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ESTIMATES FOR THE ENERGY DENSITY OF CRITICAL

POINTS OF A CLASS OF CONFORMALLY INVARIANT

VARIATIONAL PROBLEMS

TOBIAS LAMM AND LONGZHI LIN

Abstract. We show that the energy density of critical points of a class of

conformally invariant variational problems with small energy on the unit 2-
disk B1 ⊂ R2 lies in the local Hardy space h1(B1). As a corollary we obtain a

new proof of the energy convexity and uniqueness result for weakly harmonic

maps with small energy on B1.

1. Introduction

Let N be a closed (i.e. compact and without boundary) C2 Riemannian subman-
ifold of Rn. The Dirichlet energy of a W 1,2 map u : B1 → N from the 2-dimensional
unit disk B1 = B1(0) ⊂ R2 is defined by

(1.1) E(u) =
1

2

∫
B1

|∇u|2dx .

A weakly harmonic map u from B1 into N ↪→ Rn is a map in W 1,2(B1,Rn), which
takes values almost everywhere in N and solves the Euler-Lagrange equation

(1.2) (∆u)> = 0 ,

where u = (u1, ..., un),∆ =
∑2
i=1

∂2

∂x2
i

is the Laplacian in R2 and the superscript

> denotes the tangential part of a vector. The Euler-Lagrange equation (1.2) can
equivalently be written as

(1.3) −∆u = A(u)(∇u,∇u) ,

where A(u) is the second fundamental form of N ↪→ Rn at the point u. We point
out that it is not important that the source domain B1 ⊂ R2 is flat in this work.
Indeed, using the conformal invariance of (1.1) resp. (1.3), we could instead work on
any domain that is conformally equivalent to B1, for example, a simply-connected
open subset of any general Riemannian surface.

Using a so called Coulomb or moving frame, Hélein (see e.g. [He02]) proved the
interior regularity of weakly harmonic maps. Later, Qing [Qi93] showed continuity
up to the boundary in the case of continuous boundary data based on Hélein’s
technique. More recently, Rivière [Ri07] succeeded in writing the Euler-Lagrange
equation of every conformally invariant Lagrangian (which includes (1.3)) in the
form:

(1.4) −∆ui = Ωij · ∇uj i = 1, 2, ..., n or −∆u = Ω · ∇u ,
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2 TOBIAS LAMM AND LONGZHI LIN

with Ω = (Ωij)1≤i,j≤n ∈ L2(B1, so(n)⊗∧1R2), i.e. Ωij = −Ωji . Here and throughout
the paper, the Einstein summation convention is used. In particular, this special
form of the nonlinearity enabled Rivière to obtain a conservation law for this system
of PDE’s (see (3.7) below), which is accomplished via a technique that we call
Rivière’s gauge decomposition, see Section 3. Rivière’s gauge decomposition will
also be the main tool of our work.

Equation (1.4) generalizes a number of interesting equations, including the har-
monic map equation (1.3)), the H-surface equation and, more generally, the Euler-
Lagrange equation of any conformally invariant elliptic Lagrangian which is qua-
dratic in the gradient. We remark that the harmonic map equation (1.3) can be
written in the form of (1.4) if we set

(1.5) Ωij := [Ai(u)j,l −Aj(u)i,l]∇ul .

Using the conservation law mentioned above, Rivière proved the (interior) continu-
ity of any W 1,2 weak solution u of (1.4).

The underlying reason for Rivière’s argument to work is that equation (1.4) can
be rewritten in the form

(1.6) div(A∇u) = ∇⊥B · ∇u ,

where A ∈ L∞ ∩ W 1,2(B1, Gln(R)) and B ∈ W 1,2
0 (B1,Mn(R)). Here and in what

follows we let ∇ = (∂x, ∂y) be the gradient and ∇⊥ = (−∂y, ∂x) denote the orthogo-
nal gradient (i.e., ∇⊥ is the ∇-operator rotated by π/2). The right hand side of this
new equation (1.6) lies in the Hardy space H1 by a result of Coifman, Lions, Meyer
and Semmes [CLMS93]. Moreover, using a Hodge decomposition argument, one can
show that u lies locally in W 2,1 which embeds into C0 in two dimensions. For de-
tails see Section 3. The key to this fact is a special “compensation phenomenon” for
Jacobian determinants (e.g. the right hand side of (1.6)), which was first observed
by Wente [We69], see also Lemma A.1. These Wente type estimates have many
interesting applications, see e.g. [We69, BC84, Ta85, CLMS93, He02, Ri07, Ri08].
Recently, Sharp and Topping [ST11], proved some interesting interior estimates for
solutions of (1.4) and they even obtained a compactness result for sequences of
solutions.

A similar approach was used by Rivière and the first author [LR08] in order to
show the regularity of solutions of certain fourth order systems of PDE’s which
include intrinsic and extrinsic biharmonic maps.

Another interesting question is the uniqueness of weakly harmonic maps. Cold-
ing and Minicozzi recently showed the following energy convexity result for weak
solutions of (1.3) with small energy on B1.

Theorem 1.1 ([CM08-1]). There exists constant ε0 > 0 depending only on N
such that if u, v ∈ W 1,2(B1,N ) with u|∂B1 = v|∂B1 , E(u) ≤ ε0, and u is weakly
harmonic, then we have the energy convexity

(1.7)
1

2

∫
B1

|∇v −∇u|2 ≤
∫
B1

|∇v|2 −
∫
B1

|∇u|2 .

An immediate corollary of Theorem 1.1 is the uniqueness of solutions of the
Dirichlet problem for weakly harmonic maps with small energy on B1.
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Corollary 1.2 ([CM08-1]). There exists ε0 > 0 such that for all weakly harmonic
maps u, v ∈ W 1,2(B1,N ) with energy E(u), E(v) ≤ ε0 and u = v on ∂B1 we have
u = v in B1.

The key ingredient in Colding and Minicozzi’s proof of Theorem 1.1 is a special
Jacobian structure of the squared norm of a certain holomorphic function that
Hélein constructed in [He02]. This holomorphic function bounds the energy density
|∇u|2 from above. In particular, although Colding and Minicozzi didn’t use this
fact explicitly, this implies that the energy density |∇u|2 lies in the local Hardy
space h1(B1). This implies that for weakly harmonic maps with small energy the
quantity |∆u| (≤ C|∇u|2 by the harmonic map equation (1.3)) lies in the local
Hardy space. This improved information is the key fact in order to prove (1.7).

We remark that global estimates on the whole disk are needed in order to prove
results such as the energy convexity. On the other hand, without imposing any
regularity on the boundary data, global estimates are very difficult to obtain. In
this paper we show that a global estimate in the local Hardy space h1(B1) (see
Definition A.3, cf. [Se94]) for the energy density |∇u|2 is valid for a more general
class of non-linear systems of second order elliptic PDE’s. Throughout the paper
ε0 > 0 is assumed to be sufficiently small and C denotes a universal constant that
depends only on N unless otherwise stated. Our main result is the following

Theorem 1.3. Suppose u ∈W 1,2(B1,Rn) is a weak solution of

(1.8) −∆u = Ω · ∇u

where Ω = (Ωij)1≤i,j≤n ∈ L2(B1, so(n)⊗ ∧1R2) takes the form

Ωij =

n∑
l=1

f ijl∇ul + gijl∇⊥ul with f ijl = −f jil, g
i
jl = −gjil ;

and

‖f‖L∞ + ‖∇f‖L2 + ‖g‖L∞ + ‖∇g‖L2 ≤ K .

Then there exists ε0 = ε0(n,K) > 0 and C = C(n,K) < ∞ such that whenever
E(u) ≤ ε0

(1.9) ‖|∇u|2‖h1(B1) ≤ C‖∇u‖
2
L2(B1)

≤ Cε0 .

We point out that Theorem 1.3 applies to critical points of a large class of elliptic
conformally invariant variational problems in dimension two (see [Ri07, Theorem
I.2]). More precisely we have

Corollary 1.4. Let N ↪→ Rn be a closed C2 Riemannian submanifold with a C2,1

metric. Let ω be a C1,1 2-form on N such that the Lipschitz norm of dω is bounded
on N . Then every critical point in W 1,2(B1,N ) of the Lagrangian

(1.10) F (u) =

∫
B1

[
|∇u|2 + ω(u)(∂xu, ∂yu)

]
dx ∧ dy

satisfies equation (1.8) with

(1.11) Ωij = [Ai(u)j,l −Aj(u)i,l]∇ul +
1

4
[λi(u)j,l − λj(u)i,l]∇⊥ul ,
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where A and λ are in C1(N ,Mn(R)⊗ ∧1R2)) satisfying

n∑
j=1

Aji,l∇u
j = 0 and λij,l = d(π∗Nω)(εi, εj , εl)

where πN is the orthogonal projection onto N in a small tubular neighborhood of N
and {εi}i=1,...,n is the canonical basis of Rn. If additionally we have E(u) ≤ ε0 =
ε0(N ) then

(1.12) ‖|∇u|2‖h1(B1) ≤ C‖∇u‖
2
L2(B1)

≤ Cε0 ,

where C = C(N ) <∞.

Remark 1.5. We remark that Corollary 1.4 includes the case of the prescribed mean
curvature equation in R3:

(1.13) −∆u = −2H(u)∂xu ∧ ∂yu

if ‖H‖W 1,∞(B1) <∞.

Remark 1.6. In [Lin12], using similar techniques, the second author proved an
energy convexity along the harmonic map heat flow with small initial energy and
fixed boundary data on B1 . In particular this yields that such a harmonic map
heat flow converges uniformly in time strongly in the W 1,2-topology, as time goes
to infinity, to the unique limiting harmonic map.

Our approach to the proof of Theorem 1.3 is based on Rivière’s gauge decom-
position. An immediate application of Theorem 1.3 is a new proof of Colding and
Minicozzi’s Theorem 1.1 and Corollary 1.2.

The paper is organized as follows. In Section 2 we present some heuristic ar-
guments and elaborate on the motivation of this paper. In Section 3 we review
the main tool of our proof, namely, Rivière’s gauge decomposition technique. In
Sections 4.1 and 4.2 we show improved estimates for the matrices B and P which
are the two main ingredients of our proof. We finish the proof of our main theorem
in Section 5. In Appendix A we include some results about local Hardy spaces.

Acknowledgements. We would like to thank the referee for the careful reading
of the paper.

2. Heuristic arguments and motivation

We present some heuristic arguments and sketch the basic idea of the proof of
Theorem 1.1 in this section. In order to prove the energy convexity result (1.7),
i.e.,

(2.1)
1

2

∫
B1

|∇v −∇u|2 ≤
∫
B1

|∇v|2 −
∫
B1

|∇u|2 ,

it suffices to show

(2.2) Ψ ≥ −1

2

∫
B1

|∇v −∇u|2 ,
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where (using that u|∂B1
= v|∂B1

and the harmonic map equation (1.3))

Ψ :=

∫
B1

|∇v|2 −
∫
B1

|∇u|2 −
∫
B1

|∇v −∇u|2

= 2

∫
B1

〈∇v −∇u,∇u〉

= 2

∫
B1

〈v − u, A(u)(∇u,∇u)〉 .(2.3)

Now we note that for any p, q ∈ N , there exists a constant C > 0, depending
only on N , such that

∣∣(p− q)⊥∣∣ ≤ C|p− q|2, where the superscript ⊥ denotes the
normal component of a vector (see e.g. [CM08-2, Lemma A.1]). Therefore, using
A(u)(∇u,∇u) ⊥ TuN and the Cauchy-Schwarz inequality, (2.3) yields

(2.4) Ψ ≥ −C
∫
B1

|(v − u)⊥||∇u|2 ≥ −C
∫
B1

|v − u|2|∇u|2 .

We remark that this is the only place where the geometry of the equation comes
in. Since ε0 can always be chosen to be sufficiently small, we know that (1.7) will
be achieved if we can show the following lemma.

Lemma 2.1. Let u, v be as in Theorem 1.1. Then we have

(2.5)

∫
B1

|v − u|2|∇u|2 ≤ C
∫
B1

|∇u|2
∫
B1

|∇v −∇u|2 ≤ Cε0
∫
B1

|∇v −∇u|2 .

In the following lemma we verify (2.5) under some extra assumptions.

Lemma 2.2. Let u, v be as in Theorem 1.1 and suppose that we can find a solution
ψ ∈W 1,2

0 ∩ L∞(B1) of

(2.6)

{
∆ψ = |∇u|2 in B1 ,

ψ = 0 on ∂B1 ,

which satisfies

(2.7) ‖ψ‖L∞(B1) + ‖∇ψ‖L2(B1) ≤ C

∫
B1

|∇u|2 ≤ Cε0 .

Then Lemma 2.1 holds.

Proof. The following proof is taken from [CM08-1]. Substituting (2.6) into the
left-hand side of (2.5) yields (using also that v = u on ∂B1)∫

B1

|v − u|2|∇u|2 =

∫
B1

|v − u|2∆ψ ≤
∫
B1

|∇|v − u|2||∇ψ|

≤ 2

(∫
B1

|∇v −∇u|2
)1/2(∫

B1

|v − u|2|∇ψ|2
)1/2

,(2.8)

where we have applied Stokes’ theorem to div(|v − u|2∇ψ) and used the Cauchy-
Schwarz inequality. Now applying Stokes’ theorem to div(|v − u|2ψ∇ψ) and using
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that ∆ψ ≥ 0 and (2.8), we have∫
B1

|v−u|2|∇ψ|2 ≤
∫
B1

|ψ|(|v − u|2∆ψ + |∇|v − u|2||∇ψ|)

≤ 4‖ψ‖L∞
(∫

B1

|∇v −∇u|2
)1/2(∫

B1

|v − u|2|∇ψ|2
)1/2

,(2.9)

and therefore

(2.10)

(∫
B1

|v − u|2|∇ψ|2
)1/2

≤ 4‖ψ‖L∞
(∫

B1

|∇v −∇u|2
)1/2

.

Finally, substituting (2.10) back into (2.8) and combining with (2.7) (and choosing
ε0 sufficiently small of course) yields

(2.11)

∫
B1

|v−u|2|∇u|2 ≤ C‖ψ‖L∞
∫
B1

|∇v−∇u|2 ≤ C
∫
B1

|∇u|2
∫
B1

|∇v−∇u|2 ,

which is just (2.5). �

Therefore, everything boils down to validating the assumptions in Lemma 2.2,
i.e., the existence of a function ψ satisfying (2.6) and (2.7). In the light of the
regularity Theorem A.4 it will be sufficient to show that |∇u|2 is in the local Hardy
space h1(B1) (with estimates) and this is exactly the claim of our main theorem
1.3.

3. Rivière’s gauge decomposition

Following the strategy of Uhlenbeck in [Uh82], Rivière [Ri07] used the algebraic

feature of Ω, namely Ω being antisymmetric, to construct ξ ∈W 1,2
0 (B1, so(n)) and

a gauge transformation matrix P ∈W 1,2∩L∞(B1, SO(n)) (which pointwise almost
everywhere is an orthogonal matrix in Rn×n) satisfying some good properties.

Theorem 3.1. ([Ri07, Lemma A.3]) There exist ε > 0 and C > 0 such that for
every Ω in L2(B1, so(n)⊗ ∧1R2) satisfying∫

B1

|Ω|2 ≤ ε ,

there exist ξ ∈W 1,2
0 (B1, so(n)) and P ∈W 1,2(B1, SO(n)) such that

(3.1) ∇⊥ξ = PT∇P + PTΩP in B1 with ξ = 0 on ∂B1,

and

(3.2) ‖∇ξ‖L2(B1) + ‖∇P‖L2(B1) ≤ C‖Ω‖L2(B1) .

Here the superscript T denotes the transpose of a matrix.

Remark 3.2. Multiplying both sides of equation (3.1) by P from the left gives that
(with indices and 1 ≤ m, z ≤ n)

(3.3) ∇P ij = P im∇⊥ξmj − Ωiz P
z
j , 1 ≤ i, j ≤ n .
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Remark 3.3. Besides Uhlenbeck’s method there is another way to construct the
gauge tranformation matrix P , namely one can minimize the energy functional

(3.4) E(R) =

∫
B1

∣∣RT∇R+RTΩR
∣∣2

among all R ∈W 1,2(B1, SO(n)), see e.g. [Ch95] and [Sc10].

Another key result from Rivière’s work is the following theorem.

Theorem 3.4. ([Ri07, Theorem I.4]) There exist ε > 0 and C > 0 such that for
every Ω in L2(B1, so(n)⊗ ∧1R2) satisfying∫

B1

|Ω|2 ≤ ε ,

there exist Â ∈W 1,2 ∩ C0(B1, Gln(R)), A = (Â+Id)PT ∈ L∞ ∩W 1,2(B1, Gln(R))

and B ∈W 1,2
0 (B1,Mn(R)) such that

(3.5) ∇A−AΩ = ∇⊥B

and

(3.6) ‖Â‖W 1,2(B1) + ‖Â‖L∞(B1) + ‖B‖W 1,2(B1) ≤ C‖Ω‖L2(B1) .

Combining (3.5) with (1.4) gives the conservation law

(3.7) div (A∇u+B∇⊥u) = 0.

In particular, (3.7) yields

(3.8)

{
div (A∇u) = −∇B · ∇⊥u

curl (A∇u) = ∇⊥A · ∇u .

Now using the Hodge decomposition (see e.g. [IM01, Corollary 10.5.1]) we get the

existence of D ∈W 1,2
0 (B1,Rn) and E ∈W 1,2(B1,Rn) such that

(3.9) A∇u = ∇D +∇⊥E

with

||∇D||L2(B1) + ||∇E||L2(B1) ≤ C||∇u||L2(B1).

By (3.8) we have

(3.10)

{
∆D = −∇B · ∇⊥u

∆E = ∇⊥A · ∇u .

Then by the results of [CLMS93] and via an extension argument, Rivière obtained
that

(3.11) D,E ∈W 2,1
loc (B1) and therefore u ∈W 2,1

loc (B1) ↪→ C0(B1).

Combining the fact that D = 0 on ∂B1 with Wente’s lemma A.1 and Remark A.2
moreover yields

(3.12) ‖D‖L∞(B1) + ‖∇D‖L2,1(B1) ≤ C
∫
B1

|∇u|2 ≤ Cε0,
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where the Lorentz space L2,1(B1) is defined as the set of all measurable functions
such that the quantity

||u||L2,1(B1) :=

∫ ∞
0

|{x ∈ B1 : |u(x)| > t}|1/2dt

is finite, see e.g. [Zi89].

4. Hidden Jacobian structures

Our main observation in this section are two hidden Jacobian structures for ∆B
and ∆P in the case that Ω is as in Theorem 1.3.

4.1. Improved global estimate on the matrix B. We first show that B is
close to the zero matrix if E(u) ≤ ε0 is sufficiently small. Note that in the case of
harmonic maps into a round sphere, a straightforward calculation shows that

∇⊥Bij = ui∇uj − uj∇ui

and therefore

∆Bij = ∇⊥ui∇uj −∇⊥uj∇ui.
Combining this with the fact that B = 0 on ∂B1 and Wente’s lemma A.1 yields

||B||L∞(B1) ≤ C
∫
B1

|∇u|2 ≤ Cε0.

In the following we show that a similar result remains true for the class of systems
satisfying the assumptions of Theorem 1.3.

Proposition 4.1. Under the assumptions of Theorem 1.3 we have

(4.1) ‖B‖L∞(B1) ≤ C‖∇u‖L2(B1) ≤ C
√
ε0 ,

where C = C(n,K) <∞.

Proof. We recall that Ω is given by

Ωij = f ijl∇ul + gijl∇⊥ul .

Moreover ‖Ω‖2L2(B1)
≤ Cε0 by the assumptions. In the following we let ε0 be so

small that Theorems 3.1 and 3.4 apply. By (3.9) we have

(4.2) ∇⊥u = A−1∇⊥D −A−1∇E .

Namely, with indices we have

(4.3) ∇⊥ul = (A−1)lm∇⊥Dm − (A−1)lm∇Em , l = 1, 2, ..., n.

Taking the curl on both sides of equation (3.5) and using the above expression for
∇⊥u yields (for 1 ≤ i, j ≤ n)

∆Bij = − curl (AikΩkj ) = −curl (Aik(fkjl∇ul + gkjl∇⊥ul))

= −∇⊥(Aikf
k
jl) · ∇ul − curl (Aikg

k
jl((A

−1)lm∇⊥Dm − (A−1)lm∇Em))

= −∇⊥(Aikf
k
jl) · ∇ul +∇⊥(Aikg

k
jl(A

−1)lm) · ∇Em(4.4)

− div (Aikg
k
jl((A

−1)lm∇Dm).
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Next we let F ij , G
i
j ∈W

1,2
0 (B1) be solutions of

∆F ij =−∇⊥(Aikf
k
jl) · ∇ul +∇⊥(Aikg

k
jl(A

−1)lm) · ∇Em resp.

∆Gij =− div (Aikg
k
jl((A

−1)lm∇Dm).

Using Lemma A.1 we get the estimate

||F ij ||L∞(B1) ≤ C||∇u||L2(B1).

Next we note that ||Aikgkjl((A−1)lm∇Dm||L2,1(B1) ≤ C||∇D||L2,1(B1) ≤ C||∇u||L2(B1)

and hence, using Theorem 3.3.3 of [He02] (which implies that the standard Lp-
theory extends to Lorentz spaces), we furthermore get

||∇Gij ||L2,1(B1) ≤ C||∇u||L2(B1).

By Theorem 3.3.4 in [He02] we conclude that

||Gij ||L∞(B1) ≤C(||Gij ||L2,1(B1) + ||∇Gij ||L2,1(B1))

≤C||∇Gij ||L2,1(B1)

≤C||∇u||L2(B1),

where we used again Theorem 3.3.3 of [He02] (which ensures that the Poincaré’s
inequality extends to Lorentz spaces) and the fact that Gij = 0 on ∂B1 in the second
estimate.

Combining these estimates and using that Bij = F ij +Gij gives

||Bij ||L∞(B1) ≤ C||∇u||L2(B1).

Note that in the case gkjl ≡ 0 the proof simplifies since we don’t need to use
Lorentz spaces in order to get the desired result. �

Corollary 4.2. Under the assumptions of Theorem 1.3 there exist a ∈W 1,2(B1,Mn(R))
and b ∈W 1,2(B1,Rn) such that

(4.5) ∆u = ∇a · ∇⊥b in B1

and

||∇a||L2(B1) + ||∇b||L2(B1) ≤ C||∇u||L2(B1).

In particular u is continuous in B1.

Proof. Equation (3.7) and the above estimates for the L∞-norms of A and B imply
the existence of η ∈W 1,2(B1,Rn) such that

||∇η||L2(B1) ≤ C||∇u||L2(B1)

and

∇⊥η = A∇u+B∇⊥u.(4.6)

Multiplying this equation with A−1 and taking the divergence yields

(4.7) ∆ul = ∇(A−1)lk · ∇⊥ηk −∇(A−1B)lk · ∇⊥uk , l = 1, 2, ..., n .

The continuity of u now follows from Wente’s lemma A.1. �
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4.2. Improved local estimate for the matrix P . We next show that ∆P also
has a special Jacobian structure under the assumptions of Theorem 1.3.

Lemma 4.3. Under the assumptions of Theorem 1.3 there exist ξ ∈W 1,2
0 (B1, so(n)),

η ∈W 1,2(B1,Rn) and Qk, Rk ∈W 1,2(B1, Gln(R)), k = 1, ..., n with

‖∇ξ‖L2(B1) + ‖∇η‖L2(B1) ≤ C‖∇u‖L2(B1)

and ∑
k

(
‖∇Qk‖L2(B1) + ‖∇Rk‖L2(B1)

)
≤ C

such that

(4.8) ∆P = ∇P · ∇⊥ξ +∇Qk · ∇⊥ηk +∇Rk · ∇⊥uk .

Proof. Taking the divergence on both sides of equation (3.3) yields

(4.9) ∆P ij = ∇P im · ∇⊥ξmj − div (Ωiz P
z
j ) , 1 ≤ i, j ≤ n .

Now combining Ωiz = f izl∇ul + gizl∇⊥ul with equation (4.6) gives

∆P ij = ∇P im · ∇⊥ξmj − div (Ωiz P
z
j )

=∇P im · ∇⊥ξmj − div
[
f izl
[
(A−1)lk∇⊥ηk − (A−1B)lk∇⊥uk

]
P zj + gizl∇⊥ulP zj

]
=∇P im · ∇⊥ξmj −∇

[
f izlP

z
j (A−1)lk

]
· ∇⊥ηk +∇

[
f izlP

z
j (A−1B)lk

]
· ∇⊥uk

−∇(gizlP
z
j ) · ∇⊥ul .

Defining (Qk)ij = −f izlP zj (A−1)lk and (Rk)ij = f izlP
z
j (A−1B)lk − gizlP zj where 1 ≤

k, i, j ≤ n, completes the proof. �

Next, based on Lemma 4.3, we prove a local estimate on the oscillation of the
matrix P . As we shall see, the Jacobian structure of ∆P enters in a crucial way.

Lemma 4.4. Let u and Ω satisfy the assumptions of Theorem 1.3. Then for any
x ∈ B1, any r > 0 such that B2r(x) ⊂ B1 and any y ∈ Br(x) we have

(4.10) |P (y)− P (x)| ≤ C
√
ε0 ,

where C = C(n,K) <∞.

Proof. Let P̃ ∈W 1,2(B1,Mn(R)) be the weak solution of

(4.11)

{
∆P̃ = ∇P · ∇⊥ξ +∇Qk · ∇⊥ηk +∇Rk · ∇⊥uk in B1 ,

P̃ = 0 on ∂B1 ,

where Qk and Rk are as in Lemma 4.3.

Then by Wente’s lemma A.1 we have P̃ ∈ C0(B1,Mn(R)) and

(4.12) ‖P̃‖L∞(B1) + ‖∇P̃‖L2(B1) ≤ C
√
ε0 .

Since ∆(P − P̃ ) = 0 in B1, we know that V = P − P̃ ∈ C∞(B1,Mn(R)) is
harmonic. Now for any x ∈ B1, any r > 0 such that B2r(x) ⊂ B1 and any
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y ∈ Br(x) we have

|V (y)− V (x)| ≤Cr‖∇V ‖L∞(Br(x))

≤C‖∇V ‖L2(B2r(x))(4.13)

≤C
(
‖∇P‖L2(B2r(x)) + ‖∇P̃‖L2(B2r(x))

)
≤ C

√
ε0 ,

where we used the mean value property of V and (4.12), (3.2). Combining (4.12)
and (4.13) yields that for any x ∈ B1, any r > 0 such that B2r(x) ⊂ B1 and any
y ∈ Br(x) we have

(4.14) |P (y)− P (x)| ≤ C
√
ε0 ,

which gives the desired result. �

5. Proof of Theorem 1.3

With the results of section 4 at our disposal, we are now in a position to prove
Theorem 1.3. The local estimate on the oscillation of the transformation matrix P
in Lemma 4.4 turns out to be the key ingredient of our proof.

Proof. (of Theorem 1.3) Using Theorem 3.1, Theorem 3.4 and Proposition 4.1, for
any x ∈ B1, any r > 0 such that B2r(x) ⊂ B1 and any y ∈ Br(x) we have (choosing
ε0 sufficiently small)

0 ≤ 1

2
|∇u|2(y) ≤

(
A∇u+B∇⊥u

)
· (PT∇u)(y)

=
(
A∇u+B∇⊥u

)
·
[(
PT (x) +

(
PT − PT (x)

))
∇u
]

(y) ,(5.1)

and therefore by Lemma 4.4 and (4.6)

∇⊥η ·
(
PT (x)∇u

)
(y) =

(
A∇u+B∇⊥u

)
·
(
PT (x)∇u

)
(y)

≥ 1

2
|∇u|2(y)−

(
A∇u+B∇⊥u

)
·
[(
PT − PT (x)

)
∇u
]

(y) ≥ 1

4
|∇u|2(y) .(5.2)

Now we choose a function

(5.3) φ ∈ C∞0 (B1) with φ ≥ 0, spt(φ) ⊆ B 1
2
, φ = 2 on B 3

8
, and

∫
B1

φdx = 1 .

Moreover, we additionally assume that ‖∇φ‖L∞(B1) ≤ 100. Using (5.2), one verifies
directly that (using Definition A.3)

‖|∇u|2‖h1(B1) =

∫
B1

sup
0<t<1−|x|

φt ∗ |∇u|2dx

≤ 4

∫
B1

sup
0<t<1−|x|

φt ∗
(
∇⊥η · (PT (x)∇u)

)
dx

= 4

∫
B1

sup
0<t<1−|x|

φt ∗
[
(PT (x))ij

(
∇⊥ηi · ∇uj

)]
dx

≤C
n∑

i,j=1

‖∇⊥ηi · ∇uj‖h1(B1)

≤C‖∇⊥η‖L2(B1)‖∇u‖L2(B1) ≤ C
∫
B1

|∇u|2,
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where we have used the fact

∇⊥ηi · ∇uj ∈ h1(B1) and ‖∇⊥ηi · ∇uj‖h1(B1) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1)

for all i, j = 1, 2, ..., n. To see this, we first extend ηi− 1
|B1|

∫
B1
ηi and uj− 1

|B1|
∫
B1
uj

from B1 to R2 which yields the existence of η̃i, ũj ∈W 1,2
0 (R2) such that

(5.4)

∫
R2

|∇η̃i|2 ≤ C
∫
B1

|∇ηi|2 and

∫
R2

|∇ũj |2 ≤ C
∫
B1

|∇uj |2

and

(5.5) ∇η̃i = ∇ηi and ∇ũj = ∇uj a.e. in B1 .

Then by the results of [CLMS93] we know that

‖∇⊥η̃i · ∇ũj‖H1(R2) : =

∫
R2

sup
φ∈T

sup
t>0

∣∣∣∣∣
∫
Bt(x)

1

t2
φ

(
x− y
t

)(
∇⊥η̃i · ∇ũj

)
(y)dy

∣∣∣∣∣ dx
≤ C‖∇η̃i‖L2(R2)‖∇ũj‖L2(R2) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1) ,(5.6)

where T = {φ ∈ C∞(R2) : spt(φ) ⊂ B1 and ‖∇φ‖L∞ ≤ 100}. By (5.5), (5.6) and
Definition A.3, it is clear that

‖∇⊥ηi · ∇uj‖h1(B1) = ‖∇⊥η̃i · ∇ũj‖h1(B1)

≤ ‖∇⊥η̃i · ∇ũj‖H1(R2) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1).(5.7)

This completes the proof of the theorem. �

In view of the discussions in Section 2, this also yields an alternative proof of
Theorem 1.1.

Appendix A. Wente’s lemma and the local Hardy space

A.1. Wente’s lemma. An important ingredient in our estimates is Wente’s lemma,
see e.g. [BC84] and [He02], and for a generalized version, see e.g. [BG93] and
[CL92].

Lemma A.1. ([We69]) Let a, b ∈W 1,2(B1,R) and let w be the solution of

(A.1)


∆w =

∂a

∂y

∂b

∂x
− ∂a

∂x

∂b

∂y
= ∇a · ∇⊥b in B1 ,

w = 0 or
∂w

∂ν
= 0 on ∂B1 .

Then w ∈ C0 ∩W 1,2(B1,R) and the following estimate holds

(A.2) ‖w‖L∞(B1) + ‖∇w‖L2(B1) ≤ C‖∇a‖L2(B1)‖∇b‖L2(B1) ,

where we choose
∫
B1
w = 0 for the Neumann boundary data. Here ∇ = (∂x, ∂y)

and ∇⊥ = (−∂y, ∂x).

Remark A.2. In fact, by Theorem 3.4.1 in [He02], we also have the following esti-
mate for ∇w in L2,1:

(A.3) ‖∇w‖L2,1(B1) ≤ C‖∇a‖L2(B1)‖∇b‖L2(B1) .
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A.2. Local Hardy space h1(B1). Let us first recall the definition of the local
Hardy space h1(B1).

Definition A.3. ([Mi90]) Choose a Schwartz function φ ∈ C∞0 (B1) such that∫
B1
φdx = 1 and let φt(x) = t−2φ

(
x
t

)
. For a measurable function f defined in B1

we say that f lies in the local Hardy space h1(B1) if the radial maximal function
of f

(A.4) f∗(x) = sup
0<t<1−|x|

∣∣∣∣∣
∫
Bt(x)

1

t2
φ

(
x− y
t

)
f(y)dy

∣∣∣∣∣ = sup
0<t<1−|x|

|φt ∗ f | (x)

belongs to L1(B1) and we define

(A.5) ‖f‖h1(B1) = ‖f∗(x)‖L1(B1) .

It follows immediately that h1(B1) is a strict subspace of L1(B1) and ‖f‖L1(B1) ≤
‖f‖h1(B1).

Next we state an existence and regularity result for boundary value problems
in the local Hardy space, which follows along the lines of a corresponding result
in [Se94]. For a more general version we refer to Chang, Krantz and Stein’s work
in [CKS93]1. In order to make the paper self-contained, we decided to include the
proof of the result below.

Theorem A.4. (cf. [Se94, Theorem 1.100] and [CKS93, Theorem 5.1]) Let f ∈
h1(B1) and assume that f ≥ 0 a.e. in B1. Then there exists a function ψ ∈
L∞ ∩W 1,2(B1) solving the Dirichlet problem

(A.6)

{
∆ψ = f in B1 ,

ψ = 0 on ∂B1 .

Moreover, there exists a constant C > 0 such that

(A.7) ‖ψ‖L∞(B1) + ‖∇ψ‖L2(B1) ≤ C ‖f‖h1(B1) .

Proof. The idea of the proof follows [Se94, Proposition 1.68]. Since the Green’s
function of ∆ on B1 is given by 1

2π ln |x|, for x ∈ B1, we can write

ψ(x) =
1

2π

∫
B1

f(y)

(
ln |x− y| − ln

(∣∣∣∣ x|x| − |x|y
∣∣∣∣)) dy .(A.8)

Let θ ∈ C∞0 (B1) be a smooth bump function such that 0 ≤ θ ≤ 1, θ = 1 in B 1
16

and spt(θ) ⊂ B 1
8
. For x ∈ B1 we define

(A.9) lx(y) :=

∞∑
j=0

θ
(
2j(1− |x|)−1(x− y)

)
for y ∈ B1 .

We claim that for any x, y ∈ B1

(A.10) − 20 ln 2 ≤ ln |x− y| − ln

(∣∣∣∣ x|x| − |x|y
∣∣∣∣)+ lx(y) ln 2 ≤ 20 ln 2 ,

1By the results of [Mi90], the local Hardy space h1(B1) is just the local Hardy space H1
r(B1) ⊂

h1
r(B1) (a function in H1

r(B1) is obtained by restricting a function in H1(R2) to B1) in [CKS93],
therefore [CKS93, Theorem 5.1] is applicable in our case.
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To see this, it is clear that for x, y ∈ B1 such that

(A.11) 2−k ≤ |x− y| ≤ 2−k+1, k ∈ N0

we have

(A.12) − k ln 2 ≤ ln |x− y| ≤ (−k + 1) ln 2 .

Now note that

1− |x| − |x− y| ≤ 1− |x|+ |x| − |y| = 1− |y| ≤ 1− |x|+ |x− y| ,
and therefore for x ∈ B1−2−i−1 \ B1−2−i , i.e., 1 − |x| ∈ [2−i−1, 2−i], i ∈ N0 (with
B̄0 = ∅) and any y ∈ B1 satisfying (A.11), we have

1− |y| ∈

{ [
2−i−1 − 2−k+1, 2−i + 2−k+1

]
if k ≥ i+ 4;[

0, 2−i + 2−k+1
]

if k ≤ i+ 3.

We also have

0 ≤ (1− |x|)(1− |y|) ≤ (1− |x|2)(1− |y|2)

=

∣∣∣∣ x|x| − |x|y
∣∣∣∣2 − |x− y|2 ≤ 22(1− |x|)(1− |y|) ,(A.13)

and thus∣∣∣∣ x|x| − |x|y
∣∣∣∣2 − |x− y|2 ∈

{ [
2−2i−2 − 2−i−k, 2−2i+2 + 2−i−k+3

]
if k ≥ i+ 4;[

0, 2−2i+2 + 2−i−k+3
]

if k ≤ i+ 3.

Combining this with (A.11) we get∣∣∣∣ x|x| − |x|y
∣∣∣∣2 ∈

{ [
2−2i−2 − 2−i−k + 2−2k, 2−2i+2 + 2−i−k+3 + 2−2k+2

]
if k ≥ i+ 4;[

2−2k, 2−2i+2 + 2−i−k+3 + 2−2k+2
]

if k ≤ i+ 3.

Now using the facts that for k ≥ i+ 4 we have

2−2i−2 − 2−i−k + 2−2k ≥ 2−2i−4 and 2−2i+2 + 2−i−k+3 + 2−2k+2 ≤ 2−2i+4

and for k ≤ i+ 3 we have

2−2i+2 + 2−i−k+3 + 2−2k+2 ≤ 2−2k+10 ,

we arrive at ∣∣∣∣ x|x| − |x|y
∣∣∣∣2 ∈

{ [
2−2i−4, 2−2i+4

]
if k ≥ i+ 4;[

2−2k, 2−2k+10
]

if k ≤ i+ 3,

and hence

(A.14) − ln

∣∣∣∣ x|x| − |x|y
∣∣∣∣ ∈

{
[(i− 2) ln 2, (i+ 2) ln 2] if k ≥ i+ 4;

[(k − 5) ln 2, k ln 2] if k ≤ i+ 3.

Combining (A.12) and (A.14) we get
(A.15)

ln |x−y|−ln

(∣∣∣∣ x|x| − |x|y
∣∣∣∣) ∈

{
[(−k + i− 2) ln 2, (−k + i+ 3) ln 2] if k ≥ i+ 4;

[−5 ln 2, ln 2] (in fact, [−5 ln 2, 0]) if k ≤ i+ 3,

for any x ∈ B1−2−i−1 \ B1−2−i , i ≥ 0, and any y ∈ B1 satisfying (A.11) for some
k ≥ 0.
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Now for any x ∈ B1−2−i−1 \ B1−2−i , i ≥ 0, and any y ∈ B1 satisfying (A.11),
since 0 ≤ θ ≤ 1, θ = 1 in B 1

16
and spt(θ) ⊂ B 1

8
, we get that for any j ≥ 0

θ
(
2j(1− |x|)−1(x− y)

)
= 0 for |x− y| ≥ 2−j−3(1− |x|) ∈ [2−j−i−4, 2−j−i−3]

and

θ
(
2j(1− |x|)−1(x− y)

)
= 1 for |x− y| ≤ 2−j−4(1− |x|) ∈ [2−j−i−5, 2−j−i−4] .

Therefore (combining with (A.11)),

(A.16) θ
(
2j(1− |x|)−1(x− y)

)
= 0 for j ≥ k − i− 3

and

(A.17) θ
(
2j(1− |x|)−1(x− y)

)
= 1 if k − 1 ≥ j + i+ 5 (i.e. j ≤ k − i− 6) .

Hence for any x ∈ B1−2−i−1 \ B1−2−i , i ≥ 0 and any y ∈ B1 such that 2−k ≤
|x− y| ≤ 2−k+1 for some k = 0, 1, 2, ..., (A.9), (A.16) and (A.17) imply

(A.18)

{
k − i− 10 ≤ lx(y) ≤ k − i+ 10 if k ≥ i+ 4;

lx(y) = 0 if k ≤ i+ 3 .

Combining (A.15) and (A.18) gives (A.10).

Therefore, in order to obtain the L∞-bound of ψ on B1 as in (A.7), it suffices to
bound

∫
B1
f(y)lx(y)dy since we have (A.8), (A.10) and ‖f‖L1(B1) ≤ ‖f‖h1(B1).

In order to bound
∫
B1
f(y)lx(y)dy, we next claim that for any x ∈ B1, j ≥ 0 and

z ∈ B2−j−4(1−|x|)(x) we have
(A.19)∫
B1

f(y)22j+2(1− |x|)−2θ
(
2j(1− |x|)−1(x− y)

)
dy ≤

∫
Bt(z)

1

t2
φ

(
z − y
t

)
f(y)dy ,

where

t = 2−j−1(1− |x|)

and φ is a nonnegative Schwartz function as in (5.3). To see (A.19), we first note
that since spt(θ) ⊂ B 1

8
, we have for any x ∈ B1 and j ≥ 0∫

B1

f(y)22j+2(1− |x|)−2θ
(
2j(1− |x|)−1(x− y)

)
dy

=

∫
B2−j−3(1−|x|)(x)

f(y)22j+2(1− |x|)−2θ
(
2j(1− |x|)−1(x− y)

)
dy .(A.20)

Now since 3
8 (2−j−1) = 2−j−4 + 2−j−3 and 2−j−4 + 2−j−1 = 9

162−j < 1 for any
j ≥ 0, we see that for any z ∈ B2−j−4(1−|x|)(x)

(A.21) B2−j−3(1−|x|)(x) ⊆ B 3t
8

(z) ⊂ Bt(z) = B2−j−1(1−|x|)(z) ⊆ B1 .
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Using the facts that f ≥ 0, 0 ≤ θ ≤ 1, φ ≥ 0 and φ = 2 on B 3
8

we conclude∫
B2−j−3(1−|x|)(x)

f(y)22j+2(1− |x|)−2θ(2j(1− |x|)−1(x− y))dy

≤
∫
B2−j−3(1−|x|)(x)

f(y)22j+2(1− |x|)−2dy ≤
∫
B 3t

8
(z)

f(y)22j+2(1− |x|)−2dy

≤
∫
Bt(z)

f(y)22j+2(1− |x|)−2φ
(
z − y
t

)
dy =

∫
Bt(z)

1

t2
φ

(
z − y
t

)
f(y)dy .

Combining this with (A.20) gives (A.19). Therefore by (A.19) and the definition
(A.4) of the radial maximal function f∗, for any x ∈ B1 and j ≥ 0 we have∣∣∣∣∫

B1

f(y)θ(2j(1− |x|)−1(x− y))dy

∣∣∣∣ ≤ 2−2j−2(1− |x|)2 inf
z∈B2−j−4(1−|x|)(x)

f∗(z) .

Therefore, by (A.9), for any x ∈ B1 we have∣∣∣∣∫
B1

f(y)lx(y)dy

∣∣∣∣ ≤ ∞∑
j=0

∣∣∣∣∫
B1

f(y)θ(2j(1− |x|)−1(x− y))dy

∣∣∣∣
≤
∞∑
j=0

2−2j−2(1− |x|)2 inf
z∈B2−j−4(1−|x|)(x)

f∗(z)

≤ 28

3π

∞∑
j=0

∫
B2−j−4(1−|x|)(x)\B2−j−5(1−|x|)(x)

f∗(z)dz(A.22)

≤ 28

3π

∫
B1

f∗(z)dz ≤ 28

3π
‖f‖h1(B1) .

Combining (A.13), (A.10) and (A.22) yields (using ‖f‖L1(B1) ≤ ‖f‖h1(B1))

|ψ(x)| = − 1

2π

∫
B1

f(y)

(
ln |x− y| − ln

(∣∣∣∣ x|x| − |x|y
∣∣∣∣)) dy ≤ C‖f‖h1(B1) .

This gives the desired L∞-bound of ψ on B1. The L2-estimate for∇ψ simply follows
from an integration by parts argument as in the proof of Wentes’s lemma. �
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