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Rule interaction conversion operations

Eric Baković, UC San Diego

Lev Blumenfeld, Carleton University

July 6, 2019
To appear, Loquens

Abstract

Different types of interactions between pairs of phonological rules can be converted into
one another using three formal operations that we discuss in this article. One of these
conversion operations, rule re-ordering (here called swapping), is well-known; another,
flipping, is a more recent finding (Hein et al. 2014). We introduce a third conversion
operation that we call cropping. Formal relationships among the members of the set
of rule interactions, expanded by cropping beyond the classical four (feeding, bleeding,
counterfeeding, and counterbleeding) to include four more (mutual bleeding, seeding,
counterseeding, and merger), are identified and clarified. We show that these conversion
operations exhaustively delimit the set of possible pairwise rule interactions predicted
by conjunctive rule ordering (Chomsky & Halle 1968), and that each interaction is
related to each of the others by the application of at most two conversion operations.

1 Introduction

What is the set of possible pairwise phonological rule interactions, and how are they related?
By construing rule interaction relationships in terms of formal conversion operations,
we find that the total number of pairwise interactions is eight. Conversion from any one
of these interactions to another can be accomplished by applying at most two of the three
conversion operations, revealing a great deal about the relationships among the different
types of interactions predicted by conjunctive rule ordering (Chomsky & Halle 1968).

To start, we already know what it takes to formally convert one of the four ‘classical’ rule
interactions — feeding, bleeding, counterfeeding, and counterbleeding — into one another.
Most familiarly, feeding and bleeding can be converted into their counter-counterparts, and
vice-versa, via rule re-ordering, relabeled here as a conversion operation we call swapping

(Chafe 1968, Kiparsky 1968, Koutsoudas et al. 1974). If P precedes and feeds Q, then
swapping the order of P and Q such that Q precedes P means that P will counterfeed Q,
and vice-versa. Likewise, if P precedes and bleeds R, then swapping the order of P and R

such that R precedes P means that P will counterbleed R, and vice-versa.
More recently, Hein et al. (2014) have shown how feeding and bleeding, or counterfeeding

and counterbleeding, can be converted into one another via an operation that they call
flipping. Given a rule P that precedes and feeds (or follows and counterfeeds) another rule
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Q, flipping the target and the change of P means that P will bleed (or counterbleed) Q, and
vice-versa.1 Combining these two operations completes the circle: feeding (F) and bleeding
(B) become counterbleeding (CB) and counterfeeding (CF), respectively and vice-versa, via
both flipping (flip) and swapping (swap), applied to each interaction in either order.

F B

CBCF

flip

sw
a
p

flip

sw
a
p

Figure 1: Flipping and swapping among classical rule interactions

We discuss these two rule interaction conversion operations in more detail below, and
then introduce a new conversion operation that we dub cropping. The set of possible
pairwise rule interactions is thereby expanded to include distinctions beyond the classical,
and conversion relations among all interactions are identified and clarified.

Given the formal nature of the topic at hand, the discussion will rather necessarily ab-
stract away from the empirical basis for the various rule interactions. We endeavor to
temper this abstraction throughout with relevant examples; these are simplified for expos-
itory purposes, and possibly overly so in some cases. In order to make clear that we are
(over)simplifying, we write that each example is ‘based on’ the relevant language example.

Our deep dive into the predicted consequences of conjunctive rule ordering is inspired by
Prince (2007), who notes (p. 33) that “a theory is the totality of its consequences . . . Once
formulated, a theory has broken definitively with intuition and belief. We are stuck with
its consequences whether we like them or not, anticipate them or not, and we must develop
techniques to find them.” The techniques that we use in this article to identify and relate
rule interactions elucidate key predictions of conjunctive rule ordering, well beyond and more
precisely than what has been achieved since discussions of this theory began.

2 Interactions and relations

2.1 Feeding and provision

Consider the following example of feeding, based on a Finnish example (Kiparsky 1973, 1993).
The raising rule in (1a) changes word-final e to i, and the assibilation rule in (1b) changes
ti sequences to si sequences.2 The feeding interaction is apparent in (1c): only raising is
applicable to vete, resulting in veti ; assibilation is now newly applicable, yielding vesi.

1Note that the formal operation of flipping is distinct from the historical phenomenon of rule inversion

(Vennemann 1972), which involves “reversal of the input and output of a rule and complementation of the

environment” (McCarthy 1991: 194, emphasis added).
2In the actual Finnish example, Kiparsky (1973, 1993) argues, the application of assibilation is limited

to derived environments, effectively meaning that it applies only when its context is created (a) by the
concatenation of morphemes or (b) by another phonological rule (like raising). This detail is set aside here.
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(1) Raising feeds assibilation

a. Raising (‘rse’): e ÝÑ i / — # kiele ÝÝÑ
rse

kieli ‘tongue’

b. Assibilation (‘asb’): t ÝÑ s / — i tilati ÝÝÑ
asb

tilasi ‘ordered’

c. Feeding interaction: vete ÝÑ
rse

veti ÝÝÑ
asb

vesi ‘water’

In previous work (Baković & Blumenfeld 2017, 2018a), we show how a classical feeding
interaction like this one is composed of two more basic relations between the two rules. This
decomposition is illustrated in Figure 2, with attention limited3 to a set of minimal substrings
standing in for the equivalence classes required to reveal the more basic relations.4

te˙ ti˙

si˙se˙

rse

as
b

rse

Figure 2: rse feeds asb

Because these types of figures and the relations they illustrate are unfamiliar, we will
take some time to explain Figure 2 in such a way that later figures may be read more easily.

The earlier-ordered rule involved in the interaction — in this case, the feeding raising rule
‘rse’ — is displayed horizontally (input te˙ on the left, output ti˙ on the right, and a ‘rse’-
labeled arrow between them), and the later-ordered rule — the fed assibilation rule ‘asb’ — is
displayed vertically (input ti˙ above, output si˙ below, and an ‘asb’-labeled arrow between
them). To more fully represent the extensions of the rules involved in the interaction, we
explicitly indicate that si˙ is also an independently-predicted nonvacuous output of raising
by adding the relevant input se˙ to its left and a ‘rse’-labeled arrow between them. Finally,
to highlight the starting point of the path through the figure that intuitively corresponds to
the feeding interaction itself, the initial input of raising is underlined: te˙.

The first, perhaps more obvious relation is that raising provides inputs to assibilation
(‘rse i-provides asb’), because for at least one nonvacuous xinput, outputy pair of raising,
xte˙, ti˙y, the output, ti˙, is a possible input to assibilation, but the input, te˙, is not.
The second relation is that raising also provides outputs to assibilation (‘rse o-provides
asb’), because for at least one nonvacuous xinput, outputy pair of raising, xse˙, si˙y, the
output, si˙, is a possible output of assibilation, but the input, se˙, is not.

This output-provision relation is less obvious, but crucial. It ensures that the application
of assibilation to ti˙ does not change the fact that the resulting form, si˙, is also a possible
direct result of raising, albeit from a different input. If this output-provision relation did
not hold, the application of assibilation to the output of raising would result in a form that
does not look like raising should have applied to it. In such a scenario, the application of

3This limitation abstracts away from more complex situations involving several loci of application of a
rule in a single string, but these complications are not germane to the present discussion.

4In string representations we adopt the convention of e.g. Heinz (2018) of distinguishing word-final
boundaries (‘˙’) from word-initial boundaries (‘¸’), both represented as ‘#’ in rules.
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raising would not be surface apparent, a well-known property of counterbleeding interactions
(McCarthy 1999) — and also of self-destructive feeding interactions (Baković 2007),
of which this hypothetical example would be one, as discussed in §5.2 below.

Another way to understand these two relations is in terms of the intersections of the
string sets that constitute the two rules’ inputs and outputs (Baković 2013b). Let’s call the
set of input strings to raising rsei, the set of output strings of raising rseo, the set of input
strings to assibilation asbi, and the set of output strings of assibilation asbo. Limiting our
attention again to minimal relevant substrings, we have the string set intersections in (2).

(2) String set intersections of rsex and asby

rsei X asbi =

"

te˙
se˙

*

X
 

ti˙
(

= ∅

rsei X asbo =

"

te˙
se˙

*

X
 

si˙
(

= ∅

rseo X asbi =

"

ti˙
si˙

*

X
 

ti˙
(

=
 

ti˙
(

rseo X asbo =

"

ti˙
si˙

*

X
 

si˙
(

=
 

si˙
(

Raising thus nonvacuously produces both outputs that are inputs to assibilation and outputs
that are outputs of assibilation; that is, raising both i-provides and o-provides assibilation.

2.2 Bleeding and removal

Consider now the following example of bleeding, based on a Lamba example (Doke 1938,
Kenstowicz & Kisseberth 1979).5 Both lowering and palatalization are applicable to kosika,
but once lowering applies, yielding koseka, palatalization is no longer applicable.

(3) Lowering bleeds palatalization

a. Lowering (‘low’): V ÝÑ
“

´high
‰

/

„

´high
´low



C0 — # ponika ÝÝÑ
low

poneka ‘it falls’

b. Palatalization (‘pal’): s ÝÑ S / — i fisika ÝÝÑ
pal

fiSika ‘it hides’

c. Interaction: kosika ÝÝÑ
low

koseka XÝÑ
pal

koseka ‘it is strong’

A classical bleeding interaction like this one is also composed of two more basic relations
between the two rules (Baković & Blumenfeld 2017, 2018a). This is illustrated Figure 3,
again with attention focused on just the minimal substrings relevant to the interaction.

5In the actual Lamba example, palatalization also changes k to Ù. Charles Reiss (p.c.) suggests that there
must be two rules, given that {s, k} do not form a natural class. Regardless of whether there is one rule or
two, lowering also bleeds palatalization of k : sekika ÝÝÑ

low
sekeka XÝÑ

pal
sekeka ‘it laughs at’.
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osiose

oSe oSi

low

p
al

low

Figure 3: low bleeds pal

Again, the earlier-ordered rule involved in the interaction — the bleeding lowering rule
‘low’ — is displayed horizontally (input osi on the right, output ose on the left, ‘low’-labeled
arrow between them), and the later-ordered rule — the bled palatalization rule ‘pal’ — is
displayed vertically (input osi above, output oSi below, ‘pal’-labeled arrow between them).
And again, to more fully represent the extensions of the rules involved in the interaction,
we explicitly indicate that oSi is a predicted nonvacuous input to lowering by adding the
relevant output oSe to its left and a ‘low’-labeled arrow between them.6 And finally, the
starting point of the path through the figure that intuitively corresponds to the bleeding
interaction itself is highlighted by underlining the initial input of lowering: osi.

The first, more obvious relation is that lowering removes inputs from palatalization
(‘low i-removes pal’), because for at least one nonvacuous xinput, outputy pair of lowering,
xosi, osey, the input, osi, is a possible input to palatalization but the output, ose, is not. The
second relation is that lowering also removes outputs from palatalization (‘low o-removes
pal’), because for at least one nonvacuous xinput, outputy pair of lowering, xoSi, oSey, the
input, oSi, is a possible output of palatalization but the output, oSe, is not.

Like the output-provision relation of feeding, the less-than-obvious output-removal rela-
tion of bleeding is crucial. Its presence ensures that the application of palatalization to osi

does not change the fact that lowering is still applicable to the resulting form, oSi. If this
output-removal relation did not hold, then the output of palatalization would no longer be
eligible for lowering, and in that case palatalization would bleed lowering just as lowering
bleeds palatalization. This is mutual bleeding, as discussed in §5.1 below.

And again, from the point of view of string set intersection:

(4) String set intersections of lowx and paly

lowi X pali =

"

osi˙
oSi˙

*

X
 

osi˙
(

=
 

osi˙
(

lowi X palo =

"

osi˙
oSi˙

*

X
 

oSi˙
(

=
 

oSi˙
(

lowo X pali =

"

ose˙
oSe˙

*

X
 

osi˙
(

= ∅

lowo X palo =

"

ose˙
oSe˙

*

X
 

oSi˙
(

= ∅

6In our terms, an input-output mapping xin, outy is ‘predicted’ by a rule X if X(in) = out, and is not
predicted otherwise. Given that lowering does not specify anything about the consonants that intervene
between its trigger and target, xoSi, oSey is predicted by lowering just as xosi, osey is; it matters not at all
if the s∼S alternation in Lamba is allophonic or the neutralization of an underlying contrast.
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Lowering thus nonvacuously changes both inputs that are inputs to palatalization and in-
puts that are outputs of palatalization to outputs that are neither inputs nor outputs of
palatalization; that is, lowering both i-removes and o-removes palatalization.

2.3 Summary

The classical feeding and bleeding rule interactions can each be decomposed into two more
basic relations between rules, provision and removal of inputs and outputs. Provision and
removal are respectively defined more explicitly in (5) and (6).

(5) Provision of inputs and outputs (feeding)

a. P input-provides Q if there are forms a, b such that P paq “ b and Q applies to
b but not a.

b. P output-provides Q if there are forms a, b such that P paq “ b and there exists
a form c such that Qpcq “ b but there does not exist a form d such that Qpdq “ a.

(6) Removal of inputs and outputs (bleeding)

a. P input-removes R if there are forms a, b such that P paq “ b and R applies to
a but not b.

b. P output-removes R if there are forms a, b such that P paq “ b and there exists
a form c such that Rpcq “ a but there does not exist a form d such that Rpdq “ b.

In the case of feeding, the earlier-ordered feeding rule both i-provides and o-provides the
later-ordered fed rule; in the case of bleeding, the earlier-ordered bleeding rule both i-removes
and o-removes the later-ordered bled rule.

Generalizing somewhat from the relatively specific (albeit simplified) examples discussed
above, let us imagine three rules of the following schematic and possibly familiar form.

(7) a. P = a ÝÑ b / c — d

b. Q = e ÝÑ f / bd —

c. R = e ÝÑ f / ad —

Given a starter input cade, P feeds Q and bleeds R, as shown in Figures 4 and 5.

cade cbde

cbdfcadf

P

Q

P

Figure 4: P feeds Q

cadecbde

cbdf cadf

P

R

P

Figure 5: P bleeds R

These figures are intended as schematic visual representations of crucial formal properties
of each interaction. Some properties depend on rule order: the distinction between feeding
and counterfeeding depends on the order of P and Q, and the distinction between bleeding
and counterbleeding depends on the order of P and R. Order-dependent properties are
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illustrated by the dimensional orientation of the arrows in the figures: the earlier-ordered rule
is displayed horizontally, while the later-ordered rule is displayed vertically. This dimensional
distinction will be manipulated in §3 below to represent the result of the swapping operation.

Other properties are independent of order, and are encoded in the topology of the arrows.
The structure Ñ ¨ Ñ ¨ Ð corresponds to both feeding and counterfeeding (e.g. cade Ñ
cbde Ñ cbdf Ð cadf), and the structure Ð ¨ Ñ ¨ Ñ corresponds to both bleeding
and counterbleeding (e.g. cbde Ð cade Ñ cadf Ñ cbdf). Mnemonically, when the two
outermost arrows point inward, we have in-flow (feeding and counterfeeding); when those
two arrows point outward, we have out-flow (bleeding and counterbleeding).

3 Swapping as (clockwise) rotation

Given the convention in our figures of illustrating the application of the earlier-ordered rule
horizontally and the application of the later-ordered rule vertically, we can rotate the figures
90 degrees, semi-arbitrarily clockwise, to represent swapping, converting feeding (Figure 4)
into counterfeeding (Figure 6) and bleeding (Figure 5) into counterbleeding (Figure 7). As
noted in the summary in §2.3 further above, rotating the figures preserves the topology of
the arrows and thus the order-independent properties of these rule interactions.

cade

cbdecbdf

cadf

P

Q

P

Figure 6: P counterfeeds Q

cade

cbdecbdf

cadf

P

R

P

Figure 7: P counterbleeds R

Note that we continue to follow the convention of underlining the starting point of the
path through the figure that intuitively corresponds to the type of interaction in each case.
Counterfeeding is when P fails to feed Q, meaning that Q maps cbde to cbdf before
P gets a chance to create more cbde outputs to also be inputs to Q. This makes the
application of Q non-surface-true, a characteristic of counterfeeding (McCarthy 1999) as well
as of other blocking interactions that are not predicted by conjunctive rule ordering (non-
derived environment blocking, do-something-except-when blocking, and disjunctive blocking;
see Baković 2011, 2013a). Counterbleeding is when P fails to bleed R, meaning that R maps
cade to cadf in time for P to then map cadf to cbdf. This makes the application of
R non-surface-apparent, a characteristic of counterbleeding (McCarthy 1999) and of self-
destructive feeding (Baković 2007), on which see §5.2 below.

4 Flipping as arrow reversal

Recall that Hein et al.’s (2014) flipping operation involves taking the rule we’ve been referring
to as P — the earlier-ordered rule in a feeding or bleeding interaction, and the later-ordered
rule in a counterfeeding or counterbleeding interaction — and exchanging P ’s target for P ’s
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change and vice-versa. So, given that P is a ÝÑ b / c — d, changing cad to cbd, then
flip(P ) is b ÝÑ a / c — d, which now changes cbd to cad. With Q and R still applicable
and inapplicable to the same string sets in each case, as shown in (8), feeding becomes
bleeding and bleeding becomes feeding, and likewise for their counter-counterparts.

(8) a. flip(P ) = b ÝÑ a / c — d cf. (7a)

b. Q = e ÝÑ f / bd — = (7b)

c. R = e ÝÑ f / ad — = (7c)

This is illustrated with simple reversal of P ’s arrows in the illustrative figures presented
thus far, converting Figures 4, 5, 6, and 7 into Figures 8, 9, 10, and 11, pairwise respectively.

cade cbde

cbdfcadf

flip(P )

Q

flip(P )

Figure 8: flip(P ) bleeds Q

cadecbde

cbdf cadf

flippP q

R

flippP q

Figure 9: flip(P ) feeds R

cade

cbdecbdf

cadf

fl
ip

(P
)

Qfl
ip

(P
)

Figure 10: flip(P ) counterbleeds Q

cade

cbdecbdf

cadf

fl
ip

(P
)

R
fl
ip

(P
)

Figure 11: flip(P ) counterfeeds R

Note that flipping changes the topology of the arrows. Flipping P amounts to changing
the direction of the two outer arrows, which converts Ñ ¨ Ñ ¨ Ð into Ð ¨ Ñ ¨ Ñ, changing
in-flow to out-flow, and vice-versa. On the other hand, even though e.g. Figure 4 (P feeds Q)
and Figure 9 (flip(P ) feeds R) have different strings in the underlined starting point position,
they both have the same arrow topology — in other words, the de novo feeding interaction in
Figure 4 and the feeding interaction derived via flipping in Figure 9 are formally identical in
terms of input and output provision, or how the rules’ input and output string sets intersect.

Note also that flipping the inner Q-/R-arrow preserves the essential arrow topology, and
thus has no formal effect on the interaction. Consider first feeding and counterfeeding:
Ñ ¨ Ñ ¨ Ð, when Q-flipped to Ñ ¨ Ð ¨ Ð, is essentially unchanged; in-flow remains in-flow.
In the Finnish-based feeding example in (1), assibilation (Q = t ÝÑ s / — i) can be flipped
to become ‘desibilation’ (flip(Q) = s ÝÑ t / — i); raising (= P ) still i-provides and o-
provides the i in the context of this flipped rule. Now consider bleeding and counterbleeding:
Ð ¨ Ñ ¨ Ñ, when R-flipped to Ð ¨ Ð ¨ Ñ, is again essentially unchanged; out-flow remains
out-flow. In the Lamba-based bleeding example in (3), palatalization (R = s ÝÑ S / — i)
can be flipped to become depalatalization (flip(R) = S ÝÑ s / — i); lowering (= P ) still
i-removes and o-removes the i in the context of this flipped rule.
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5 Cropping as arrow excision/addition

Explicit recognition of the provision and removal of outputs is critical for distinguishing the
classical from other pairwise rule interaction types (Baković & Blumenfeld 2017, 2018a), to
which we now turn.

5.1 Mutual bleeding

Consider first the case of mutual bleeding in (9), based on a Russian example (Kenstowicz
& Kisseberth 1979). Bleeding is mutual here because if l -drop were to apply first, it would
be the rule that bleeds and deletion would be the rule that is bled: metl ÝÑ

l-d
met XÝÑ

del
*met.

(9) Mutual bleeding of deletion and l -drop

a. Deletion (‘del’):

»

–

`cor
´son
´cont

fi

fl ÝÑ ∅ / — l metla ÝÝÑ
del

mela ‘she swept’

b. l-drop (‘l-d’): l ÝÑ ∅ / C — # nesl ÝÝÑ
l-d

nes ‘he carried’

c. Interaction: metl ÝÑ
del

mel XÝÑ
l-d

mel ‘he swept’

The illustrative figure for this case of mutual bleeding thus looks like Figure 12, with
deletion and l -drop mutually removing inputs from each other, and with no output-removal.

tl˙l˙

t˙

del

l-
d

Figure 12: Mutual bleeding of del and l-d

It is crucial that there is no deletion arrow originating in l˙, and no l -drop arrow orig-
inating in t˙: the absence of an arrow in this figure is as significant as its presence. The
topology of Figure 12 is thus Ð ¨ Ñ, without a third arrow.

Generalizing somewhat to our schematic rules and interactions, imagine that P is fur-
ther specified such that it more specifically changes cade to cbde, and call this new rule
crop(P ).7 (R is repeated for ease of reference below.)

(10) a. crop(P ) = a ÝÑ b / c — de cf. (7a)

b. R = e ÝÑ f / ad — = (7c)

This constitutes a ‘cropping’ of P in that the extension of crop(P ) is a narrower, proper
subset of P ’s extension. Most critically, crop(P ) doesn’t apply to the output cadf of R,
which the original P does apply to. The effect of narrowing P ’s extension in this way is to

7Many thanks to Karen Shelby (p.c.) for suggesting the term ‘cropping’.
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excise the rightmost arrow of the (counter)bleeding topology Ð ¨ Ñ ¨ Ñ, converting it to
mutual bleeding Ð ¨ Ñ. The generalized figure for mutual bleeding is thus Figure 13: just
like P bleeds R in Figure 5, except that the output-removal arrow of P has been excised.

cadecbde

cadf

crop(P )

R

Figure 13: Mutual bleeding of crop(P ) and R

The cropping operation is intended to encompass both excision and addition of an arrow,
thus mimicking the inherent symmetry of the swapping and flipping operations.8 Thus clas-
sical bleeding can be converted via cropping to mutual bleeding by excision of the rightmost,
o-removal arrow of the topology, and mutual bleeding can likewise be converted via cropping
to classical bleeding by addition of this o-removal arrow.

To see how cropping works with more substantive examples, let’s first see what it takes
to convert the example based on Lamba from bleeding to mutual bleeding. Excising the
o-removal arrow of the lowering rule from Figure 3 results in Figure 14.

osiose

oSi

crop(low)

p
al

Figure 14: Mutual bleeding of crop(low) and pal

In order to achieve this result, the context of lowering must be changed such that the
last of the zero or more consonants intervening between the trigger mid vowel and the target
i is not S.9 (Recall now the relevance of the discussion in fn. 6 about whether the s∼S

alternation in Lamba is allophonic or the neutralization of an underlying contrast.) This
condition excludes rather than includes a natural class, and so must be stated negatively:

(11) Mutual bleeding of cropped lowering and palatalization

a. Cropped lowering (‘crop(low)’):

V ÝÑ
“

´high
‰

/

„

´high
´low



C0 — # ; last(C0) ‰ S

b. Palatalization (‘pal’): s ÝÑ S / — i

8We refer to both sides of this operation as ‘cropping’ although the analogy is strained by arrow addition,
which is technically ‘un-cropping’.

9The formulation in (11a) assumes a function last that returns the last member of a string. In this case
the string is C0 = C1C2. . .Cn´1Cn, so last(C0) = Cn, and so the condition on the rule is that Cn ‰ S.
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Cropped lowering and palatalization mutually bleed each other: if cropped lowering applies
first to osi, yielding ose, then palatalization is no longer applicable, and if palatalization
applies first, yielding oSi, then cropped lowering is no longer applicable.

Now let’s see how to convert the example based on Russian from mutual bleeding to
bleeding. Adding an o-removal arrow to the deletion rule in Figure 12 results in Figure 15.

tl˙l˙

t˙˙

crop(del)

crop(del)

l-
d

Figure 15: crop(del) bleeds l-d

The minimal change necessary to achieve this result is for the context of deletion to
become a disjunctive one, such that coronal stops delete before l or at the end of the word:

(12) Cropped deletion bleeds l -drop

a. Cropped deletion (‘crop(del)’):

»

–

`cor
´son
´cont

fi

fl ÝÑ ∅ / —

"

l
#

*

b. l-drop (‘l-d’): l ÝÑ ∅ / C — #

Cropped deletion bleeds l -drop, but not vice-versa: if cropped deletion applies first to tl˙,
yielding l˙, then l -drop is no longer applicable, but if l -drop applies first, yielding t˙, then
cropped deletion is still applicable, yielding the maximally deleted ˙.

The contextual disjunction technically means that l -drop ‘transfuses’ cropped deletion,
in the sense defined in an unpublished paper by Don Churma entitled ‘Rule interactions’ and
cited by Zwicky (1987: 93):10 “[I]f one rule transfuses another, the string to which the second
rule applies is different from what it would be if the first rule didn’t apply — either because
the first rule removes some material to which the second could apply but also supplies new
places for the second rule to apply in, or because the first rule changes one string to which the
second is applicable into a different string to which the second is applicable[.]” We discuss
transfusion and similar complex interactions in Baković & Blumenfeld, in prep.

5.2 Self-destructive feeding (‘seeding’)

Consider now the case of self-destructive feeding (Baković 2007) shown in (13), based
on Turkish. The feeding is ‘self-destructive’ because applying deletion to the output of
epenthesis results in a form that is itself not a possible output of epenthesis. Following
Baković & Blumenfeld (2018b), we henceforth refer to self-destructive feeding as seeding.

10Many thanks to Arnold Zwicky for drawing our attention to this work, unfindable though it may be.
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(13) Epenthesis seeds deletion

a. Epenthesis (‘epn’): ∅ ÝÑ i / C — C# ipn ÝÑ
ep

ipin ‘your rope’

b. Deletion (‘del’): k ÝÑ ∅ / V — V bebeki ÝÝÑ
del

bebei ‘baby (acc)’

c. Interaction: bebekn ÝÝÑ
epn

bebekin ÝÑ
del

bebein ‘your baby’

Epenthesis i-provides deletion: deletion is inapplicable to the input to epenthesis, bebekn, but
is applicable to its output, bebekin. Unlike classical feeding, however, epenthesis does not
also o-provide deletion: there is no application of epenthesis that leads directly to the output
bebein. The illustrative figure for this case of seeding is thus Figure 16, with epenthesis i-
providing but not o-providing deletion. Furthermore, since the application of deletion results
in a form that is not in the set of possible outputs of epenthesis, deletion in turn o-removes
epenthesis. (Seeding shares this feature in common with counterbleeding; see §6.)

ekn˙ ekin˙

ein˙

epn

d
el

Figure 16: epn seeds del

The topology of seeding, Ñ ¨ Ñ, is distinct from other topologies we’ve seen thus far.
But much like mutual bleeding, there are only two arrows; the absence of a deletion arrow
originating at ekn˙ and of an epenthesis arrow ending at ein˙ in Figure 16 is crucial.

Generalizing somewhat again to our schematic rules and interactions, recall crop(P ) in
(10a), a ÝÑ b / c — de, compared to the original P in (7a), a ÝÑ b / c — d. In this case,
what’s relevant about the difference between P and crop(P ) is that crop(P ) doesn’t apply to
an input that would result in the output cbdf of Q. The effect of narrowing P ’s extension
in this way is to excise the rightmost arrow of the (counter)feeding topology Ñ ¨ Ñ ¨ Ð,
converting it into seeding Ñ ¨ Ñ. The generalized figure for seeding is thus Figure 17: just
like P feeds Q in Figure 4, except that the o-provision arrow of P has been excised.

cade cbde

cbdf

crop(P )
Q

Figure 17: crop(P ) seeds Q

Again, the cropping operation is intended to be symmetrical, encompassing both excision
and addition of an arrow. Thus classical feeding can be converted by cropping to seeding
by excision of the rightmost, o-provision arrow of the topology, and seeding can likewise be
converted by cropping to classical feeding by addition of this o-provision arrow.
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To see how cropping in the feeding context works with more substantive examples, let’s
first see what it takes to convert the example based on Finnish from feeding to seeding.
Excising the o-provision arrow of the raising rule from Figure 2 results in Figure 18.

te˙ ti˙

si˙

crop(rse)

as
b

Figure 18: crop(rse) seeds asb

In order to achieve this result, the context of raising must be changed such that there
not be an s to the left of the raising target e. Because this condition excludes rather than
includes a natural class, it must be stated negatively:

(14) Cropped raising (‘crop(rse)’) seeds assibilation (‘asb’)

a. Cropped raising: e ÝÑ i / C — # ; C ‰ s

b. Assibilation: t ÝÑ s / — i

Cropped raising seeds rather than feeds assibilation, because assibilation destroys the con-
ditions that were necessary for the application of cropped raising in the first place.

Now let’s see how to convert the example based on Turkish from seeding to feeding.
Adding an o-provision arrow to the epenthesis rule in Figure 16 results in Figure 19.

ekn˙ ekin˙

ein˙en˙

crop(epn)

d
el

crop(epn)

Figure 19: crop(epn) feeds del

This result can be achieved by changing the context of epenthesis such that i is inserted
before any word-final consonant, without regard for what may appear to its left:

(15) Cropped epenthesis (‘crop(ep)’) feeds deletion (‘del’)

a. Cropped epenthesis: ∅ ÝÑ i / — C#

b. Deletion: k ÝÑ ∅ / V — V

Cropped epenthesis feeds deletion, but deletion does not in turn destroy the context that
enabled the application of cropped epenthesis: the form resulting from the feeding interaction
is itself a possible direct output of cropped epenthesis.
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5.3 More swapping

Just as with classical feeding and bleeding, the rules involved in mutual bleeding and seeding
interactions can be swapped — in other words, Figures 13 and 17 can be rotated (clockwise)
90 degrees. The results of these rotations are shown in Figures 20 and 21.

cade

cbde

cadf
cr

o
p
(P

)
R

Figure 20: Mutual bleeding of R & crop(P )

cade

cbdecbdf

cr
o
p
(P

)

Q

Figure 21: crop(P ) counterseeds Q

In the case of Figure 20, the result is simply that R is now the bleeding rule and P is now
the bled rule. In the case of Figure 21, on the other hand, the result is a counterseeding

interaction. Such an interaction is shown in (16), based on an example in Lomongo. If
deletion were to apply first, deletion would seed gliding: obina ÝÑ

del
oina ÝÑ

gld
*wina.

(16) Deletion (‘del’) counterseeds gliding (‘gld’)

a. Gliding:
“

´cons
‰

ÝÑ
“

´syll
‰

/ — V oisa ÝÝÑ
gld

wisa ‘you hide’

b. Deletion:

„

´son
`voi



ÝÑ ∅ / V — babina ÝÝÑ
del

baina ‘they dance’

c. Interaction: obina XÝÑ
gld

obina ÝÑ
del

oina ‘you dance’

Deletion i-provides but does not also o-provide gliding: there is no input to which deletion
can apply that leads directly to the output wina that would result from deletion seeding
gliding. The illustrative figure for this case of counterseeding is thus Figure 22, with deletion
i-providing but not o-providing gliding, and with gliding consequently o-removing deletion.

obi

oiwi

d
el

gld

Figure 22: del counterseeds gld

The interaction in Lomongo has been described simply as counterfeeding in e.g. Baković
(2011, 2013a), but proper attention to the classically-ignored output relations reveals that
it is structurally distinct from counterfeeding. In order for this interaction to be converted
to counterfeeding, an o-provision crop(del)-arrow would need to be added from input wbi

to output wi in Figure 22 above, thus generalizing deletion such that it applies when the
preceding segment is a vowel or a glide (= [´cons]), not just a vowel (= V/[`syll]).
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Finally, note once again that our illustrative figures highlight the difference between order-
dependent and order-independent properties. Swapping (as rotation) converts between seed-
ing and counterseeding as order-dependent categories; cropping (as arrow excision/addition)
converts between (counter)feeding and (counter)seeding as order-independent categories.

5.4 More flipping

In the same way that flipping P converts between (counter)feeding and (counter)bleeding,
flipping crop(P ) converts between mutual bleeding and (counter)seeding. Figures 13, 17, 20,
and 21 thus become Figures 23, 24, 25, and 26, pairwise respectively.

cade cbde

cadf

f (r(P ))

R

Figure 23: f (r(P )) seeds R

cade cbde

cbdf

f (r(P ))

Q

Figure 24: Mutual bleeding of f (r(P )) & Q

cbde

cadecadf

f
(r

(P
))

R

Figure 25: f (r(P )) counterseeds R

cade

cbdecbdf

f
(r

(P
))

Q

Figure 26: Mutual bleeding of Q & f (r(P ))

The orientations of these figures differ from those of their unflipped originals, but the results
are the same three interaction types: seeding, mutual bleeding, and counterseeding.

6 Interim summary

By way of summary we offer the following diagram, building on the initial diagram offered
in Figure 1. The classical interactions are in the center circle, related to each other via flip

and swap; crop relates these classical interactions to mutual bleeding and (counter)seeding,
which are also related to each other via flip and swap.

15



F B

CBCF

S MB

CS MB

flip

sw
a
p

flip

sw
a
p

flip

crop crop

sw
a
p

crop

sw
a
p

crop

flip

Figure 27: Flipping, swapping, and cropping among order-dependent interactions

Note that (counter)bleeding and (counter)seeding, when considered in order-independent
topological form (17), are directly relatable to each other via crop by excising the leftmost
out-flow arrow of (counter)bleeding or by adding such an arrow to (counter)seeding.11

(17) a. (Counter)bleeding: Ð ¨ Ñ ¨ Ñ

b. (Counter)seeding: Ñ ¨ Ñ

Focusing on just order-independent properties of interactions, then, conversions via flip

and crop alone can be summarized as follows.

(C)S

(C)F

MB

(C)B

crop

flip

flip

c
ro

p

c
ro

p

Figure 28: Flipping and cropping among order-independent interactions

7 Merger

The final topological arrow configuration is Ñ ¨ Ð. This represents merger. Consider the
following hypothetical pair of rules:

(18) a. Devoicing:
“

´son
‰

ÝÑ
“

´voi
‰

/ — #

b. Deletion: i ÝÑ ∅ /
“

´voi
‰

— #

11Further consequences of this relationship between counterbleeding and seeding are explored in more
detail in Baković & Blumenfeld (2018b).
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Neither feeds or bleeds the other, classically, mutually, self-destructively, or otherwise. But
in our terms, the rules mutually output-provide each other: an output ending in s˙ could
result from the application of either rule, from input z˙ by devoicing or from input si˙ by
deletion.

si˙ s˙

z˙

del

d
vc

Figure 29: Merger

Our expectation is that this configuration should be relatable to other types of interaction
via the flip and crop operations, and indeed it is.

Flipping either of the arrows results in one of two seeding configurations. If deletion is
flipped to epenthesis, then devoicing counterseeds epenthesis (Figure 30): epenthesis causes
the insertion of a vowel, which makes the consonant non-final, thus destroying devoicing’s
potential triggering environment. Conversely, if devoicing is flipped to voicing, then deletion
seeds voicing (Figure 31): deletion causes voicing, but voicing makes the consonant voiced,
thus destroying deletion’s triggering environment.

si˙ s˙

z˙

ep

flip(del)

d
vc

Figure 30: Merger ñ counterseeding

si˙ s˙

z˙

del
vc

e

fl
ip

(d
vc

)

Figure 31: Merger ñ seeding

Flipping both arrows results in mutual bleeding. Devoicing becomes final voicing, and
deletion becomes i -epenthesis after final voiceless segments. Both of these flipped rules are
applicable to as˙, but not to each other’s outputs.

si˙ s˙

z˙

ep

flip(del)

vc
e

fl
ip

(d
vc

)

Figure 32: Merger ñ mutual bleeding

Merger is also relatable to (counter)feeding by the crop operation: an arrow can be added
to the Ñ ¨ Ð topology of merger to turn it into the Ñ ¨ Ñ ¨ Ð topology of (counter)feeding.
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This can be straightforwardly accomplished by extending deletion to apply after all conso-
nants, not just voiceless ones (crop(del) = i ÝÑ ∅ / C — #); the resulting added arrow cre-
ates the feeding configuration, and cropped deletion feeds devoicing: zi˙ ÝÝÝÝÝÑ

crop(del)
z˙ ÝÝÑ

dvc
s˙.

zi˙ z˙

s˙si˙

crop(del)

d
vc

crop(del)

Figure 33: Merger ñ feeding

Finally, consider the relation between merger and (counter)bleeding. Merger’s topology,
Ñ ¨ Ð, includes two arrows pointing at the same node, while the (counter)bleeding topol-
ogy, Ð ¨ Ñ ¨ Ñ, lacks a node with two arrows pointing at it. Thus, to convert merger to
(counter)bleeding or vice-versa, both flip and crop are required. Merger can be converted
via flipping to seeding (or to mutual bleeding, applying flip twice), and the resulting inter-
action can in turn be converted to (counter)bleeding via cropping. Or, merger can first be
cropped into (counter)feeding, which can then be flipped into (counter)bleeding. All of the
relationships among these order-independent relations are summarized in Figure 34.

(C)S

(C)F

MB

(C)B

Mrg
crop

flip

flip

c
ro

p

c
ro

pfli
p

crop

Figure 34: Flipping and cropping among order-independent interactions, with merger

8 Typology and topology

As we’ve already seen along the way, the entire typology of map interactions can be visualized
as the topology of arrow configurations. With two arrows, there are three possibilities: merger
Ñ ¨ Ð, mutual bleeding Ð ¨ Ñ, and seeding Ñ ¨ Ñ (equivalently, Ð ¨ Ð). With three ar-
rows, there are only two possibilities, (counter)feeding Ñ ¨ Ñ ¨ Ð (equivalently, Ñ ¨ Ð ¨ Ð)
and (counter)bleeding Ð ¨ Ñ ¨ Ñ (equivalently, Ð ¨ Ð ¨ Ñ). To see that these are the only
interactional possibilities, consider the ‘full square’ illustrated in Figure 35.
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a b

c d

2

31

4

Figure 35: The full square

Each of the four three-arrow configurations — the two topological possibilities, under
each of two rule orders — can be obtained by excising one of the arrows from the square.
Excising one of the arrows originating at a results in (counter)feeding: feeding if arrow 1 is
excised (Figure 36), and counterfeeding if arrow 2 is excised (Figure 37). Excising one of the
arrows pointing to d results in (counter)bleeding: bleeding if arrow 3 is excised (Figure 38),
and counterbleeding if arrow 4 is excised (Figure 39).

a b

c d

2

3

4

Figure 36: F

a b

c d

31

4

Figure 37: CF

a b

c d

2

1

4

Figure 38: B

a b

c d

2

31

Figure 39: CB

The two-arrow configurations can in turn be obtained in various ways from each of these
three-arrow configurations. Excising arrow 2 from feeding (Figure 36) or arrow 1 from
counterfeeding (Figure 37) results in merger (Figure 40). Excising arrow 4 from feeding
(Figure 36) or arrow 1 from counterbleeding (Figure 39) results in seeding (Figure 41).
Excising arrow 3 from counterfeeding (Figure 37) or arrow 2 from bleeding (Figure 38)
results in counterseeding (Figure 42). Finally, excising arrow 4 from bleeding (Figure 38) or
arrow 3 from counterbleeding (Figure 39) results in mutual bleeding (Figure 43).

a b

c d

3

4

Figure 40: Mrg

a b

c d

2

3

Figure 41: S

a b

c d

1

4

Figure 42: CS

a b

c d

2

1

Figure 43: MB

9 Concluding remarks

We have explored here the typological and topological space of pairwise rule interactions,
based on a formal characterization of those interactions in terms of more basic relations:
input-provision, output-provision, input-removal, and output-removal. These relations can
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be represented as arrows toward or away from (sets of) inputs and outputs of the rules, which
can be flipped, excised, or added — the latter two forming complementary suboperations of a
broader cropping operation. Representing conjunctive rule ordering two-dimensionally, with
the earlier-ordered rule represented horizontally and the later-ordered rule represented verti-
cally, allows rule re-ordering to be obtained via 90-degree rotation. The formal consequences
and further development of the structure of this space are topics of ongoing research.
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