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ABSTRACT OF THE THESIS 

 

High-Resolution Optogenetic Functional Magnetic Resonance Imaging  

Powered by Compressed Sensing and Parallel Processing 

 

by 

 

Nguyen Van Le 

 

Master of Science in Electrical Engineering 

University of California, Los Angeles 

Professor Jin Hyung Lee, Chair 

 

Optogenetic functional magnetic resonance imaging (ofMRI) [1] is a powerful new technology 

that enables precise control of brain circuit elements while monitoring their causal outputs. To 

bring ofMRI to its full potential, it is essential to achieve high-spatial resolution with minimal 

distortions. With our proposed compressed sensing (CS) enabled method, high-spatial resolution 

ofMRI images can be obtained with a large field of view (FOV) without increasing spatial 

distortions and the amount of acquired data. The ofMRI data were sampled with passband 

balanced steady-state free precession (b-SSFP) [8, 17] fast stack-of-spiral sequence in order to 

achieve ultra-high-spatial resolution images in a short amount of time. Interleaves of data were 

randomly collected. The images were recovered from the undersampled k-space data by solving 

an unconstrained convex optimization problem, which balances the trade-off between data 

consistency and sparsity. The optimization problem can be solved by gradient descent combined 
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with backtracking line search algorithms. Discrete cosine transform (DCT) were chosen as a 

sparsifying transform. The ofMRI image reconstruction was processed in parallel on a graphics 

processing unit (GPU) using C/C++ language supported by NVIDIA CUDA engine in order to 

achieve short reconstruction time. An existing nonequispaced fast Fourier transform (NFFT) 

algorithm [13, 14] was modified for our GPU parallel processing purpose. The results 

demonstrate that the compressed sensing reconstructed image has higher resolution while 

maintaining a precise activation map, compared to a fully sampled low-resolution image with the 

same amount of data and scan time. A 4-D image can be reconstructed in less than fifteen 

minutes, which allows compressed sensing ofMRI to become a practical application. 
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CHAPTER 1 – INTRODUCTION 

Compressed sensing algorithm has been proposed for magnetic resonance imaging (MRI) 

applications [4]. Many algorithms have been suggested to improve MRI image quality through 

reconstruction. However, the quality of a compressed sensing MRI image also depends on other 

factors such as experimental set up and data acquisition method. ofMRI, first introduced by my 

advisor, is a new powerful MRI based technology for brain circuitry study. ofMRI activation 

map, which is very sensitive to the image quality and scan noise, requires not only accurate 

image reconstruction but also enhancements from stimulation method and data acquisition. 

Instead of reducing scan time, we apply compressed sensing to increase resolution of ofMRI 

images, which results in much lower SNR of our acquired data. Therefore, we proposed our 

compressed sensing ofMRI method, which allows for high-SNR data acquisition and rapid 

reconstruction of high-resolution ofMRI images.   
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1.1 Functional Magnetic Resonance Imaging 

Magnetic resonance imaging is a powerful noninvasive medical imaging technique that uses the 

principles of nuclear magnetic resonance (NMR), the spectroscopy study of the magnetic 

properties of the nucleus, to visualize a subject’s internal anatomy. MR signals can be generated 

if a strong static magnetic field, magnetic gradients, and radiofrequency excitations are applied 

to a subject with high proton density (water, fat). Unlike other common imaging techniques such 

as x-ray computed tomography (CT) or positron emission tomography (PET), MRI does not 

involve ionizing radiation, which is known to cause potential health risks. In addition, MRI has 

the advantage of superior soft-tissue contrast compared to other imaging modalities, facilitating 

its widespread adoption by the medical and scientific community.  

Functional magnetic resonance imaging (fMRI) is a technique that detects the associated 

changes in the flow of blood around the brain by utilizing the magnetic resonance imaging 

modality. It is thought that active regions of the brain require more oxygen supply to generate 

neural signals, which results in the increase of blood flow to that region. Therefore, by measuring 

the blood oxygenation level-dependent (BOLD) signals in a region of the brain, researchers can 

detect neuronal activity in that region.  
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1.2 Optogenetic Functional Magnetic Resonance Imaging 

fMRI is widely used in brain circuit research because of the ability to detect neuronal activity. 

The brain can be thought of as an electronic circuit, which has many components connected by 

wires. In order to study circuit connectivity, a probe should be applied at different locations in 

the circuit to generate various input signals and the output signals of the circuit are recorded for 

analysis. By studying the responses of the circuit to different input signals, researchers are able 

to analyze and debug the brain circuitry. Similar to electronic circuitry, brain circuitry can be 

studied if the brain’s neurons are excited to generate nervous impulses and the corresponding 

responses of the brain are captured. Since fMRI can accurately detect brain activity, it can be 

utilized to capture the responses of the brain to an input stimulation. Electrical brain stimulation 

(EBS) is a widely used method to stimulate neurons. However, EBS is non-selective since it 

stimulates all cells near the site of current injection. In 2005, Karl Deisseroth’s group at Stanford 

University introduced optogenetics, a technique to allow for cell-type specific stimulation based 

on the expression of bacterial rhodopsin transgenes [18, 19, and 20]. When a specific wavelength 

of light delivered via a laser is shined onto genetically targeted cells carrying the rhodopsin 

protein, these cells can be stimulated or inhibited. Therefore, unlike EBS, optogenetics allows for 

highly selective stimulation of specific cells, which is suitable to be used as a probe for brain 

circuitry debugging. In 2010, Jin Hyung Lee’s group invented a new technique to study brain 

circuitry in vivo, optogenetic fMRI (ofMRI), which combines optogenetics and fMRI to 

noninvasively monitor the response of the brain to selective stimulations of each brain circuit 

element [1]. 
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1.3 Passband Balanced Steady State Free Precession 

Compared to the conventional gradient-echo (GRE) blood oxygenation level-dependent (BOLD) 

fMRI utilizing echo-planer imaging (EPI), balanced-steady-state free precession (b-SSFP) 

imaging possesses the advantages of distortion-free 3D imaging, high-resolution isotropic voxel 

acquisition, and minimal signal dropouts [7, 8]. b-SSFP fMRI uses balanced gradient pulses to 

spatially encode the magnetic resonance (MR) signals generated by fast radiofrequency (RF) 

excitation pulses during each rapid excitation repetition interval (TR). There are two b-SSFP 

imaging techniques, namely transition-band b-SSFP and passband b-SSFP. Transition-band b-

SSFP is the original technique, first proposed by Scheffler et al. [22]. With the use of the steep 

transitional portion of the b-SSFP off-resonance spectrum, this method produces high oxygen 

contrast due to the shift in resonance frequency induced by deoxyhemoglobin. Since transition-

band b-SSFP fMRI generates oxygenation sensitive contrast in a narrow range of frequencies 

near resonance, even for small volume coverage, it requires multi-frequency acquisitions [23]. 

Unlike transition-band b-SSFP, the passband b-SSFP approach uses the flat portion, instead of 

the steep transitional portion, of the b-SSFP off-resonance spectrum. The use of the flat portion 

of the off-resonance spectrum allows for high-resolution imaging of the whole brain with only 

two acquisitions [7, 8]. 

The short TR characteristic of b-SSFP (few milliseconds) is compatible with 3D imaging. 

Moreover, 3D imaging produces more stable steady-state in the presence of blood flow and 

motion, compared to 2D multi-slice acquisition. 3D acquisition is often combined with 

interleaved stack-of-EPI or interleaved stack-of-spiral trajectories in order to achieve high-

resolution imaging with large field-of-view (FOV).  
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In b-SSFP fMRI, data acquisitions usually focus on a region of interest (ROI) in the brain. 

When large volume coverage is required, it is necessary to adjust the phase-cycling angles to 

shift the oxygen-sensitive region of the b-SSFP [7, 8]. For full-brain imaging, while the 

transition-band approach requires multiple acquisitions with different adjusted phase-cycling 

angles, two acquisitions at 0° and 180° phase-cycling angles are sufficient to cover the entire off-

resonance spectrum in passband b-SSFP fMRI. To combine the two acquisitions, maximum 

intensity projection (MIP) is utilized. With this method, the combination can avoid the mixing 

contrast from the passband and transition-band regions. 

 

 

Figure 1.1: Balanced-steady-state free precession (b-SSFP) pulse sequence 
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Figure 1.2: Two-acquisition method. The black strips from the brain regions are from the banding effect 

of passband b-SSFP. 
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1.4 Compressed Sensing Algorithm 

With the MRI technique, high-contrast soft-tissue images can be obtained without known health 

risks. However, the disadvantage of MRI is long acquisition time due to physical limitations such 

as slew-rate. In ofMRI, which monitors dynamic brain activities, it is crucial to acquire data in a 

short interval of time to achieve high temporal resolution with minimal spatial distortion. Within 

3-second temporal resolution, researchers can acquire only 500 x 500 x 500 µm3 spatial 

resolution 3-D ofMRI images with fast stack-of-spiral sequences and passband bSSFP method. 

Therefore, compressed sensing theory is necessary in order to obtain higher spatial resolution 

ofMRI images with an equivalent amount of acquired data and temporal resolution. 

Compressed sensing theory allows for the reconstruction of signals from undersampled data 

without aliasing artifacts. In other words, with a minimal amount of acquired data to reconstruct 

the fully sampled low-resolution images, we can reconstruct higher-resolution images with 

compressed sensing theory. In Fourier domain, if the spectrum of an image is undersampled, 

aliasing artifacts will occur in image domain. ofMRI data are sampled in Fourier domain called 

k-space. Therefore, undersampled ofMRI k-space data result in aliasing artifacts in spatial 

domains if the images are reconstructed by adjoint Fourier transform. 

In order to be reconstructed from undersampled data, ofMRI images must have a sparse 

representation in a transform domain and the aliasing artifacts have to be incoherent in that 

domain. Most ofMRI images have a sparse representation, which is a matrix with very few non-

zero coefficients. In other words, they are compressible. Sparsifying transforms can be found in 

various compression algorithms. The most popular image compression techniques are JPEG and 

JPEG-2000, underlined by discrete cosine transform (DCT) and wavelet transform, respectively. 
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In terms of energy distributions, the sparsifying transforms compact most of the energy and 

information of the image into very few coefficients. Other coefficients have very little or no 

energy distribution. With high-energy coefficients, we can reconstruct the image with minimal 

distortion, depending on compression techniques. This is the mechanism of lossy compression 

algorithms. 

To obtain the incoherent aliasing artifacts in the transform domain, the k-space has to be 

sampled randomly. The aliasing artifacts generated by randomly undersampled data have the 

properties of additive noise, whose spectrum spreads out in the transform domain, as illustrated 

in figure 1.3. Therefore, the MR signals are recoverable by a thresholding method, as discussed 

in [4]. Unlike random sampling, traditional equispaced undersampling does not produce noise-

like aliasing which greatly distorts the MR signals and prevents them from recovery because the 

aliasing artifacts cannot be distinguished from the signals. However, truly random sampling is 

impractical since it does not reduce the acquisition time.  

Our ofMRI data sampling follows the pattern of stack-of-spiral interleaves. Each RF pulse 

excites one interleaf and data readout is performed for that interleaf. The random sampling 

within an interleaf does not reduce the scan time. In addition, with passband b-SSFP 3D imaging, 

most of the energy concentrates around the center of the kz-axis. In practice, the numbers of 

interleaves should be denser in the slides that are closer to the center of kz-axis for energy 

distribution matching purpose. As a result, we perform the data readout for the entire interleaf 

and excite more interleaves in the slides that are closer to the center of kz-axis while we 

randomize the interleaves selection in each slide in order to obtain the best subset of k-space 

sampling. With this sampling scheme, we cannot achieve truly incoherent aliasing artifacts. 
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However, the artifacts are partially incoherent, which still allows for the recovery of the ofMRI 

images. 

 

Figure 1.3: Uniform undersampling versus random undersampling. Top figure is sparse representation of 

cosine function in Fourier domain. Left figure is the aliased spectrum of undersampled cosin function. 

Random undersampling result in noise-like aliasing artifacts in right figure. 
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CHAPTER 2 – PROPOSED COMPRESSED SENSING ENABLED ofMRI 

2.1 Compressed Sensing Data Acquisition 

For activation map verification, low-resolution data without CS enabled were collected to 

determine the activation map of a specific stimulation on an animal. The low-resolution data 

were sampled with passband b-SSFP fMRI method with fast 10-interleaf stack-of-spiral 

sequences, 3.5 x 3.5 x 1.6 cm3 volume coverage. The image was reconstructed on a 70 x 70 x 32 

grid, which has a spatial resolution of 500 x 500 x 500 µm3. 2-dimensional (2D) adjoint 

nonequispaced fast Fourier transform (NFFT) and fast Fourier transform were utilized for image 

reconstruction. The repetition time, echo time (TE), and scan time was 9.375 ms, 2 ms, and 3 s, 

respectively. The flip angle was set to be 30° and the readout duration was 1.7 ms. The first 10 

scans (30 s) were used for functional baseline estimation and magnetic field stabilization. In the 

next 120 scans (360 s), 6 cycles of 20-second stimulation were performed. The activation maps 

were determined with 0.35 threshold level.  

In order to achieve higher resolution images with the same amount of acquired data, scan 

time, and temporal resolution as the low-resolution images, we developed a compressed sensing 

enabled ofMRI technique, which allows us to achieve an ultra-high spatial resolution of 210 x 

210 x 500 μm3 with the same volume coverage and temporal resolution, while avoiding any 

significant image distortion or signal dropout. In practice, it is impossible to achieve both this 

spatiotemporal resolution and field of view (FOV) with the traditional ofMRI method due to the 

MRI scanner’s physical limitations. Similar to the low-resolution data, high-resolution data were 

also sampled with passband b-SSFP fMRI with stack-of-spiral trajectory. Except for the spatial 

resolution, all other parameters were maintained the same as the low-resolution data acquisition. 
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High-resolution images were recovered on 167 x 167 x 32 grid with 130 frames. In order to 

support the aforementioned high-spatial resolution and FOV, a fully sampled dataset requires 30-

interleaf stack-of-spiral trajectory. With compressed sensing, one third of the total number of 

interleaves was sampled, meaning that the amount of acquired data reduces by a factor of three, 

compared to the fully sampled data. As discussed above, in order to attain a realistic sampling 

scheme matching the energy distribution, undersampling rates are not the same across slides on 

the kz-axis. The number of interleaves is denser closer to the center and decreases toward the two 

sides of the kz-axis. The sampled interleaves are also varied from each frame, producing 

incoherent aliasing artifacts in the transform domains of temporal dimension. The activation 

maps were also determined with the same threshold level. 

Low-resolution and compressed sensing data were acquired from 7T Bruker with 39.6 G/cm 

maximum gradient amplitude and 457 G/cm/s maximum slew-rate. 
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Figure 2.1: Fully sampled stack-of-spiral trajectory (left) and compressed sensing stack-of-spiral 

trajectory (right). 
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2.2 Compressed Sensing Image Reconstruction 

Let 𝑓(𝑚) be the cost function, which is, 

 
𝑓(𝑚) =   

1
2
‖𝐹𝑁𝑚 − 𝑦‖22 +�𝜆𝑘‖𝛹𝑘𝑚‖1

2

𝑘=1

, �  (1) 

The two terms on the right-hand side of Eq. 1 represent data fidelity and sparsity over temporal 

and spatial dimensions of a 4-D image m, respectively. The goal of the reconstruction process is 

to determine a 4-D image m which minimizes the cost function 𝑓(𝑚): 

 
argmin

𝑚
 
1
2
‖𝐹𝑁𝑚 − 𝑦‖22 +�𝜆𝑘‖𝛹𝑘𝑚‖1

2

𝑘=1

, �  (2) 

where λs are weighting parameters that determine the tradeoff between the data consistency and 

the sparsity while Ψs are sparsifying transforms. Ψ1 is DCT of temporal dimension while Ψ2 is 

DCT of all three spatial dimensions. 𝐹𝑁 ∈ ℂ𝑛×𝑝 is the nonequispaced fast Fourier transform 

operation. 𝑦 ∈ ℂ𝑛 is the acquired k-space data from the scanner and 𝑚 ∈ ℂ𝑝 is the reconstructed 

4D image. We analyzed temporal and spatial dimensions separately because we are interested in 

the variation of the BOLD signal over time. The spatial quality can be traded for the temporal 

quality in order to attain precise activation maps. 

In this work, DCT is utilized as sparsifying transforms. DCT is widely used in many lossy 

compression techniques such as audio compression (MP3) and image compression (JPEG). DCT 

is chosen because of its fast computation and high compression ratio. For a given transform size, 

the DCT coefficients can be pre-computed and reused. The DCT of one dimension can be 

computed by matrix multiplication of pre-computed coefficient matrix and the data matrix. Most 
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of the ofMRI images exhibit extremely sparse representations in DCT domain, where the energy 

concentrates in the low-frequency portion.  

 

 

Figure 2.2: Reconstruction grid. For visualization, our ofMRI high-resolution 4D images are 

reconstructed on a 167 x 167 x 32 x 134 grid. 
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2.3 Accelerated Gradient Descent Algorithm 

The gradient descent algorithm requires the computation of the gradient ∇f(m), which is 

described in the below equation: 

 
𝑔 = ∇𝑓(𝑚) = 𝐹𝑁𝐻(𝐹𝑁𝑚 − 𝑦) + �𝜆𝑘∇‖𝛹𝑘𝑚‖1

2

𝑘=1

, � (3) 

where 𝐹𝑁𝐻 is the adjoint nonequispaced fast Fourier transform (iNFFT). L1-norm is a non-

differentiable function, which should be approximated by a smooth function: ‖𝑥‖1 ≈

∑ ��𝑥𝑖∗𝑥𝑖 + 𝜇2 − 𝜇�𝑖 , where μ is the smoothing parameter. 

Since we used the fast spiral sequences for data acquisition, nonequispaced fast Fourier 

transform (NFFT) was required to transform the data from the spiral k-space domain to the 

Cartesian spatial domain. The computation of NFFT, which is very expensive, is required in 

order to evaluate 𝑓(𝑚). However, the cost function 𝑓(𝑚 − 𝑡𝑔) has to be evaluated in each 

backtracking line search loop when t is updated. Therefore, to reduce the computational cost, we 

avoided computing NFFT in every backtracking line search loop by pre-computing some parts of 

the L2-norm with some simplification from the below equation: 

 
𝑓(𝑚− 𝑡𝑔) =  

1
2
‖𝐹𝑁(𝑚− 𝑡𝑔) − 𝑦‖22 + �𝜆𝑘‖𝛹𝑘(𝑚 − 𝑡𝑔)‖1

2

𝑘=1

, �  (4) 

The first term can be written as:  

 
 
1
2
‖𝐹𝑁(𝑚− 𝑡𝑔) − 𝑦‖22 =  

1
2
‖(𝐹𝑁𝑚 − 𝑦) − 𝑡𝐹𝑁𝑔‖22 

 

  
=  

1
2

[(𝐹𝑁𝑚 − 𝑦) − 𝑡𝐹𝑁𝑔]𝐻[(𝐹𝑁𝑚 − 𝑦) − 𝑡𝐹𝑁𝑔] 
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=  

1
2

(𝐹𝑁𝑚 − 𝑦)𝐻(𝐹𝑁𝑚 − 𝑦) +
1
2
𝑡2(𝐹𝑁𝑔)𝐻(𝐹𝑁𝑔) 

     −  
1
2
𝑡[(𝐹𝑁𝑚 − 𝑦)𝐻(𝐹𝑁𝑔) + (𝐹𝑁𝑔)𝐻(𝐹𝑁𝑚 − 𝑦)] 

 

  
=  

1
2
‖𝐹𝑁𝑚 − 𝑦‖22 +

1
2
𝑡2‖𝐹𝑁𝑔‖22 − 𝑡ℜ{(𝐹𝑁𝑚 − 𝑦)𝐻(𝐹𝑁𝑔)} 

 

  =  𝑎 + 𝑡2𝑏 − 𝑡𝑐 (5) 

where 𝑎 = 1
2
‖𝐹𝑁𝑚 − 𝑦‖22, 𝑏 = 1

2
‖𝐹𝑁𝑔‖22, and 𝑐 = ℜ{(𝐹𝑁𝑚 − 𝑦)𝐻(𝐹𝑁𝑔)}. They are independent 

from t and can be pre-computed prior to the execution of the backtracking line search. In the 

backtracking line search loop, when 𝑡 is updated, the value of the L2-norm is evaluated by 

simple addition and multiplication (Eq. 5), instead of computationally expensive NFFT and FFT. 

Evaluating DCT is much less computationally intensive. As a result, they are not necessarily pre-

computed. Gradient descent and accelerate gradient descent algorithms are described in detail in 

appendix III and IV. 
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2.4 Parallel Reconstruction 

Recently, demand for parallel computing has rapidly increased. Applications such as real-time 

and high-definition 3D graphics rely greatly on parallel computing. Both central processing units 

(CPU) and graphics processing units (GPU) have evolved into multi-core, multi-thread 

processors, attaining highly parallel structures. The parallel architectures of CPU and GPU are 

quite different. Therefore, CPUs and GPUs have different parallel characteristics. CPUs can 

support a limited number of concurrent threads (up to 48 threads with Hyper-Threading 

Technology). Threads on CPUs are generally used for heavy loaded computations. In contrast, 

GPUs can have a massive number of concurrent threads (a 16-multiprocessor can have 512 cores 

with more than 24,000 threads). However, threads on GPUs are extremely lightweight. 

Therefore, GPUs are suitable for highly parallel tasks with light computations for each thread. 

For instance, large matrix addition can be performed on GPUs with high efficiency while it 

would take much longer time to be processed on a CPU. Each element in the matrices can be 

mapped to a parallel processing thread, which performs only one addition. In 2006, NVIDIA 

introduced the CUDA engine, which is a very powerful and simple tool to implement parallel 

computing on GPUs to solve many parallelizable complex problems more efficiently than CPUs. 

In this paper, GPU parallelization is implemented to speed up the reconstruction process to 

bring ofMRI to practice. Without parallelization, the reconstruction process would take a few 

days. However, with GPU parallelization, it takes less than 15 minutes to reconstruct and analyze 

a full 4D ofMRI image. The reconstruction algorithms were written in C/C++ language 

supported by the NVIDIA CUDA engine. Due to graphics card memory limitation and data size 

(the size of our ofMRI image is about 900 MB), the parallelization was implemented for small 
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processes such as computing matrix multiplication, calculating L1-norm, or performing fast 

Fourier transform for one dimension, etc.. Moreover, as mentioned above, in order to optimize 

the performance of GPU computing, the GPU threads should be lightweight. Therefore, unlike 

CPU parallel processing, it is inefficient to assign each reconstruction process to a GPU thread, 

or block. CPU and its physical memory, RAM, are considered to be a host system, while the 

GPU and its memory are treated as the device. The host and the device are separated by the PCI 

Express (PCIe) bus. The bandwidth of the PCIe bus is much smaller compared to the bandwidth 

between the CPU and RAM or the bandwidth between the GPU and its memory. To achieve 

optimal throughput, data should not be frequently transmitted through the PCIe bus. Therefore, 

the acquired data and the intermediate data for the gradient descent algorithm were alternatively 

stored on either device’s memory or host’s memory to balance the device’s memory demand and 

throughput. Frequently used data such as the 4D image has higher priority to be stored on 

device’s memory than other rarely used data. CUDA built-in library such as cuBLAS and cuFFT 

were utilized to optimize the performance of GPU processing. The nonequispaced fast Fourier 

transform algorithm was rewritten with the CUDA engine enabled for GPU processing. Table 1, 

2, 3, and 4 in chapter 3 demonstrate the time improvement of our parallelized processes. 
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Figure 2.3: Reconstruction process. Parallel reconstruction is performed within each stage.  
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2.5 Parallelized NFFT for GPU Processing 

We applied GPU parallel processing to the NFFT algorithm developed by Daniel Potts’ group 

[13, 14]. The main idea behind this algorithm is to approximate the NFFT of a function by a 

linear combination of shifted periodic window functions. 

Let 𝕋𝑑  be the domain of the nonequispaced nodes 𝑥𝑗 

𝕋𝑑 ∶= �𝑥 = 𝑥(𝑡)𝑡=0,…,𝑑−1 ∈ ℝ𝑑 : −
1
2
≤ 𝑥𝑡 ≤

1
2

, 𝑡 = 0, … ,𝑑 − 1� 

where  𝑑 ∈ ℕ is the number of dimensions. Also, let 

𝐼𝑁 ∶= �𝑘 = (𝑘𝑡)𝑡=0,…,𝑑−1 ∈ ℤ𝑑:−
𝑁𝑡
2
≤ 𝑘𝑡 ≤

𝑁𝑡
2

, 𝑡 = 0, … ,𝑑 − 1� 

where 𝑁𝑡 is the size of the Cartesian grid in a specific dimension. 

Without loss of generality, we consider 1D NFFT 

 𝑓�𝑥𝑗� ∶= � 𝑓𝑘𝑒−𝑗2𝜋𝑘𝑥𝑗
𝑘∈𝐼𝑁

 � (6) 

where 𝑓𝑘  is a 1D equispaced function and 𝑓 is its NFFT with nonequispaced nodes 𝑥𝑗 , 𝑗 =

0, 1, … ,𝑀 − 1. Let 𝑠 be an approximation of 𝑓 by a linear combination of shifted periodic 

window functions 𝜑�  

 
𝑠(𝑥) ∶= �𝑔𝑙𝜑� �𝑥 −

𝑙
𝑛
�

𝑙∈𝐼𝑛

 � (7) 

where 𝑛 ∶= 𝜎𝑁. 𝜎 > 1 is the oversampling factor. Assume that the periodic window function 

𝜑�  can be represented by its Fourier series: 
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 𝜑�(𝑥) = �𝑐𝑘𝑒−𝑗2𝜋𝑘𝑥
𝑘∈ℤ

 � (8) 

and 𝑔�𝑘 are the Fourier coefficients of the weighting parameters 𝑔𝑙: 

 𝑔�𝑘 ∶= �𝑔𝑙𝑒
𝑗2𝜋𝑘𝑙𝑛

𝑙∈𝐼𝑛

 � (9) 

Combine (7), (8), and (9), we have: 

 𝑠(𝑥) =  � 𝑔�𝑘𝑐𝑘𝑒−𝑗2𝜋𝑘𝑥
𝑘∈𝐼𝑁

+ � � 𝑔�𝑘𝑐𝑘+𝑛𝑟𝑒−𝑗2𝜋(𝑘+𝑛𝑟)𝑥

𝑘∈𝐼𝑛𝑟∈ℤ\{0}

 � (10) 

Compare (6) and (10) with an assumption that 𝑐𝑘 is small for |𝑘| > 𝑛 − 𝑁
2
, we have: 

 
𝑔�𝑘 ∶= �

𝑓𝑘
𝑐𝑘

, 𝑘 ∈ 𝐼𝑁,     

0, 𝑘 ∈ 𝐼𝑛\𝐼𝑁
 �

𝑓𝑘
𝑐𝑘

, 𝑘 ∈ 𝐼𝑁,     

0, 𝑘 ∈ 𝐼𝑛\𝐼𝑁
(11) 

Hence, 𝑔𝑙  can be obtained by  

 
𝑔𝑙 =

1
𝑛
� 𝑔�𝑘𝑒

−𝑗2𝜋𝑘𝑙𝑛

𝑘∈𝐼𝑁

      (𝑙 ∈ 𝐼𝑛) � (12) 

The window function 𝜑 can be also approximated by a finite-length window function 𝜓:  

 𝜓(𝑥) = 𝜑(𝑥)Π�
𝑛

2𝑚
𝑥� , 𝑚 ≪ 𝑛,𝑚 ∈ ℕ (13) 

Let 𝜓� be the periodic version of 𝜓. The new index set is 

 𝐼𝑛,𝑚(𝑥𝑗) ∶= �𝑙 ∈ 𝐼𝑁:𝑛𝑥𝑗 − 𝑚 ≤ 𝑙 ≤ 𝑛𝑥𝑗 + 𝑚� (14) 

Then, 𝑠 can be defined as: 
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𝑠�𝑥𝑗� ∶= � 𝑔𝑙𝜓� �𝑥𝑗 −

𝑙
𝑛
�

𝑙∈𝐼𝑛,𝑚(𝑥𝑗)

 � (15) 

Gaussian, cardinal central B-splines, and Kaiser-Bessel functions are widely used as window 

function because of their small aliasing and truncation errors.  

In summary, NFFT 𝑓 of an equispaced function 𝑓𝑘  can be approximated by the following steps: 

 Compute 𝑐𝑘 which are the Fourier series coefficients of the window function 𝜑 � . 

 Evaluate 𝑔�𝑘 from the equispaced function 𝑓𝑘 and 𝑐𝑘. 

 Perform FFT to 𝑔�𝑘 to obtain 𝑔𝑙. 

 Obtain the approximation of 𝑓 from 𝑔𝑙 and the truncated window function 𝜓� as Eqn. 15. 

Since the grid size of the image and the k-space nodes are fixed, the window function 𝜑� , its 

Fourier coefficients 𝑐𝑘, and its truncated version 𝜓� can be pre-computed and reused for all NFFT 

and adjoint NFFT evaluations. The computation of multidimensional NFFT and adjoint NFFT 

are demonstrated in appendix I and II. 

We modified the NFFT library with CUDA engine to empower GPU parallel processing. 

When the NFFT plan is initialized, 𝑐𝑘 are computed in parallel on the GPU and stored on the 

graphics card global memory. For every 2D slice, 𝑔�𝑘 is calculated in parallel from Cartesian 

image 𝑓𝑘  and the Fourier coefficients 𝑐𝑘. The calculation of an element of 𝑔�𝑘 is performed by a 

GPU thread. We utilize CUDA cuFFT built-in library to evaluate 𝑔𝑙, which is simply the Fourier 

transform of 𝑔�𝑘. The resulting NFFT is determined from 𝜓 and 𝑔𝑙, which are cached in texture 

memory for rapid data retrieval.  
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The parallelization of the adjoint NFFT is very similar to the forward NFFT, except for the 

inverted procedure and the inverse FFT in step two. The performance of our forward NFFT and 

adjoint NFFT are demonstrated in table 1 in chapter 3.  
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2.6 ofMRI Stimulation and Activation Map Analysis 

A living animal’s brains always exhibits neuronal activity. In order to distinguish the activity 

caused by the optogenetic stimulation from the normal brain’s activity, we use a low-frequency 

periodic stimulation. If some regions of the brain respond to that stimulation; the brain’s activity 

in those regions should have approximately the same frequency with the stimulation. The 

strength of the responsive signals should be much higher than the normal brain signals and the 

noise level so that the active voxels from the stimulation can be distinguished from other active 

voxels or noise at the same frequency by a threshold. 

 

Figure 2.4: Stimulation procedure. The stimulation starts after 14 frames with 6 cycles. There are 20 

frames for each cycle, where the laser is turned on during the first 7 frames. 

 

We have 134 frames for one data set with 3-second temporal resolution. The first 4 frames 

are dummy frames, which are used to bring the MRI scanner to its steady state. These frames are 

removed from the reconstruction. The next 10 frames are used for baseline analysis. The 

optogenetic stimulation starts at the 14th frame. The laser is on for 7 frames, and it is turned off 

during the next 13 frames. This procedure is repeated six times during one scan for one data set, 

as demonstrated in figure 2.4.  
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The activation maps of ofMRI images can be determined by Fourier analysis of 3D images 

across temporal dimension. Let fπ be the frequency of the brain signal generated by the 

optogenetic stimulation at one voxel, which can be fully controlled by the stimulation cycle. 

Also, let f be the spectrum of that voxel, which can be determined by Fourier transform of the 

intensity of the voxel across 120 frames, from frame 15 to frame 134. Let R be the square root of 

the ratio of the energy of the responsive frequency and the spectrum. We have: 

 
𝑅 =  �

𝑓𝜋2 + 𝑓−𝜋2

∑ 𝑓𝑖2119
𝑖=1

=
√2|𝑓𝜋|

�∑ 𝑓𝑖2119
𝑖=1

 𝑅 =  𝑅 =  �
𝑓𝜋2 + 𝑓−𝜋2

∑ 𝑓𝑖2119
𝑖=1

 (16) 

In Eqn. 16, i starts from 1 instead of 0 since we ignore the energy of DC component. If the value 

of R of a voxel is higher than a threshold; then that voxel is considered to be active to the 

stimulation. Empirically, a 0.35 threshold level is widely used in fMRI. The coherence maps 

measure the strength of the activity. 
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2.7 Anesthesia and Motion Artifacts 

Our ofMRI data were collected from living animals under anesthesia. The amount of isoflurane 

being administered is very important to the quality of the ofMRI images. For example, animals 

under deep anesthesia exhibit no response to the laser stimulations. Hence, no activity can be 

detected. Conversely, if the isoflurane level is too low, motion from the animals can occur and 

interfere with data acquistion. Therefore, the amount of isoflurane should be at an appropriate 

level so that the animals generate minimal motion while still exhibiting strong responses to the 

laser stimulations. Motions from breathing are unavoidable.  

In practice, with our anesthesia level, the motions of the anesthetic animal are very little 

compared to the FOV. However, since the activation maps are calculated pixel-wise, small 

displacements of the brain regions between frames can greatly weaken the activation maps. As a 

result, it is necessary to have reconstructed images corrected for motion for accurate activation 

maps. 

We use an inverse compositional algorithm which is based on Lucas-Kanade algorithm to 

align our images from motion. It is one of the most reliable image alignment techniques, which is 

widely used in computer vision. The goal of this algorithm is to minimize the sum of squared 

error between an input image and a reference image. Our motion correction tool can align 3D 

images from displacements and rotations between time frames in image domain. We have 6 

parameters which measure the relative motions between images. They are the linear 

displacements in x, y, and z directions and the rotation around x, y, and z-axis. The relative 

motion can be described by the combination of these 6 parameters. 
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2.8 Signal-to-Noise Ratio 

The compressed sensing technique allows for the reconstruction of 4D ofMRI images from 

undersampled data. However, undersampled data results in signal-to-noise ratio (SNR) loss due 

to fewer data readouts. Therefore, the compressed sensing reconstructed images are expected to 

have weaker activation maps, compared to the fully sampled high-resolution images and low-

resolution images. The SNR of an ofMRI image is directly proportional to the voxel size, the 

square root of total readout interval, and pulse-sequence-dependent function 𝑓(𝜌,𝑇1,𝑇2):  

 𝑆𝑁𝑅 ∝ (𝑉𝑜𝑥𝑒𝑙 𝑆𝑖𝑧𝑒) × √𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 × 𝑓(𝜌,𝑇1,𝑇2), 
�  (17) 

Compared to the SNR of the low-resolution image with 500 x 500 x 500 µm3 resolution, the 

SNR of 210 x 210 x 500 µm3 3X undersampled high-resolution image is about 3.27 times less 

since it has the same readout interval but higher spatial resolution. In order to reduce the SNR 

gap, six compressed sensing high-resolution data sets were acquired, three for each phase-

cycling angle. Then, three reconstructed images of the same phase were averaged to bring the 

SNR √3 times higher. The final compressed sensing reconstructed image was obtained from the 

MIP of the averages of the two phases, due to the use of passband b-SSFP full-brain coverage 

(figure 1.2). As a result, the SNR of the final compressed sensing image is equivalent to the SNR 

of the fully sampled image, but it is still theoretically 1.73 times less than the SNR of the low-

resolution image.  
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2.9 Measurement of Reconstruction Quality 

In ofMRI, we are interested in the accuracy of the activation maps. In other words, we are 

interested in the location of the brain’s activity. Therefore, we measure the distortion between 

active voxels of the activation maps of high-resolution CS reconstructed image and phantoms or 

interpolated low-resolution images to determine how accurate the reconstruction is. There are 

two types of activation map errors, missed voxels and leaked voxels. If a voxel is active in the 

activation map of a low-resolution image or phantom, but not in the CS reconstructed image, 

then it is considered to be a missed voxel. In contrast, if a voxel in the activation map of a CS 

reconstructed image doesn’t exist in the activation map of the corresponding low-resolution 

image or phantom, it is a leaked voxel. The sum of the total number of missed and leaked voxels 

is the total error, which measures the reconstruction quality. Our goal is reconstructing the 

compressed sensing ofMRI images with the most recoverable active voxels or minimal total 

error. The correlation between the number of recoverable active voxels and the total error is 

discussed in the next chapter. 

Empirically, we have observed that the strength of the activation maps is very sensitive to the 

value of the weighting parameters in the cost function. Moreover, the optimal parameter set 

varies with the acquired data. For instance, the optimal parameter set that produces the strongest 

activation map for the hippocampus stimulation dataset is not the same as the optimal parameter 

set for the thalamus stimulation or phantom images dataset. However, the optimal parameter set 

is almost the same for the same phantom with different additive noise levels (different SNR). 
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Summary of Chapter 2 

In this chapter, we have proposed our methods to improve many procedures, from data 

acquisition, stimulation to image reconstruction and analysis. Experimental set up, including 

anesthesia, stimulation, and pulse sequence design, has important consequences for image 

quality. Since activation maps are very sensitive to image quality, the experimental set up has to 

be carefully performed. Our parallel image reconstruction and analysis methods can minimize 

artifacts from our experiment and enhance the visualization of the activation maps.  

Data acquisition with passband b-SSFP stack-of-spiral trajectory process is very important to 

quickly attain high-SNR data. Energy-matching random sampling results in incoherent aliasing 

artifacts and preserves more information in undersampled data. Stimulation and anesthesia 

processes have to be performed carefully to achieve good activation maps with minimal motion 

artifacts. Parallelized reconstruction should be designed carefully to optimize the performance of 

GPU processing. Motion correction aligns 2D slices to strengthen the activation map. The 

combination of these methods allows for achieving high-quality compressed sensing ofMRI 

images with rapid scan time. 
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CHAPTER 3 – RESULTS 

3.1 Performance of GPU Processing 

Our reconstruction process was performed on a Linux operating system platform, powered by 

Intel Core i7 2600k quad-core, 16 GB DDR3 dual-channel, NVIDIA GeForce GTX 580 with 

512 CUDA cores. 

GPU parallelization offers much faster image processing capability, compared to traditional 

sequential CPU processing. Table 1 compares the execution time of the modified NFFT and its 

adjoint between parallelized and non-parallelized versions. As expected, the time to execute 

forward NFFT and adjoint NFFT are the same, since the calculation of the adjoint NFFT is just 

the inverted procedure of the forward NFFT. We first tried to modify NFFT with “pthread” 

library for CPU parallelization. We utilized all 8 threads of the Intel Core i7 CPU; each thread 

performs NFFT to a slide of the image. This method can cut the execution time into half, 

compared to the non-parallelization version. As expected, the GPU parallelization has the best 

performance, about 7 times faster than the CPU parallelization.   

In table 2, we compare the execution time of some matrix operations. Matlab has great 

performance for some matrix operations, compared to traditional C/C++ algorithms. Therefore, 

we also include it in our comparison. All matrices are complex with single precision. Matrix 

addition is performed between two matrices, whose total number of elements is 116,018,240. 

This is also the total size of our 4D images. Similarly, a matrix with the same size is used in 

scalar multiplication. For matrix-matrix multiplication, we measure the time needed to compute 

the product of 167-by-167 and 167-by-694,720 matrices. We also measure the time to transpose 

every 167 x 167 slices of our 4D image. Finally, the time to evaluate the dot product used in our 
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accelerated gradient descent algorithm is recorded. Each array has the size of 17,971,200 

elements, which is the total number of samples of our acquired k-space data. Table 2 shows that 

Matlab has fast algorithms for matrix operations. However, our GPU parallel processing has 

superior performance over Matlab, which has better performance than the non-parallelization 

approach. It greatly improves the performance of the computationally expensive matrix-matrix 

multiplication operation. As a result, as shown in Table 3, with GPU parallelization, we can 

significantly reduce the reconstruction time, which is one of the most important factors in 

bringing ofMRI to practice. 

As discussed in section 2.4, one of the challenging problems in GPU processing design is the 

balance between device’s memory allocation and data transmission through the PCIe bus. We 

perform matrix addition, matrix scalar multiplication, and matrix-matrix multiplication with 

built-in cuBLAS library to matrices that allocated either on host’s or device’s memory. We used 

mapped page-locked memory allocation for host’s memory allocation, which has the fastest 

transfer rate between host and device. For device allocation, data were stored in device’s global 

memory. From table 4, although mapped memory has faster processing rate compared to 

traditional sequential processing and Matlab (matrix addition and matrix scalar multiplication), it 

is still much slower than the device’s memory allocation approach because of the bottleneck at 

PCIe bus.  

 Without Parallelization With CPU Parallelization 

(pthread) 

With GPU Parallelization 

(CUDA) 

Forward NFFT 40 seconds 20 seconds 3 seconds 

Adjoint NFFT 40 seconds 20 seconds 3 seconds 

Table 1: Timing table of the modified nonequispaced fast Fourier transform.  



32 
 

 Without Parallelization 

(C/C++) 

Matlab With GPU 

Parallelization (CUDA) 

Matrix addition (subtraction) 0.33 s 0.49 s 0.011 s 

Matrix scalar multiplication 0.55 s 0.64 s 0.011 s 

Matrix transpose 1.9 s 0.87 s 0.22 s 

Matrix-matrix multiplication 200 s 1.72 s 0.14 s 

Dot product 0.21 s 0.10 s 0.04 s 

Table 2: Timing table of matrix operations used in the reconstruction. 

 

 Without Parallelization With GPU Parallelization (CUDA) 

DCT for a 4D image 812 s 0.86 s 

Evaluate L1-norm 0.66 s 0.099 s 

Evaluate L2-norm 2.21 s 0.28 s 

Reconstruction time for 1 data set ~2 days ~ 15 minutes 

Table 3: Timing table compares the performance of parallelized and non-parallelized versions of main 

processes in the reconstruction.  

 

 Memory Allocation on Host  Memory Allocation on Device 

Matrix addition (subtraction) 0.32 s 0.011 s 

Matrix scalar multiplication 0.32 s 0.011 s 

Matrix-matrix multiplication 3.0 s 0.14 s 

Table 4: Performance of GPU processing between host’s and device’s memory allocation.   
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3.2 Hippocampus and Thalamus Stimulations 

Figure 3.1 and figure 3.2 illustrate the activation maps of the hippocampus and thalamus 

stimulations, respectively. The top image in each figure is the activation map of the fully-

sampled low-resolution image. The bottom image is the compressed sensing reconstructed high-

resolution image, corresponding to the low-resolution image in each figure. The bar on the right-

hand-side presents the strength of the active voxels mapped by colors. 

It is obvious that the CS reconstructed images look sharper than the fully-sampled images 

since they have higher resolution. We also notice the accurate positions of the activation maps in 

the high-resolution images, compared to their low-resolution versions. However, the activation 

maps in the high-resolution images are weaker compared to the corresponding activation maps in 

the low-resolution images. It is expected because of the SNR reduction from increasing spatial 

resolution, as discussed. However, compressed sensing possesses SNR boosting ability, which 

reduces the SNR gap between the low-resolution fully sampled image and the compressed 

sensing reconstructed undersampled image. Another source of error we have to consider is the 

non-identical response of the brain. The low-resolution data were acquired right before the 

compressed sensing data. Some regions of the brain may need time to recover for the next 

stimulation. Unfortunately, we cannot determine what regions would need recovery time and 

their recovery time interval. Hence, using the activation maps of the low-resolution images may 

not be accurate to measure the reconstruction quality. We need pre-determined activation maps 

to compare with our reconstructed images. Therefore, we need to create phantoms where the 

activation maps are pre-determined.  
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Figure 3.1: Hippocampus stimulation. (a) Coherence map of low-resolution fully sampled image. (b) 

Coherence map of compressed sensing reconstructed image. 
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Figure 3.2: Thalamus stimulation. (a) Coherence map of low-resolution fully sampled image. (b) 

Coherence map of compressed sensing reconstructed image. 
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3.3 Phantom Experiment 

We also created phantom images with various activation maps and SNR to determine the 

reliability of our reconstruction algorithms. Unlike the low-resolution images, phantom images 

provide pre-determined activation maps for the evaluation of the reconstruction’s reliability. The 

reconstructed images with noise-free background are used as bases for our phantoms. Pre-

determined activation maps and Rician noise, which is typical additive noise in MRI, are added 

to the basis images. Those images are transformed to stack-of-spiral Fourier domain and the 

interleaves are removed with the same sequence we used for compressed sensing data 

acquisition. In other words, we use the same k-space stack-of-spiral trajectory and interleaf 

selection as what we used to acquired undersampled data. 

The activation maps of the phantoms are letters, which have sharp edges and uniform 

intensities. The letters were added on consecutive slices on z-axis, which results in sharp 

transitions of activation map between slices as well. Different noise levels were also added to the 

phantoms to determine the noise-robustness of our compressed sensing algorithm. The 

compressed sensing images were reconstructed with different weighting parameter sets in the 

cost function to study the relationship between those parameters and the reconstructed activation 

maps. 

Figure 3.3 illustrates the phantom image in (a) and the reconstructed image in (b) without 

activation map analysis. Without any noise added to the phantom, the images in (a) and (b) look 

very similar. The distortion is not obvious and cannot be recognized without computer analyses. 

However, in figure 3.4, when the activation map analyses are added, we can now see the 

differences between (a) and (b). Because of the sensitivity of the activation maps to the image 
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quality, the compressed sensing ofMRI is much more challenging than other compressed sensing 

applications, such as conventional MRI. It requires high-quality and high-accuracy 

reconstruction in order to minimize the distortion and achieve precise activation maps. 

In figure 3.4, 3.5, and 3.6, activation maps are manually added to the phantoms without 

noise. They are reconstructed with three different parameter sets, which results in strong, 

medium, and weak activation maps of the reconstructed images. In the strong activation map, all 

letters are recovered from the undersampled data. We also experience leaked active voxels from 

the adjacent slices, as shown in figure 3.4 (b). There is activation leakage on xy-plane, but it is 

not obvious since the resolution of that plane is very high. In addition, there is no other activation 

on the same xy-plane to see the interference. Therefore, if the activation leakage occurs in the 

voxels adjacent to the edges of the letters, it is hard to be recognized. However, it is obvious if 

the activation leakage occurs on the adjacent slices, which is next to each other on the z-axis of a 

4D grid, where there is another activation whose shape is different from its neighbor. We can 

also observe that without added noise, the image reconstructed with 8x10-3 temporal penalty and 

10-4 spatial penalty (figure 3.4) has a stronger activation map than image reconstructed with 

3x10-3 temporal penalty and 10-4 spatial penalty (figure 3.5). The parameter set in figure 3.4 

results in stronger activation map and more recoverable voxels, but the percentage error is also 

higher than activation map reconstructed by the parameter set in figure 3.5, because of the 

activation leakage. With 8x10-4 temporal penalty and 10-4 spatial penalty, the reconstructed 

image doesn’t show obvious activation leakage, but its activation map is much weaker than the 

images reconstructed with the other parameter sets. Again, all background images (images 

without activation maps) look almost the same in spite of the differences between those 

activation maps. 
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From figure 3.7 to 3.9, 40-dB Rician noise is added to the phantom. We can easily see the 

distortion in the original activation map caused by the noise. With low-level noise added, the 

reconstructed activation maps are weaker than the activation maps of the noise-free phantoms. In 

addition, the activation leakage is also decreased, which significantly lower the percentage errors 

in figure 3.7 and 3.8. Most of the active voxels are recovered but they are weaker in general 

because of the SNR reduction from interleaf removal, as discussed in section 2.8. 

We also add 30-dB noise (figure 3.10 to 3.12) and 25-dB noise (figure 3.13 to 3.15) to our 

phantoms. The original activation maps are highly distorted at these noise levels. Looking at the 

“F” and “O” characters in the original activation maps (top images), we can see that the missing 

parts of these characters have relatively weaker activation or irrecoverable in the compressed 

sensing reconstructed images of noise-free and 40-dB phantoms. These parts experience more 

distortion from noise than other parts of the activation map in the original phantoms. Therefore, 

the probability of recovering these parts is lower than the others. It is obvious that the 

reconstructed activation maps are stronger than the activation maps of the corresponding 

phantoms, which demonstrates the noise-suppression ability of our compressed sensing 

algorithm. Moreover, at 30-dB and 25-dB noise-levels, the activation leakage is minimal. Figure 

3.13 and 3.14 illustrate that we can still recover many active voxels, which are corrupted in the 

original phantom by 25-dB noise. At 30-dB and 25-dB, 3x10-3 temporal penalty and 10-4 spatial 

penalty parameter set (figure 3.11 and 3.14) exhibits slightly stronger activation map with lower 

total error compared to 8x10-3 temporal penalty and 10-4 spatial penalty parameter set (figure 

3.10 and 3.13). 
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The existence of Rician noise significantly reduces the activation leakage. Activation maps 

that have smooth gradient in 3D space also exhibit extremely less activation leakage than the 

above letter activation maps. Therefore, stronger activation maps, which have more active 

voxels, also have lower reconstruction errors since the missed errors are lower while the leaked 

errors are small or negligible. In practice, the optimal parameter set produces both strongest 

activation map and lower reconstruction error since noise always exists and the activation maps 

are smooth in the real ofMRI images. The impact of the smoothness of the activation maps to the 

activation leakage are discussed later in this section. 

 

 

Figure 3.3: ofMRI images without activation map analysis. (a) The phantom images without additive 

noise. (b) Corresponding reconstructed images by our compressed sensing algorithm. 

 



40 
 

 

 

 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 0 0 2261 100% 0% 

Reconstruction 25 1899 2236 98.9% 85.1% 
 

 

Figure 3.4: No additive noise. (a) Activation map of the original phantom. (b) Activation map of the 

reconstructed image with 8x10-3 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 0 0 2261 100% 0% 

Reconstruction 67 1193 2194 97.0% 55.7% 
 

 

Figure 3.5: No additive noise. (a) Activation map of the original phantom. (b) Activation map of the 

reconstructed image with 3x10-3 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 0 0 2261 100% 0% 

Reconstruction 1055 109 1206 53.3% 51.5% 
 

 

Figure 3.6: No additive noise. (a) Activation map of the original phantom. (b) Activation map of the 

reconstructed image with 8x10-4 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 43 2 2218 98.1% 2.0% 

Reconstruction 343 337 1918 84.8% 30.1% 
 

 

Figure 3.7: Rician additive noise, 40 dB SNR. (a) Activation map of the original phantom. (b) Activation 

map of the reconstructed image with 8x10-3 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 43 2 2218 98.1% 2.0% 

Reconstruction 501 238 1760 77.8% 32.7% 
 

 

Figure 3.8: Rician additive noise, 40 dB SNR. (a) Activation map of the original phantom. (b) Activation 

map of the reconstructed image with 3x10-3 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 43 2 2218 98.1% 2.0% 

Reconstruction 1137 93 1124 49.7% 54.4% 
 

 

Figure 3.9: Rician additive noise, 40 dB SNR. (a) Activation map of the original phantom. (b) Activation 

map of the reconstructed image with 8x10-4 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 677 1 1584 70.1% 30.0% 

Reconstruction 568 202 1693 74.9% 34.1% 
 

 

Figure 3.10: Rician additive noise, 30 dB SNR. (a) Activation map of the original phantom. (b) 

Activation map of the reconstructed image with 8x10-3 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 677 1 1584 70.1% 30.0% 

Reconstruction 537 232 1724 76.2% 34.0% 
 

 

Figure 3.11: Rician additive noise, 30 dB SNR. (a) Activation map of the original phantom. (b) 

Activation map of the reconstructed image with 3x10-3 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 677 1 1584 70.1% 30.0% 

Reconstruction 1427 74 834 36.9% 66.4% 
 

 

Figure 3.12: Rician additive noise, 30 dB SNR. (a) Activation map of the original phantom. (b) 

Activation map of the reconstructed image with 8x10-4 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 1801 2 460 20.3% 79.7% 

Reconstruction 1247 56 1014 44.8% 57.6% 
 

 

Figure 3.13: Rician additive noise, 25 dB SNR. (a) Activation map of the original phantom. (b) 

Activation map of the reconstructed image with 8x10-3 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 1801 2 460 20.3% 79.7% 

Reconstruction 1129 85 1134 50.2% 53.7% 
 

 

Figure 3.14: Rician additive noise, 25 dB SNR. (a) Activation map of the original phantom. (b) 

Activation map of the reconstructed image with 3x10-3 temporal penalty and 10-4 spatial penalty. 
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 # of Missed 

Voxels 

# of Leaked 

Voxels 

# of Recovered 

Voxels 

% of Recoverable 

Voxels 

Error 

Percentage 

Phantom 1801 2 460 20.3% 79.7% 

Reconstruction 1749 61 512 22.6% 80.1% 
 

 

Figure 3.15: Rician additive noise, 25 dB SNR. (a) Activation map of the original phantom. (b) 

Activation map of the reconstructed image with 8x10-4 temporal penalty and 10-4 spatial penalty. 
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 Desired SNR (dB) 

25 dB 30 dB 40 dB Noise-Free 

Real SNR of the Phantoms 24.3 29.1 38.8 107 

λ1 = 8x10-3, λ 2= 10-4 24.6 28.1 32.2 36.6 

λ 1 = 3x10-3, λ 2= 10-4 24.0 27.3 31.5 34.4 

λ 1 = 8x10-4, λ 2= 10-4 23.3 26.4 29.9 31.3 

Naïve Reconstruction with 

Zero-Filling 

18.7 19.6 20.1 20.2 

Table 5: SNR of reconstructed images compared to their corresponding phantoms at different noise-level 

Table 5 shows the SNRs of reconstructed images. Compared to the real SNR of the 

phantoms, our reconstructed images with strong activation maps at 30 dB and above have 

slightly lower SNRs. Below 30 dB, with λ1 = 8x10-3, λ 2= 10-4, our reconstructed image has a 

slightly higher SNR than the corresponding phantom. With zero-filling reconstruction, the 

missing interleaves are filled with zeros and reconstructed with adjoint NFFT to obtain an aliased 

image. Compared to the SNRs of the aliased phantoms, all reconstructed images have 

significantly higher SNRs. It shows the ability of signal boosting and noise or noise-like alias 

suppressing of the compressed sensing method. 

Figure 3.16 demonstrates the reconstructed image of noise-free phantom with λ1 = 8x10-3, λ 2 

= 10-4 in (a) and its activation leakage map in (b). We can easily see that most of the activation 

leakage in one slice is caused by its adjacent slices on z-axis. The letter “A” doesn’t cause the 

leakage to the slices contain letter “S” and “F”, which are two slices away from “A”. The 

leakage on xy-plane is only one voxel next to the edge of the letter, as clearly illustrated in the 

error map (figure 3.16 (b)) at the bottom of “S” letter, or at the two sides of the “N” letter, or at 

the top right corner of the “O” letter. We also notice that the energy of the leaked voxels is lower 
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than the energy of recovered voxels. At 40-dB noise level, the activation leakage is significantly 

lower than the noise-free case, as in figure 3.17 (b). 

 

 

Figure 3.16: (a) Strong activation map of the reconstructed image of noise-free phantom. (b) The 

activation leakage error map of (a) compared to its original phantom.  
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Figure 3.17: (a) Strong activation map of the reconstructed image of 40-dB phantom. (b) The activation 

leakage error map of (a) compared to the original noise-free phantom. 

 

In practice, most of the activation maps of ofMRI images do not have sharp transitions. In 

other words, the ofMRI activation maps smoothly change in space. In figure 3.18 (a), we applied 

smooth gradient to the letter “S” in all three directions (x, y, and z), together with 40-dB additive 

Rician noise. Figure 3.18 (b) is the strongest reconstructed activation map we obtained. The 

majority of active voxels are recovered. Figure 3.19 (b) shows the activation leakage error of the 

reconstructed image. It is obvious that the number of leaked voxels in figure 3.19 (b) is much 

less than the number of leaked voxels in figure 3.17 (b), which has the same 40-dB SNR. In 

addition, unlike figure 3.17 (b), the leaked voxels in figure 3.19 (b) are located at the edges of the 
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real activation maps. Both 3.17 (a) and 3.19 (a) were the strongest reconstructed activation maps 

we obtained. 

 

 

Figure 3.18: Rician additive noise, 40 dB SNR. The activation map is smoothed out in all directions in 

3D space. (a) Activation map of the original phantom. (b) Activation map of the reconstructed image with 

8x10-3 temporal penalty and 10-4 spatial penalty. 
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Figure 3.19: (a) Strong activation map of the reconstructed image of 40-dB phantom with smooth 

activation map. (b) The activation leakage error map of (a) compared to the original noise-free phantom. 
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CHAPTER 4 – CONCLUSION AND FUTURE WORK 

In this thesis, we proposed the combination of our methods in different ofMRI processes to attain 

high-quality ofMRI images. Our stimulation method allows for precise baseline correction, 

steady-state scan, and easy activity detection. Our anesthesia level minimizes motion artifacts 

from data acquisition. The advantage of passband b-SSFP stack-of-spiral trajectory over the 

conventional GRE-BOLD offers high-SNR images and large brain coverage with only two 

acquisitions. Our random undersampling sequence promotes incoherent aliasing artifacts while 

maintaining short scan time and energy-matching purpose. Parallel GPU processing combined 

with accelerated gradient descent reduces the image reconstruction process from two days to a 

few minutes. Finally, our motion correction aligns slices in our 4D images to enhance the 

strength of the activation maps.  

With our proposed compressed sensing ofMRI methods, high-resolution and accurate 

activation maps can be obtained for ofMRI and neurology study. Short reconstruction time, 

achieved by GPU processing, is necessary to allow our compressed sensing ofMRI method to 

become a practical application. Because the activation map is very sensitive to the image quality, 

all processes from experimental set up to image reconstruction and analysis should be performed 

carefully to minimize artifacts and errors. In real ofMRI, Rician noise always exists and the 

activation map has smooth changes in spatial domain, which allows for the negligibility of the 

activation leakage problem. Currently, the optimal weighting parameter sets, which produce 

strongest activation maps and smallest activation map errors, are determined empirically. For the 

hippocampus and thalamus stimulation dataset, as well as the phantom experiments’ dataset, our 

compressed sensing ofMRI method exhibits superior noise suppression ability. The activation 
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maps reconstructed with our compressed sensing method recovers most of the active voxels with 

accurate locations.  

In the future, we can improve the energy matching of our data by designing new sampling 

trajectory such as non-uniform stack-of-spiral, in which the spiral nodes are denser at the center 

of the kxy-plane. We can also improve the rate of convergence by using non-linear conjugate 

gradient instead of our accelerated gradient descent method. Undersampling factor can be further 

increased to achieve faster scan time or higher-resolution images. The reconstruction process can 

be performed on two or three graphics cards at the same time to attain faster image 

reconstruction.  
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APPENDICES 

Appendix I: Forward Nonequispaced Fast Fourier Transform 

Input: 

 𝑑,𝑀 ∈ ℕ,𝑁 ∈ 2ℕ𝑑. 

 𝑥𝑗 ∈ �−
1
2

, 1
2
�
𝑑

, 𝑗 = 0, 1, … ,𝑀 − 1, 

 𝑓𝑘 ∈ ℂ,𝑘 ∈ 𝐼𝑁 

Procedure: 

1. For 𝑘 ∈ 𝐼𝑁, compute  

𝑔�𝑘 ≔  
𝑓𝑘

|𝐼𝑛|𝑐𝑘
 

2. For 𝑙 ∈ 𝐼𝑛, compute 𝑔𝑙  by d-dimensional FFT 

𝑔𝑙 ≔  � 𝑔�𝑘𝑒−2𝜋𝑖𝑘�𝑛
−1⨀𝑙�

𝑘∈𝐼𝑁

 

3. For 𝑗 = 0, 1, … ,𝑀 − 1, compute 𝑓 

𝑓𝑗 ≔  � 𝑔𝑙𝜓��𝑥𝑗 − 𝑛−1⨀𝑙�
𝑙∈𝐼𝑛,𝑚�𝑥𝑗�

 

Output: approximate values 𝑓𝑗 , 𝑗 = 0, … ,𝑀 − 1. 

Complexity: 𝒪(|𝑁| log|𝑁| + 𝑀) 

Source: D. Potts’ group 
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Appendix II: Adjoint Nonequispaced Fast Fourier Transform 

Input: 

 𝑑,𝑀 ∈ ℕ,𝑁 ∈ 2ℕ𝑑. 

 𝑥𝑗 ∈ �−
1
2

, 1
2
�
𝑑

, 𝑗 = 0, 1, … ,𝑀 − 1, 

 𝑓𝑗 ∈ ℂ, 𝑗 = 0, 1, … ,𝑀− 1 

Procedure: 

1. For 𝑙 ∈ 𝐼𝑛, compute 

𝑔𝑙 ≔  � 𝑓𝑗𝜓��𝑥𝑗 − 𝑛−1⨀𝑙�
𝑗∈𝐼𝑛,𝑚

𝑇 (𝑙)

 

2. For 𝑘 ∈ 𝐼𝑁, compute by d-dimensional inverse FFT 

𝑔�𝑘 ≔  �𝑔𝑙
𝑙∈𝐼𝑛

𝑒+2𝜋𝑖𝑘�𝑛−1⨀𝑙� 

3. For 𝑘 ∈ 𝐼𝑁, compute 

ℎ�𝑘 ≔  
𝑔�𝑘

|𝐼𝑛|𝑐𝑘
 

Output: approximate values ℎ�𝑘, 𝑘 ∈ 𝐼𝑁. 

Complexity: 𝒪(|𝑁| log|𝑁| + 𝑀) 

Source: D. Potts’ group   
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Appendix III: Gradient Descent Algorithm 

α, β: backtracking line search parameters (0 < 𝛼 < 0.5, 0 <  𝛽 < 1) 

m: the numerical approximation of Eq. TBD 

f(m): the cost function in Eq. TBD 

g(m): the gradient of the cost function �𝑔(𝑚) = ∇𝑓(𝑚)� 

maxIter: number of iterations for stopping criteria 

ϵ: stopping criteria by the change in cost function 

𝑘 = 0;𝑚 = 0; 

while (𝑘 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟){ 

 𝑔𝑘 = ∇𝑓(𝑚𝑘); (requires NFFT and iNFFT) 

 𝑡 = 1; 

 while (𝑓(𝑚𝑘 − 𝑡𝑔𝑘) > 𝑓(𝑚𝑘) − 𝛼𝑡𝑔𝑘𝑇𝑔𝑘){  

  𝑡 = 𝑡𝛽;  

 } (requires NFFT for each loop) 

 if ��1
4
∑ 𝑓(𝑚𝑛) − 𝑓(𝑚𝑘 − 𝑡𝑔𝑘)𝑘
𝑛=𝑘−3 � /𝑓(𝑚𝑘 − 𝑡𝑔𝑘) < 𝜖 � 

  break; 

 𝑚𝑘+1 = 𝑚𝑘 − 𝑡𝑔𝑘; 

} 
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Appendix IV: Accelerated Gradient Descent Algorithm 

Gradient Descent Algorithm with Pre-computed L2-norm 

α, β: backtracking line search parameters (0 < 𝛼 < 0.5, 0 <  𝛽 < 1) 

m: the numerical approximation of Eq. TBD 

f(m): the cost function in Eq. TBD 

g(m): the gradient of the cost function �𝑔(𝑚) = ∇𝑓(𝑚)� 

maxIter: number of iterations for stopping criteria 

ϵ: stopping criteria by the change in cost function 

𝑘 = 0;𝑚 = 0; 

while (𝑘 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟){ 

 𝑔𝑘 = ∇𝑓(𝑚𝑘); (requires NFFT and iNFFT) 

 𝑓𝑥𝑚𝑦 = 𝐹𝑁𝑚𝑘 − 𝑦; (𝐹𝑁𝑚𝑘 is obtained from the calculation of 𝑔𝑘. No NFFT needed) 

 𝑓𝑔 = 𝐹𝑁𝑔𝑘; (requires NFFT) 

 𝑎 = 1
2
‖𝑓𝑥𝑚𝑦‖22; 

 𝑏 = 1
2
‖𝑓𝑔‖22; 

 𝑐 = ℜ{〈𝑓𝑥𝑚𝑦,𝑓𝑔〉}; 

 𝑡 = 1; 

 while (𝑓(𝑚𝑘 − 𝑡𝑔𝑘) > 𝑓(𝑚𝑘) − 𝛼𝑡𝑔𝑘𝑇𝑔𝑘){  

  𝑡 = 𝑡𝛽;  

 } (requires a, b, and c instead of NFFT for each loop) 

 if ��1
4
∑ 𝑓(𝑚𝑛) − 𝑓(𝑚𝑘 − 𝑡𝑔𝑘)𝑘
𝑛=𝑘−3 � /𝑓(𝑚𝑘 − 𝑡𝑔𝑘) < 𝜖 � 

  break; 

 𝑚𝑘+1 = 𝑚𝑘 − 𝑡𝑔𝑘;}  
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