. Fig 3B plots the ratio of the fore-

cast MSE and MAPE for the model with E to those without for 1 to 7 days delay. We see that

the incorporation of E substantially improves forecast accuracy. Specifically, the MSE is

reduced by a minimum of 5% at 3 days ahead up to a maximum of 32% at 7 days ahead, while

the MAPE is reduced by a minimum of 1.2% at 3 days ahead up to a maximum of 22.4% at 5

days ahead.

4. Discussion and a conclusion

We report the first analysis of an EN-based prediction model to short term forecast COVID-

19 reported cases in California. Our approach extended an existing method that utilizes only

prior case counts to predict future case counts, to usage of ENs for the prediction. With this

method, we measured the change in forecasting accuracy 1–7 days in the future. We found

that the addition of EN data to the previously validated case-only model improved mean

squared prediction error by a modest 5% at 3 days up to 32% at 7 days, the longest horizon

Fig 2. Raw cases and forecasts (1 to 7 days ahead) based on a model with and without exposure notifications.

https://doi.org/10.1371/journal.pone.0287368.g002

Fig 3. (A) Credibility intervals for the lagged exposure notification coefficients (Median +/- SD). Positive posterior values for lags> 0 indicate a positive association

between case counts and previous ENs. (B) Percent reduction in MSE and MAPE of forecast by number of days ahead. The model using ENs performed significantly

better than without.

https://doi.org/10.1371/journal.pone.0287368.g003
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explored in this work. The mean absolute percentage error of prediction ranged from 1.2% to

22%. This indicates that near past EN is related to near future case counts and that its inclusion

can improve the forecasting accuracy of case counts 1 to 6 or more days into the future.

In this study we compared omnibus measures of the performance of a model including EN

data to a case-only model. This considers average performance over time. An complementary

comparison could examine the performance of the models during sudden changes in the pan-

demic dynamic (e.g. in Fall 2020, when cases exploded or in December 2021 with the rise of

omicron). Focusing our attention on the times of change in dynamics, sometimes visible in

Figs 2 and S1 depicts model function in the period just before and during the rise of omicron

(December 2021 to early 2022). For clarity, it shows only the daily recorded cases and 7-day

predictions with and without EN (that is, forecasts only using information available 7 days

prior). Here, we see a period of stability before 12/18 where both models accurately capture the

stable dynamics. The next period, we now know, saw the rapid omicron rise. Forecasts using

EN information match this rise, mimicking the recorded cases (S1 Fig, green versus black),

whereas the model without EN struggles to predict future rates, and is consistently below until

the New Year (S1 Fig, blue versus black). Note that this shows that our modeling of EN is effec-

tive, not just that EN is a leading indicator of cases (See the far right of Fig 1). The comparison

to the non-EN forecast is important as it shows that a case-only model underperforms when

EN is not used.

While it is possible to compare other periods of stable dynamics and changing dynamics,

and to optimize the model fit to better forecast during periods of changing dynamics, the

endogeneity of the phase (stable verses changing) makes this challenging and left for future

work.

Other predictive models of COVID-19 caseload have been published during the pandemic

[21], and there have been numerous attempts to model the impact of ENs, yet none have

reported incorporating EN data for caseload prediction [6, 7, 22]. Thus, we add a new dimen-

sion to this toolkit by introducing EN as a predictor of the case number in the near term by

extending a case forecasting model to include EN and reporting artifacts.

This study has limitations. First, case counts are reported based on test report rather than

collection date. Second, there are subsequent system delays in code generation and use, which

impact the time to ENS generation. Finally, this study purposely used a simple forecasting

model relying only on case counts and ENs as a first and clear step to assess the viability of

incorporating ENS data into predictive methods. Future work should examine more advanced

models to handle higher dimensional data to incorporate more predictors (e.g., daily test rate,

mobility, vaccinations) as well as more diverse datasets from different geographic locations

which had different populations, intervention policies, for example.

4.1 Conclusion

In conclusion, this study presents preliminary evidence that smartphone-based EN can predict

case count changes in the near term, a function that is beyond its primary public health role as

a digital exposure notification system to augment traditional contact tracing. Such predictive

models can be readily deployed as local early warning systems and integrated with other sig-

nals to triage resources and interventions. Future directions should expand simulations to

incorporate more features such as mobility, daily tests, vaccination, and other key predictors

while exploring longer prediction horizons.
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4.2 Data sharing

Anonymous, aggregate data without specific geographic information were obtained by agree-

ment with the California Department of Public Health (CDPH), published under Public

Health Exemption, and in compliance with the CA Notify privacy policy. The data were ana-

lyzed in accordance with a Data Usage Agreement between the CDPH and UCSD. The raw

data used in this study are not currently released to the general public in accordance with

applicable policy and regulations. Data requests may be submitted to the California Depart-

ment of Public Health.

Supporting information

S1 Fig. Recorded cases versus EN 7-day forecasts. Recorded (black) versus the seven day pre-

dicted cases with EN (green) and without EN (blue) for 12/11/2021-1/8/2022.

(TIFF)
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