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ABSTRACT

Despite the utility of neural networks (NNs) for astronomical time-series classification, the proliferation of
learning architectures applied to diverse datasets has thus far hampered a direct intercomparison of different
approaches. Here we perform the first comprehensive study of variants of NN-based learning and inference
for astronomical time-series, aiming to provide the community with an overview on relative performance and,
hopefully, a set of best-in-class choices for practical implementations. In both supervised and self-supervised
contexts, we study the effects of different time-series-compatible layer choices, namely the dilated temporal con-
volutional neural network (dTCNs), Long-Short Term Memory (LSTM) NNs, Gated Recurrent Units (GRUs)
and temporal convolutional NNs (tCNNs). We also study the efficacy and performance of encoder-decoder
(i.e., autoencoder) networks compared to direct classification networks, different pathways to include auxiliary
(non-time-series) metadata, and different approaches to incorporate multi-passband data (i.e., multiple time-
series per source). Performance—applied to a sample of 17,604 variable stars from the MACHO survey across
10 imbalanced classes—is measured in training convergence time, classification accuracy, reconstruction er-
ror, and generated latent variables. We find that networks with Recurrent NN (RNNs) generally outperform
dTCNs and, in many scenarios, yield to similar accuracy as tCNNs. In learning time and memory requirements,
convolution-based layers are more performant. We conclude by discussing the advantages and limitations of
deep architectures for variable star classification, with a particular eye towards next-generation surveys such as
LSST, the Roman Space Telescope and ZTF2.

Keywords: Variable stars (1761), Periodic variable stars (1213), Light curves (918), Neural networks (1933),
Light curve classification (1954)

1. INTRODUCTION

Time-domain imaging surveys continue to expand access
to the photometric phase space of cadence and depth/volume.
Despite many upcoming projects (e.g., the Rubin Observa-
tory Legacy Survey of Space and Time – LSST1, Ivezić et al.
2019; Euclid2, Laureijs et al. 2011; and the Nancy Grace Ro-
man Space Telescope – WFIRST3, Spergel et al. 2015) being
optimized for transient (supernovae, microlensing) discovery
and characterization, the data from these surveys create un-
precedented opportunities to broaden our understanding of
stellar variability and stellar evolution as well as expand the
use of variable stars (VSs) as probes. Detached eclipsing bi-
naries, for example, provide direct measurements of distance

1 https://www.lsst.org/
2 https://www.euclid-ec.org/,https://sci.esa.int/web/euclid
3 https://wfirst.gsfc.nasa.gov/

(e.g., Paczyński 1997) and fundamental stellar parameters
(Torres et al. 2010), while pulsating VSs such as RR Lyrae,
Miras and Cepheids due to their accurate period-luminosity
relations are considered useful tools to trace galactic struc-
tures (Kraft & Schmidt 1963; Majaess et al. 2009; Skowron
et al. 2019), calibrate the cosmic distance ladder (Freedman
et al. 2001; Huang et al. 2018; Riess et al. 2018, 2019) as
well as standard candles to measure distances to their host-
galaxies (Carretta et al. 2000; Clementini et al. 2003; Alves
2004).

Stellar variability, primarily manifest as changes in bright-
ness and color, arises from various physical mechanisms. In-
trinsic variations arise as flares, rotation, pulsations, and/or
violent outbursts due to thermonuclear processes occurring
in the surface layers or deeper within. Extrinsic factors that
may add to the observed variability include eclipses, rela-
tivistic Doppler beaming, mutual interaction in binary sys-
tems, and/or gravitational lensing.
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The classification of VSs is based usually on brightness
variations, typically, at visible wavelengths. While far from
standard, the General Catalog of Variable Stars (GCVS;
Samus’ et al. 2017) maintains the taxonomy and nomencla-
ture for VSs that distinguishes between subtypes of rotators,
pulsators, eruptive variables, cataclysmic variables, eclips-
ing binaries in addition to other types such as microlensing
sources. In general, stellar variability is not expected to fall
into a unique type of dynamical behavior, as objects may dis-
play a multitude of physical behavior, such as rotational mod-
ulation superimposed to pulsation in RCB-type stars, rota-
tional modulation interjected by abrupt episodes of deep min-
ima or a steep increase in brightness in BY Dra-type stars, or
symbiotic systems with a M-type pulsating Mira star with an
accreting white dwarf companion as the R Aqr star. A com-
prehensive survey of VS classification is provided by Eyer &
Mowlavi (2008).

Large data volumes, the primary strength of massive sur-
veys, also presents an acute challenge: how do we discover
and characterize variable stars at scale in streaming, hetero-
geneous, and noisy time series? Human-free classification,
part of a fully automated system to process and analyze sur-
vey data, requires the development and deployment of robust
and reliable techniques from information-data technology to
process large volumes of data and produce tractable and re-
producible results.

Traditional machine-learning (ML) approaches for VS
classification typically involve “featurization” to summarize
and encode the raw observables into a set of informative de-
scriptors exploited by a classifier to predict labels. Some
popular features in the literature include frequency-domain
metrics derived from Lomb-Scargle periodograms (Scargle
1998; Lomb 1976), statistical metrics (e.g., standard devi-
ation, quantiles and skewness), variability indices (e.g., the
Stetson indices K and L; Stetson 1996), best model fit pa-
rameters as well as additional “metadata” information from
external catalogs (e.g., colors, redshifts and parallaxes mea-
surements). VS classification using expert-engineered fea-
turization and traditional ML algorithms have been exten-
sively studied and used for decades (Debosscher et al. 2007;
Blomme et al. 2011; Dubath et al. 2011; Richards et al. 2011,
2012; Rimoldini et al. 2012; Masci et al. 2014; Kim & Bailer-
Jones 2016; D’Isanto et al. 2016). Specialized libraries for
features extracting from astronomical light curves have been
made available by the community in open-source software
packages such as cesium (Naul et al. 2016), FATS (Nun et al.
2015), feets (Cabral et al. 2018), sncosmo (Barbary et al.
2016), gatspy (VanderPlas & Ivezić 2015; Vanderplas et al.
2016), and VARTOOLS (Hartman & Bakos 2016).

Ideally, featurization produces a uniform dimensional-
ity reduced representation of the observations that ade-
quately captures the intrinsic properties of the data needed

for classification. However, a known issue in hand-coded
feature-based classification lies in the fact that the generated
low-dimensional representation may overlook subtleties in
higher-order systems and restrict such complexity into a set
of low-level descriptors tailored for specific use-case appli-
cations. Furthermore, developing domain-specific features
can be time-consuming, computationally expensive, highly
dependent of expert-knowledge, and may show a strong de-
pendency on survey characteristics.

Representation learning (RL) techniques offer an alterna-
tively possibility to process raw observables without tradi-
tional feature engineering. The benefit of fully-automating
the classification task using RL lies in the ability to reach
a higher level of abstraction and capture complex structures
embedded in the data. Distinct approaches in RL to auto-
mate features extraction from astronomical time-series have
already been introduced in a broad range of studies. Used
techniques include unsupervised learning algorithms (Arm-
strong et al. 2016), dimensionality reduction techniques, data
transformations (Johnston et al. 2020), autoencoders (Naul
et al. 2018) or dictionary learning (Pieringer et al. 2019).

In the recent years, VS classification using deep learning
(DL)/neural architectures has been explored in several works
that achieved satisfactory classification performance and thus
demonstrated the ability of DL systems to learn stellar vari-
ability types from light-curves measurements and auxiliary
metadata. Among mostly-used DL architectures, recurrent
neural networks (RNNs) proved to be highly-performant for
periodic VS classification (Naul et al. 2018; Tsang & Schultz
2019), supernovae (SNe) classification (Charnock & Moss
2017) and online transient events detection (Muthukrishna
et al. 2019a; Möller & de Boissière 2019). Convolutional
neural networks (CNNs) have also proven comparably per-
formant, with a better training convergence time and lower
memory allocation requirements in comparison to RNNs
in various applications such as exoplanet transit detection
(Shallue & Vanderburg 2018; Schanche et al. 2019; Ansdell
et al. 2018), SNe binary classification (Pasquet et al. 2019b)
and Cepheid classification (Dékány et al. 2019). A review on
the recent contributions of DL techniques in SNe classifica-
tion is given by Ishida (2019).

To classify astronomical time-series, two main approaches
have emerged, either (1) design an automated system to en-
code the photometric observables into a set of features (semi-
or self-supervised learning) that constitute the entry point to
traditional algorithms (e.g., support-vector machines, NNs or
tree-based classifiers), or (2) develop a DL architecture to
find an optimal mapping between the photometric observ-
ables and the labels through a supervised learning scheme.

The objective of this paper is twofold: first is to provide
an overview of the current ML/DL techniques for variable
stars classification, and second to discuss through a test ex-
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ample the applicability of a selected set of NNs architectures
and the importance of data representation for classification
of stellar variables. This paper also investigates approaches
for variable stars classification using multiband photometric
data. The paper is organized as follows. Section 2 first intro-
duces the state-of-the-art of ML/DL techniques for VS clas-
sification then proceeds to present our proposed architectures
for classification. In Section 3, we present variants of NNs
architectures and discuss their performances through a test
example using public data from the MACHO VS database.
The networks performances are evaluated in term of training
convergence time, classification accuracy, properties of the
generated latent representations and light-curves reconstruc-
tion. Finally, we conclude in Section 4.

2. DEEP LEARNING ARCHITECTURES FOR VS
CLASSIFICATION

2.1. State-of-the-art

Classification of variable stars can be performed in feature
space or in data space. The first approach consists of find-
ing an optimal mapping between the labels, a vector Y, and
an (encoded) feature set, a matrix Xenc derived from the di-
rect observables X; the second approach focuses on finding a
direct mapping between the observables X and the labels Y.

In feature space classification, traditional approaches re-
quire hand-coded feature extraction to compute a set of in-
formative descriptors using domain knowledge. For vari-
able stars, the most discriminant features of stellar variability
depends strongly on the specific class or subclass. For in-
stance, the dominant modes of the pulsation mechanism can
be well characterized in the frequency domain, found through
Fourier decomposition or periodogram analysis. In eclips-
ing binaries, the shape, duration, and relative phase of the
eclipses in their light-curves inform the type of the interac-
tion (contact binaries, detached binaries or semi-detached bi-
naries) and their properties such as the mass and radii ratios.
Cataclysmic variables are described through the morphology
of their light-curves at maximum light, the decline shape, the
duration of the burst event, the event occurrence in time dis-
tinguishing between recurrent outbursts and final explosions,
the quiescent state of the star post-event and observed spec-
tral features during outburst. For eruptive variables, their
light-curves and spectra show distinctive variations as sud-
den brightening or dimming episodes over extended periods
of time due to flares and violent processes taking place in the
corona or the chromosphere of these stars.

In traditional approaches, feature engineering relies on do-
main knowledge while feature learning automates the extrac-
tion procedure from the data using dimensionality reduction
techniques, self-supervised networks (e.g., autoencoders),
dictionary learning, or unsupervised algorithms. The ex-
tracted features constitute a discretized set of encoded infor-

mation exploited by feature-based classifiers to predict la-
bels. Among notable references, the work by Armstrong
et al. (2016) exploits the unsupervised learning algorithm
SOMs (Self-Organizing Maps) to encode photometric light-
curves into a set of features processed, along with additional
descriptors, by the tree-based classifier, the random forest
(RF, Breiman 2001), to predict labels for periodic VSs. The
work of Naul et al. (2018) presents a bidirectional RNN au-
toencoder to discretize the photometric observables into a set
of latent variables exploited, along with ancillary metadata,
by a RF classifier to predict labels for periodic variables.

For classification in data space, common techniques ex-
ploit DL to identify embedded characteristics in the data and
find a direct mapping between the input observables and the
output labels. Applications using DL techniques for astro-
nomical time-series classification include (1) SNe classifica-
tion using RNN architectures to process multiband photomet-
ric data and auxiliary metadata (e.g., redshift measurements)
(Charnock & Moss 2017; Muthukrishna et al. 2019a; Möller
& de Boissière 2019), (2) online transient events detection
using RNN architectures to compute timely class-predictions
for early-observed light-curves in order to forecast potential
pre-SN outbursts and prompt follow-up procedures before
the event reaches its maximum light (Muthukrishna et al.
2019a; Möller & de Boissière 2019), and (3) exoplanetary
transit detection using a composite convolutional networks
that analyzes the full light curve and the eclipses to dis-
cern between planetary transits and stellar eclipsing binaries
(Shallue & Vanderburg 2018; Ansdell et al. 2018; Schanche
et al. 2019).

More recently, composite architectures has been intro-
duced for astronomical time-series classification in the form
of NNs composed of different submodules designed for spe-
cific tasks. Notable references include the work by Pasquet
et al. (2019b) for SNe classification where the authors pro-
pose a DL architecture (PELICAN) with three modules: an
autoencoder branch to generate the embeddings at the bot-
tleneck level by optimal reconstruction, a classifier for label
predictions and a contrastive module designed to reduce the
discrepancy between the Test and Train sets. Binary classi-
fication of type Ia SNe is performed using multiband pho-
tometric data and ancillary metadata (redshift measurements
of the host galaxies). The work by Tsang & Schultz (2019)
proposes a similar approach for periodic VS classification,
initially derived from the DAGMM (Deep Autoencoding
Gaussian Mixture Model) network in Zong et al. (2018). The
authors propose a network composed of two modules: an
autoencoder branched out to a classifier module at the bottle-
neck level.
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DIRECT CLASSIFIER 

INPUTS 
•  Xphot          light-curves measurements 
•  Xmeta         metadata 
 

 
 
 
 

OUTPUTS 
•  Ylabel          labels 
•  Xrec           reconstructed light-curves 
•  Xenc           latent variables 

ENCODING Xenc 

INPUTS (1) Xphot 

ENCODER 

OUTPUTS (2) Xrec 

DECODER 

INPUTS (2) Xmeta 

OUTPUTS (1) Ylabel 

COMPOSITE NETWORK 

ENCODING Xenc 

INPUTS (1) Xphot 

ENCODER 

INPUTS (2) Xmeta 

OUTPUTS (1) Ylabel 

CLASSIFIER CLASSIFIER 

Figure 1. High-level architecture of the direct classifier (left) and composite (right) networks. In direct classifiers, the time-series data (Xphot)
and metadata (Xmeta) are combined through a series of neural layers and concatenations, leading to classification predictions (Ylabel) on which
the loss function is optimized. Composite networks use Xphot and a bottleneck/decoder to predict a reconstructed light curve (Xrec). The
bottleneck layer along with Xenc is also used to predict Ylabel. Both Xrec and Ylabel are used in the loss function of composite networks.

2.2. Architectures

This section presents selected architectures for VS classi-
fication. We distinguish between two types of architectures:
direct classifiers and composite networks, as shown in Figure
1. Both architectures are composed of an encoder and clas-
sifier module. Composite networks are supplemented with
a decoder connected at the bottleneck level. The encoder-
decoder combination (i.e., autoencoder) aims to learn a latent
representation Xenc of the input photometric data Xphot by op-
timal reconstruction, while the classifier maps the encodings
to the labels Ylabel. By connecting the autoencoder to the
classifier module, the system ideally learns a latent represen-
tation (ie., compressed summary) that is closely correlated
to different stellar variability types in the training data. The
high-level design in Figure 1 is adaptable: modules can be
adjusted to the application and data as needed. In the current
work, the decoder module corresponds to a mirror-image of
the encoder, which is a common choice for autoencoder ar-
chitectures. We evaluate the encoder for different types of
NNs such as recurrent neural networks, convolutional neural
networks and their variants, while the classifier module is set
to a 2-layer MLP (Multi-Layer Perceptron) for all networks
to predict labels. A short description of the neural networks
used in this work is provided in Appendix B.1.

The majority of applications for VS classification using DL
exploit auxiliary features that complement the photometric
observables such as redshift measurements, detectable fre-
quencies for periodic variables, amplitudes and colors. The
photometric information in the light-curves constitutes a fun-
damental description of the evolutionary state of the star over
time but does not contain the entirely of the available infor-
mation; unless the light curve of a certain class is demonstra-

bly different than other classes, additional metadata can be
expected to improve classification accuracy. Typically, clas-
sification tasks require an upstream phase of data prepara-
tion. However, preprocessing transformations applied to the
photometric observables may inadvertently remove discrim-
inating features linked to the stellar variability types, thus
altering the quality of the information necessary for clas-
sification. For instance, light-curves of periodic variables
are preprocessed through phase-folding and data normaliza-
tion. The phase-folding procedure transforms the periodic
data into a compact representation in phase of one to two
cycles by stacking multiple observations, thus removing the
periodicity information over time. On the other hand, data
normalization via minmax normalization yields to rescaled
magnitude measurements, amplitudes and errors. As a direct
result, similarly shaped light-curves with different peak-to-
peak amplitudes cannot be distinguished from one another.

In the current work, we investigate the importance of the
metadata in two scenarios in which the network classifies the
data solely based on (preprocessed) light-curves without aux-
iliary metadata as opposed to supplementing metadata to the
system as a secondary input for label predictions.

In VS classification, multiband photometry can be pro-
cessed either by transforming the photometric passband mea-
surements into a single entity fed to the network or by
jointly processing individual encodings from each passband
measurements for label predictions. A simplified represen-
tation of the aforementioned approaches, identified in this
work as the merged and hybrid approaches, is provided in
the Appendix Figure A1. In the merged approach, multi-
passband measurements are combined into a unique observ-
able Xphot,merged processed by the encoder module to compute
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the latent representation Xenc. The preprocessed light-curves
per band can be combined through distinct representations
as the variants presented in the Appendix A. Whereas, the
hybrid approach independently encodes the multi-passband
measurements into individual features combined at a latter
time into a compact encoded representation Xenc. In both sce-
narios, the classifier module exploits the generated encodings
Xenc, along with metadata Xmeta, for label predictions. Com-
posite networks differ from the direct classifiers by the ad-
dition of a decoder module connected at the bottleneck level
to the encoder to generate the embeddings by optimal recon-
struction.

3. APPLICATION

This section presents a set of NN-based architectures for
VS classification. We discuss through a test example the per-
formance of these networks in terms of training convergence
time, label predictions, reconstruction and generated latent
representations.

3.1. Data

As an exemplar, for all architectures, we use public pho-
tometric data and labels from the MACHO survey (Alcock
et al. 1996). The MACHO project carried-out a long-term
photometric monitoring of stars in the Magellanic Clouds
and the galactic bulge from 1992 to 1999 in search for rare
microlensing events, observable in theory if the dark matter
is composed of massive compact halo objects (MACHOs).
The large collection of data from the survey has allowed over
the years a rare insight into a variety of stellar populations
such RR Lyrae, Cepheids, LPVs (Long-Period Variables)
and eclipsing binaries (Cook et al. 1995). In MACHO, the
LPVs are categorized into four subtypes – namely the four
Wood sequences A, B, C and D – referring to the parallel
sequences identified from the period-luminosity relation of
these red variables (Wood et al. 1999). Photometric data in
MACHO consists of magnitude measurements in two photo-
metric filters (the MACHO red and blue filters), the associ-
ated 1-σ error measurements and the observation epochs ex-
pressed in MJD. We exploit the multiband photometric data
of the public MACHO VS database4 to test our selected NNs
architectures, and we perform further checks on the data. In
particular, we retain the confirmed set of eclipsing binaries
with corrected periods from Derekas et al. (2007). The full
process yields 17604 periodic variables from the initial count
of 24k periodic VS in the MACHO database to test our ar-
chitectures: 1806 Cepheid variables, 9163 RR Lyrae, 2965
long-period variables (LPVs) and 3670 eclipsing binaries (cf.
Table 1).

4 http://macho.nci.org.au/

The majority of ML/DL open-source software exploits in-
put data in the form of a fixed-size input tensors and few
DL architectures are able to process observables with differ-
ent lengths, e.g., using generator functions on an iterable list
of input data. In our approach, the architecture of the di-
rect classifier can process fixed-size data in a batch mode
as well as a list of observables with different lengths us-
ing generator functions. Composite networks, however, re-
quire fixed-size inputs to comply with the implementation
specifications of the decoder module. To meet such require-
ments, we reduce the data into a fixed-size format. Typi-
cally, data reduction can be achieved using padding, rebin-
ning, interpolation (e.g., splines or polynomials) or model
fit and prediction. More recently, model prediction using
Gaussian Processes (GPs) have been used used on astronom-
ical time-series (Ambikasaran et al. 2016; Foreman-Mackey
et al. 2017; Pruzhinskaya et al. 2019; Boone 2019). To de-
scribe the stellar variability in the MACHO periodic light-
curves, a GP model with a quasi-periodic covariance function
is fitted to each object using the open source code Foreman-
Mackey et al. (2019). The selected GP model is a mixture of
stochastically-driven damped oscillators (SHOs), briefly dis-
cussed in the Appendix B.3. For each object, a GP model
is fitted. Using a MAP (Maximum a posteriori) estimate,
fixed-size light-curves are generated by model prediction on
a reduced time-frame sampled within the range of the ob-
served epochs. The GP predictions mean and error corre-
spond to the reduced photometric data exploited in the rest
of this work. At a latter stage, the reduced photometric light-
curves are normalized and phase-folded to span over 2 cycles.
Phase-folding of periodic light-curves allows a better visual-
ization of the cyclic behavior of the variables. For instance,
short-period variables as RR Lyrae pulsate over timescales
ranging from ∼0.3 to 1 day. To fully observe the pulsation
profile over a complete cycle, the observation cadence has to
exceed the variability frequency to cover a full cycle. In prac-
tice, given realistic survey cadences, any one individual cycle
will be sparsely observed if at all. By combining the observa-
tions through period-folding, however, even high-frequency
variables such as RR Lyrae stars can have dense phase cov-
erage. Still, properties of long-period variables that evolves
over longer timescales, such as the Mira-type stars with pul-
sation periods ranging from ∼80 to 1000 days, can be distin-
guishable in the initial time-frame without phase-folding. In
the current application, we exploit a dataset of periodic VSs
with light-curves from short-period pulsators, long-period
pulsators and eclipsing binaries and apply the phase-folding
procedure to all variables. Observed shortcoming from the
preprocessing are discussed in the result section (cf. Section
3.3). In the majority of ML applications, normalization is
applied to the data to improve the numerical stability and re-
duce the training time. In this work, the inputs Xphot to the

http://macho.nci.org.au/
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networks correspond to preprocessed light-curves, obtained
after data reduction, phase-folding and normalization. The
metadata Xmeta consists of the amplitudes, averaged magni-
tudes and colors extracted from the raw data in addition to
the primary periods.

Table 1. Selected dataset from the MACHO VS database.

Class Labels # in Class

Cepheids FU 1143

Cepheids FO 663

RR Lyrae (type ab) 7147

RR Lyrae (type c) 1716

RR Lyrae (type e) 300

LPV (Wood seq. A) 310

LPV (Wood seq. B) 799

LPV (Wood seq. C) 1100

LPV (Wood seq. D) 756

Eclipsing binaries 3670(a)

(a) confirmed binaries in Derekas et al. (2007)

3.2. Design and implementation

We experiment with a variety of NN architectures and
discuss the absolute and relative performances. Classifica-
tion using multiband photometry is evaluated using the ap-
proaches introduced in Section 2.2, i.e. the merged and hy-
brid approaches. The merged approach exploits the second
representation introduced in Appendix A combining the indi-
vidual measurements of preprocessed light-curves into a 2-d
tabular format. In the current application, normalization and
phase-folding are applied to each band measurements inde-
pendently, prior to generating the merged representation. Er-
ror measurements are used solely as weights in the autoen-
coder loss function. Incorporating error mesurements within
the network can be part of further development of such net-
works. We investigate as well the use of auxiliary metadata
as a secondary input on the classification accuracy for the di-
rect classifier and composite networks via two scenarios, in
which the network classifies the data using the information
from preprocessed light-curves without metadata as opposed
to supplementing auxiliary metadata as a secondary input for
label predictions. Data entries for the different use case sce-
narios are summarized on the Appendix Table D1. The au-
toencoder is evaluated for different NN: RNN with LSTM
cells, RNN with GRU cells, temporal CNN (tCNN) and di-
lated TCN (dTCN).

For VS classification, the objective of NNs is to empiri-
cally determine a mapping between the inputs, the photomet-
ric observables Xphot = [x1, · · · , xNt ]

T and auxiliary meta-

data Xmeta = [d1, · · · , dNt ]
T , and the output labels Ylabel =

[y1, · · · , yNt ]
T , where Nt designates the total number of ob-

jects. In the current application, the datavectors (xi)i:1→Nt re-
fer to the reduced photometric measurements – magnitudes,
observation epochs and error measurements– spanning over
Np datapoints for the ith object and the metadata (di)i:1→Nt

is composed of N f features such as the periods, the ampli-
tudes, the averaged magnitudes and the colors. The ele-
ments (yi)i:1→Nt refer to scalar values encoding the labels. For
categorical classification, the labels are encoded into code-
words transcribing the membership of the object to a vari-
ability class { j} j:1→NC with NC the total number of classes.
A standard approach in categorical classification consists in
transcribing class memberships into binary codewords {0, 1}.
In online transient event detection applications, a similar
methodology is used to map the observables into the out-
put space. Class predictions are computed on the pixel level,
which corresponds to a prediction vector (yi)i:1→Nt allowing
to monitor the evolution over time of the label predictions
and forecast potential pre-SN outbursts and trigger follow-
up observations within a rapid decision time before the event
reaches its maximum light. In contrast, the static-type pre-
diction approach adopted for VS classification consists in as-
sociating the static label predictions to fully observed light-
curves. The approach is used in this study aiming to map the
observables {Xphot,Xmeta} into scalar values Ylabels. Nonethe-
less, our architectures can be adapted to perform online pre-
dictions on the pixel level by adjusting the inputs-outputs for-
mat.

Detailed representations of the proposed architectures are
shown in the Appendix Figures D1 to D3. After preprocess-
ing (i.e., data reduction, phase-folding and data normaliza-
tion of periodic light-curves), the networks proceed as fol-
lows. In the RNN architectures, the first part of the structure
following the input layer is a stack of RNN layers that gen-
erates a sequence data of fixed length. The direct classifiers
and composite networks differ in the last layer of the encoder
module in which composite nets are supplemented with a
fully-connected layer – a dense layer with a linear activation
function – to transform the sequence data from the last RNN
layer into an encoded representation Xenc of a fixed size Nenc.
If auxiliary metadata Xmeta is supplemented as a secondary
input, the classifier exploits the augmented features to pre-
dict the labels Ylabel. The classifier module corresponds to a
MLP of two dense layers with a rectified linear unit (ReLu)
and softmax activation functions. In composite networks, the
decoder transforms the encoded variables into reconstructed
representations similar to Naul et al. (2018). The decoder
proceeds by duplicating the embeddings in a number of times
equivalent to the length of the input data, joins the epochs and
passbands information and feeds the augmented embeddings
into a stack of RNNs. The last component of the decoder
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module consists of a fully-connected layer that generates the
final sequence data of the reconstructed light-curves. To pre-
vent overfitting, regularization is added to the model through
the dropout method (Srivastava et al. 2014) that randomly re-
moves units during training.

Following the input layer, the tCNN architecture is com-
posed of a series of convolutional layers with a number of
filters and fixed kernel sizes for convolutions. The activation
function for each convolutional layer is set to the hyperbolic
tangent function and dropout is used for regularization. In the
encoder module, the output of the last convolutional layer is
flattened to generate a vector output. The latter corresponds
to the final encodings for direct classifiers, while compos-
ite networks exploits an additional fully-connected layer to
generate fixed-size embeddings. Similar to the RNN archi-
tectures, the encodings are fed to the classifier module, along
with metadata when applicable. In the decoder, the data is
processed through a reshaping substructure, stacks of trans-
posed convolutional layers and a final fully-connected layer
to generate the outputs. The reshaping substructure emulates
the RNN decoder in order to reframe the encodings into a
fixed-length format matching the input datapoints.

The dTCN architecture closely follows the TCN architec-
ture (Lea et al. 2017) initially derived from the Wavenet ar-
chitecture (Oord et al. 2016). Our design adds dropout func-
tions after the causal convolutions to prevent overfitting. Fol-
lowing the input layer, the first component of the dTCN con-
sists of a causal convolutional layer connected to intercon-
nected stacks of residual blocks with dilated convolutions
and gated activation units. Following the Wavenet design,
a ReLu activation function and two convolutional layers are
used after the stacks. The encoder outputs are transformed
into a vector format and a fully-connected layer is supple-
mented in composite networks. The generated encodings are
then fed into the classifier module and augmented with meta-
data when applicable. The decoder module is composed of a
reshaping substructure, a TCN unit mirrored to the encoder
module and a final fully-connected layer.

The NNs are tested with a different set of hyperparame-
ters (cf. Appendix Table D2). The number of parameters per
model are provided in the Appendix Table D3. All models
are trained using the Adam optimization algorithm (Kingma
& Ba 2017) with a learning rate of 5×10−4, a fixed batch size
per gradient-update in optimization, a dropout fraction and an
early-stopping procedure to prevent the networks from over-
fitting. For all networks, a validation-based early-stopping
procedure interrupts the training when an optimal solution is
found (i.e., convergence) before reaching the maximum num-
ber of training epochs. The standard approach monitors the
evolution of a scoring metric, typically the validation loss,
over a period lag and terminates the training if the error es-
timated at the current time exceeds the last-verified value

implying a large variance in the overfitting regime. An
improved search for the hyperparameters space can be per-
formed as an upstream stage of the final classification proce-
dure. However, we choose in this study to empirically eval-
uate different sets of hyperparameter configurations, discuss
the networks performances, and identify the best-performing
models. In training, the autoencoder (i.e., encoder-decoder)
aims to minimize the reconstruction loss, the weighted MAE
(Mean-Absolute Error) function, and the classifier branch is
set to minimize the categorical cross-entropy loss. Networks
are trained to minimize the total loss Ltot.

direct classifier Ltot = Lec,

composite network Ltot = wec Lec + wed Led,
(1)

where, {wec,wed} respectively refer to the loss weights of the
encoder-classifier and the encoder-decoder branches. In the
current work, the individual losses Lec and Led correspond to
the following.

Lec =
1
Nt

Nt∑
i=1

(
−

NC∑
j=1

y( j)
true,i log

(
y( j)

pred,i

))
, (2)

Led =
1
Nt

Nt∑
i=1

( 1
Np

Np∑
k=1

w(k)
i

∣∣∣∣x(k)
phot,i − x(k)

rec,i

∣∣∣∣), (3)

where, of the ith object, wi corresponds to the sample weights
of the autoencoder branch computed using the inverse of the
error measurements σi. The losses, averaged across the sam-
ple of Nt objects, are computed by, on one hand, averaging
the differences between the input photometric light-curves
Xphot and the decoder reconstructions Xrec across the Np dat-
apoints, and, on the other hand, computing the crossentropy
between the true labels Ytrue and the classifier predictions
Ypred over the NC classes. Using the expression of the to-
tal loss in Eq 1, tested NNs are trained to minimize at each
epoch the weighted sum of the individual losses with weights
{wec,wed} chosen equal to unity, as to depict a similar contri-
bution from the individual branches into the total loss. The
weighting scheme and cost functions can be revised for dif-
ferent applications and data types. Best-performing mod-
els are identified from minimum loss obtained on a Test set,
i.e. the subset of data neither used in training nor valida-
tion. Our tests used up to 2−4 cores on a CPU model Intel
Xeon E5-2643v3 on the UC Berkeley Savio Linux cluster.
The NN architectures are implemented in the keras (Chollet
et al. 2015) and Tensorflow (Abadi et al. 2015, 2016) pro-
gramming frameworks, and the RNN autoencoder branch is
partly adapted from the architecture in Naul et al. (2017). To
facilitate reuse and reproducibility, our benchmarking code-
base is provided in an open source repository5.

5 https://github.com/sarajamal57/deepnets vs

https://github.com/sarajamal57/deepnets_vs
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3.3. Performance study

This section presents the results obtained on the public
MACHO VS dataset. Computations are performed through
a classical training-validation-test scheme with 80% of data
for training-validation and 20% of unseen objects in the test
prediction phase. Performance metrics are computed for
all models, with a particular emphasis on the performances
reached on the Test set. Metrics include the system total
loss, the classification accuracy as well as averaged preci-
sion, recall and F1-score (cf. Appendix C). The total loss cor-
responds to the classification loss (categorical cross-entropy)
evaluated on the encoder-classifier branch, supplemented in
composite networks with the weighted MAE evaluated on
the encoder-decoder branch. The classification accuracy is
obtained through a direct comparison between the true labels
Ytrue and the network predictions Ypred. We also discuss the
classification performances within three main types of stel-
lar variability: short-period pulsators including the RR Lyrae
and Cepheids, long-period pulsators (LPVs) and eclipsing bi-
naries. The autoencoder performances are assessed through
the quality of the reconstructed light-curves Xrec, and the em-
beddings Xenc are projected onto a 3-d representation using a
data reduction algorithm. The degree of separation (or lack
thereof) in the reduced latent space is discussed.

3.3.1. Training convergence time

The training convergence time is reported for all networks
in the Appendix Table E1. The network type, size and hy-
perparameters influence on the total time required to reach
convergence, with an average training time for RNNs (LSTM
and GRU cells) scaling higher in comparison with the convo-
lutional networks (tCNNs and dTCNs) due to higher memory
requirements for RNNs that entail a longer time in training.
As expected, increasing the network size (i.e., number of pa-
rameters) correlates with a longer time in training. For in-
stance, direct classifiers without metadata (cF) corresponding
to the hyperparameter set configuration (6) (the largest mod-
els for LSTM, GRU and dTCN) converges in training after
approximately 4−5 hours for RNNs, 22 min for dTCNs and
∼6 minutes for tCNNs using one photometric band on CPU.
Networks processing multiband data converge at a slower
rate due to larger data entries. After training, the prediction
step is extremely fast: 0.5−3 ms per object for tCNNs, 1−10
ms per object for dTCNs and up to 3−20 ms per object for
the RNNs on a CPU.

To track the evolution of the total loss and the accuracy
during the training and validation stage, the Appendix Fig-
ures E1−E2 report the performances of the LSTM compos-
ite networks dF and dF,meta using wMAE loss on the autoen-
coder branch and the categorical cross-entropy on the clas-
sifier branch. Over the training epochs, the loss function
decreases and converges asymptotically to a constant value

whereas the accuracy increases and stabilizes when the sys-
tem reaches convergence. The system converges to reach at
best ∼73% for the best-performing LSTM dF without meta-
data. By supplementing the metadata as secondary input, the
accuracy increases up to ∼ 91%. During the validation step,
the loss values decrease and moderately exceed the training
losses which reinforces the ability of the networks to gen-
eralize the learned mapping from the training to the unseen
validation data, as a lack of generalization would correspond
to a larger gap between the training and validation losses.
Generally, overfitting is detectable from a high variance in
the model and a divergence in the validation loss function
across training epochs despite the continuing decrease of the
training loss. To prevent from such limitation, our models
are trained using regularization through dropout functions
in addition to a validation-based early-stopping procedure.
Early-stopping monitors the validation loss values and inter-
rupts the training before reaching the total number of training
epochs if an optimal solution is found (i.e., convergence) or if
the system oversees an high increase in the validation losses
indicating a large variance.

We experimented with NNs classification using raw (i.e.,
without normalization) phase-folded light-curves. Models
converge at a slower rate in an unstable pattern across the
training epochs. In what follows, we focus our analysis on
the results obtained using preprocessed (i.e., phase-folded
and normalized) light-curves and associated metadata for
MACHO periodic variables stars.

3.3.2. Labels predictions

Total loss and classification accuracy for all trained mod-
els are reported on the Appendix Tables E7−E8. We iden-
tify the best-performing models for each architecture type
(LSTM, GRU, tCNN and dTCN) from minimum loss on the
Test set, neither used in training nor validation. As previously
mentioned, the total loss corresponds to the loss evaluated
on the encoder-classifier branch (categorical cross-entropy)
supplemented in composite networks to the loss the encoder-
decoder branch (weighted MAE). For RNNs, the losses com-
puted on the Validation set are close to the values obtained
on the Train set across all datasets. However, a larger differ-
ence is seen in a few configurations of the tCNN direct clas-
sifier processing the multiband data in addition to the con-
figurations of the dTCN direct classifiers. The gap between
the validation and the training losses is significant for the
dTCNs, which emphasizes the lack of generalization of these
type of networks due to a higher complexity (large number
of parameters) of the network inconsistent with the type of
data in hand (1-d phase-folded light curves). Complex data
would certainly benefit from higher-level network design as
in dTCNs. Conversely, composite networks indicate a better
stability, due to the addition of the autoencoder contribution
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Table 2. Classification accuracy obtained on the Test set for the
best-performing networks (see text for a description) across three
different datasets (B-band only [top], and two variants of the combi-
nation of R- and B-bands [middle and bottom]). Best performances
among all nets are highlighted.

M
AC

H
O

-B
ba

nd

Id net LSTM GRU tCNN dTCN

cF 0.749 0.781 0.732 0.675

cF,meta 0.916 0.907 0.887 0.786

dF 0.730 0.739 0.701 0.689

dF,meta 0.905 0.886 0.900 0.802

M
AC

H
O

-R
B

m
er

ge
d

Id net LSTM GRU tCNN dTCN

cF 0.737 0.780 0.722 0.667

cF,meta 0.890 0.910 0.815 0.747

dF 0.726 0.738 0.691 0.686

dF,meta 0.906 0.883 0.912 0.814

M
AC

H
O

-R
B

hy
br

id Id net LSTM GRU tCNN dTCN

cF 0.776 0.789 0.744 0.696

cF,meta 0.917 0.905 0.845 0.768

dF 0.748 0.749 0.706 0.726

dF,meta 0.905 0.880 0.904 0.818

to the total loss. We, also, notice an increase in the clas-
sification accuracy for the dTCN composite networks com-
pared to their direct classifier counterparts. In the current
application, best classification performances are achieved by
RNNs and tCNNs. Appendix Table E2 reports the identi-
fiers of the hyperparameters set configurations associated to
the best-performing networks. The identifiers corresponds
to the configurations set identifiers described in the Appendix
Table D2 with varying number of layers or stacks {1,2,3}
and sizes {16,32}. Using this naming scheme, the identi-
fiers of the best-performing models appear to not fall into
a unique hyperparameters set configuration, as the architec-
tures using LSTM layers performed well using 1 to 3 layers
of different sizes. From Appendix Table E8, the classifica-
tion results indicate about only a ∼1−6% dispersion within
the individual results per layer type in each of the architec-
tures, which implies that the hyperparameters of the tested
networks have a low-to-medium influence on the overall per-
formances. Nonetheless, we notice for most LSTM architec-
tures with 1 layer (nL = 1) underperform when processing
multi-passband data. Deeper networks (nL > 1) appear nec-
essary in processing larger datasets. In the current appli-
cation, the qualification of best-performing models is solely
based on an empirical search in the network hyperparameters
space. Nonetheless, an improved search through the hyper-

parameters space can constitute a future work to investigate
the effect of hyperparameters selection on the network per-
formances and optimization landscape during training.

Table 2 summarizes the classification accuracy of the
best-performing models reached on Test set. For the best-
performing models, the overall accuracy ranges between
67% to 79% for models processing the light-curves informa-
tion without metadata. In particular, without metadata , the
dTCNs achieve a classification accuracy of 67−72% whereas
the accuracy of RNNs and tCNNs jointly scales higher with
70−79% fraction of correct predictions. By incorporating
the metadata −colors, amplitudes, averaged magnitudes and
periods− in the models cF,meta and dF,meta, the accuracy im-
proves by 10−20% to reach at best ∼88−92% for RNNs,
∼82−92% for tCNNs and only ∼75−82% for dTCNs.

The NN architectures learned on single band and multi-
band light-curves (the blue band B versus the multiband RB)
show comparable classification accuracy. By comparing the
individual results in Table 2 for each layer type, the addi-
tion of the MACHO red band data injects a moderate effect
on the classification accuracy. In particular, the accuracy of
the best-performing direct classifiers decreases by 0.1−3%
for RNNs and 1−7% for tCNNs and dTCNs when using the
multiband RB data in the merged approach in comparison
with the B-band. Whereas, networks processing the multi-
band data via the hybrid approach mainly achieve a 1−4%
increase in the classification accuracy compared to the B-
band data. Moreover, the results on best-performing mod-
els do not indicate a significant difference in the individual
performances reached by networks processing the multiband
photometry RB via the merged and hybrid approaches, as in-
dividual results only indicate a 0.3−4% differences, due to
the photometric bands (red and blue) in MACHO equally
containing informative characteristics on the stellar variabil-
ity types. The moderate disparity may indicate the need
for a different strategy order when combining the data in the
merged approach, as we combine in the current application
the preprocessed (i.e., phase-folded and normalized) individ-
ual measurements per band. A different strategy can consist
of combining the light-curves prior to normalization. In
general, we would expect that classification using sparsely-
observed multi-passband photometry would benefit from the
availability of several sources of information on stellar vari-
ability. In such a case, the advantage of the hybrid approach
would be more prevalent for systems sequentially process-
ing the multi-passband photometry in an optimized scheme,
whereas the merged approach may call for higher memory
requirements in terms of CPU/GPU usage.

Classification performances are better summarized on a
confusion matrix that reports the fraction of predicted la-
bels compared to the true class labels. Optimal results cor-
respond to a diagonal matrix with a fraction of true positives
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Figure 2. Confusion matrices obtained on the Test set predictions for the best-performing LSTM direct classifiers cF and cF,meta on the B-band.
The values in each box correspond to the number of predictions versus the initial count of true labels (indicated on the right). Main stellar
variability groups are highlighted in red, respectively the RR Lyrae, the Cepheids, the LPVs and the eclipsing binaries.

per class (i.e., diagonal elements) close to unity. Figure 2
shows the performance obtained on the Test set for the best-
performing LSTM direct classifiers cF and cF,meta that respec-
tively reached an overall accuracy of 75% and 92%. Overall,
the confusion matrices tell a similar story: the main stellar
variability groups, highlighted in red, are recovered to a fair
accuracy despite the overlap between subtypes and the mis-
classifications. The network cF provides class predictions
based on the information from preprocessed (i.e., normal-
ized and phase-folded) light-curves without metadata. The
observed degeneracy is to be expected between classes of
objects sharing a similar shape of light-curves. By supple-
menting the metadata to the network, the accuracy-per-class
for cF,meta increases and the number of false positives (i.e.,
off-diagonal elements in confusion matrices) is significantly
diminished. Moreover, the observed porosity between adja-
cent classes in the confusion matrix appears to remain within
the main stellar variability types.

From the confusion matrices, label predictions for the
eclipsing binaries in our sample appear to overlap with other
variability groups despite the use of the metadata. These mis-
classifications are possibly due to some degree of (true) label
noise that impairs/affects the reliability of the mapping gen-
erated from training. In the current tests, class predictions of
few subtypes remain erroneous despite the use of metadata.
The second overtone RRL pulsators (type e) are inaccurately
predicted as first-overtone RRL (type c). To avoid confusion
within subtypes, a proposed solution would be to introduce

a weighting scheme on the feature contributions {Xenc,Xmeta}

injecting some prior knowledge regarding the features impor-
tance in VS classification.

To further investigate the classification performances, we
compute additional metrics (cf. Appendix Table E4). The re-
call (i.e., the true positives rate or sensitivity) characterizes
the ability of the network to properly retrieve the true labels
and the precision depicts the level of agreement between the
predictions per class and the true labels. The F1-score corre-
sponds to a combination of both metrics. We report in Ap-
pendix Table E5 the averaged metrics for the best-performing
LSTM direct classifiers cF and cF,meta that respectively show-
cased a classification accuracy of 75% and 92%. The aver-
aged precision, recall and F1-score are boosted respectively
to 77%, 80% and 78% from an initial ∼51% rate. Individ-
ual metrics per class highlight a better improvement. How-
ever, the inability of the network to predict a few subtypes
such as the second-overtone RRL pulsators affect the recall
and precision averaged across all observations in the Test set.
Appendix Table E4 reports the averaged metrics for the best-
performing models for the GRU, tCNN and dTCN. Similar
conclusions can be reached regarding the performances of
the RNNs and tCNNs outperforming the dTCNs in the cur-
rent tests.

We, also, investigate the accuracy within three main stel-
lar variability groups – short-period pulsators (group 1),
eclipsing binaries (group 2) and long-period variables (group
3), and report the classification accuracy achieved on the
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Table 3. Selected subset of objects from the MACHO VS database for display.

Object id (a) Variability Type
α δ Period 〈R〉 〈B〉 〈KV 〉 〈KR〉 〈KV 〉 − 〈KR〉 Amplitude Amplitude

SSR(b)

(rad) (rad) (days) (mag) (mag) (mag) (mag) (mag) (in R) (in B)

n1 82.9138.798 RRL (type ab) 1.46723 −1.20004 0.539 −4.342 −4.198 20.096 19.692 0.403 0.729 1.053 0.416

n2 1.3449.1187 RRL (type c) 1.31759 −1.20170 0.337 −4.829 −4.906 19.427 19.244 0.183 0.258 0.399 0.652

n3 1.4052.2961 RRL (type e) 1.33093 −1.20398 0.264 −4.849 −4.848 19.471 19.21 0.261 0.226 0.396 1.005

n4 1.3441.45 CEP (FU) 1.31567 −1.21106 3.362 −8.420 −8.226 16.059 15.605 0.454 0.505 0.715 0.063

n5 81.9241.38 CEP ( FO) 1.47038 −1.22092 1.973 −7.797 −7.420 16.832 16.195 0.637 0.217 0.320 0.208

n6 1.4046.1610 LPV (Wood seq. A) 1.33270 −1.21091 45.150 −9.351 −8.220 15.896 14.505 1.391 0.085 0.086 0.928

n7 5.4407.15 LPV (Wood seq. B) 1.34311 −1.21385 131.004 −9.397 −7.895 16.154 14.392 1.762 0.169 0.251 0.959

n8 82.9134.20 LPV (Wood seq. C) 1.46758 −1.20433 267.152 −7.578 −5.348 18.570 16.080 2.490 1.462 2.424 0.271

n9 1.3689.30 LPV (Wood seq. D) 1.32271 −1.20431 826.788 −8.949 −7.259 16.756 14.806 1.949 1.086 1.346 0.467

n10 1.3442.233 Eclipsing binary 1.31643 −1.21027 1.640 −6.332 −6.725 17.665 17.798 −0.132 0.930 1.090 0.208

(a) the standard three-integer identifier in the MACHO photometry database (field.tile.sequence).

(b) model fit residuals from Supersmoother applied to the reduced photometric B-band data.

Test set for the best-performing models per group in the
Appendix Table E3. Examining the results of the best-
perfoming RNNs and tCNN, the classification accuracy in-
creases significantly after incorporating the metadata. For
short-period pulsators, the accuracy of the best-performing
networks reaches 78−85% without metadata solely based on
the distinctive shape of these stars light-curves as the charac-
teristic asymmetry and steep luminosity increase observed in
fundamental mode pulsators. With metadata, the accuracy
increases up to 92−94%. The classification of the eclips-
ing binaries in our sample shows a comparable improvement
with a 91−92% correct predictions at best when using meta-
data. Similarly, the LPVs sample benefits from the use of
metadata as a secondary input as best-performing networks
achieve a 65−88% fraction of true positives at best from an
initial 30−54% without metadata.

To characterize the need for metadata and photometric ob-
servables for classification, we performed a supplementary
classification test using only the metadata as inputs to the
classifier module. Results are reported on the Appendix Ta-
ble E6. Using the metadata (i.e., the amplitudes, averaged
magnitudes, periods and colors), the network achieves a 83%
accuracy (i.e., fraction of true positives). However, the clas-
sification metrics per class indicate a high number of false
predictions in addition to the inability to predict some sub-
types, which corresponds to a lower precision, recall and F1-
score compared for instance to the performances of the best-
performing RNN direct classifier and composite network in
Appendix Table E4. Overall, combining the information en-
coded in the light-curves and the metadata allows a better
mapping characterizing the stellar variability types.

3.3.3. Reconstructed light-curves

In this section, the autoencoder performance is assessed
through the quality of reconstructed light-curves Xrec. An
ideal reconstruction would preserve the embedded (denoised)

structure of the input data Xphot. To visually assess the recon-
struction quality, we select a sample of objects for display
(cf. Table 3) and show the reconstructed light-curves for the
best-performing composite network dF,meta in the Appendix
Figures E3–E4. A subset for reconstructed light-curves for
the best-performing LSTM composite network is also shown
in Figure 3.

Overall, the reconstruction results indicates a smoothing
effect on the magnitude measurements as well as a corre-
lation between the decoder performance and the input data
quality. In particular, low signal-to-noise levels in the data
limits the ability of the network to recover real structures and
the resulting Xrec appears exaggeratedly smoothed out with
no distinct features (such as the characteristic pulsation pro-
file or peaks at maximum light). Furthermore, some pulsat-
ing variables can exhibit irregularity or low-frequency mod-
ulations that may evolve on timescales longer than the ob-
served time-range, noticeably seen for Long-Secondary Peri-
odic stars (LSP) in the Wood sequence D (Wood et al. 2004).
In such cases, the folded light curves using the primary pe-
riod appear as a mismatched superimposition of multiple cy-
cles, as seen in the irregular LPV displayed in Figure 3. To
prevent such limitations, detection of multiperiodicity, irreg-
ularity and low-frequency modulations should be considered
to potentially isolate those objects that may require a differ-
ent preprocessing strategy and classification approach.

To assess the global performances reached on the Test set,
we evaluate the reconstruction error as a function of a data-
quality indicator (SSR) corresponding to the model fit resid-
uals computed from the SuperSmoother algorithm in Fried-
man (1984). The SuperSmoother performs a component-
wise linear smoothing of the time-serie data using adaptive
bandwidths. The residuals obtained from averaged differ-
ences between the time-series and the regression fits. In the
current application, we use the SSR as a direct indicator of
the data-quality in order to discuss the decoder reconstruc-
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Figure 3. Reconstructed light-curves from the Test set for the best-performing LSTM composite network dF,meta.

tions in the tested neural networks. We expect the light-
curve measurements with low signal-to-noise, irregular vari-
ations or extended low-frequency modulations in time to be
associated with a high SSR. The distribution of the recon-
struction error in Figure 4 suggests a distinct trend: the sys-
tem is able to moderately recover the morphology of objects
associated with low SSR (e.g., the Cepheids n4 and n5 and
the Mira star n8) as opposed to noisier and irregular light-
curve profiles (e.g., objects n3, n6 and n7 which are RRL of
type e and LPVs from the Wood sequences A and B).

A comparable analysis on the performances of the best-
performing GRU, tCNN and dTCN composite models dF,meta

reaches a similar conclusion on the distribution of the recon-
struction error (cf. Appendix Figure E5). From the recon-
structed profiles of the selected objects (cf. Appendix Figures

E3−E4), networks achieve overall comparable performances
despite few noticeable differences, such as the reconstruction
of the shockwave propagating before the maximum light in
the fundamental model RR Lyrae (object n1) that is recov-
ered by the convolutional networks but heavily smoothed out
in the LSTM and GRUs. The RNNs also appear to overly
smooth out the modulations of the LPV star (object n9, LPV
Wood sequence D), while convolutional nets partially restore
discontinuous plateaus. Furthermore, the composite LSTM
model appears to preserve the shape of the primary and sec-
ondary eclipses in the detached eclipsing binary (object n10),
while convolutional nets (dTCNs and tCNNs) partially re-
cover the depth of the eclipses and the GRU disproportion-
ately smoothing out these features. Based on the recon-
structed profiles of selected objects, the moderate smooth-
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 Network dF,meta ; LSTM; best configuration (6); Bband 

All datasets 

Test set 

Figure 4. Reconstruction error (MAE) as a function of the model fit residuals from the SuperSmoother algorithm (Friedman 1984) for the
best-performing LSTM dF,meta on the B-band. The highlighted numbers (1 to 10) refer to the subset of selected objects from the Test set used to
showcase the reconstruction quality of the autoencoder branch.

ing of small-scale features by the RNNs can be interpreted
by these models focusing on an overall data structure propa-
gated through the RNN cells. The signal-to-noise of these
features plays a role as well in the reconstruction quality.
Convolutional NN variants, given the choice of kernel sizes
for convolutions, exhibit a similar behavior through a local-
ized smoothing in the reconstructed profiles.

From the reconstruction error distributions, the reconstruc-
tion performances of best-performing LSTM, GRU, tCNN
and dTCN show a comparable reconstruction ability. In our
current designs, the decoder outputs reconstructed magni-
tudes. To further characterize the ability of the decoder mod-
ules to unfold the generated embeddings into reconstructed
profiles close to the input data, the development of novel de-
signs to output reconstructed profiles along with the associ-
ated prediction errors is left for future study.

3.3.4. Latent space exploration

Using dimensionality reduction algorithms, encoded fea-
tures of Train set can be projected into a reduced (2 or 3-d)
representation. The results for the best-performing LSTM
composite network dF,meta are shown in Figure 5. For bet-
ter visualization, projections are separated for the three main
variability groups in the Appendix Figures E6 to E8. We limit
the analysis of the latent representation to the training dataset
as it corresponds to the learned partitioning.

The encoded features generated from the best-performing
composite network are projected onto a three-dimensional
representation using the UMAP algorithm (McInnes et al.
2018) described in Appendix B.2. The degree of separa-
tion of the clusters in the reduced representation space char-
acterizes the type of information fed to the classifier network.
Without metadata, solely based on the encoded morphology
of the light-curves, the projection outlines (cf. Figure 5 on the
left) a large fraction of RR Lyrae, Cepheids, eclipsing bina-
ries and LPVs isolated to some extend in the projected space.
The level of separability of these clusters is limited by the
overlap between classes of objects sharing a similar shape
of (preprocessed) light-curves, as noticed for the majority
of LPVs, overtone pulsating RR Lyrae, Cepheids and few
eclipsing binaries in our sample. In the detailed representa-
tions (cf. Figures E6 to E8), the encoded features of eclipsing
binaries are clustered into composition of a compact aggre-
gate, a dispersed set and outliers, while short-period pulsators
cluster into a compact aggregate of fundamental mode pul-
sators and an overlapping blend of overtone pulsators given
their similar light-curves profiles. In the latent space, the
LPVs sample clusters into a compact aggregate without a
clear delineation between the different subtypes; this sug-
gests a lack of discriminating features in Xenc that would be
necessary to distinguish the different subtypes.
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 Network dF,meta ; LSTM; best configuration (6); Bband 

(TRAIN_SET) 

PROJECTION {Xenc; Xmeta} PROJECTION {Xenc} 

Figure 5. 3-d representation of encoded features from the best-performing LSTM composite network dF,meta on the B-band. Generated
encodings are projected into a reduced 3-d representation using the UMAP algorithm.

When metadata is supplemented, the projection of the aug-
mented features set {Xenc,Xmeta} shows a better separability
in the reduced latent space (cf. Figure 5 on the right); this sep-
arability also coincides with the improvement in the classifi-
cation accuracy for the networks utilizing metadata to com-
plement the encoded photometry. In particular, the detailed
representations for the main variability types highlight well-
separated clusters for the short-period pulsators, while the
sample of eclipsing binaries clusters into a composition of
a compact aggregate, a filamentary structure and dispersed
outliers. The diversity in substructures in the eclipsing bi-
naries sample can be explained by the different categories
of binaries merged in the MACHO database (e.g., contact,
detached and semi-detached stellar binaries) in addition to
possible label contamination. Similarly, the LPVs sample
is well-separated from others variability groups and is pro-
jected onto a filamentary structure with an enhanced sepa-
rability between the different subtypes. The best-performing
GRU, tCNN and dTCN composite networks give comparable
projection results.

To investigate the properties of the embeddings obtained
from composite networks versus direct classifiers, a pro-
jection of the generated encodings obtained by the best-
performing LSTM direct classifier is reported in Appendix
Figure E9. Compared to the composite network, the di-

rect classifier network generates an embedding layer Xenc by
propagating the information between an encoder and a classi-
fier module. In the latent representation, distinct clusters are
noticeable along with the expected overlap of objects with
a similar light-curves shape. From the 3-d representation,
the main difference between the embeddings generated from
the LSTM direct classifier (cf. Appendix Figure E9) and the
LSTM composite network (cf. Figure 5) lies in the clusters
(intraclass) dispersion. The encoder-decoder combination in
the composite network appears to narrow the clusters in the
latent representation; this effect would be useful for anomaly
detection to locate potential outliers at the outskirts of identi-
fied compact aggregates or the intersection of adjacent clus-
ters.

To summarize, composite NN architectures are able to en-
code the photometric observables into substructures associ-
ated with the stellar variability classes. Without metadata, the
encodings generated from the photometric data cluster into
distinct aggregates despite the overlap between classes of
objects sharing a similar morphology of preprocessed light-
curves. By supplementing the metadata as a secondary input
to complement the encoded photometry, the level of sepa-
ration in the latent space is enhanced, which aligns with the
overall increase in classification accuracy. An examination of
the nature of the overlap regions of the latent space, as well
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as the properties of the different aggregates, are left for fu-
ture study. We would expect similar studies using larger VS
datasets will help test the potential universality of the latent
space, and also reveal potential outliers that could constitute
new subclasses.

4. CONCLUSIONS

In this work, we explored the use of NN architectures for
VS classification through various use-case scenarios. These
architectures allowed us to generate higher-abstraction en-
codings of the photometric data without the need for hand-
coded feature engineering.

Two types of architectures, identified as direct classifiers
and composite networks, are tested. Both networks are com-
posed of an encoder module to transform the data into a re-
duced representation and a classifier to predict labels. Com-
posite networks include a decoder module to define an en-
coded representation of the input data by optimal reconstruc-
tion. In our analysis, VS classification using multi-passband
photometric data can be performed in two approaches, either
by encoding a merged representation of all passband mea-
surements (merged approach) or jointly processing individ-
ual encodings (hybrid approach). Sparsely observed multi-
passband photometry would benefit from adopting the latter
approach.

In this work, we also experimented with a variety of NN
architectures and investigated the effect of ancillary meta-
data on classification performance. Through an empirical
search on different hyperparameters set configurations, best-
performing models were identified. Models exploiting hy-
perparameters tuning through optimized ML approaches or
bayesian optimization are left for future work. In our work,
we found that systems solely exploiting the time-series data
are able to reach a ∼70% accuracy for the best-performing
models. By supplementing the metadata as a secondary in-
put, a net increase in the classification accuracy is observed
across all network types, reaching at best a ∼91% accuracy
for the best-performing LSTMs and temporal CNNs models.
Misclassifications for the best-performing networks are pri-
marily restricted to the main stellar variability types, which
provides a strong incentive for a multiple-stage architecture
for label predictions, to first predict the main stellar variabil-
ity type followed by subtypes prediction. On a computational
level, the training convergence time for RNNs models was
found to be longer, due in part to larger memory allocation
costs.

For composite networks, the reconstruction quality of the
decoder module appears highly contingent on the input data
properties (ie., the signal-to-noise level and smoothness of
the light-curves profiles). Variable stars exhibiting multiperi-
odicity, irregularity or modulations over time appear in their
phase-folded representation as a mismatch of superimposed

cycles that a network is unable to learn and overly smooths
out in reconstruction.

The exploration of the learned encodings indicated a clear
clustering linked to the stellar variability types. Without
metadata, clusters of variables appear isolated despite the
overlap noticed for objects sharing similar light-curves pro-
files. Supplementing the metadata to the encoded informa-
tion predictably lessens such degeneracy and enhances the
separation between the classes; this in turn, accounts for the
increase in the fraction of correct predictions. We would ex-
pect the latent representations to highlight interesting prop-
erties in the data and pinpoint to potential outliers, unknown
stellar variability types or new subtypes within known vari-
ability classes.

To conclude, various NN architectures are able to cap-
ture low-dimensional data representations and reach achieve
excellent classification accuracy without the need for hand-
coded featurization. The best-performing networks in our
tests are primarily LSTM- and tCNN-based models, with the
latter benefiting from smaller training convergence time and
smaller memory footprints.

As a future direction, developing a baseline for an auto-
mated system able to learn a wider range of stellar variability
traits should be explored. The need for general architectures
is strongly motivated from the fact that massive surveys are
set to produce large datasets with a blend of different types
of stellar variables such as aperiodic VSs (e.g., cataclysmic
stars and microlensing events) as well as periodic and quasi-
periodic variables (e.g., pulsators, rotators and eclipsing bi-
naries). Automated classification for periodic VSs presented
here exploits phase-folded representations as well as the in-
formation from the frequency domain, while classification of
quasi-periodic variables require the use of a combination of
multiple data representations – phase-folded light-curves, pe-
riodograms, O−C diagrams and the time-series – to produce
reliable class predictions. To meet the need for a general
framework, one proposed design would consist of a multi-
stage architecture with different components specialized to
distinguish distinct stellar variability traits, to first discrimi-
nate between the three categories of periodic, quasi-periodic
and aperiodic VSs then follow with the classification into the
stellar variability types and subtypes.

Despite our analysis being focused on applications for pe-
riodic variable stars classification, all arguments presented in
the scope of this work extend to other types of astronomi-
cal time-series. NNs can be built with a comparable archi-
tecture for supernovae classification and transient detection,
with adaptations in the of the input data representation, the
preprocessing strategy and the necessary metadata (e.g., red-
shift measurements and spectral features). Similarly, our ap-
proaches in processing multi-passband photometric data for
classification can be generalized to other variable objects. On



16 Jamal and Bloom

the network design, the complexity of the networks should
conform with the type of the data. In particular, higher-level
multi-dimensional data would require deeper and complex
architectures compared to a 1-d information such as phase-
folded light-curves. Using the presented methodology on
different datasets, we would expect, on one hand, an increase
of the classification accuracy when supplementing the meta-
data, and on the other hand, a significant improvement in
classification when combing sparse observations across mul-
tiple photometric bands. For sparsely observed light-curves,
the networks processing multiband data would very likely
exceed the classification results obtained with a single pho-
tometric band. We expect the landscape of the latent space
representation to differ from current results. Further analy-
sis of latent representations obtained from a larger scope of
variability types is left for future study.
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Skowron, D. M., Skowron, J., Mróz, P., et al. 2019, Science, 365, 478,
doi: 10.1126/science.aau3181

Spergel, D., Gehrels, N., Baltay, C., et al. 2015, arXiv:1503.03757
[astro-ph]

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. 2014, The Journal of Machine Learning Research, 15, 1929

Stetson, P. B. 1996, PASP, 108, 851, doi: 10.1086/133808
Theano Development Team. 2016, arXiv:1605.02688 [cs.SC]
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APPENDIX

A. CLASSIFICATION USING MULTIBAND PHOTOMETRIC DATA

ENCODING Xenc, Band[1] 

INPUTS (1.1) Xphot, Band[1] 
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OUTPUTS (1) Ylabel 

... 

Multiband photometric data – merged approach 
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Figure A1. High-level architecture of the direct classifier (top) and composite (bottom) networks across two variants of the combination of
multi-passbands photometric data, identified as merged and composite approaches [left and right]. In the merged approach, multi-passband
measurements are merged into a unique observable Xphot,merged processed by the encoder module to compute the latent representation Xenc.
Whereas, the hybrid approach independently encodes the multi-passband measurements into individual features merged at a latter time into a
compact encoded representation Xenc. In both scenarios, the classifier module exploits the generated encodings Xenc, along with metadata Xmeta,
for label predictions. Composite networks differ from the direct classifiers by the addition of a decoder module connected at the bottleneck
level to the encoder to generate the embeddings by optimal reconstruction.
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In the merged approach, the multi-passband photometric data can be combined into a 2-d tabular data of dimension
(
N∗p,merged ×(

2m+1
))

, in which the m photometric band magnitude and associated error measurements are provided along with the observation
epochs.
The ith observation in Xphot,merged corresponds to the matrix representation:

xi =


t(1)
i ,

[
mag(1)

i , σ(1)
i

]
band 1

, · · ·
[
mag(1)

i , σ(1)
i

]
band m

,

...
...

...

t(P∗)
i ,

[
mag(P∗)

i , σ(P∗)
i

]
band 1

· · ·
[
mag(P∗)

i , σ(P∗)
i

]
band m

 , (A1)

where, m refers to the number of photometric bands and P∗ designates the total count of datapoints N∗p,merged for the ith obser-
vation. In this representation, the sparsity level of the matrix depends on the observation times across the different photometric
bands.

Alternatively, multi-passband data can be combined into a 2-d tabular data of dimension
(
Np,merged × 4

)
, in which an aux-

iliary vector encoding the photometry band is provided along with the observation epochs and the m band magnitude and
associated error measurements. The encoding vector associates each photometric band type to a dictionary item (numerical or
qualitative variables).

xi =


dict band 1,

[
ti,magi,σi

]
band 1

...

dict band m,
[
ti,magi,σi

]
band m

 , (A2)

where, the enclosed measurements per band {b}b:1→m correspond to a matrix of
(
Pb × 4

)
dimension as follows.

[
ti,magi,σi

]
band b

=


[
t(1)
i ,mag(1)

i , σ(1)
i

]
band b

...[
t(Pb)
i ,mag(Pb)

i , σ(Pb)
i

]
band b

 , (A3)

where, {Pb}b:1→m refers to the number of datapoints per band.
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B. DESCRIPTION OF NNS, UMAP AND GAUSSIAN PROCESS MODELING

B.1. RNN, CNN and TCN

Recurrent neural network (RNN) refers to a neural network architecture composed with interconnected nodes through a directed
graph (cyclic or acyclic) along a temporal sequence. In the standard architecture, the fully-connected RNN layer is constructed
such that each node is interlinked to the adjacent units. Each node in the standard architecture corresponds to a neural unit with
an activation function and a weight. The LSTM (Long-Short Term Memory, Hochreiter & Schmidhuber 1997) and the GRU
(Gated Recurrent Network, Cho et al. 2014) are variants of the RNN with a higher level node structure composed with multiple
subunits acting as internal regulators to the propagated information within the network. Both the LSTM and GRU cells exploit
a forget gate and an input gate, and the LSTM utilizes an additional output gate. RNNs applications on astronomical time-series
include SNe classification (Charnock & Moss 2017) VS classification using autoencoders (Naul et al. 2018), gravitational-waves
signal denoising (Shen et al. 2019), periodic VS classification (Tsang & Schultz 2019), and online transient events detection
(Muthukrishna et al. 2019a; Möller & de Boissière 2019).

Convolutional neural network (CNN) refers to a NN architecture with convolutional layers that applies a series of convolutions
through overlapping windows, allowing to capture spatial correlations in the data. The standard CNN architecture utilizes pooling
layers after convolutions to downsize the data in addition to fully-connected layers. The performances of convolutional-based
neural networks has been demonstrated in a broad range of astronomical data applications such as galaxy classification (Dieleman
et al. 2015; Aniyan & Thorat 2017; Kim & Brunner 2017; Domı́nguez Sánchez et al. 2018), VS classification using asteroseismol-
ogy (Hon et al. 2017), supernovae classification (Cabrera-Vives et al. 2016; Pasquet et al. 2019b; Brunel et al. 2019), photometric
redshifts estimation (Hoyle 2016; DIsanto & Polsterer 2018; Pasquet et al. 2019a), cosmological parameters inference (Ntampaka
et al. 2020), parameters estimation from 21-cm tomography (Gillet et al. 2019), strong lensing detection (Lanusse et al. 2018;
Jacobs et al. 2019), gravitational-waves signal detection (Gebhard et al. 2017; Gabbard et al. 2018; George & Huerta 2018a; Fan
et al. 2019; Gebhard et al. 2019) (George & Huerta 2018b) , generator models for weak lensing convergence maps (Mustafa et al.
2019), cosmic rays modeling (Erdmann et al. 2018), detection of damped Lyα systems in quasar spectra (Parks et al. 2018), fast
radio bursts classification (Connor & Leeuwen 2018), and classification of supernovae spectra (Muthukrishna et al. 2019b).

Temporal convolutional neural network (TCN) refer to a NN architecture in Lea et al. (2017), initially derived from the Wavenet
architecture (Oord et al. 2016). The network is a composition of a serie of dilated convolutions and residual blocks used to expand
the filters receptive fields and reduce the training convergence time. A detailed description of deep learning techniques is available
in specialized computer science publications, such as the overview on DL techniques by Schmidhuber (2015).

B.2. UMAP

The UMAP (Uniform Manifold Approximation and Projection) algorithm is a nonlinear dimensionality reduction algorithm
introduced by McInnes et al. (2018). Assuming a uniform distribution of the data on a locally connected Riemannian manifold,
the algorithm computes a low-dimensional representation by optimizing a fuzzy set cross-entropy between the simplicial set
representations of the data and the target embeddings. The UMAP has gained interest and use recently for astronomical data
applications such as the SDSS DR15 spectroscopic data classification in Clarke et al. (2019) and anomaly detection in SDSS
galaxy samples in Reis et al. (2019).

B.3. Model prediction using Gaussian Processes

Part of preprocessing, data reduction is performed using Gaussian Processes (GPs) model to generate fixed-length represen-
tations of each source. Foreman-Mackey et al. (2017) provides GP kernels suitable for astronomical time-series, with various
applications including radial velocity fitting and transit modeling. For periodic VSs, we select a GP kernel based on a composi-
tion of stochastically driven damped harmonic oscillators (SHOs) with a quasi-periodic covariance term. For each SHO model,
the associated power spectral density S (ω) is defined as following:

S (ω) =

NS HO∑
j=1

S j(ω), (B4)

S j(ω) =

√
2
π

S 0, j ω
4
0, j

(ω2 − ω2
0, j)

2 + ω2ω2
0, j/Q

2
j

, (B5)

where, ω0, j and Q j respectively refer to the frequency of the undamped oscillator and the associated quality factor of the jth

oscillator. The parameter S 0, j is proportional to the resonance (i.e., ω = ω0, j) power.
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Our data reduction approach is a two-fold process: first, we fit a GP model on the observed data xobs and second, we use the
model to predict a representation of the time-serie over a reduced time-frame Tred along with the uncertainties from the GP fit.
For periodic VSs, we use a GP model corresponding to a mixture of NS HO = 2 SHOs. We based our selection on the applications
of GP modeling to data showcasing periodicity patterns as transit light-curves or stellar variables in Foreman-Mackey et al. (2017).
The GP model with 2 SHOs is chosen in order to take into consideration of multiperiodicity often encountered in variables stars.
The current parametrization and kernel type is proper to the current work realized on a dataset of pulsating variables and eclipsing
binaries.

In the model parameterization, the periodicity (due to pulsation or binarity) is captured by the resonance frequency, such that:

ω0, j =
4πQ j

P j +
√

4Q2
j − 1

, (B6)

S 0, j =
A j

ω0, j Q j
. (B7)

Here, P j and A j refer respectively to the period and amplitude of the variability per SHO model j. For each observed light-curve,
an independent GP model is fitted. A full description of the GP modeling can be found in Foreman-Mackey et al. (2017) and the
available open source Foreman-Mackey et al. (2019).

Using the MAP (Maximum-a-posteriori) solution, model prediction is performed on a time frame Tred sampled within the
range of observed epochs Tobs. For unevenly sampled data, the GP predictions located in large time gaps are associated to a
high uncertainty of the model. To prevent such limitation, we developed an approach to generate a random time range within the
observed Tobs outside significant time gaps. Using the unsupervised K-means algorithm applied to the time differences ∆Tobs,
observations are clustered based on their proximity in time. Significant time gaps Tgaps are identified within the group of large
time differences, and an optional rejection criterion is supplemented to refine the detected time gaps to span, at least, higher
than n cycles of the primary period of the light-curve. The reduced time frame Tred is generated via random sampling of time
values within the observed time range outside the identified time gaps Tset = {Tobs\Tgaps}. For each detected subset j of clustered
observations, time values are obtained either by randomly generating values within the range of Tset, j or by randomly selecting
of values in Tset, j shifted by a random δt > 0. The second approach generates a time frame Tred close to the observed Tset.

The GP model fitted to the data is a mixture of 2 SHOs with the following parameters.

P1 = P, P2 = P/2, A1 = explogA, A2 = mA × explogA, Q1 = Q0 + ∆Q, Q2 = Q0,

mA ∼ U(0, 1), logA ∼ N(µA, σ
2
A), Q0 >

1
2 , ∆Q ∼ N(µQ, σ

2
Q), (B8)

with, P is the primary period of the time-serie, (µA, σ
2
A) refer to the amplitude of the time series and associated error (or a fixed

variance), and (µQ, σ
2
Q) are strictly positive values set to separate the two oscillation modes.

To illustrate the results of data reduction using the aforementioned GP model and prediction scheme, a display of MACHO
light-curves is provided in Figure B1.
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Figure B1. Displays of reduced MACHO light-curves using gaussian processes (GPs) model fit and prediction. A GP model is fitted to
each observed light-curve and the best model is associated to the MAP (Maximum-a-posteriori) solution. The predictions –magnitudes and
associated errors– are computed on a reduced time-range Tred of 200 datapoints obtained by a random selection of time values within the
observed time-range Tset (outside the identified large gaps highlighted in light blue) and shifted with a random lag δt ∈ [0,∆Tset]. Phase-folded
representations of light-curves are given only as a reference. GP predictions are computed on the initial time-series.

C. METRICS FOR MULTICLASS CLASSIFICATION

To quantify the performances in multiclass classification, the following metrics are computed:

Table C1. Classification metrics

Metrics Per class { j} j:1→NC Macro-averaging

Precision Precision( j) =
TP( j)

TP( j) + FP( j)
PrecisionM =

1
NC

NC∑
j=1

Precision( j)

Recall (Sensitivity) Recall( j) =
TP( j)

TP( j) + FN( j)
RecallM =

1
NC

NC∑
j=1

Recall( j)

F1-score F1-score( j) = 2 ×
Recall( j) × Precision( j)

Recall( j) + Precision( j)
F1-scoreM =

1
NC

NC∑
j=1

F1-score( j)

Accuracy Accuracy =
1

Ns

NC∑
j=1

TP( j)

with NC the total number of classes, Ns the number of true samples and TP( j), TN( j), FP( j) and FN( j) respectively referring to
the true positives, the true negatives, the false positives and the false negatives computed from the predictions on objects from the
true class j.
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D. NETWORKS

Table D1. Networks configuration – Entries.

Network type Inputs Outputs

classifier cF Xphot Ylabel

classifier cF,meta {Xphot ,Xmeta} Ylabel

composite dF Xphot {Ylabel,Xrec}

composite dF,meta {Xphot ,Xmeta} {Ylabel,Xrec}

Table D2. Networks configuration – Hyperparameters.

Layer type Configuration id Nb layers (nL) Size (nS ) Common hyperparameters

RNN {LSTM; GRU}

(1) 1

16

bidirectional network;

(2) 2 categorical classification;

(3) 3 drop fraction=0.25;

(4) 1

32

batch size=128; maximum training epochs=200;

(5) 2 Adam(a) optimizer; optimizer learning rate=5×10−4;

(6) 3 [composite nets: embedding dimension nE=8; loss weights(b)={1:1}]

Layer type Configuration id Nb layers (nL) Size (nS ) Common hyperparameters

temporal CNN

(1) 1

16

convolution kernel size nK=5;

(2) 2 categorical classification;

(3) 3 drop fraction=0.25;

(4) 1

32

batch size=128; maximum training epochs=200;

(5) 2 Adam(a) optimizer; optimizer learning rate=5×10−4;

(6) 3 [composite nets: embedding dimension nE=8; loss weights(b)={1:1}]

Layer type Configuration id Nb stacks (nL) Size (nS ) Common hyperparameters

dilated TCN

(1) 1

16

dilation rate(c) r=2; convolution kernel size nK=3;

(2) 2 categorical classification;

(3) 3 drop fraction=0.25;

(4) 1

32

batch size=128; maximum training epochs=200;

(5) 2 Adam(a) optimizer; optimizer learning rate=5×10−4;

(6) 3 [composite nets: embedding dimension nE=8; loss weights(b)={1:1}]

(a) Adam optimization algorithm (Kingma & Ba 2017).

(b) Loss weights report the contributions of individual branches {wec,wed} in the composite networks, respectively the encoder-classifier and encoder-decoder branches.

(c) Dilation factors in dTCN correspond to {2 j−1} j:1→r , with r > 1 the dilation rate.
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Figure D1. Architectures of the direct classifier and composite RNNs. Naming convention follows the implementation in keras.
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Figure D2. Architectures of the direct classifier and composite tCNNs. Naming convention follows the implementation in keras.



Neural architectures for variable star classification 27

OUTPUTS (1) Ylabel 

INPUTS (2) Xmeta 

C
LA

SS
IF

IE
R

 Concatenate 
 

{metadata} 

Dense  
 

(activation='softmax', units=NC) 

Dense  
 

(activation='ReLu', units=16) 

 N
b S

tacks  n
L =2;  dilation rate r=3 

(Add skip-connections)	

Spatial dropout 

Conv1D 
 

  (nFilters=nS, kernel size=nK) 

Dil 20 Dil 21 Dil 22 

Dil 20 Dil 21 Dil 22 

EN
C

O
D

ER
 {d

TC
N

} 
D

ila
te

d 
TC

N
 n

et
w

or
k 

 

INPUTS (1) Xphot 

B
ot

tle
ne

ck
 

Activation  
 

('ReLu') 

Conv1D   (activation='ReLu', nFilters=nS,  kernel size=1) 

Conv1D   (nFilters=nE, kernel size=1) 

ENCODING Xenc 

Flatten 

C
LA

SS
IF

IE
R

 N
ET

W
O

R
K

 

[Encoder-Decoder branch] error measurements are used as 
weights in the reconstruction loss in training. 

INPUTS 
 

•  Xphot      light-curves measurements 
type : [times, (normalized) magnitudes, 

 passbands] 
size : (Nt, Np, dim=3) 
 

•  Xmeta     auxiliary metadata 
type : [periods, averaged magnitudes, 

 colours, amplitudes]  
size : (Nt, Nf) 

 

OUTPUTS 
•  Ylabel      labels of stellar variability 

type : categorical variables 
size : (Nt, Nc) 
 

•  Xrec       reconstructed light-curves 
type : (normalized) magnitudes 
size : (Nt, Np, dim=1)  

 

•  Xenc       latent variables    
size : (Nt, Nenc); Nenc=nE in composite nets 
 

 N
b S

tacks  n
L =2;  dilation rate r=3 

EN
C

O
D

ER
 {d

TC
N

} 

D
ila

te
d 

TC
N

 n
et

w
or

k 
 

INPUTS (1) Xphot 

B
ot

tle
ne

ck
 

Activation  
 

('ReLu') 

Conv1D   (activation='ReLu', nFilters=nS,  kernel size=1) 

Conv1D   (nFilters=nE, kernel size=1) 

Dense 
 

(activation=‘tanh’, units=nE) 

ENCODING Xenc 

Flatten 

(Add skip-connections)	

Spatial dropout 

Conv1D 
 

  (nFilters=nS, kernel size=nK) 

Dil 20 Dil 21 Dil 22 

Dil 20 Dil 21 Dil 22 

 N
b S

tacks  n
L =2;  dilation rate r=3 

D
EC

O
D

ER
 {d

TC
N

} 
D

ila
te

d 
TC

N
 n

et
w

or
k 

 
R

es
ha

pe
 

Dense 
 

(activation=‘tanh’) 

Reshape 
 

(Np datapoints) 
Concatenate 

 

{times, passbands} 

Activation  
 

('ReLu') 

(Add skip-connections)	

Spatial dropout 

Dil 20 Dil 21 Dil 22 

Dil 20 Dil 21 Dil 22 

Conv1DTranspose  
 

(nFilters=nS, kernel size=nK) 

OUTPUTS (2) Xrec 

Conv1DTranspose 
 

(activation=‘sigmoid’, nFilters=1,  
kernel size=1) 

OUTPUTS (1) Ylabel 

INPUTS (2) Xmeta 

C
LA

SS
IF

IE
R

 Concatenate 
 

{metadata} 

Dense  
 

(activation='softmax', units=NC) 

Dense  
 

(activation='ReLu', units=16) C
O

M
PO

SI
TE

 N
ET

W
O

R
K

 

Conv1DTranspose   (activation='ReLu', nFilters=nS, kernel size=1) 

Conv1DTranspose   (nFilters=1, kernel size=1) 

Figure D3. ** Corrected figures ** Architectures of the direct classifier and composite dTCNs. The series of dilated convolutions and
residual stacks follow the Wavenet architecture (Oord et al. 2016) augmented with additional dropout functions to prevent overfitting. Naming
convention follows the implementation in keras.
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Table D3. Network sizes corresponding to the total number of parameters per model across three different datasets (B-band only [top], and two
variants of the combination of R- and B-bands [middle and bottom]). The identifiers of the hyperparameters set configurations (1) to (6) are
ordered by increasing size. Largest networks for the RNNs, tCNNs and dTCNs correspond respectively to the identifiers (6), (4) and (6) and
the smallest configurations to (1), (3) and (1). The metadata in the current application (N f = 6) adds 96 parameters.

M
AC

H
O

-B
ba

nd

Network
cF cF,meta dF dF,meta

type

LSTM

3292; (1) 3388; (1) 6661; (1) 6757; (1)

9564; (2) 9660; (2) 19205; (2) 19301; (2)

10460; (4) 10556; (4) 21157; (4) 21253; (4)

15836; (3) 15932; (3) 31749; (3) 31845; (3)

35292; (5) 35388; (5) 70821; (5) 70917; (5)

60124; (6) 60220; (6) 120485; (6) 120581; (6)

GRU

2652; (1) 2748; (1) 5157; (1) 5253; (1)

7356; (2) 7452; (2) 14565; (2) 14661; (2)

8156; (4) 8252; (4) 16101; (4) 16197; (4)

12060; (3) 12156; (3) 23973; (3) 24069; (3)

26780; (5) 26876; (5) 53349; (5) 53445; (5)

45404; (6) 45500; (6) 90597; (6) 90693; (6)

tCNN

5329; (3) 5425; (3) 8371; (3) 8467; (3)

12118; (6) 12214; (6) 15925; (2) 16021; (2)

13924; (2) 14020; (2) 16465; (6) 16561; (6)

28908; (5) 29004; (5) 26853; (5) 26949; (5)

51676; (1) 51772; (1) 41349; (1) 41445; (1)

103132; (4) 103228; (4) 67941; (4) 68037; (4)

dTCN

54100; (1) 54196; (1) 60335; (1) 60431; (1)

56212; (2) 56308; (2) 64559; (2) 64655; (2)

58324; (3) 58420; (3) 68783; (3) 68879; (3)

61380; (4) 61476; (4) 75119; (4) 75215; (4)

69700; (5) 69796; (5) 91759; (5) 91855; (5)

78020; (6) 78116; (6) 108399; (6) 108495; (6)

M
AC

H
O

-R
B

m
er

ge
d

Network
cF cF,meta dF dF,meta

type

LSTM

3292 ; (1) 3388 ; (1) 6661 ; (1) 6757 ; (1)

9564 ; (2) 9660 ; (2) 19205 ; (2) 19301 ; (2)

10460 ; (4) 10556 ; (4) 21157 ; (4) 21253 ; (4)

15836 ; (3) 15932 ; (3) 31749 ; (3) 31845 ; (3)

35292 ; (5) 35388 ; (5) 70821 ; (5) 70917 ; (5)

60124 ; (6) 60220 ; (6) 120485 ; (6) 120581 ; (6)

GRU

2652 ; (1) 2748 ; (1) 5157 ; (1) 5253 ; (1)

7356 ; (2) 7452 ; (2) 14565 ; (2) 14661 ; (2)

8156 ; (4) 8252 ; (4) 23973 ; (3) 16197 ; (4)

12060 ; (3) 12156 ; (3) 16101 ; (4) 24069 ; (3)

26780 ; (5) 26876 ; (5) 53349 ; (5) 53445 ; (5)

45404 ; (6) 45500 ; (6) 90597 ; (6) 90693 ; (6)

tCNN

9329 ; (3) 9425 ; (3) 13971 ; (3) 14067 ; (3)

20118 ; (6) 20214 ; (6) 24065 ; (6) 24161 ; (6)

26724 ; (2) 26820 ; (2) 29525 ; (2) 29621 ; (2)

54508 ; (5) 54604 ; (5) 46853 ; (5) 46949 ; (5)

102876 ; (1) 102972 ; (1) 81349 ; (1) 81445 ; (1)

205532 ; (4) 205628 ; (4) 133541 ; (4) 133637 ; (4)

dTCN

105300 ; (1) 105396 ; (1) 114735 ; (1) 114831 ; (1)

107412 ; (2) 107508 ; (2) 118959 ; (2) 119055 ; (2)

109524 ; (3) 109620 ; (3) 123183 ; (3) 123279 ; (3)

112580 ; (4) 112676 ; (4) 129519 ; (4) 129615 ; (4)

120900 ; (5) 120996 ; (5) 146159 ; (5) 146255 ; (5)

129220 ; (6) 129316 ; (6) 162799 ; (6) 162895 ; (6)

M
AC

H
O

-R
B

hy
br

id

Network
cF cF,meta dF dF,meta

type

LSTM

6364 ; (1) 6460 ; (1) 13110 ; (1) 13206 ; (1)

18908 ; (2) 19004 ; (2) 38198 ; (2) 38294 ; (2)

20700 ; (4) 20796 ; (4) 42102 ; (4) 42198 ; (4)

31452 ; (3) 31548 ; (3) 63286 ; (3) 63382 ; (3)

70364 ; (5) 70460 ; (5) 141430 ; (5) 141526 ; (5)

120028 ; (6) 120124 ; (6) 240758 ; (6) 240854 ; (6)

GRU

5084 ; (1) 5180 ; (1) 10102 ; (1) 10198 ; (1)

14492 ; (2) 14588 ; (2) 28918 ; (2) 29014 ; (2)

16092 ; (4) 16188 ; (4) 31990 ; (4) 32086 ; (4)

23900 ; (3) 23996 ; (3) 47734 ; (3) 47830 ; (3)

53340 ; (5) 53436 ; (5) 106486 ; (5) 106582 ; (5)

90588 ; (6) 90684 ; (6) 180982 ; (6) 181078 ; (6)

tCNN

10438 ; (3) 10534 ; (3) 16530 ; (3) 16626 ; (3)

24016 ; (6) 24112 ; (6) 31638 ; (2) 31734 ; (2)

27628 ; (2) 27724 ; (2) 32718 ; (6) 32814 ; (6)

57596 ; (5) 57692 ; (5) 53494 ; (5) 53590 ; (5)

103132 ; (1) 103228 ; (1) 82486 ; (1) 82582 ; (1)

206044 ; (4) 206140 ; (4) 135670 ; (4) 135766 ; (4)

dTCN

107980 ; (1) 108076 ; (1) 120458 ; (1) 120554 ; (1)

112204 ; (2) 112300 ; (2) 128906 ; (2) 129002 ; (2)

116428 ; (3) 116524 ; (3) 137354 ; (3) 137450 ; (3)

122540 ; (4) 122636 ; (4) 150026 ; (4) 150122 ; (4)

139180 ; (5) 139276 ; (5) 183306 ; (5) 183402 ; (5)

155820 ; (6) 155916 ; (6) 216586 ; (6) 216682 ; (6)



Neural architectures for variable star classification 29

E. GLOBAL PERFORMANCES

Table E1. Training convergence time (expressed in hours) of all models across three different datasets (B-band only [top], and two variants of
the combination of R- and B-bands [middle and bottom]). Runs are performed on a CPU model Intel Xeon E5-2643v3 using 4 cores per
run at maximum capacity. The identifiers of the hyperparameters set configurations (1) to (6) are stated in the Appendix Table D2.
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Table E2. Hyperparameters set configurations identified for the best-performing networks based on minimum loss obtained on the Test set
across three different datasets (B-band only [top], and two variants of the combination of R- and B-bands [middle and bottom]). The identifiers
(1) to (6) are stated in the Appendix Table D2.
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m
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Table E3. Classification accuracy evaluated on the Test set for the best-performing networks (see text for a description) across three different
datasets (B-band only [top], and two variants of the combination of R- and B-bands [middle and bottom]). The classification accuracy is
evaluated for the three main variability groups: short-period pulsators (group 1), eclipsing binaries (group 2) and LPVs (group 3).

M
AC

H
O

-B
ba

nd

Id net
LSTM GRU tCNN dTCN

Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3

cF 0.749 0.819 0.802 0.428 0.781 0.834 0.831 0.520 0.732 0.811 0.797 0.359 0.675 0.765 0.752 0.247

cF,meta 0.916 0.936 0.886 0.879 0.907 0.924 0.905 0.850 0.887 0.909 0.890 0.801 0.786 0.807 0.868 0.608

dF 0.730 0.798 0.787 0.407 0.739 0.811 0.772 0.431 0.701 0.781 0.760 0.337 0.689 0.782 0.777 0.239

dF,meta 0.905 0.930 0.887 0.833 0.886 0.943 0.907 0.652 0.900 0.929 0.838 0.870 0.802 0.848 0.819 0.611

M
AC

H
O

-R
B

m
er

ge
d Id net

LSTM GRU tCNN dTCN

Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3

cF 0.737 0.808 0.755 0.455 0.780 0.834 0.819 0.532 0.722 0.794 0.785 0.379 0.667 0.729 0.768 0.315

cF,meta 0.890 0.913 0.856 0.845 0.910 0.933 0.888 0.852 0.815 0.848 0.805 0.707 0.747 0.783 0.772 0.582

dF 0.726 0.810 0.771 0.364 0.738 0.813 0.779 0.412 0.691 0.770 0.774 0.298 0.686 0.769 0.762 0.290

dF,meta 0.906 0.924 0.896 0.854 0.883 0.938 0.907 0.653 0.912 0.935 0.894 0.848 0.814 0.856 0.864 0.594

M
AC

H
O

-R
B

hy
br

id Id net
LSTM GRU tCNN dTCN

Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3

cF 0.776 0.841 0.809 0.495 0.789 0.852 0.808 0.535 0.744 0.821 0.779 0.412 0.696 0.768 0.755 0.359

cF,meta 0.917 0.935 0.914 0.857 0.905 0.919 0.892 0.867 0.845 0.858 0.866 0.768 0.768 0.801 0.816 0.588

dF 0.748 0.819 0.789 0.434 0.749 0.821 0.772 0.456 0.706 0.788 0.779 0.311 0.726 0.803 0.777 0.379

dF,meta 0.905 0.921 0.894 0.859 0.880 0.939 0.890 0.648 0.904 0.933 0.881 0.825 0.818 0.873 0.872 0.545

Table E4. Classification metrics evaluated on the Test set for the best-performing networks (see text for a description) across three different
datasets (B-band only [top], and two variants of the combination of R- and B-bands [middle and bottom]).

M
AC

H
O

-B
ba

nd

Id net
LSTM GRU tCNN dTCN

PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM

cF 0.503 0.515 0.504 0.559 0.564 0.552 0.510 0.487 0.488 0.447 0.424 0.425

cF,meta 0.771 0.800 0.784 0.763 0.780 0.770 0.744 0.753 0.748 0.642 0.599 0.609

dF 0.477 0.497 0.484 0.500 0.504 0.500 0.459 0.452 0.454 0.446 0.418 0.426

dF,meta 0.765 0.774 0.768 0.679 0.705 0.689 0.748 0.796 0.768 0.597 0.627 0.603

M
AC

H
O

-R
B

m
er

ge
d Id net

LSTM GRU tCNN dTCN

PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM

cF 0.504 0.519 0.507 0.539 0.567 0.548 0.472 0.483 0.474 0.373 0.389 0.380

cF,meta 0.744 0.757 0.749 0.759 0.794 0.775 0.667 0.673 0.668 0.565 0.566 0.562

dF 0.481 0.475 0.477 0.499 0.498 0.496 0.450 0.423 0.433 0.444 0.431 0.435

dF,meta 0.773 0.778 0.774 0.677 0.702 0.687 0.765 0.788 0.776 0.614 0.627 0.619

M
AC

H
O

-R
B

hy
br

id Id net
LSTM GRU tCNN dTCN

PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM

cF 0.561 0.559 0.549 0.564 0.570 0.563 0.520 0.520 0.518 0.468 0.480 0.470

cF,meta 0.784 0.790 0.785 0.770 0.785 0.776 0.704 0.691 0.694 0.615 0.600 0.606

dF 0.505 0.518 0.508 0.516 0.522 0.516 0.457 0.443 0.447 0.478 0.481 0.478

dF,meta 0.763 0.783 0.772 0.671 0.708 0.688 0.747 0.774 0.758 0.534 0.578 0.551
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Table E5. Classification metrics computed on the Test set for the best-performing LSTM direct classifiers cF and cF,meta on the B-band.

Network cF ; LSTM; best configuration (6); Bband

M
AC

H
O

-B
ba

nd
Classes {i}i=1→NC

Nb of Ytrue Nb of Ypred TP(i) FN(i) FP(i) TN(i) Precision(i) Recall(i) F1-score(i)
(in counts) (in counts)

RRL (type ab) 1430 1574 1370 60 204 1890 0.870 0.958 0.912
RRL (type c) 344 333 172 172 161 3019 0.517 0.500 0.508
RRL (type e) 60 0 0 60 0 3464 – – –
CEP (FU) 229 202 174 55 28 3267 0.861 0.760 0.807
CEP (FO) 133 153 82 51 71 3320 0.536 0.617 0.573
LPV (Wood seq. A) 62 0 0 62 0 3462 – – –
LPV (Wood seq. B) 160 289 87 73 202 3162 0.301 0.544 0.388
LPV (Wood seq. C) 220 164 64 156 100 3204 0.390 0.291 0.333
LPV (Wood seq. D) 152 158 103 49 55 3317 0.652 0.678 0.665
Eclipsing binaries 734 651 589 145 62 2728 0.905 0.802 0.851

NC = 10 Ns = 3524 Accuracy PrecisionM RecallM F1-scoreM
0.749 0.503 0.515 0.504

Network cF,meta; LSTM; best configuration (1); Bband

M
AC

H
O

-B
ba

nd

Classes {i}i=1→NC
Nb of Ytrue Nb of Ypred TP(i) FN(i) FP(i) TN(i) Precision(i) Recall(i) F1-score(i)
(in counts) (in counts)

RRL (type ab) 1430 1460 1422 8 38 2056 0.974 0.994 0.984
RRL (type c) 344 388 316 28 72 3108 0.814 0.919 0.863
RRL (type e) 60 0 0 60 0 3464 – – –
CEP (FU) 229 232 204 25 28 3267 0.879 0.891 0.885
CEP (FO) 133 141 113 20 28 3363 0.801 0.850 0.825
LPV (Wood seq.A) 62 65 49 13 16 3446 0.754 0.790 0.772
LPV (Wood seq. B) 160 157 131 29 26 3338 0.834 0.819 0.826
LPV (Wood seq. C) 220 230 195 25 35 3269 0.848 0.886 0.867
LPV (Wood seq. D) 152 175 147 5 28 3344 0.840 0.967 0.899
Eclipsing binaries 734 676 650 84 26 2764 0.962 0.886 0.922

NC = 10 Ns = 3524 Accuracy PrecisionM RecallM F1-scoreM
0.916 0.771 0.800 0.784

Table E6. Classification metrics computed on the Test set using the metadata via the classifier module.

Network classifier module (MLP); metadata

M
AC

H
O

-m
et

ad
at

a

Classes {i}i=1→NC
Nb of Ytrue Nb of Ypred TP(i) FN(i) FP(i) TN(i) Precision(i) Recall(i) F1-score(i)
(in counts) (in counts)

RRL (type ab) 1430 1457 1414 16 43 2051 0.970 0.989 0.980
RRL (type c) 344 397 323 21 74 3106 0.814 0.939 0.872
RRL (type e) 60 0 0 60 0 3464 – – –
CEP (FU) 229 254 213 16 41 3254 0.839 0.930 0.882
CEP (FO) 133 114 95 38 19 3372 0.833 0.714 0.769
LPV (Wood seq. A) 62 50 42 20 8 3454 0.840 0.677 0.750
LPV (Wood seq. B) 160 265 158 2 107 3257 0.596 0.988 0.744
LPV (Wood seq. C) 220 0 0 220 0 3304 – – –
LPV (Wood seq. D) 152 0 0 152 0 3372 – – –
Eclipsing binaries 734 987 686 48 301 2489 0.695 0.935 0.797

NC = 10 Ns = 3524 Accuracy PrecisionM RecallM F1-scoreM
0.832 0.559 0.617 0.579
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Table E7. Total loss (weighted MAE for reconstruction and categorical cross-entropy for classification) computed for all trained models across
three different datasets (B-band only [top], and two variants of the combination of R- and B-bands [middle and bottom]). Solid underlines high-
light to the best-performing models associated to minimum loss obtained on the Test set. The identifiers (1) to (6) refer to the hyperparameters
set configurations.
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Table E8. Classification accuracy, defined as the fraction of true positives within the sample, computed for all trained models across three
different datasets (B-band only [top], and two variants of the combination of R- and B-bands [middle and bottom]). Solid underlines highlight
the best-performing models associated to minimum loss obtained on the Test set. The identifiers (1) to (6) refer to the hyperparameters set
configurations.
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 Network dF; LSTM; best configuration (5); Bband 
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Figure E1. Total loss and classification accuracy for the LSTM composite dF on the B-band.

 Network dF,meta ; LSTM; best configuration (6); Bband 
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Figure E2. Total loss and classification accuracy for the LSTM composite dF,meta using metadata as a secondary input on the B-band.
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 Network dF,meta ; LSTM; best configuration (6); Bband 

(TRAIN_SET) 

PROJECTION {Xenc; Xmeta} PROJECTION {Xenc} 

Figure E6. 3-d representation of encoded features for the short-period pulsators in MACHO. The generated features from the best-performing
LSTM composite network dF,meta on the B-band are projected into a reduced 3-d representation using the UMAP algorithm.

 Network dF,meta ; LSTM; best configuration (6); Bband 

(TRAIN_SET) 

PROJECTION {Xenc; Xmeta} PROJECTION {Xenc} 

Figure E7. 3-d representation of encoded features for the LPVs in MACHO. The generated features from the best-performing LSTM composite
network dF,meta on the B-band are projected into a reduced 3-d representation using the UMAP algorithm.
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 Network dF,meta ; LSTM; best configuration (6); Bband 

(TRAIN_SET) 

PROJECTION {Xenc; Xmeta} PROJECTION {Xenc} 

Figure E8. 3-d representation of encoded features for the eclipsing binaries in MACHO. The generated features from the best-performing
LSTM composite network dF,meta on the B-band are projected into a reduced 3-d representation using the UMAP algorithm.
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 Network cF,meta ; LSTM; best configuration (1); Bband 
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Figure E9. 3-d representation of encoded features for the best-performing LSTM direct classifier cF,meta on the B-band. Generated encodings
are projected into a reduced 3-d representation using the UMAP algorithm.


	1 Introduction
	2 Deep learning architectures for VS classification
	2.1 State-of-the-art
	2.2 Architectures

	3 Application
	3.1 Data
	3.2 Design and implementation
	3.3 Performance study
	3.3.1 Training convergence time
	3.3.2 Labels predictions
	3.3.3 Reconstructed light-curves
	3.3.4 Latent space exploration


	4 Conclusions
	A Classification using multiband photometric data
	B Description of NNs, UMAP and gaussian process modeling
	B.1 RNN, CNN and TCN
	B.2 UMAP
	B.3 Model prediction using Gaussian Processes

	C Metrics for multiclass classification
	D Networks
	E Global performances



