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A B S T R A C T

Memory consolidation is a gradual process through which episodic memories become incorporated into long-
term 'semantic' representations. It likely involves reactivation of neural activity encoding the recent experience
during non-REM sleep. A critical prerequisite for memory consolidation is precise coordination of reactivation
events between the hippocampus and cortical/subcortical structures, facilitated by the coupling of local field
potential (LFP) oscillations (slow oscillations, sleep spindles and sharp wave/ripples) between these structures.
We review the rapidly expanding literature on the qualitative and quantitative aspects of hippocampal oscil-
latory and neuronal coupling with cortical/subcortical structures in the context of memory reactivation.
Reactivation in the hippocampus and cortical/subcortical structures is tightly coupled with sharp wave/ripples.
Hippocampal-cortical/subcortical coupling is rich in dimensionality and this dimensionality is likely under-
estimated due to the limitations of the current methodology.

1. Introduction

Prominent learning theories postulate that memory encoding occurs
via an interaction between a 'fast learning' hippocampal network, which
underlies episodic memory, and a 'slow learning' neocortical network
which extracts the statistical regularities of the world (Buzsáki, 1989;
Marr, 1971; McClelland, McNaughton, & O'reilly, 1995). The hippo-
campus receives convergent input from polymodal association cortices
(Fig.1) through the superficial layers of medial entorhinal cortex (MEC)
and projects to cortical targets either directly or through the deep layers
of MEC (Amaral & Witter, 1989; Swanson & Kohler, 1986). Both the
hippocampus and neocortex are reciprocally connected with subcortical
areas involved in appetitive and aversive learning, such as the amyg-
dala and nucleus accumbens (Khan and Shohamy, 2013; Stein et al.,
2007). They also receive inputs from multiple neuromodulatory sys-
tems (Lisman & Otmakhova, 2001), which regulate the communication
between structures (Benchenane et al., 2010; Goto & O'Donnell, 2001;
Roopun et al., 2010) and the hippocampal processing of neocortical
inputs during behavior, possibly affecting selection for permanent
memory encoding (Redondo & Morris, 2011). Hippocampal connec-
tions with neocortical and subcortical structures show a distinct septo-
temporal gradient, with the temporal (ventral, anterior in primates)

segment of hippocampus connected to prefrontal cortices and medial
parts of amygdala/ventral striatum, while more septal (intermediate/
dorsal, posterior in primates) segments are connected with progres-
sively more caudal parts of cingulate cortices and lateral parts of
amygdala/ventral striatum (reviewed by Strange, Witter, Lein, &
Moser, 2014). The combination of recurrent connectivity in hippo-
campal subfield Cornu Ammonis 3 (CA3) and highly plastic synaptic
connections within and between the different hippocampal subfields
(Andersen, 2007) enables fast information storage in a large combina-
torial space of the hippocampal connectivity matrix (Treves & Rolls,
1994). Furthermore, based on the physiological (i.e. inducible synaptic
plasticity in the form of long term potentiation (LTP)) and anatomical
characteristics (i.e. reciprocal connectivity with the neocortex), it has
been theorized that the hippocampus can store an index to the patterns
of neocortical activity representing a particular mnemonic experience
or episode. Thus, reactivation of a given hippocampal activity pattern
would, in turn, reactivate the indexed neocortical sequence and lead to
successful memory retrieval (memory indexing theory; Teyler &
DiScenna, 1986).

Whereas the hippocampus has been implicated in rapid memory
encoding and retrieval of recent memories, the neocortex appears to
play a more gradual and longer-term role in memory processing.
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Cortical representations of different aspects of experience are stored in
widely distributed areas, characterized by sparse connectivity over
longer anatomical distances and denser connectivity and functional
homogeneity within small patches of neocortex, often referred to as
“modules” (Felleman & Van Essen, 1991; Mountcastle, 1978; Tsunoda,
Yamane, Nishizaki, & Tanifuji, 2001). The hub-like anatomical position
of hippocampus allows it to orchestrate a wide range of cortical and
subcortical networks and thus link various aspects of a given experience
that are represented in distributed neocortical modules. In this way,
activity in the hippocampus can trigger the reactivation of neocortical
patterns resulting in the retrieval of a memory in which the various
aspects of the memory are coherently recalled (Battaglia, Benchenane,
Sirota, Pennartz, & Wiener, 2011; Teyler & DiScenna, 1986). It has been
thought that, over time and/or with sufficient repetition, memory re-
trieval that is initially hippocampus-dependent can become hippo-
campus-independent (Frankland & Bontempi, 2005; Squire, 1992).
However, more recent studies question this simple view (see
Sutherland, Sparks and Lehmann (2010) and Ocampo et al. (2017)),
and it is becoming more widely accepted that most memories never
become independent of hippocampus. Rather, as was evident already in
the classic case of HM, what is independent of the hippocampus is the
semantic knowledge (categories, schemas etc.) that is constructed from
the amalgamation of many episodic experiences.

The main proposed mechanism supporting this shift in hippo-
campal-dependence and recoding of memory is hippocampal-cortical
interaction during offline periods, such as sleep and quiet rest, when the
brain is largely isolated from external sensory interference (Buzsáki,
1989; Marr, 1971; McNaughton 2010). During these periods, synchro-
nized memory trace reactivation occurs in hippocampus and multiple
cortical/subcortical structures, facilitating the formation and/or re-
arrangement of horizontal connections between neuronal populations
encoding different aspects of experience, possibly through plasticity
mechanisms depending on relative timing of pre- and postsynaptic ac-
tivation (Levy & Steward, 1983). Different plasticity mechanisms are
proposed to operate on a variety of timescales, ranging from tens of

milliseconds (Dan & Poo, 2004; Markram, Lübke, Frotscher, &
Sakmann, 1997) to several seconds (Bittner, Milstein, Grienberger,
Romani, & Magee, 2017). The latter plasticity rule, known as beha-
vioral timescale synaptic plasticity (BTSP; Bittner et al., 2017), was
recently demonstrated in vivo, accounting for a rapid formation of
place fields during behavior. Hippocampal and neocortical memory
reactivation occurs mostly during non-REM sleep (Johnson, Euston,
Tatsuno, & McNaughton, 2010; Nadasdy, Hirase, Czurkó, Csicsvari, &
Buzsáki, 1999; Wilson & McNaughton, 1994), either emerging from the
intrinsic dynamics of hippocampal or neocortical networks or biased by
subcortical inputs (de Lavilléon, Lacroix, Rondi-Reig, & Benchenane,
2015). Alternatively, as horizontal connectivity among neocortical
modules is altered, neocortical modules, with their dense recurrent
connectivity, can likely act as attractor networks allowing them to re-
activate stored memory traces and trigger subsequent reactivation in
other areas (Rolls, 2010). The shift in dependence of memories from
hippocampal to the neocortical is accompanied by removal of con-
textual background, extraction of statistical regularities and in-
corporation into schema-like relational network, ultimately manifesting
in the acquisition of semantic memory or “knowledge” (Takehara-
Nishiuchi & McNaughton, 2008; McClelland et al., 1995; Tse et al.,
2007; McNaughton, 2010). It should be noted that memory reactivation
also occurs during behavioral immobility periods (awake reactivation;
Jadhav, Kemere, German, & Frank, 2012). Awake memory reactivation
differs from sleep reactivation in several aspects, such as the relative
timing of hippocampal-cortical communication (Tang, Shin, Frank, &
Jadhav, 2017), and it has a possible role in decision-making (Jadhav
et al., 2012). The focus of the present review is on hippocampal-cor-
tical/subcortical interactions during non-REM sleep; readers interested
in awake memory reactivation are referred to recent reviews covering
that topic (Atherton, Dupret, & Mellor, 2015; Roumis & Frank, 2015).

Memory encoding and consolidation are characterized by distinct
network activity modes. During behavior (encoding phase), the hip-
pocampal local field potential (LFP) is dominated by theta oscillations
(5–10 Hz), which modulate the firing probability of hippocampal

Fig. 1. Outline of major afferent and
efferent hippocampal connections
(based on Strange et al., 2014). Arrows
denote the direction of projections. The
red-to-blue gradient represents the
connectivity of each structure to dorsal
(posterior) or ventral (anterior) hippo-
campus, respectively. The dorsal (pos-
terior) hippocampus (DHipp) is con-
nected with posterior neocortical areas,
such as retrosplenial (RSC) and pos-
terior parietal cortices (PPC), while the
ventral (anterior) hippocampus
(VHipp) is connected with prefrontal
(PFC) and more anterior parts of cin-
gulate cortices (CingC). DHipp is pre-
dominantly connected with medial and
VHipp with lateral parts of amygdala
and ventral striatum (VS). Most of
DHipp input and output connections
are relayed through dorsolateral por-
tions of both medial and lateral en-
torhinal cortex (MEC and LEC), while
most of VHipp connections are relayed
through ventromedial MEC and LEC.
Superficial layers of EC receive input
from hippocampus (solid lines), while
deep layers of EC project to hippo-
campus (dotted lines).
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neurons (Csicsvari, Hirase, Czurkó, Mamiya, & Buzsáki, 1999; Whishaw
& Vanderwolf, 1973). In addition, some neurons and LFP oscillations in
cortical (prefrontal and cingulate cortices) and subcortical structures
(nucleus accumbens) are phase-locked to hippocampal theta
(Benchenane et al., 2010; Jones & Wilson, 2005; Lansink, Goltstein,
Lankelma, McNaughton, & Pennartz, 2009; Remondes, Wilson, 2015),
suggesting a possible hippocampal-cortical communication mechanism
during encoding. The presumed consolidation phase is characterized by
three major LFP patterns: cortical/subcortical slow oscillations (SOs),
hippocampal sharp wave/ripples (SWRs) and neocortical sleep spindles
(SPs) (Fig. 2; Amzica & Steriade, 1997; Siapas and Wilson, 1998; Sirota,
Csicsvari, Buhl, & Buzsáki, 2003; Isomura et al., 2006; Staresina et al.,
2015), as well as time-compressed (4–10×) reactivations of neuronal
activity patterns present during behavior (Wilson & McNaughton, 1994;
Skaggs & McNaughton, 1996; Nádasdy et al., 1999; Euston, Tatsuno, &
McNaughton, 2007). Initially, memory reactivation was assessed by
quantifying the effects of experience on firing rates of individual cells
during subsequent sleep (Pavlides & Winson, 1989). The advancement
of recording hardware and simultaneous recordings of tens or hundreds
of neurons (Battaglia, Sutherland, & McNaughton, 2004; Pfeifer &
Foster, 2013; Wilson & McNaughton, 1994), paved the way towards
discerning coordinated reactivation of larger neuronal ensembles in
multiple brain structures and revealed the fine temporal dynamics of
cross-structure interactions during memory reactivation (Ji & Wilson,
2007; Lansink et al., 2009; Rothschild, Eban, & Frank, 2016). However,
despite the decades of research on brain dynamics underlying memory
consolidation, the factors initiating and regulating this process are still
unclear. The aim of this review is to summarize the rapidly-growing
literature on hippocampal communication with cortical/subcortical
structures during non-REM sleep in the context of memory consolida-
tion, identify the emerging patterns, and highlight open questions in
this field of research.

Fig. 2. Electrophysiological characteristics of non-rapid eye movement (non-
REM) sleep recorded from the rat brain. A. Hippocampus – dorsal Cornu
Ammonis 1 (CA1). Top: Raw hippocampal local field potential (LFP) trace.
Bottom: Hippocampal LFP trace filtered in the sharp wave/ripple (SWR) range
(100-300 Hz). Stars denote the occurrences of sharp wave/ripples. B. Cortex –
medial prefrontal cortex. Top: Raw LFP showing slow oscillations with nested
spindles. Bottom: LFP filtered in the spindle range (10–20 Hz), showing in-
creased spindle power during peaks of slow oscillations, which correspond to
up-states. Stars denote the occurrences of slow oscillation troughs, corre-
sponding to down-states (Skelin and McNaughton, unpublished).

Fig. 3. Schematized example of hippocampal place cell reactivation. Top: Prior to experience, the subset of place cells shows no distinct sequential activity. Black
trace denotes hippocampal local field potential (LFP) filtered in sharp wave/ripple (SWR) range (100-300 Hz), with SWR events marked by stars. Colored tick marks
denote spikes with neuron identities denoted by different colors. Middle: During the experience, place cells form a sequence that reflects their place field positions in
the environment. Colored curves denote average firing rates of different neurons at different subsets of linear trajectory (black arrow). Bottom: After the experience,
the sequential activity established during experience is preserved during memory reactivation events, which occur during SWRs, denoted by stars.
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2. Place cells and major LFP oscillations in memory consolidation

2.1. Place cells

Most research on memory consolidation at the cellular level has
focused on hippocampal place cells (Fig. 3), as their high spatial tuning
allows precise decoding of spatial aspects of experience reactivated
during sleep and quiet rest (Diba & Buzsáki, 2007; Ji & Wilson, 2007;
Skaggs & McNaughton, 1996). Place cells fire in limited portions of the
environment, called place fields, and they represent a large fraction of
hippocampal neurons (O’Keefe & Dostrovsky, 1971), and properties of
individual place cell fields may reflect the environmental topology
(Alvernhe, Save, & Poucet, 2011). Individual place cells vary widely in
their mean firing rates and propensity to form multiple fields (Rich,
Liaw, & Lee, 2014), and place cell field diameter varies with the ana-
tomical location along the septo-temporal axis, ranging from ∼0.25 m
in dorsal to ∼5 m in ventral hippocampus (Jung, Wiener, &
McNaughton, 1994; Kjelstrup et al., 2008). In addition, place cells
conjunctively encode the non-spatial aspects of experience, such as the
salience and task contingencies (Bower, Euston, & McNaughton, 2005;
Eichenbaum, 1996; Karlsson & Frank, 2009; Leutgeb, Ragozzino, &
Mizumori, 2000). Based on the estimates from immediate early gene
studies, ∼ 40% of dorsal hippocampal pyramidal cells are active in a
single environment of about 1 m2 (Guzowski, McNaughton, Barnes, &
Worley, 1999).

The critical role of place cells in hippocampal-dependent memory
encoding and consolidation is supported by multiple lines of evidence,
including pharmacological, electrical and optical manipulations of
place cells during behavior or subsequent sleep. Systemic application of
NMDA antagonists prevents the induction of long-term potentiation
(LTP) at hippocampal synapses (reviewed by Nakazawa, McHugh,
Wilson, & Tonegawa, 2004). Although the NMDA antagonism does not
produce large effects on place cell spatial tuning during behavior, it
abolishes place field stabilization across sessions (Kentros et al. 1998;
Silva, Feng, & Foster, 2015), experience-induced place field expansion
(Ekstrom, Meltzer, McNaughton, & Barnes, 2001), place cell sequence
reactivation during subsequent sleep (Silva et al., 2015), and hippo-
campal-dependent learning (Morris, 1989). The NMDA antagonism
paradigm revealed another interesting aspect of hippocampal memory
reactivation dynamics – prolonged reactivation of place cell sequences
experienced prior to NMDA antagonist application, possibly enabled by
a lack of reactivation of place cell sequences experienced after the
NMDA application that might otherwise compete/interfere with re-
activation of those earlier sequences (Silva et al., 2015). Optically-in-
duced dopamine release during exploration of new environment in-
creases reactivation of place cell ensembles encoding the environment
(McNamara, Tejero-Cantero, Trouche, Campo-Urriza, & Dupret, 2014).
In addition, closed loop pairing of online-detected spikes from a single
place cell with median forebrain bundle (MFB) stimulation, known to
enhance the dopamine release in forebrain structures (Millar, Stamford,
Kruk, & Wightman, 1985), induced a place preference for the MFB
stimulation-paired place cell field, effectively ‘backdating’ the place –
reward association (De Lavilléon et al., 2015). Perturbation of place cell
activity could result in the opposite effect – abolishment of experi-
mentally-induced cocaine place-reward association – demonstrated by
optically silencing place cells encoding the cocaine-associated en-
vironment during re-exposure. This manipulation resulted in the
emergence of a new map for the same environment, encoded by the
previously silent population of hippocampal neurons and the abolish-
ment of place preference (Trouche et al., 2016).

2.2. Sharp wave/ripples

SWRs are discrete and short (30–120 ms) LFP events occurring in
the hippocampal area Cornu Ammonis 1 (CA1) during non-REM sleep
and awake immobility (Buzsáki, 2015; Karlsson & Frank, 2009; O'Keefe,

1976; Roumis & Frank, 2015). In addition, SWRs occur in primate
hippocampus during visual search (Leonard & Hoffman, 2015). SWRs
consist of a sharp wave – deflection of CA1 LFP reflecting the volley of
synaptic input from CA3 and ripples – 10–20 fast oscillation cycles
(100–300 Hz). SWR occurrence is stochastic, typically at ∼0.5–1 Hz in
rodents and at an order of magnitude lower rates (∼0.05–0.1 Hz) in
macaque (Skaggs et al., 2007) and human hippocampus (Bragin, Mody,
Wilson, & Engel, 2002; Staresina et al., 2015). This difference might be
due to increased size of hippocampal network in primates, combined
with limited SWR propagation distance, resulting in recording of only a
relatively localized minority of SWRs, compared with a more syn-
chronized rodent hippocampal network. In addition, it is possible that
neurons in primate hippocampus are less densely packed, which could
result in lower SWR amplitudes and consequently lower detection rates.

SWRs are the windows of largest non-pathological population syn-
chrony in the brain (Buzsáki, 1986), with an estimated up to 6-fold
activity gain (Csicsvari et al., 1999), and a large variation in the extent
of spatial synchronization (Patel, Schomburg, Berényi, Fujisawa, &
Buzsáki, 2013). Although most place cell sequences generated during
SWRs do not significantly resemble the sequences present during recent
behavior (Lubenov & Siapas, 2008), this apparent dissociation could be
due to sparse sampling of hippocampal neuronal activity. This question
could be addressed by recording larger CA1 populations with emerging
methods, such as two-photon calcium imaging (Malvache, Reichinnek,
Villette, Haimerl, & Cossart, 2016; Mao, Kandler, McNaughton, &
Bonin, 2017). Several studies have reported increases in SWR density
following learning sessions (Axmacher, Elger, & Fell, 2008; Eschenko,
Ramadan, Mölle, Born, & Sara, 2008; Ramadan, Eschenko, & Sara,
2009), but the finding is not consistent (Peyrache, Khamassi,
Benchenane, Wiener, & Battaglia, 2009). These discrepancies might
reflect the differences in task design and learning dynamics, as well as
recording locations in the hippocampus. Regardless of the presence or
absence of increased SWR density following learning, the importance of
SWRs in memory consolidation was convincingly demonstrated by
several studies using closed loop online detection/suppression of SWRs
during awake immobility (Jadhav et al., 2012) or post-learning sleep
(Ego-Stengel & Wilson, 2010; Girardeau, Benchenane, Wiener, Buzsáki,
& Zugaro, 2009), which transiently impaired subsequent memory per-
formance. The transient nature of SWR disruption effects on memory
consolidation was explained by the effect of the initial SWR portions
preceding suppression (first ∼20 ms of each suppressed SWR), as well
as the presence of small amplitude SWRs, which were not detected/
suppressed. It is also possible that SWR suppression triggered by SWR
detection at single site in hippocampal network is not sufficient to
suppress the overall hippocampal output to cortex, as a significant
proportion of SWRs do not propagate across large parts of hippocampus
and thus could not be detected (Patel et al., 2013). Similarly, sup-
pression of SWRs induced by optical stimulation of non-serotonergic
neurons in median raphe resulted in abolition of fear memory (Wang
et al., 2015). Ripple-like oscillations have been described in the rodent
and primate temporal cortices (Bragin, Engel, Wilson, Fried, & Buzsáki,
1999; Kandel & Buzsáki, 1997) and recently in the rodent association
cortices, such as the medial prefrontal and parietal (Khodagoly et al.,
2017). Although the functional role of the cortical ripple-like oscilla-
tions is still poorly understood, they have shown positive correlation
with learning in humans (Clemens et al., 2007), as well as learning-
induced coupling with hippocampal SWRs (Khodagoly et al., 2017).

2.3. Slow oscillations

SOs are the hallmark of the neocortical LFP during non-REM sleep
(Steriade, Nuñez, & Amzica, 1993), reflecting the alternation of cortical
networks between down- and up-states. SOs described in this review
include both the typical SOs (0.5–2 Hz), as well as delta waves (1–4
Hz). Down-states are brief periods (50-400 ms) of membrane hy-
perpolarization and virtual absence of cortical spiking activity,
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separated by up-states, periods of membrane depolarization and in-
creased cortical spiking activity (Battaglia et al., 2004; Isomura et al.,
2006; Steriade et al., 1993). Presence of SOs in cortical slices (Sanchez-
Vives & McCormick, 2000) suggests that they represent a cortically-
generated phenomenon. Thalamic spontaneous activity can trigger
cortical up-states, but is incapable of large scale cortical synchroniza-
tion, suggesting a critical role of intracortical connectivity in this pro-
cess (Steriade et al., 1993). SO amplitude positively correlates with
homeostatic sleep pressure (Finelli, Borbély, & Achermann, 2001) and
decreases over successive non-REM episodes (Vyazovskiy et al., 2009).
In addition, SO amplitude shows experience dependence on both short
and long timescales, reflected by the selectively increased SO amplitude
in cortical areas involved in recent learning (Huber, Ghilardi,
Massimini, & Tononi, 2004) and selectively decreased SO amplitude in
visual cortex following visual deprivation (Heynen et al., 2003). SOs
typically emerge in frontal cortex, propagate as travelling waves
(Massimini, Huber, Ferrarelli, Hill, & Tononi, 2004; Nir et al., 2011)
along the major anatomical pathways towards the visual cortex
(Murphy et al., 2009), and invade temporal lobe structures (Isomura
et al., 2006; Nir et al., 2011). SOs are present in the hippocampal LFP,
but the membrane potential of hippocampal neurons does not show the
bimodality characteristic of cortical neuron membrane potentials
during up/down-states (Isomura et al., 2006). The initial phase of an
up-state is a period of rather stereotypical cortical neuronal activity
patterns (Luczak, Barthó, Marguet, Buzsáki, & Harris, 2007), which can
be modulated by experience and subsequently reactivated (Bermudez-
Contreras et al., 2013; Maingret, Girardeau, Todorova, Goutierre, &
Zugaro, 2016; Peyrache et al., 2009).

2.4. Sleep spindles

SPs are transient (∼1-3 s) bouts of oscillations in the 7-20 Hz range,
occurring in thalamus and neocortex (Kandel & Buzsáki, 1997; Loomis,
1935; Steriade et al., 1993) during non-REM sleep. Cortical SP gen-
eration depends on input from thalamic reticular nucleus (Steriade,
Deschenes, Domich, & Mulle, 1985), but intracortical connectivity is
required for synchronized emergence of SPs across the cortical mantle
(Contreras, Destexhe, Sejnowski, & Steriade, 1996; Kandel & Buzsáki,
1997). Similar to SOs, SPs in the human brain also tend to occur locally
(Andrillon et al., 2011). SWRs, as well as the spiking of many cortical
neurons, are significantly phase-locked to SP troughs (Peyrache et al.,
2009; Steriade, 2006). SP densities are positively correlated with
learning in rats (Eschenko, Mölle, Born, & Sara, 2006) and humans
(Clemens, Fabo, & Halasz, 2005; Gais, Mölle, Helms, & Born, 2002).
One hypothesized model explaining the mechanistic role of SPs in
memory consolidation (Sejnowski & Destexhe, 2000) involves the cas-
cade of events, starting with subthreshold dendritic depolarization of
cortical pyramidal neurons by the thalamic inputs, followed by massive
calcium entry into dendrites and activation of perisomatic inhibition
(Contreras, Destexhe, Sejnowski, & Steriade, 1997), which functionally
isolates dendrites from soma and triggers molecular plasticity path-
ways. This scenario was recently corroborated by the demonstration of
increased dendritic, but not somatic calcium levels, in layer V pyr-
amidal neurons in vivo during SPs (Seibt et al., 2017). Although in most
studies SPs were analyzed as a single entity, they could be classified
into two categories with potentially different mechanistic roles in
memory consolidation. Faster, low voltage spindles (LVSP; 10–20 Hz)
follow the K-complexes with short latency and positively correlate with
memory reactivation (Johnson et al., 2010), while slower, high voltage
spindles (HVSP; 7-12 Hz), occur independently of K-complexes
(Andrillon et al., 2011; Zeitlhofer et al., 1997) and slightly negatively
correlate with memory reactivation (Johnson et al., 2010).

3. Hippocampal-cortical LFP coupling

SOs are hypothesized to orchestrate the SWRs and SPs, facilitating

their temporal coupling (Staresina et al., 2015). SWRs show bimodal
coupling to SOs, with the highest SWR probability around the up-state
onsets and offsets, and lowest during down-states (Battaglia et al.,
2004; Peyrache et al., 2009; Wilber, Skelin, Wu, & McNaughton, 2017),
while SPs typically follow the up-state onsets (Fig. 2; Siapas et al., 1998;
Sirota et al., 2003). Increased SWR probability at both the down-to-up-
state and up-to-down-state transitions (Battaglia et al., 2004; Peyrache
et al., 2009; Wilber et al., 2017) led to the conceptualization of SWRs as
“toggle-switches”, which facilitate cortical network state transitions
(Genzel, Kroes, Dresler, & Battaglia, 2014). However, up-states in the
entorhinal cortex persist for much longer and undergo fewer state
transitions than the rest of the cortex (Hahn, Sakmann, & Mehta, 2006),
despite the entorhinal cortex being more directly exposed to large and
synchronized volleys of hippocampal activity during SWRs. In addition,
SWRs that occur during cortical down-states are capable of transiently
activating cortical neurons, but this does not result in sustained up-
states, as the membrane potentials quickly revert to hyperpolarized
levels (Isomura et al., 2006). Widespread coupling between SWRs and
cortical/subcortical activity was demonstrated by Logothetis et al.
(2012), who recorded SWR-triggered brain-wide blood oxygen level –
dependent (BOLD) signal in macaque monkeys, revealing two distinct
patterns of SWR-triggered response – cortical/limbic activations and
subcortical deactivations. These results are broadly consistent with
higher SWRs probability during periods of cortical activations (Ji &
Wilson, 2007; Sirota et al., 2003). In addition, subcortical deactivations
are consistent with decreased neuronal activity in medial raphe nuclei
during SWR windows (Wang et al., 2015) and generally low activity of
subcortical monoaminergic nuclei during non-REM sleep (reviewed by
Watson, Baghdoyan, & Lydic, 2010).

Functional significance of SWR-SO temporal coupling was demon-
strated using a closed loop approach with online detection of SWRs and
application of SWR-contingent SO-inducing cortical electrical stimula-
tion during post-learning sleep. This procedure increased both SWR/SO
coupling, as well as the subsequent performance on an object re-
cognition task (Maingret et al., 2016). This approach was efficacious
only if the SOs were induced within 250 ms following SWR detection;
delayed SO induction had no effect on memory performance. Interest-
ingly, SOs were induced by stimulation of motor cortex and propagated
in the posterior-anterior direction, opposite from the typical sponta-
neous SO propagation direction (Massimini et al., 2004), suggesting
that the direction of sequential activation of cortical areas is not critical
for memory consolidation. Furthermore, disruption of SWR-SP coupling
by optical activation of the locus coeruleus, the source of noradrenergic
input to forebrain, also impairs memory consolidation (Novitskaya,
Sara, Logothetis, & Eschenko, 2016). Similarly, disruption of SWR-SP
coupling between the medial PFC and CA1, by chemogenetic inhibition
of parvalbumin-positive interneurons in either structure, was sufficient
to impair fear conditioning memory consolidation (Xia et al., 2017).

4. Hippocampal-cortical/subcortical coupling at the neuronal
level

Although the LFP coupling between the different structures provides
important clues about the timing and extent of their communication in
the context of memory consolidation (Colgin et al., 2009; Fries et al.,
2005), the most temporally precise insight into communication be-
tween the hippocampus and cortical/subcortical structures can be ob-
tained by simultaneous recording of spiking activity (Girardeau, Inema,
& Buzsáki, 2017; Lansink et al., 2009; Rothschild et al., 2016). Hip-
pocampal-cortical/subcortical coupling at the neuronal level was as-
sessed based on two main approaches: (a) the timing of cortical/sub-
cortical single neuron or population activity relative to hippocampal
single neurons, population activity, or SWRs (Ji & Wilson, 2007; Siapas
& Wilson, 1998; Sirota et al., 2003; Tang et al., 2017; Wang & Ikemoto,
2016; Wierzynski, Lubenov, Gu, & Siapas, 2009) or (b) the timing of
cortical/subcortical memory reactivation relative to hippocampal
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memory reactivation or SWRs (Ji & Wilson, 2007; Peyrache et al., 2009;
Rothschild et al., 2016; Ólafsdóttir, Carpenter, & Barry, 2016; O’Neill,
Boccara, Stella, Schoenenberger, & Csicsvari, 2017; Tang et al., 2017).

4.1. Medial entorhinal cortex

MEC is the cortical structure anatomically most proximal to hip-
pocampus, showing distinct dynamics during non-REM sleep, with up-
states persisting over several SO cycles in the rest of neocortex (Hahn
et al., 2006). In addition, the MEC LFP is characterized by brief ripple-
like high frequency oscillations (Chrobak & Buzsáki, 1996), following
hippocampal SWRs with short delay (5-30 ms). A substantial fraction of
MEC neurons are classified as grid cells, based on spatial tuning pat-
terns in the form of regular hexagonal lattice. Unlike hippocampal place
cells, grid cells’ correlation structure is stable across different en-
vironments (Hafting, Fyhn, Molden, Moser, & Moser, 2005), although
the redistributions of grid field peak firing rates (Fyhn, Hafting, Treves,
Moser, & Moser, 2007) and shifts in individual grid cell field locations
are observed between recordings in different rooms (Diehl, Hon,
Leutgeb, & Leutgeb, 2017). This phenomena might underlie hippo-
campal global remapping – change in composition of place cell en-
semble encoding a given environment (Diehl et al., 2017). Two recent
studies found reactivation of maze trajectories during non-REM sleep,
based on Bayesian spatial decoding of entorhinal population activity
(Ólafsdóttir et al., 2016; O’Neill et al., 2017; but see Trimper, Trettel,
Hwaun, and Colgin (2017) for methodological concerns regarding
spatial decoding based on grid cell activity). Reactivation in superficial
layers, which provide input to hippocampus, was not temporally cou-
pled with hippocampal reactivation (O’Neill et al., 2017), while re-
activation in deep layers followed hippocampal reactivation, with short
time lag (∼10 ms) and short space lag of the reactivated spatial tra-
jectory (Ólafsdóttir et al., 2016). This dichotomy is consistent with the
up-modulation of deep, but not superficial MEC neuronal activity by
hippocampal SWRs (Chrobak & Buzsáki, 1994). It is somewhat puzzling
that reactivation in superficial MEC was not coupled with hippocampal
reactivation (O’Neill et al., 2017), while the primary auditory cortex
reactivation content was both temporally coupled and significantly
predictive of the hippocampal reactivation content (Rothschild et al.,
2016), despite the much more indirect connectivity of the early sensory
regions with hippocampus (Felleman & Van Essen, 1991).

4.2. Association cortices

Association cortices are involved in processing multimodal sensory
information and include the PFC, cingulate, retrosplenial, posterior
parietal (PPC), perirhinal and postrhinal cortices (Goldman-Rakic,
1988). PFC is the cortical structure most extensively studied in the
context of hippocampo-cortical communication (Maingret et al., 2016;
Peyrache et al., 2009; Peyrache, Battaglia, & Destexhe, 2011; Siapas
and Wilson, 1998; Wierzynski et al., 2009), due to monosynaptic and
highly plastic inputs from ventral hippocampus (Laroche, Davis, & Jay,
2000; Swanson et al., 1981), and the hypothesized cooperation with
hippocampus on various memory tasks (Doyere et al., 1993; Jones &
Wilson, 2005). The extensive connectivity of PFC with hippocampus
and the range of cortical/subcortical structures (Fuster, 1988), as well
as the selective activation of PFC during remote, but not recent memory
retrieval (Maviel, Durkin, Menzaghi, & Bontempi, 2004), suggest that
the PFC might gradually take over the hub position in the organization
of remote memories, as they are progressively integrated with cortical
schemas (Frankland & Bontempi, 2005; Tse et al., 2007; Holleman &
Battaglia, 2015). Simultaneous hippocampal-PFC recordings, which
typically included infra/prelimbic parts of medial prefrontal cortex
(mPFC), have shown asymmetric SWR-triggered population activity
peri-event time histograms (PETH), with increases from baseline up to
200 ms prior to SWR that persisted for 1-2 s following SWR (Peyrache
et al., 2009; Siapas & Wilson, 1998; Wierzynski et al., 2009). Similar

pre-SWR activation, but shorter persistence of SWR-triggered response
was reported by Tang et al. (2017), which could be due to the con-
struction of SWR-triggered PETH selectively from neurons showing
significant SWR-modulation. At the level of single neuron cross-struc-
ture timing, for two thirds of significantly correlated hippocampal-
mPFC pairs, the activity of hippocampal pair member on average pre-
ceded mPFC member, while the remaining hippocampal-mPFC neuron
pairs showed the opposite pattern (Wierzynski et al., 2009). The size of
the prefrontal response to SWRs was correlated with hippocampal po-
pulation activity magnitude (Wierzynski et al., 2009), but was atte-
nuated during SPs (Peyrache et al., 2011), which could reflect the
presence of lateral inhibition, as a potential mechanism for selection of
reactivated cortical ensembles (Goldman-Rakic, 1995). Reactivation
strength in mPFC peaked ∼40 ms after SWR (Peyrache et al., 2009),
while showing a broad increase from baseline within±1 s from SWR,
possibly reflecting the tendency of SWRs to occur within short intervals
(doublets or triplets). This notion is supported by the similar decay time
constants of SWR-triggered reactivation strength and SWR auto-
correlograms (∼150ms). Interestingly, joint reactivation of hippo-
campal-mPFC neuron pairs was observed during sleep SWRs, but the
probability of joint reactivation did not correlate with spatial correla-
tion of pair members’ activity during the behavior (Tang et al., 2017).
The stereotyped prefrontal firing sequences following up-state onsets
were modified in parallel with learning on an object recognition task,
dependent on interaction between hippocampus and PFC (De Vito et al.,
2010). This process likely reflects the rearrangement of local functional
connectivity and it was facilitated by artificially enhanced coupling of
up-states with SWRs (Maingret et al., 2016).

Anterior cingulate cortex (ACC) is a more caudal frontal cortical
structure, characterized by sparse direct connectivity with dorsal hip-
pocampus (Cenquizca & Swanson, 2007), and implicated in con-
solidation of different aspects of memory, such as contextual fear
memory (Frankland & Bontempi, 2005). SWR-triggered neuronal re-
sponses in ACC show both similarities and differences to typical mPFC
responses. In both structures, population activity increased up to ∼200
ms prior to SWR, but unlike the typically right-shifted SWR-triggered
PETH in mPFC (Peyrache et al., 2009; Siapas & Wilson, 1998; Tang
et al., 2017; Wierzynski et al., 2009), neuronal activity in ACC decayed
shortly after the SWR (Wang & Ikemoto, 2016). Another similarity
between the SWR-triggered PETH in ACC and mPFC was the presence of
sharp activity peaks following SWR with short latencies (up to 60 ms),
likely reflecting the local populations of neurons sensitive to hippo-
campal input during SWRs.

PPC is an association cortical structure characterized by connections
with thalamus, various sensory and association cortices, and indirect
hippocampal inputs through MEC (reviewed by Whitlock, Sutherland,
Witter, Moser, & Moser, 2008). This structure encodes movement-re-
lated parameters (McNaughton et al., 1994; Nitz, 2006; Wilber et al.,
2017; Wilber, Clark, Forster, Tatsuno, & McNaughton, 2014) and sup-
ports spatial cognition and decision-making (Driscoll, Pettit, Minderer,
Chettih, & Harvey, 2017; Harvey, Coen, & Tank, 2012; Szczepanski,
Konen, & Kastner, 2010; Whitlock et al., 2008). Multiple reports im-
plicated PPC coupling with hippocampus in the context of memory
reactivation (Qin, McNaughton, Skaggs, & Barnes, 1997; Wilber et al.,
2017, Khodagoly et al., 2017). Specifically, Qin et al. (1997) found that
experience-induced correlation structure between the hippocampal and
PPC neurons was preserved in subsequent sleep, suggesting cross-
structure reactivation. The reactivation of multineuronal clusters in
PPC, consisting of all the spikes recorded from a single electrode, also
peaked around the time of hippocampal SWRs (Wilber et al., 2017).
Finally, oscillations that correspond to SWRs based on frequency con-
tent and duration were found in PPC, showing experience-dependent
increase in coupling with hippocampal SWRs (Khodagoly et al., 2017).
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4.3. Sensory cortices

Neural activity in early sensory cortices tends to precede both hip-
pocampal SWRs and associated hippocampal neuronal activity (Ji &
Wilson, 2007; Rothschild et al., 2016; Sirota et al., 2003). Sirota et al.
(2003) reported that the somatosensory cortex population activity
precedes hippocampal population activity and SWRs, while at the level
of cross-structural significantly correlated neuronal pairs, somatosen-
sory neurons activate on average ∼50-100 ms prior to hippocampal
neurons during non-REM sleep. This pattern was confirmed by Ji and
Wilson (2007), who demonstrated that visual cortical ‘frames’, periods
of higher population activity likely corresponding to cortical up-states,
tend to initiate ∼50 ms prior to hippocampal ‘frames’ during non-REM
sleep. The relative cross-structure reactivation timing of cortical ‘tem-
plates’, consisting of visual cortical neurons active in certain part of
maze during behavior, and hippocampal ‘templates’, consisting of place
cells encoding the same portion of the maze, suggested that hippo-
campal reactivation preceded visual cortical reactivation, but due to
very sparse occurrence of temporally overlapping cross-structure re-
activation events, the results were inconclusive (Ji & Wilson, 2007). A
convincing line of evidence suggesting that hippocampal memory re-
activation could be initiated by the primary sensory cortices was ob-
tained using a targeted memory reactivation paradigm. Following be-
havioral studies showing that presentation of task-associated sensory
cues during post-learning sleep enhances task performance (Rasch,
Büchel, Gais, & Born, 2007; Rudoy, Voss, Westerberg, & Paller, 2009),
Bendor and Wilson (2012) paired two distinct spatial trajectories on the
maze (left and right arm) with trajectory-specific auditory stimuli. Se-
lective presentation of a single auditory cue during subsequent sleep
selectively increased the reactivation probability for the place cell se-
quence encoding the cue-associated trajectory. Finally, Rothschild et al.
(2016) have shown that the activity increase in auditory cortex during
non-REM sleep starts up to 200 ms prior to onset of SWRs. In addition,
neuronal content of hippocampal reactivation events could be predicted
based on the preceding auditory cortex reactivation content, when the
reactivation was cued by auditory stimulus or occurred spontaneously.
Also, post-SWR neural activity in auditory cortex was predictable based
on the hippocampal activity pattern during a given SWR, revealing the
existence of a functional loop connecting the early sensory cortex and
hippocampus. The bias induced by auditory stimulation on hippo-
campal reactivation content could be detected up to 15 s following the
stimulation. Overall, activity in early sensory cortices during non-REM
sleep tends to precede and potentially bias hippocampal SWRs and
reactivation events, although the communication is likely bidirectional.

4.4. Subcortical structures

Coordinated memory reactivation during non-REM sleep has also
been demonstrated between the hippocampus and subcortical struc-
tures involved in appetitive and aversive learning, such as the ventral
tegmental area (Gomperts, Kloosterman, & Wilson, 2015), nucleus ac-
cumbens (Lansink et al., 2008, 2009) and basolateral amygdala
(Girardeau et al., 2017). Simultaneous recordings from hippocampus
and nucleus accumbens revealed the joint reactivation, preferably in-
volving hippocampal neuron-leading pairs. The direction of this tem-
poral bias was preserved during sleep, and the pair-wise cross-corre-
lation indicated that accumbens neurons fired ∼50 ms after
hippocampal neurons (Lansink et al., 2009). The strongest predictor of
an individual neuron’s involvement in reactivation was the degree of
spatial and/or reward tuning (Lansink et al., 2008, 2009). Finally, re-
activation peaks were observed within a 200 ms window following
SWRs (Lansink et al., 2008). In contrast to joint reactivation of place-
reward information by the nucleus accumbens and hippocampus during
sleep, reward-modulated neurons in the ventral tegmental area (VTA)
were mostly negatively modulated by SWRs and did not exhibit co-
ordinated reactivation with hippocampal spatial trajectories during

sleep (Gomperts et al., 2015). A large fraction of VTA neurons show
reward-sensitivity and release dopamine from their terminals in fore-
brain structures, signaling the degree of positive mismatch between the
expected and obtained reward (Schulz, 1998). The functional ad-
vantage of the VTA/hippocampal decoupling during sleep (Gomperts
et al., 2015) could be to prevent the interference of reward signal with
ongoing memory consolidation, as the electrically induced dopamine
release during sleep could introduce place-reward associations not ex-
perienced during behavior (de Lavilleon et al., 2015). Reactivation of
stimulus-sensitive putative dopaminergic VTA neurons has been de-
monstrated during post-task SWS (Valdés, McNaughton, & Fellous,
2015), but without the temporal compression typically characteristic of
hippocampal or cortical reactivation (Euston et al., 2007; Nadasdy
et al., 1999; Wilson and McNaughton, 1994).

Aversive learning involves the association of aversive stimuli with
spatial location and is mediated by interaction between amygdala and
hippocampus (Selden, 1991). Similarly to joint reactivation of place-
reward information during appetitive learning (Lansink et al., 2008,
2009), memory reactivation underlying aversive memory consolidation
occurs simultaneously in dorsal hippocampus and basolateral amygdala
(Girardeau et al., 2017). Basolateral amygdala neurons recruited in this
process typically develop correlated firing with a subset of hippocampal
neurons during learning of aversive stimulus (air puff) location and
show up-modulation by SWRs during subsequent sleep. Although nu-
cleus accumbens and basolateral amygdala receive projections from
ventral hippocampus (Strange et al., 2014), coordinated reactivation of
these structures with dorsal hippocampus may be explained by the fact
that neuronal ensembles can become synchronized over the entire
hippocampus during some large amplitude SWRs (Patel et al., 2013). In
conclusion, joint reactivations of hippocampal spatially tuned neurons
with neurons encoding positive or negative valence of stimuli located
within a portion of the environment could potentially support memory
consolidation in both positive and negative reinforcement learning
paradigms.

5. Summary and open questions

A consistent pattern from a multitude of studies shows that neuronal
activation and/or memory reactivation in cortical (PFC, ACC, PPC, deep
layers of MEC, visual, somatosensory and auditory cortices) and sub-
cortical structures (nucleus accumbens, basolateral amygdala) during
non-REM sleep is coordinated with hippocampal activation and/or
memory reactivation, peaking in close temporal proximity to hippo-
campal SWRs (Siapas & Wilson, 1998; Peyrache et al., 2009; Wierzynski
et al., 2009; Wang and Ikemoto, 2016; Qin et al., 1997; Wilber et al.,
2017; Ólafsdóttir et al., 2016; Sirota et al., 2003; Rothschild et al.,
2016; Lansink et al., 2008; Lansink et al., 2009; Girardeau et al., 2017).
A few notable exceptions from this pattern are VTA (Gomperts et al.,
2015) and superficial layers of MEC (O’Neill et al., 2017), structures
which show memory reactivation during non-REM sleep, but without
the obvious temporal coordination with hippocampal reactivation.
Population activity across many neocortical structures tends to increase
from baseline prior to hippocampal population activity or SWRs, with
some regional differences with respect to characteristics of SWR-trig-
gered PETHs (Peyrache et al., 2009; Rothschild et al., 2016; Sirota
et al., 2003; Wang and Ikemoto, 2016). Persistent cortical activity in-
creases surrounding SWRs could be due to higher likelihood of SWR
occurrence during cortical up-states, and the degree of SWR-triggered
PETH asymmetry could reflect the relative probability of SWR occur-
rence closer to up-state onset or offset. More direct evidence of poten-
tial interactions between structures is based on cross-correlations or
cross-covariances between spike trains of individual neurons from dif-
ferent structures. For a majority of significantly correlated mPFC-hip-
pocampal cross-structure pairs the hippocampal neurons tend to fire
prior to mPFC neurons (Wierzynski et al., 2009), while sensory cortical
neurons tend to fire prior to hippocampal neurons (Sirota et al., 2003).
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It should be noted that this reflects the overall tendency, but significant
interactions in the opposite direction are also present and some of these
effects could be recent or remote experience-dependent. Finally, com-
parisons of relative cross-structure reactivation timing were either in-
conclusive due to small number of simultaneously detected reactivation
events in visual cortex and hippocampus (Ji and Wilson, 2007) or show
auditory cortical reactivation starting earlier than hippocampal re-
activation (Rothschild et al., 2016). Based on available reports, it is
difficult to establish a clear directionality pattern in hippocampal-cor-
tical communication during non-REM sleep.

One of the most interesting open questions pertains to the me-
chanisms that trigger and regulate memory consolidation. Clear evi-
dence of sensory cortical structures’ ability to bias the content of hip-
pocampal replay was shown by Rothschild et al. (2016). Application of
similar experimental design in other cortical/subcortical areas could
reveal the generality of this phenomenon, which suggests that re-
activation could be triggered by the cortical structures that recently
accumulated a large degree of synaptic plastic changes. This scenario
seems especially plausible for structures involved in recent learning,
such as the motor cortex following motor skill learning (Huber et al.,
2004; Ramanathan, Gulati, & Ganguly, 2015), visual cortex following
exploration of environment rich in visual cues (Ji and Wilson, 2007) or
auditory cortex following auditory discrimination learning (Rothschild
et al., 2016). Another interesting question pertains to potential func-
tional differences between SWRs occurring at onsets or offsets of cor-
tical up-states. These time windows are characterized by differences in
cortical output to hippocampus, which could possibly affect the content
of hippocampal reactivation. Similarly, cortical receptivity to hippo-
campal input also differs during those time windows, due to ensuing
changes in cortical neurons’membrane potential. Also, it is unclear how
the wide range of SWR propagation distances and trajectories in the
hippocampal network (Patel et al., 2013) is biased by cortical inputs or
to what degree is it reflected in the hippocampal output to cortex.

Finally, an important caveat for the interpretation of hippocampal-
cortical/subcortical coupling is that recordings are typically done from
a limited portion of hippocampus and single cortical or subcortical
structure at the time. SWRs in ventral hippocampus occur largely
asynchronously with SWRs in intermediate and dorsal segments, except
for the largest amplitude SWRs, during which the entire septotemporal
axis may become more synchronous (Patel et al., 2013). Even within
different functional segments of the hippocampus (ventral and inter-
mediate-dorsal), only ∼30–40% SWRs synchronize a major portion of
the segment and ∼20% of SWRs remain localized to ∼1 mm from the
site of origin (Patel et al., 2013). Moreover, different combinations of
local neurons could be recruited during different SWR events at the
same location, as evident from the reactivation of different spatial
trajectories during different SWR events (Bendor & Wilson, 2012). Si-
milarly, SOs show a continuum between local events involving a limited
part of cortex and global events that sweep across the cortical mantle
(Massimini et al., 2004; Nir et al., 2011). The spatiotemporal pattern of
SO propagation might have functional significance, as it determines the
relative timing of excitability windows in different cortical structures
and constrains the potential membership of cortical cell ensembles
currently receptive for hippocampal input (Buzsáki, 2010). Therefore,
interpretations about the dynamics of hippocampal-cortical/subcortical
functional connectivity supporting memory consolidation are necessa-
rily limited by the recording configuration. The full dimensionality of
this process could possibly be revealed by large scale unimodal or
combined electrophysiological recordings and wide field imaging re-
cordings from multiple structures (Bermudez-Contreras et al., 2017;
Greenberg et al., 2017; Jun et al., 2017; Khodagoly et al., 2017;
Pachitariu et al., 2016). Even with the advance of such technology,
however, the actual role of hippocampal-cortical coupling during
memory reactivation on the rearrangement of the cortical synaptic
matrix that presumably underlies memory consolidation remains lar-
gely in the domain of theory.
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Glossary

Place cells: hippocampal neurons showing spatial tuning to portions of the environment
Sharp wave ripples: fast (100-300 Hz) and short (∼30-100 ms) oscillation in the stratum

pyramidale of hippocampal CA1, occurring during quiet wakefulness and non-REM
sleep. Hypothesized mediators of hippocampal communication with cortical/sub-
cortical structures and memory consolidation.

Slow oscillations: slow (0.5 - 4 Hz) oscillations occurring in cortex during non-REM sleep
and pacing the excitability of cortical neurons.

Sleep spindles: episodes of oscillations in 7-20 Hz range (1-3 s), occurring in cortex during
the up states of slow oscillations during non-REM sleep.

Up- and down-states: oscillating periods of high and low cortical neuronal excitability,
corresponding to troughs and peaks of slow oscillation in deep cortical layers, re-
spectively.

Memory reactivation: process of reactivation of neural activity patterns present during
experience, during offline periods

Memory consolidation: process of gradual strengthening of memory during post-experience
offline periods.
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