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ABSTRACT OF THE DISSERTATION

Surround Processing in the Awake Rodent dLGN

by

Balaji Sriram

Doctor of Philosophy in Biology

University of California, San Diego, 2012

Professor Pamela Reinagel, Chair

The early visual system is responsible for encoding a complex spatiotem-

poral pattern of light. It transform this pattern into spikes which can then be

read by downstream neurons. What strategies should neurons employ while trans-

forming the input pattern? In the best of all possible worlds, neurons encode

only information that other nearby neurons havent already encoded leading to a

highly sparse highly non-redundant coding scheme. What receptive field features

lead to such a sparse, non-redundant coding scheme. For linear receptive fields,

the presence of a classical surround correlates well with the response sparseness

and de-correlatation. I measure the strength of this surround in the rodent dLGN

and find that the surround strength in the un-anesthetized rodent is optimized for

maximal sparseness and decorrelation for a majority of cells. Apart from the linear

xi



receptive field, neurons in the dLGN of many species are known to have powerful

non-linear processing. Further, multiple response features of dLGN neurons have

been attributed to these non-linear effects. I show that a simple linear model is

capable of explaining many of these features. However, I identify multiple other

response features that linear models are inherently incapable of explaining. I show

that rodent dLGN neurons show atleast some of these features.

xii



Chapter 1

Introduction

The early visual system is designed to transform complex spatio-temporal

patterns of light into neuronal spikes which can then be decoded by downstream

neurons. What is the essence of this transformation? i.e. What should each neuron

respond to? Under constraints of efficiency, each spike a neuron sends should be

as informative as possible and care should be taken to remove redundancy in the

information sent. In this chapter, I discuss this primal function of the early visual

system and identify some strategies it uses to achieve this function. In particular, I

concentrate on the function of the dorsal Lateral Geniculate Nucleus, the primary

retino-recepient nucleus. I then introduce the content of my thesis.

The dorsal Lateral Geniculate Nucleus receives its primary input from the

Retinal Ganglion Cells (RGCs) in the retina and sends its primary output to

Layer 4 neurons in the Primary Visual Cortex (V1). Historically dLGN neurons

were among the first to be recorded and over the past fifty years the responses of

these neurons have been recorded and cataloged in a variety of species and to a

variety of stimuli. Due to the substantial similarities between retinal and dLGN

responses it was long thought that primary function of the dLGN is to relay,

essentially unchanged, retinal outputs to V1. However, recent evidence indicate

that the dLGN plays a more dynamic role in encoding stimuli both under normal

conditions as well as under altered mental states (sleep, inattentiveness, etc.).

What do the receptive fields of dLGN neurons look like? Much like its

retinal inputs, dLGN cells have circular-concentric center-surround receptive fields

1
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[Kuffler, 1953, Hubel and Wiesel, 1961, Rodieck and Stone, 1965, Rodieck, 1965].

Recent theoretical work suggests that the presence of antagonistic surrounds may

be optimal for encoding naturalistic stimuli [Karklin and Simoncelli, 2011]. What,

then should the strength of these surrounds be? Theoretical work [Atick and

Redlich, 1992, Graham et al., 2006] has provided a clear understanding of the role

that surrounds play in encoding naturalistic stimuli and experimental evidence

has borne some of these predictions [Muller and Dacheux, 1997]. However, it is

still unclear whether surrounds are important in the awake animal. The ability to

measure these surrounds in the awake preparation is a critical step towards future

experiments aimed at modulating their strength, pehaps by manipulating specific

neuronal subtypes.

In this thesis

In my thesis, I ask the most basic questions about the structure of surrounds

in the awake rodent dLGN.

In chapter 2, I discuss the importance of the classical, linear center surround

architecture of dLGN neurons. This chapter aims to measure the classical surround

size and strength. In it, I show that the strength of the surround is strong compared

to the strength of the center in the awake rodent dLGN. Such responses enable

sparse and decorrelated output from the dLGN allowing for a high SNR input into

the next level of visual processing, V1.

In chapter 3, I introduce the concept of the non-classical receptive field and

discuss how these are modeled. I challenge these models with well known feature

of real dLGN neurons and discuss the strengths and weaknesses of each model

Finally in chapter 4, I provide size-tuning measurements obtained in the

awake rodent dLGN. Many of the responses do not fit prior expectations about

the kind of responess that are possible.



Chapter 2

Strong Surround Antagonism

Classical center-surround antagonism in the early visual system is thought

to serve important functions such as enhancing edge detection and increasing

sparseness. The relative strength of the center and surround determine the specific

computation achieved; balanced surrounds are useful for decorrelating responses,

while weak surrounds are better for denoising. Surround strength has been mea-

sured in the retina and dorsal Lateral Geniculate Nucleus (dLGN), primarily in

anesthetized or ex vivo preparations. Here we revisit the center-surround architec-

ture of dLGN neurons in the unanesthetized rat. We report the spatial frequency

tuning of N=47 neurons. We fit these tuning curves to a difference-of-Gaussians

(DOG) model of the spatial receptive field. We find that some dLGN neurons in

the unanesthetized rat (N=8/47) have weak surrounds. The majority of cells in

our sample (N=29/47), however, have well-balanced center and surround strengths

and band-pass tuning curves. We also observed several neurons (N=10/47) with

notched or dual-band-pass tuning curves, which could be explained by DOG mod-

els with extra-strong surrounds. It remains to be determined what advantage if

any is conferred by the heterogeneity of surround strength. We conclude that

surround antagonism can be strong in the dLGN of the unanesthetized rat.

3
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Figure 2.1: Sensitivity profile of dLGN ON- and OFF- center cells.
The red curve in both figures refer to the ON-component and responds to an
increase in luminance at a specific spot by increasing firing rate proportional to
the value of the sensitivity at that spot. Analagously, the blue curve in each figure
is the OFF-component. This component responds to a reduction in luminance by
a proportional increase in the response.

2.1 Introduction

One of the most striking and consistent feature of early stages of sensory

processing is the presence of center-surround antagonism. First described in the

retina [Kuffler, 1953] and dLGN [Hubel and Wiesel, 1961], this manifests as neurons

having concentric receptive fields with a center (classified as ON or OFF depending

on whether the neuron increases its firing rate to an increase or decrease in lumi-

nance at the center) and an antagonistic surround (which is larger than the center

and has luminance preference opposite to that of the center). Center-surround an-

tagonism is also found in other sensory modalities such as in the auditory periphery

[Knudsen and Konishi, 1978], in the somatosensory cortex [DiCarlo et al., 1998],

and in the whisker barrel system [Bellavance et al., 2010, Simons and Carvell,

1989].

Early theories about the function of center-surround antagonism include

edge enhancement [Hartline et al., 1956] and redundancy reduction [Attneave,

1954, Barlow, 1961]. Testing and extending these theories remains an active exper-

imental and theoretical field [Atick, 2011, Dan et al., 1996, Kuang et al., 2012, Ol-
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shausen and Field, 1996b, Pitkow and Meister, 2012, Puchalla et al., 2005, van

Hateren, 1992, Atick and Redlich, 1992, Graham et al., 2006].

The computational effect of surround antagonism depends on the relative

strength and size of the center and surround. For example, weak surrounds achieve

low-pass spatial frequency filtering and are optimal for de-noising when signal-

to-noise ratio (SNR) is low, while balanced surrounds achieve band-pass spatial

frequency filtering and are optimal for de-correlation of responses when SNR is

high [Atick and Redlich, 1992]. The strength and size of both the center and

surround of the receptive fields of neurons in the retina and the dLGN has been

measured in multiple species [Alitto et al., 2011, Cheng et al., 1995, Dacey et al.,

2000, Grubb and Thompson, 2003, Heine and Passaglia, 2011, O’Keefe et al.,

1998, Xu et al., 2002]. These studies all find a distribution of surround strengths

ranging from weak to balanced, with an average surround about 75% the strength

of the center.

Rodents are becoming an important model to study visual circuits due to

their availability and relative inexpensiveness, their ability to perform complex be-

haviors [Busse et al., 2011, Creer et al., 2010, Harvey, 2012, Meier et al., 2011, Zoc-

colan et al., 2009], their applicability to studying visual diseases [Sekirnjak et al.,

2011] and the relative ease of applying genetic techniques [Morozov, 2008, Thomas

and Capecchi, 1987] to modify circuit function. The functional properties of the

early visual system of rodents have been characterized since the 1960s [Anderson

and Yoshida, 1977, Fukuda et al., 1979, Kriebel, 1975, Lennie and Perry, 1981],

but the strength of surround antagonism has not been studied in detail.

2.2 Experimental Procedures

All procedures were conducted with the approval and under the supervision

of the Institutional Animal Care and Use Committee at the University of California

San Diego. Six male Long-Evans rats (Harlan) were used for this study. A prelimi-

nary account of these physiology methods, including surgical implant design, head

fixed recording methods, integration with stimulus display and eye-tracking hard-
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ware and software, has been presented previously [Flister and Reinagel, 2010, Sri-

ram et al., 2011].

2.2.1 Surgery

Adults hooded male rats (Rattus norvegicus, >P90) are deeply anesthetized

using 5% isoflurane. Ringers solution (15 ml/kg) is provided for hydration and

Atropine (0.05 mg/kg) is injected to control secretion. The scalp is shaved and

sterilized with 70% isopropyl alcohol/Betadine pads. The rat is placed on a stereo-

taxic apparatus and Sensorcaine (0.1 ml) injected into the scalp. An incision is

made over the left dLGN (4.5mm Posterior, 3.5mm Lateral from Bregma). After

removing the fascia over the skull, a craniotomy is drilled over the putative dLGN

center (dimensions: 1.5-2 mm M-L, 2-3 mm A-P). An eppendorf tube is glued over

the craniotomy to provide easy access for future recording. Titanium screws (5 or

6) are placed over the exposed skull and the craniotomy filled with cement. A hex

standoff and an aluminum spacer are also included in the head cap for future head

fixing.

2.2.2 Head-fixing rats

Male rats are constrained in a sock and injected with a mild sedative, Mida-

zolam (0.3-0.6 ml/kg), 10 minutes prior to being placed on the rig. Rat’s heads are

fixed with screws threaded through the standoff and the spacer. In our hands, this

led to stable recording sessions lasting about 120 minutes and allowed for stable

recording of single units lasting 10-20 minutes in duration. Each rat can be used

for recording for a duration between 3-12 weeks.

2.2.3 Stimulus presentation

One of two monitors (Westinghouse L2410NM(LCD)/Sony Trinitron PF790-

VCDTS21611(CRT)) was used to present visual stimuli. Results were similar in

the recordings collected with both monitors. Both monitors were empirically lin-

earized, and all stimuli were presented at a frame rate of 60 Hz, and a mean
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luminance of 25 cd.m−2. The monitor was placed at a tangent 30cm (LCD) or

20cm (CRT) from the rat’s right eye, such that the display filled at least 85◦× 60◦

of visual field in both cases. Simultaneous with each frame update, a 5V synchro-

nizing TTL pulse was sent to the recording computer (see below). Frame drops

often occurred in the first few frames of the trial; we used only the data after

any such frame drops. If any frames were dropped later in a trial, the entire trial

was excluded from analysis. Our stimuli were constructed using the Psychophysics

toolbox [Brainard, 1997, Pelli, 1997, Kleiner et al., 2007]. Custom Matlab (Math-

works Inc., Waltham, MA) scripts were used to present either stochastic noise

stimuli or drifting gratings stimuli to the right eye of the rat [Meier et al., 2011].

2.2.4 Electrophysiological recording

The chronic well was exposed, and an extracellular electrode (Tungsten,

FHC, Bowdoin, ME or pulled Quartz microelectrodes filled with ringers solu-

tion) was inserted stereotaxically to defined coordinates (4.5P,3.5L,5-6V) in the

rat brain. Voltage traces were amplified (10-1000X) and filtered (1Hz-10kHz)

(AM1800; AM Systems, Sequim, WA), digitized (NIDAQ PCI-6259, National In-

struments, Austin, TX), and stored in a local computer. Synchronizing TTL

pulses from the stimulus computer were recorded simultaneously on a separate

channel. After each session, the well was washed well with antibiotic solution

(Baytril 0.05mg/ml), cleaned well with neutral saline and plugged with silicone gel

until the next session.

The subjects in this study were unanesthetized but were not performing any

visual task, and we did not record an EEG. Therefore we cannot know if the rats

were “alert”. We monitored, however, for two indirect signs of drowsy/inattentive

state: (1) eyelids partially or fully closing, as observed by the infrared eye tracking

camera; or (2) dLGN neurons entering a rhythmic bursting firing mode. In this

same preparation it was previously shown [Flister and Reinagel, 2010] that this

rhythmic firing mode in the dLGN is accompanied by an increase in synchronous

power in the alpha band of the LFP, and is comprised of bursts that resemble

the low-threshold Calcium bursts often associated with sleep and anesthesia in
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other species. If or when the rat appeared drowsy or inattentive by either of these

criteria, we used mild stimuli (clapping hands, gently brushing tail, squirting water

in mouth) to arouse them, or ended the recording session if these measures were

ineffective. Post-hoc analysis confirmed that bursts were mostly absent from our

recorded data.

2.2.5 Single Unit Isolation

Single units were identified as negative (tungsten,FHC) or positive (quartz

microelectrode) deflecting spikes of much larger amplitude than noise or any other

spikes (e.g., see Figure 2a). Rough sorting criteria were used to characterize the

single unit during the experiment. All analyses shown were performed on more

stringent offline sorting using Klustakwik [Harris et al., 2000]. Units were kept for

analysis if they met several criteria: (1) thresholded spike waveforms were aligned

at the positive peak and all waveforms formed a well isolated cluster; (2) spike

shape was relatively constant; and (3) no refractory violations. Spike amplitude

variation was common for well-isolated single units, depending on the preceding

inter-spike interval. Care was taken to include as many of the spikes as possible

despite this amplitude variation.

2.2.6 Eye tracking

The rat’s eye position was monitored using an infrared tracker (Eyelink

1000, SR Research, Kanata, Ontario, Canada). Clear artificial tears were applied

to the eyes to keep them moist. Excess tears were removed using a cotton swab.

Tracking data was digitized using the EyeLink Toolbox [Cornelissen et al., 2002].

When stimulated by noise or touch (see above), rats make low-amplitude (< 5◦)

saccades [Hikosaka and Sakamoto, 1987] (but see [Chelazzi et al., 1989]). In our

preparation, these saccades are infrequent (<1 Hz) at the time stimuli occur, and

even less frequent when the rat is undisturbed. After saccades, the eye position typ-

ically decayed back to the central fixation point. Preliminary experiments showed

that in our preparation rats maintain fixation within a 5◦ circle around the mean
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eye position >65% of the time and within 15◦ > 95% of the time (data not shown).

The stability of eye position was sufficient for us to ensure the receptive field

remained within the full-field grating stimulus for the duration of the recording.

But eye movements could affect the phase of the grating relative to the receptive

field for all but the lowest spatial frequencies probed (see for example the rasters

in Figure 2c). Thus we do not report the absolute phase of the stimulus in our

analysis. We used drifting (not counterphase) gratings, and computed the neuron’s

response independently each trial (see below), such that phase differences from trial

to trial would not affect our measure of the amplitude of the response.

2.2.7 Single Unit Characterization

Once single units were identified as visually driven (using an opthalamo-

scope) the position of the rat relative to the monitor was adjusted such that the

receptive field of the unit was within the extent of the monitor. White noise stimuli

were used to locate the center of the receptive field within the monitor when eyes

were at the mean eye position. Once the location of the receptive field was iden-

tified, vertical drifting gratings of varying spatial frequencies was presented to the

rat on a linearized CRT monitor. Gratings were at full contrast and drift frequency

was 2 or 4 Hz with a frame rate of 60 frames/s. This drift frequency was chosen

so as to drive maximal neural responses without engaging the Optokinetic Reflex

(Fuller 1985; our unpublished observations). Each ’trial’ consisted of a 2 or 3 s

presentation of a constant spatial frequency; spatial frequencies were interleaved

in pseudorandom order without gaps between until each stimulus was presented

once, and this sequence was repeated three or more times.

2.2.8 Spatial Frequency Tuning

The responses of each single unit were temporally discretized at the stim-

ulus refresh rate (60 Hz). To mitigate the effects of small eye movements on

stimulus phase, response power estimates were calculated on a trial by trial basis

as the Fourier transform of the autocorrelation function (Wiener-Khinchin theo-
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rem). This was repeated for each trial for a specific spatial frequency and across all

spatial frequencies. The f1 response amplitude for each trial was measured as the

square root of the power at the stimulus temporal frequency. Care was taken to

ensure that the measured amplitude actually corresponded to a peak in the spike

train power spectrum. If no peaks were visible, the single unit was rejected from

the analysis. Non-stationary units, showing inconsistent tuning curves or large

changes in mean rate between repeats, were rejected from the analysis. To fur-

ther estimate the significance of the measured amplitudes, a resampling approach

was taken. The spike train from each repeat was shuffled while maintaining the

inter-spike interval distribution. The power of the resampled spike trains was cal-

culated using the methods described earlier. A ‘virtual‘ experiment involving these

reshuffled spike trains were then used to estimate the noise floor at each spatial

frequency. This shuffling process was repeated multiple (100) times to obtain a

mean noise floor as well as the SD of the noise floor at each frequency. While the

calculated f1 values were indistinguishable from the noise floor at some (especially

high) spatial frequencies, in all the units included, contained responses at multiple

spatial frequencies where the mean actual f1 response was more than 2 SDs from

the estimated noise floor mean.

2.2.9 Fitting DOG Model

Custom MatLab routines were used to fit f1 responses with a modified

difference of Gaussians (DOG) model [Enroth-Cugell and Robson, 1966, Grubb

and Thompson, 2003]:

Rν = S (Rν) + ‖Kcπr
2
ce

−π2r2cν
2 −Ksπr

2
se

−π2r2sν
2‖ (2.1)

rc < rs; Kc > Ks

The calculated shuffle estimates S (Rν) were subtracted from the actual

response to eliminate the residual power present in the spike train not associated

with the stimulus. The absolute value function is used because the measured power
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is constrained to be positive. The Simplex Search Algorithm (fmincon in Matlab)

was used to search for the correct combination of parameters (Kc, Ks, rc, rs) that

best fit the response under a constrained optimization protocol. For each single

unit, fitting was done to three separate non-linear constraints:

η < 1, η = 1, η > 1

where

η =
Ksr

2
s

Kcr2c
(2.2)

is the ratio of the integrated weight in the surround to the integrated weight

in the center [Xu et al., 2002, Croner and Kaplan, 1995, Enroth-Cugell and Rob-

son, 1966, Grubb and Thompson, 2003]. This provided three separate classes of

solutions to which each single unit belonged. The fitting algorithm minimized the

sum of the squares of the difference between fitted values and the actual values

(2.3).

Because of the nature of the fitting algorithm and due to the presence of

noise in the data, there is no guarantee of discovering the global minimum of the

cost function. We ensured good fit by repeating the fitting process multiple (n

= 100) times with random initial guesses. The quality of each of these fits was

evaluated based on the Pearson correlation between the actual data and data from

fits. The highest quality fit within each constraint was chosen as the candidate fit

for that class of solutions. From the three candidate solutions, the final solution

was taken to be the one which had the highest quality fit, except that solutions with

η > 1 (surround stronger than center) were rejected if a solution with η = 1, η < 1

fit equally well (quality of fit within 2%). Thus we were conservative with respect

to our claim that surrounds can be stronger than centers.

2.2.10 Histological confirmation of recording sites

Each subject was recorded in multiple sessions over 3-12 weeks. At the

final recording session, an injection syringe loaded with 2% pontamine sky blue
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solution was lowered to the stereotaxic coordinates of the last recorded unit as

a fiduciary mark for histological analysis. The subject was euthanized, perfused,

and the brain tissue fixed, sectioned, and examined. In all cases we confirmed that

the stereotaxic coordinates of the recording sites of our single units fell within the

boundaries of the histologically identifiable dLGN [”Discenza, 2011, ”Paxinos and

Watson, 2006].

2.3 Results

In order to estimate the surround strength of the receptive fields we em-

ployed a standard method of fitting the spatial frequency response of a unit to

a difference-of-Gaussians (DOG) model [Enroth-Cugell and Robson, 1966, Grubb

and Thompson, 2003].

We recorded 83 well isolated single units in the putative dorso-lateral genic-

ulate nucleus of unanesthetized head-fixed rats while they passively viewed drifting

high contrast (100%) sinusoidal gratings on a linearized CRT/LCD monitor with

a mean luminance of 25 cd.m−2. The monitor was approximately centered on the

cell’s receptive field and filled 85◦ × 60◦ of visual field. We varied the spatial fre-

quency of the grating from 0.02− 0.36 cyc/◦ (50− 3 ◦/cyc), keeping the temporal

frequency constant at 2 or 4 Hz. We only include in subsequent analysis the cells

whose spatial receptive field center was clearly within the confines of the monitor as

measured using the spike-triggered-average to a white noise stimulus [Chichilnisky,

2001], and whose responses were stationary (see Methods). Of the 83 recorded 47

fit the criteria. The recording locations were later confirmed histologically.

2.3.1 Responses in unanesthetized rat dLGN to drifting

gratings

Responses of one representative OFF cell are summarized in 2.4. The raw

voltage trace in response to a drifting grating for one 3-s trial (2.4a) shows the

quality of isolation of the unit, and reveals that the firing rate was modulated

over time by the stimulus (2.4b) at this spatial frequency. The drift speed was
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adjusted such that the temporal frequency of modulation was the same for all

spatial frequencies. The responses to all repeats of all spatial frequencies are

summarized by rasters grouped by spatial frequency (2.4c).

For the cell shown, the mean firing rate depended on spatial frequency

(Figure 2.5a), as was the case for N=36/47 cells in our population. The highest

mean rate for any spatial frequency was 68 spikes/sec for this cell, and 22.89 ±
11.27 spikes/sec (mean±SD) across our population. This cell showed response

modulation at the temporal frequency of the stimulus (2Hz) (Figure 2.5b), which

reflects the linear component of the response. At its optimal spatial frequency

(chosen by the peak of f1), modulation of this cell was 77% of the mean rate (f1
f0

).

All cells in our sample were well modulated at their optimal spatial frequency:
f1
f0

= 0.66± 0.15% (mean±SD across the population).

This cell also had some response power at twice the input temporal fre-

quency (f2, Figure 2.5c). This weak f2 response is attributable to rectification and

rebound, but does not resemble a classic frequency-doubling response typical of

Y cells (Hochstein and Shapley 1976a; b). Although no detailed cell classification

has been attempted, we refer to this cell as “X-like” merely to indicate that at the

optimal spatial frequency, f2
f1

(=0.41) was less than unity. By this definition 46/47

of the cells in our sample were X-like (Figure 2.5d).

2.3.2 Measuring Surround Antagonism

A standard method for measuring the extent of surround antagonism is

a difference of Gaussian (DOG) model fit from spatial frequency tuning curves

[Grubb and Thompson, 2003]. We used the linear response to the grating (f1, see

Figure 2.5b) to fit the spatial receptive field center and surround components (see

Methods). For the example cell shown in Figures 2 and 3, the best fit DOG model

(Figure 2.6a) had a center radius rc of 4◦, and a surround radius rs of 13◦, and

a relative surround strength of η = 0.83. This is typical low-pass tuning curve in

our sample, and this type of response is well described in the literature. A DOG

receptive field with a weak surround relative to center is consistent with strong

response modulation even at the lowest spatial frequencies tested.
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The measured tuning curve of another example cell is shown in Figure 2.6b,

along with the fit obtained from the best DOG model. This is a typical band-passed

tuning curve: responses fall off at both high and low spatial frequencies. This cell’s

receptive field model had a center radius rc of 2.19◦, and a surround radius rs of

3.75◦, and a relative surround strength of η = 1. A DOG receptive field with a

well-balanced surround relative to center is consistent with lack of response to low

spatial frequencies, and is well described in the literature.

We also found a third type of tuning curve in our sample (Figure 2.6c) which

has not been well described previously (but see [Heine and Passaglia, 2011]). These

spatial frequency tuning curves could be described as dual-band-pass or notched;

the notch occurred at different spatial frequencies for different cells. While DOG

models with balanced (η = 1) or weak (η < 1) surrounds could not reproduce these

tuning curves, they were easily fit by DOG models with strong surrounds (η > 1).

This cell’s receptive field model had a center radius rc of 2.00◦, and a surround

radius rs of 3.97◦, and a relative surround strength of η = 2.2. Interpretation of

these cells will be considered further in the discussion.

We measured the integrated weight of the surround relative to the center

by the variable η (Equation 1, Methods). In our data values of η ranged from

η = 0.02 to η = 80 (Figure 2). The value of η corresponded closely to the shape

of the spatial frequency tuning curve. All cells that showed significant fall-off

of the response at low spatial frequencies had η values close to 1 (Figure 2.6b).

Those that showed little fall-off at low spatial frequencies had η values less than

1 (Figure 2.6a), and all cells that showed notched spatial frequency tuning curves

had η values greater than 1 (Figure 2.6c).

The majority of cells (N=29/47) had well balanced center and surround

with 0.95 ≤ η ≤ 1.05. Several (N=8/47) had weak surrounds (η < 0.95) as

previously described in other studies. A substantial fraction of cells (10/47) had

values η > 1.05, indicating a surround that is stronger than the center. Because

this result was unexpected, our analysis was conservative in assigning fits with

η > 1: we searched separately for the best fit model with η = 1 and with η < 1,

and chose one of these solutions preferentially if the fit was almost as good (see
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Methods). We emphasize that this reflects the integrated weight of the center and

surround over space, and the surround radius was often much larger. The peak

sensitivity of the surround Ks was less than that of the center Kc in all cases.

2.4 Discussion

We have used spatial frequency tuning to estimate the spatial structure of

receptive fields in the dLGN of unanesthetized rats. The distribution of receptive

field center sizes we find is in good agreement with that previously reported for

retinal ganglion cells of the rat [Heine and Passaglia, 2011]. Some neurons in

our sample had weak surrounds, as reported in other species. We find that most

dLGN neurons in the unanesthetized rat, however, have well-balanced surround

antagonism and thus a band-pass rather than low-pass spatial frequency tuning.

This differs from the distributions reported in other species, in which surrounds

are typically weaker [Cheng et al., 1995, O’Keefe et al., 1998, Xu et al., 2002].

The distribution of surround strength has not previously been reported in either

anesthetized or unanesthetized rodents. In anesthetized mouse dLGN, both low-

pass and band-pass spatial frequency tuning curves have been observed [Grubb and

Thompson, 2003] consistent with receptive fields ranging from weak to balanced.

In optic nerve recordings in anesthetized rats, retinal ganglion cell spatial frequency

tuning curves were found to be mostly low-pass, although band-pass tuning curves

were also observed [Heine and Passaglia, 2011].

We also report several examples of cells with unexpected, notched or dual-

band-pass tuning curves which have not been reported in other species (but see

Figure 7 in [Heine and Passaglia, 2011]). These data could be well fit by the stan-

dard circularly concentric DOG model if the integral of the surround component

exceeded that of the center (Figure 2.6c). For an intuition, consider a set of model

cells with center size 1◦, surround size 3◦, and different surround strengths. Figure

2.8 shows the response of such model cells to drifting gratings, separated into cen-

ter and surround components. The center response (C) and the surround responses

(S) are both decreasing functions of spatial frequency. As the surround strength
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increases, the response at the lowest spatial frequency for center and surround get

closer in value. The net response at lower frequencies (C-S) diminishes. For the

case where the surround is stronger than the center, the net response (C-S) reaches

zero at an intermediate spatial frequency and takes negative values, corresponding

to a phase reversal in the grating response. However, the value that is experi-

mentally measured is the amplitude of the response modulation about the mean,

which is always a positive value. Therefore when center and surround responses

are summed, a notched or dual-band-pass tuning curve is produced. We take this

to be a simple and conservative explanation of the data, though other models are

possible, such as an antagonistic surround that is spatially offset relative to the

receptive field center (Soodak 1986). Regardless of how these tuning curves arise

mechanistically, such cells clearly do occur in our data.

2.4.1 Linearity of Responses

Difference-of-Gaussian models based on spatial frequency tuning data are

widely used to describe spatial receptive field structure of both X and Y cells in

the retina and dLGN [Bonin et al., 2005, Linsenmeier et al., 1982, Sceniak et al.,

2006]. If the combined circuitry leading from the visual image to a dLGN neuron’s

response were a perfectly linear system, response due to the center and surround

components to an arbitrary pattern of light would be separable and add linearly,

and this method of measurement would be exact. To the extent that responses

in the dLGN are nonlinear, this method provides only an approximation or a

description of the linear component of the response. Not surprisingly, past studies

report that better fits are obtained for X cells than for Y cells [Linsenmeier et al.,

1982].

For the cells in our study we do not have data from standing phase revers-

ing gratings or sparse noise, which would be required to determine whether the

receptive fields contained nonlinear spatial subunits. Based on the ratio of the f2

to f1 responses to drifting gratings, most of the neurons in our population had

relatively linear responses. In this specific sense, we refer to our cells as ’X-like’

(Figure 2.5d), and we find our data to be well fit by the DOG model. We note that
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additional classes of neurons in the dLGN with other response properties, includ-

ing nonlinear or Y-like cells, might exist but could be missed due to an unknown

selection bias in our recording technique.

Another known form of nonlinearity in the dLGN is extra-classical surround

suppression, which is modeled as a divisive normalization component [Bonin et al.,

2005, Heeger, 1992]. Our drifting grating stimuli were large compared to the classi-

cal receptive field centers, and therefore may have engaged extraclassical surround

suppression. Indeed we find that responses in the dLGN can be sensitive to the

size of the stimulus aperture (our unpublished data). Divisive normalization, if

present, would affect the absolute amplitude (Kc,Ks) of our DOG fit but should

not impact our measures of center or surround radius (rc, rs) nor the relative

sensitivity (Ks

Kc
) or surround strength (η).

2.4.2 Location of computation

We have measured center-surround antagonism in the dLGN of the unanes-

thetized rat. This property is at least partly inherited from the retinal inputs

to the dLGN. We do not have access to a comparable measurement of surround

strength in rat retinal ganglion cells, so it remains to be determined if thalamic

or cortico-thalamic circuitry contribute to surround strength in the dLGN of the

unanesthetized rat. In other preparations, however, surrounds of dLGN receptive

fields are thought to be stronger than that of their retinal inputs [Cheng et al.,

1995, Hubel and Wiesel, 1961]. Anesthesia is known to affect dLGN responses;

we cannot exclude the possibility that anesthesia affects surround strengths in the

dLGN.

2.4.3 Computational Function

Our results imply that in the unanesthetized rat, most cells in the dLGN are

transmitting a signal that is spatially decorrelated, and therefore less redundant

and more sparse than the luminance patterns found in natural scene scenes [Barlow,

2001, Olshausen and Field, 1996b, Olshausen and Field, 1996a]. It remains unclear
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whether the resulting compression of the image is the most important function of

this spatial filtering operation, given that the combined effect of eye movements

already tends to spatially decorrelate or ’whiten’ the image prior to encoding by

photoreceptors, at least in some species [Reinagel and Zador, 1999, Kuang et al.,

2012]. Alternatively, the function may be primarily the enhancement of edges:

well-balanced surround antagonism would maximally enhance the difference be-

tween inputs to ON and OFF subregions of V1 receptive fields along edges and

contours, serving to facilitate edge detection.

A smaller population of cells had notched or dual-band-pass spatial filters,

which can be explained by extra-strong surrounds in the classical center-surround

receptive field. This property may be inherited from retinal ganglion cells [Heine

and Passaglia, 2011]. It remains to be determined whether these unusual tuning

curves are a functional adaptation to visual coding, or merely a consequence of

imperfect wiring. In either case, this response type comprises a substantial fraction

of our sampled population, so it will be important to determine their impact on

the neural code of the rat dLGN.

Another subpopulation of cells in our sample had weak surround antago-

nism, as widely reported in other species. These cells carry a smoothed image

representation that would be spatially correlated for natural images, with little or

no edge enhancement. Perfect surround antagonism removes all information about

absolute luminance from the image representation; a small subset of neurons with

weak or absent surrounds would be sufficient to carry this complementary infor-

mation.

We find heterogeneity of surround architecture in the dLGN population,

which may be functionally important [Soo et al., 2011]. Past theories derived the

optimal surround strength for a homogenous population of units under different

stimulus conditions; it would be interesting to extend this approach to consider

optimal distributions in a heterogeneous population.

Chapter 2, in part, has been submitted for publication of material as it

may appear in Journal of Vision, 2012. The dissertation author is the primary

investigator and the first author of the paper.
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Figure 2.2: Response profile of a bank of filters to edges.
a Shows an image with both light and dark edges. b is the response profiles of
a bank of neurons having only a center-subunit. Edges look blurrier than in the
image a. However, the filter in c includes a surround and the responses of bright
edges are enhanced, while the responses of dark edges are unaffected. To enhance
dark edged one would need an OFF-center filter.
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Figure 2.3: Difference of Gaussian Model Fitting.
a A model receptive field is defined by two circular, concentric 2D Gaussian den-
sities, a cross section through which is shown at right. The receptive field cen-
ter (solid black curve) is defined by the radius rc and peak amplitude Kc of the
smaller Gaussian, the sign of which determines the response type (ON or OFF) of
the model neuron. The classical surround (solid gray curve at right) is defined by
the radius rs and peak amplitude Ks of the larger Gaussian. The model receptive
field is the linear sum of these components (dashed curve). The predicted spa-
tial frequency tuning curve for a DOG model is obtained by convolving sinusoidal
gratings of different spatial frequencies with the spatial receptive field. Alterna-
tively, the receptive field sensitivity profile of a recorded neuron may be estimated
by fitting the DOG model parameters to optimize the match to the observed spa-
tial frequency tuning responses (SEE METHODS). b Each neuron’s tuning curve
(example cell at left) was fit to the best DOG model receptive field under three
separate constraints: η < 1, η = 1 and η > 1 (SEE METHODS). The predicted
tuning curves (thin curves, right) were compared with the data, and the solution
having the highest quality of fit (least r2) was selected as the best model for that
cell.
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Figure 2.4: Responses to drifting gratings.
a High-pass filtered voltage trace from one single unit recorded from the dLGN of
an unanesthetized rat. The raster corresponding to this trial is marked with an
arrow in c. b Stimulus luminance at an arbitrary point on the display. Temporal
frequency was 2 Hz, for six complete cycles within the 3 second duration of a
trial, regardless of spatial frequency. c Rasters for this single unit obtained for all
spatial frequencies, where each row indicates responses for a single trial and each
tic mark indicates the time of a single action potential. The six trials recorded at
each spatial frequency were interleaved during the experiment but are grouped by
spatial frequency for display. The time axis at bottom applies to all panels.
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Figure 2.5: Spatial frequency tuning analysis for an example cell.
a Average firing rate (f0, in impulses per second) as a function of spatial frequency
(shown on a log scale), for the data shown in Figure 2. Diamond symbols show the
mean obtained over trials, error bars (gray) show the standard error of the mean
(SEM) across trials. b Modulation in firing rate about the mean, at the temporal
frequency of the visual stimulus (f1 = 2Hz). c Modulation of the firing rate at
twice the stimulus frequency (f2 = 4Hz). Dashed line in (a),(b) and (c) indicates
the spatial frequency at which the f1 response is highest (peak in 3b). Values of f2
and f1 at this spatial frequency were used to compute the ratio f2/f1, which for this
cell is 0.17. A ratio > 1 indicates frequency doubling, a nonlinear characteristic of
Y-like cells. d Distribution over the population of cells of the f2/f1 ratio measured
at the spatial frequency with maximum f1 response.
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Figure 2.6: Three classes of spatial frequency tuning curves.
In each panel, the f1 response for one recorded neuron is shown as the mean f1
over trials (diamonds) +/- SEM across trials (thin gray lines), as a function of
spatial frequency (cycles per degree) on a log scale. The tuning curve predicted by
the best-fit DOG model receptive field is overlaid (thick gray curve) in each case.
a Spatial frequency tuning curve for an example low-pass tuned cell. b Spatial
frequency tuning curve for an example band-pass tuned cell. c Spatial frequency
tuning curve for an example notched or dual-band-pass cell.

Figure 2.7: Distribution of η.
The integrated strength of the surround relative to the center is given by η (in-
set equation). The distribution of η (shown on log scale) over the population is
shown. The data are clustered near η = 1, corresponding to well-balanced sur-
round strength. Units with weak surrounds are at left (η < 1), while those with
stronger-than-balanced surrounds are at right (η > 1).
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Figure 2.8:
Intuition for notched or dual-band-pass tuning curves. Responses of the
center and surround components to drifting gratings of different spatial frequencies
for three hypothetical cells (left). Center response (black curve) is for a Gaussian
profile with radius rc of 1◦ and arbitrary sensitivity of 1, and is the same for all
three model cells. Surround responses (grey curves) are for Gaussian profiles with
rs of 3◦ and different sensitivities relative to the center. When the integrated
surround strength is less than that of the center (iii), the response reaches a plateu
at low spatial frequency. When the center and surrounds balance (ii), response
falls to 0 at low spatial frequency. If the surround response exceeds that of the
center (i), a node in the tuning curve results.



Chapter 3

Modeling Classical and

Non-Classical Surrounds

Receptive fields in the early visual system are thought to have at least

two functionally separable types of surrounds. Classical surrounds were discussed

in Chapter 2. In this Chapter, I examine the evidence for the presence of Non-

Classical Surrounds by identifying features not explained by the simple classical

surround, identify models that capture these features and discuss the practical

implications of measuring these surrounds.

3.1 Existence of a Non-Classical Receptive Fields

The linear, spatial receptive field model(explained in Chapter 2) along with

its temporal component can be used to predict many features of neuronal responses

in the early visual system: responses to dots of light, the size and timing of spiking

responses to gratings of varying spatial and temporal frequencies [Cai et al., 1997,

Dawis et al., 1984] and in some cases, even to predict responses to complex noise

stimuli [Keat et al., 2001]. However, it was less successful in predicting responses

to certain simple stimuli quantitatively or to predicting responses to complex,

naturalistic stimuli even qualitatively. Over the years a number of signatures

response properties of non-classical receptive fields have been identified:

25
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Figure 3.1: Contrast Saturation.
Linear model predicts larger responses at high contrasts compared to actual re-
sponses. Responses of a linear model is shown in black whereas the responses of
actual neurons (red curve) level off at higher contrasts.

• Responses Saturate at High Contrasts: A linear model predicts that

the response scales linearly with contrast. However, responses of neurons

in the early visual system saturates at high contrasts, often at firing rates

far below the maximal possible firing rate.[Maffei and Fiorentini, 1973, Sclar

et al., 1990, Bonin et al., 2005]

• Size Tuning: Neurons in the dLGN are tuned to the size of the stimulus.

This is typically measured by measuring the responses of neurons to gratings

of increasing sizes. Responses peak at an intermediate aperture radius and

then fall to a lower value as the aperture radius increases. The fractional

reduction in responses for large stimuli compared to the maximal response

is defined here as the Suppression.

• Size Dependent Response Reduction is Contrast Dependent: Re-

sponses of neurons to drifting gratings of increasing size show substantial
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suppression in responses for high contrast with little or no suppresion at

lower contrasts [Jones et al., 2000, Jones and Sillito, 1991, Bonin et al.,

2005, Solomon et al., 2002]. A linear model however predicts identical sup-

pression at all contrasts.

• Increase in Optimal Response Radius is Contrast Dependent: At

low contrasts, the peak response radius as estimated from size tuning curves

shifts to higher values [Nolt et al., 2004]. Linear models predict no shift in

the peak response radius.

Apart from the above features, which will be considered in full by this Chapter,

other features have been observed both within the dLGN as well as in the Retina

and Visual Cortex(V1) which indicate the presence of a non-classical surround.

In particular, a region of the receptive field called the Extra-Classical Receptive

Field has been identified. This Extra-Classical Receptive Field is thought to be

an area where stimuli do not themselves drive the responses of the neuron under

consideration, but modulate the responses to stimuli within the classical receptive

field. Due to its very definition, this area has been located far away from the

classical receptive field, often extending upto three times the radius of the classical

receptive field [Levick et al., 1972, Murphy and Sillito, 1987, Alitto and Usrey,

2003] (but see [Bonin et al., 2005]). Extra-classical receptive fields of neurons are

known to be orientation tuned in V1 [Cavanaugh et al., 2002b, Cavanaugh et al.,

2002a, Sillito et al., 1995] and are thought to be dependent on the difference in ori-

entation between center stimulus and surround stimulus in the dLGN [Sillito et al.,

1993]. Both of the above facts were discovered in experiments involving masking.

Furthermore, neurons in V1 show Cross-Orientation Suppression - a phenomenon

where superimposition of additional gratings onto the receptive field centers of V1

a neuron suppresses its response[Morrone et al., 1982]. These effects, though well

described in the literature will not be considered further.
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3.2 Models of Classical and Extra-Classical Re-

ceptive fields

A variety of approaches have been taken to understand Non-Classical re-

ceptive fields’ effect on Classical receptive field responses. They range from de-

scriptive approaches, to models incorporating the non-classical receptive field as

a linear component to the actual receptive field [Alitto and Usrey, 2005, Sceniak

et al., 2006], to more complex and realistic approaches incorporating a divisive

field in addition to the linear classic receptive field [Bonin et al., 2005]. The utility

of using one model over another depends upon a variety of factors: the purpose of

the experiment, the quality of the data and the size of the data being among the

most important factors. However, are all these approaches equivalent? How should

analysis performed using one method be understood using the other method? To

understand this, I analyze these models for the features described in 3.1. I then

discuss the conditions under which the fits from these models may be compared.

3.2.1 Classical Difference of Gaussian Receptive Fields

The classical Difference-of-gaussian receptive field model was explained in

some detail in 2. I return to the model to understand its responses to the stimuli

of various sizes.

Response of a Classical DOG Model to Arbitrary Patterns of Light

The receptive field is characterized by two independent gaussians ([Rodieck,

1965, Rodieck and Stone, 1965]):

RF (x, y) = Kcexp

(
−r2

r2c

)
−Ksexp (−r2/r2s) (3.1)

r2 = x2 + y2

x ⊂ R; y ⊂ R



29

The contribution to the responses to a particular spot of light I at (x, y)

equals RF (x, y) I dx dy. The total response is the integral of the differential re-

sponses:

f (RF (x, y) , I (x, y)) =

∫
x

∫
y

[Kcexp (−r2/r2c)−Ksexp (−r2/r2s)] I (x, y) dx dy (3.2)

Responses of the Classical DOG Model to Gratings Within an Expand-

ing Aperture (Size Tuning)

One classic method to measure Size tuing in neurons involves measuring the

response of neurons to gratings within an aperture of varying sizes. The tuning

curve obtained is typically called Size-Tuning, or Area-Summation. What should

area summation curves look like for a typical dLGN neuron in the rat? To model

this, I consider a neuron with the following parameters:

rc = 3◦; rs = 12◦

Kc = 1; Ks = 1/16(a.u.)

such that

η = 1

as defined in 2.2.9(see 2.2). The other critical parameter for performing

this virtual experiment is the spatial frequency of the grating used to drive the

neurons. For the purpose of this experiment, the spatial frequency used was the

optimal spatial frequency obtained as in 2.1.

At the spatial frequency used, both the center and surround act as ex-

citatory influences on the activity of the cell(Einevoll and Plesser 2005). The

classic DOG model shows little suppression(∼ 2%) and displays peak response

at rAp ≈ 15◦. However, at higher spatial frequencies, the linear DOG model is

capable of showing substantial suppression(3.3 and 3.4). The optimal summation

radii were rAp ≈ 7.5◦ (3.3a) and rAp ≈ 2.5◦ (3.4b). Furthermore, responses showed

substantial reduction: ∼ 21% (3.3a) and ∼ 50% (3.4b).
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The center-surround receptive field and the spatial frequency of the grating

used to drive the cell interact in complicated ways to result in the size tuning

responses shown. In 3.2, until about rAp = 5◦, the responses are driven primarily

by the center subunit. However, beyond that the surround responses become

significant. In this case, the spatial frequency is low enough that until ∼ 15◦,

the center and surround have luminances of opposite sign: when the center has a

light bar, the surround has a dark bar and vice-versa. The surround’s influence is

excitatory and the response increases further.

In 3.3, again we find that the center and surround act as excitatory influ-

ences on the response until rAp = 10◦. However, the net increase in responses due

to the surround is a smaller fraction of the increase due to the center (<30% in

3.3 compared to >50% in 3.2). At larger apertures, the surrounds integrates many

cycles and its contribution is diminshed. At the largest apertures, the responses

due to the classical surrounds are almost completely abolished.

In 3.4, however, the spatial frequency is high enough that the center itself

is capable of integrating multiple cycles. We see that the peak response happens

well before the center is reached. Beyond this radius, the center itself integrates

multiple cycles leading to the first drop in response. At the largest apertures, most

of the response has been abolished. This leads to high suppression(∼ 50%).

Contrast Dependence of Size Tuning with Classical DOG model

Does the DOG model show the features of real LGN neurons discussed

earlier (see 3.1)? To test this, I simulate the responses of the linear DOG model to

gratings of varying contrasts. The difference in the shape of the curve (compared

to 3.2) is attributed to the log scale on the x-axis. It is unsurprising, that the

response of the model neurons simply scales with contrast (3.5a,b). Contrast does

not influence either suppression (3.5c) or the summation radius (3.5d).

Conclusions

In the above simulations, no attempt has been made to change the size and

strength of the receptive field subunits across the different conditions of spatial
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frequency and contrast. It might still be possible to recover the effects discussed in

3.1 with a linear Difference of Gaussian Receptive field whose Center and Surround

kernels change with stimulus conditions. Such models have been proposed [Nolt

et al., 2004, Sceniak et al., 2006, Sceniak et al., 2001] in the literature and will

be taken up for further study in 3.2.3. However, in its current form, the simple

Difference of Gaussians model while capable of explaining the presence of size

tuning, is inherently incapable of explaining contrast saturation. A different model

is required.

3.2.2 Divisive Normalization Models

Data indicating the inadequacy of the linear Difference of Gaussian recep-

tive field in predicting LGN responses came from early work studying responses to

different contrasts [Maffei and Fiorentini, 1973, Sclar et al., 1990]. It was further

identified that suppressive phenomena exist in the dLGN through identifying ef-

fects that are independent of the sign of the luminance change but dependent on

the size of the deviation [Levick et al., 1972]. This supported the idea of an Extr-

aclassical Recepitve Field(ECRF) contributing to the responses of dLGN neurons.

Stimulating the extraclassical receptive field never acted to drive the response of

the neuron but were useful in suppressing the response of stimuli within the classi-

cal receptive field. Such extra-classical receptive fields were identified both in the

retina [Victor, 1987] as well as in V1 [Carandini et al., 1997]. More recent theo-

retical work has identified a class of models capable of explaining many of these

phenomena. First designed to explain contrast normalization within the retina

[Victor, 1987], such models have been used to explain responses to contrast in the

early visual system [Victor, 1987, Heeger, 1992, Freeman et al., 2002, Bonin et al.,

2005]. We evaluate this model for the features described in 3.1.

Difference of Gaussian with Divisive Normalization

The schema for the Difference of Gaussian with Divisive normalization is

provided in 3.6. Apart from the response of the linear center and surround kernels,

an independent pathway calculates the standard deviation of the stimulus. This
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is used to weight a spatially restricted suppressive field. The response of the

suppressive field divides the response of the linear receptive field based on a half

saturation contrast (c50). The mathematical form of the model follows:

The Center and the surround linear kernels are denoted by

CL (x, y) = Kcexp (−r2/r2c) (3.3)

and

SL (x, y) = Ksexp (−r2/r2s) (3.4)

leading to the total linear kernel

RFL (x, y) = Kcexp (−r2/r2c)−Ksexp (−r2/r2s) (3.5)

r2 = x2 + y2

x ⊂ R; y ⊂ R

The non-linear surround weight is given by

SE (x, y) = KEexp (−r2/r2E) (3.6)

x ⊂ R; y ⊂ R

along with the half saturation contrast, c50. For a given pattern of light

I(x, y), the linear response of the cell is given by

fL (RFL (x, y) , I (x, y)) =

∫
x

∫
y

[Kcexp (−r2/r2c)−Ksexp (−r2/r2s)] I (x, y) dx dy

(3.7)

The non-linear local contrast clocal is calculated by weighting the squared

stim by the non-linear surround weight:
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clocal (SE (x, y) , I (x, y)) =

√√√√∫
x

∫
y

[KEexp (−r2/r2E)] I2 (x, y) dx dy (3.8)

Note the squaring term on the image luminance. This prevents any pattern

of light I(x, y) from ever contributing negatively to the local contrast clocal. The

lowest possible value of clocal is zero and this happens when the overall luminance

on the screen is the mean luminance (=0). All other patterns contribute positively.

Finally, the net response of the cell is

f(RFL, SE, I) = fL ∗
c50

c50 + clocal
(3.9)

Size tuning with Divisive Normalization

The response of the non-linear surround is positive and increases with both

the Michelson Contrast (defined as

(
Imax − Imin
Imax + Imin

)
for any pattern of light I(x, y))

of the stimulus as well as the size of the stimulus. Thus this model treats both

these factors identically and one would expect the responses at large aperture sizes

to be lower than the responses at small aperture sizes. Thus even conditions that

did not show substantial suppression (like in 3.2) start showing suppression.

The neuron modeled in 3.7a is identical to the one in 3.5 with a normalizing

suppressive field. The comparison shows how the suppresive field can show divisive

normalization. As the size of the stimulus increases, the overall contribution of

the suppressive field increases. This increase is independent of the sign of the

luminance because of the presence of the squaring non-linearity. Even though the

linear receptive field’s contribution is still increasing, the contribution due to the

non-linear surround overwhelms that due to the classical receptive field leading to

strong suppression and clear size tuning.

Contrast saturation with Divisive Normalization

As seen in 3.7b, the response of the single unit at large apertures; a proxy

for full-field contrast response of the unit shows clear saturation (red crosses).
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The linear component (black crosses) itself shows no saturation. The saturating

responses are well fit by a hyperbolic function (red curve), while the non-saturating

responses are well fit by a straight line.

Contrast Dependent Suppression and Summation Radius

As seen in 3.7c and d, the amount of suppression as well as optimal sum-

mation radius (ropt) is dependent on the michelson contrast of the stimulus. To

understand the reason for this, lets qualitatively estimate the non-linear surround

contribution both at the peak response aperture and at full-field aperture for two

different michelson contrasts. At low enough michelson contrasts, clocal is small at

all aperture sizes. The non-linear contribution tends to 1. The suppression seen is

from the linear receptive field, a value estimated to be small as shown in 3.2.1. At

higher michelson contrasts, the contribution of the non-linear surround goes from

negligible (� c50) to dominating (� c50). This explains why the overall suppres-

sion is different at different contrasts: higher contrasts show higher suppression.

This further expains how the optimal summation radius (ropt) increases at

lower contrasts. Compared to low contrast responses, the increase in the non-linear

contribution at higher michelson contrast as well as with aperture radius cause the

size tuning to peak earlier.

Conclusions

It is clear that divisive normalization can explain all the features discussed

in 3.1. In additions to these features, it can further address other kind of re-

sponses like masking [Bonin et al., 2005, Solomon et al., 2002]. Fitting dLGN

responses with divisive normalization may provide models with the greatest pre-

dictive power. Once the model is fit, the parameters involved do not change and

can then be used to predict responses for more complex stimuli. However, fitting

these models require large amounts of data; data that is usually hard to obtain in

awake preparations.
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3.2.3 Modified DOG Receptive Fields

Other approaches to fitting area tuning curves have been attempted. These

approaches typically involve relaxing the assumption of constant linear center and

surround receptive field properties across stimuus conditions. While it has the

advantage of not requiring large quantities of data to fit the model, it has the

disadvantage of being phenomenological. I discuss two models that are likely to

show more of the response properties detailed in 3.1.

Contrast Dependent Change in Surround Strength

As discussed in 3.2.1, the classical center and surround can both contribute

to suppression of responses. However, with constant center and surround strength

and sizes, it was impossible to see contrast dependent size tuning, full field contrast

saturation or optimal summation radius (3.5).

However, what would happen is we can change the strength of the classical

surround?

3.8 shows the responses of a model neuron where the strength of the sur-

round Ks is dependent on the michelson contrast of the stimulus. In this model,

surround strength increases linearly with contrast. This model allows for contrast

dependent suppression but does not allow contrast saturation or for a contrast

dependent optimal summation radius.

Conclusion

While the DOG model itself is not capable of explaining many of the re-

sponse properties of real neurons, relaxing assumptions about the size and strength

of the receptive fields can yield better fits to responses of real neurons. It would

be instructive to attempt changing the parameters systematically to find those

changes which best fit the responses of real neurons.

Chapter 3, in part, is being prepared for submission for publication of ma-

terial. Sriram, Balaji; Reinagel, Pamela. The dissertation author was the primary

investigator and the first author of the paper.
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Figure 3.2: Size Tuning Curve for a model neuron.
The model neuron here has rc = 3◦ and rs = 12◦ with a balanced classical surround
(see 2.3.2 for definitions). The response of the model cell is dependent on the size
of the aperture. Bottom insets show the extent of the center and surround as
well as the aperture of the stimulus used to drive the neuron. The red and blue
circles indicate the 2SD of the center and surround gaussian densities and the
stimulus within circular apertures is overlaid on top. Top inset shows the spatial
frequency tuning as estimated from 2.1. The spatial frequency used for the size-
tuning experiment is denoted as a red dot on the spatial frequency tuning curve;
the exact value of the spatial frequency (in cpd) is also included.
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Figure 3.3: Responses show higher suppression at high spatial frequency.
The model neuron shown here has rc = 3◦ and rs = 12◦ with a balanced classical
surround (as in 3.2). The spatial frequency of the grating used to drive the cell
was ν = 0.1 cpd. Bottom insets show the extent of the center and surround (as
explained in 3.2) as well as the aperture of the stimulus used to drive the neuron.
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Figure 3.4: Responses show suppression at high spatial frequencies.
The model neurons shown here has rc = 3◦ and rs = 12◦ with a balanced classical
surround (as in 3.2). The spatial frequency of the grating used to drive the cell
was ν = 0.15 cpd. Top insets show the spatial frequency tuning of the neuron.
The spatial frequency used to drive the cell is denoted by a red dot; the value of
the spatial frequency is also noted (in cpd). Bottom insets show the extent of the
center and surround (as explained in 3.2) as well as the aperture of the stimulus
used to drive the neuron.
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Figure 3.5: Contrast Dependence of Size Tuning to Linear DOG Model.
a shows the size-tuning response of the neuron described in 3.2 to gratings of
varying contrasts. Top insets show the spatial frequency tuning as well as the
contrast color scale used to plot the size-tuning curves.Bottom insets show the
stimulus context at various aperture radii. It defines the maximal response fmax,
the response at full field fFF , and the optimal radius (radius at maximal response)
ropt. b shows the contrast response curve (fullfield response fFF ) as a function of
contrast. Red crosses indicate the model response and the grey curve is best fit
line to the contrast response curve. c shows the suppression fmax−fFF

fmax
as a function

of contrast while d shows the optimal radius (ropt) as a function of contrast.
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Figure 3.6: DOG with Divisive Normalization.
Any stimulus passes through two independent paths. the first path is the DOG
model explained in 3.2.1. The response calculated by the linear receptive field is
normalized by an independent pathway that calculates the local contrast, clocal.
This suppressive pathway calculates the local contrast as the standard deviation
of the stimulus. The net response f1 is the ratio of the linear response and the
divisive field response.
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Figure 3.7: Size Tuning for DOG with Divisive Normalization.
a The response of the receptive field explained in 3.2 and in 3.5 with a non-
classical surround added. Non classical surround parameter values are: rE = 16,
KE = 30 and c50 = 0.1. b The values of the responses at the maximum aperture
is used as a proxy for full field response (fFF ). The contrast response curve of
the cell with divisive normalization shows saturation. The red line is the best

hyperbolic fit (of the form f(c) =
fmaxc

c50 + c
) to the data. The linear receptive field’s

response alone (black crosses) does not show saturation. the light grey curve is
the best fit line to the linear receptive field response. c The optimal response
radius ropt decreases with an increase in contrast. Estimated optimal radii (red
crosses) are well fit by a decaying exponential curve. d The overall suppression is

contrast dependent. Suppression calculated as supp =
fmax − fFF

fmax
increases with

an increase in contrast. The estimated suppression (red crosses) is well fit by an
increasing exponential.
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Figure 3.8: Size Tuning for DOG with Variable Surround Strength.
a Size tuning for a classical DOG model with variable surround strength. Top inset
shows the spatial frequency tuning of the neuron at different contrasts. Dotted red
line indicates the spatial frequency used to simulate the size tuning curve. Bottom
inset shows the strength of the surround as a function of the michelson contrast.
bThe values of the responses at the maximum aperture is used as a proxy for full
field response (fFF ). The contrast response curve does not show saturation. c
The overall suppression is contrast dependent. Suppression calculated as supp =
fmax − fFF

fmax
increases with an increase in contrast. The estimated suppression (red

crosses) is well fit by an straight line. d The optimal response radius ropt does not
change with contrast.



Chapter 4

Size Tuning in the Rodent dLGN

4.1 Introduction

Responses of the neurons in the dLGN are shaped by powerful linear and

non-linear influences. What contributes to these influences? Atleast in part, dLGN

responses are inherited from its input, the retina. Physiological and anatomical

evidence suggests that, in the cat, X-cells receive very few retinal inputs and that

typically a single input dominates the responses of the geniculate neuron [Levick

et al., 1972, LeVay and Ferster, 1979]. However, the local circuitry in the dLGN

plays a large role in shaping their responses [Lindstrom and Wrobel, 2011, Butts

et al., 2011, Wilson et al., 1996, Wang et al., 2007]. Apart from the immediate

circuitry, dLGN responses are affected by the state of the animal: sleep [Livingstone

and Hubel, 1981], anesthesia [Pape and Eysel, 1988], attention [McAlonan et al.,

2008] and via the massive feedback from cortex [Olsen et al., 2012, Sillito et al.,

2006, Andolina et al., 2007]. It is, however, still a matter of debate as to the

exact cause of the responses of dLGN neurons. Recent years has seen the use of

rodents in studying the circuitry causing these responses. The ability to genetically

target a specific subpopulation of neurons has allowed for precise manipulation of

their activity leading to a more detailed understanding of the circuitry involved.

However, to understand the role that specific neuronal sub-types may be playing

in the responses described in 3.1, we will need to test the presence of these features

in the rodent preparation.

43
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To test for the presence of the responses described in 3.1, I recorded size

tuning curves in awake rodents. Multiple reasons prevent me from performing the

kind of analyses explained in 3:

• Limitation in recording times: As explained in 3.2.2, large quantities of

data is required to model the complete model (see 3.9). One needs to locate

the center of the receptive field, measure the spatial frequency tuning of the

neuron, obtain contrast tuning of neurons, and finally obtain the size tuning

graphs at multiple different contrasts. Initial characterization typically take

from 10 to 15 minutes in the awake preparation. This is the median length of

any recorded neuron. Improvements in the recording technique will enable us

to increase recording lengths in the future allowing us to get higher quantities

of data.

• Eye movements: The presence of eye movements will affect the centering of

the stimulus over the receptive field. As explained in 2.2.6, eye movements

were small and infrequent. However, since many of the features we wish

record happen on the scale of the receptive field center of dLGN neurons, even

small eye movements would affect the measurements. With long recording

times, it may be possible to average over these effects. However, such long

recordings are hard in awake rodents.

• Unexpected responses: Some neurons show responses not expected by

any of the models explained in 3.

In view of the above reasons, I present the recorded data as is. I detail the

parameters of the recording and mention the examples which do not conform to

our expectations of such responses.

4.2 Methods

The method for recording single units in the awake rodent dLGN is identical

to that mentioned in 2.2. However, a few more details are provided for completion.
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Figure 4.1: Identifying Spatio-Temporal Receptive Fields.
The screen was split into 5◦ or 2.5◦ squares. On each frame, each square was either
completely ON or OFF. The choice of whether it was completely ON or OFF
was made pseudo-randomly with a probability PON = 0.5. This pseudo-random
stimulus was repeated 60 times a second. Simultaneously, spike trains from dLGN
neurons are recorded. The average stimulus that preceded the spike was then used
to calculate the average spatio-temporal receptive field (STRF/STA).

4.2.1 Locating the Receptive Field Center

Receptive fields were located with white noise stimuli [Chichilnisky, 2001].

Briefly, a random checkerboard stimulus was presented on the monitor for each

frame; the frame rate of the monitor was 60 Hz. Simultaneously recorded single

units were used to used to calculate the average stimulus preceding a spike: the

spatio temporal receptive field (STRF) or the spike triggered average (STA) (see

4.1 for a schema).

The calculated STA provides the shape of the receptive field over time. As

shown in 4.2, the center of the receptive field integrates stimuli faster and shows an

earlier peak sensitivity (83 ms). A 2-D gaussian was fit to the spatial STA at the

time of maximal sensitivity. The center of the gaussian was the estimated center

of the receptive field.
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Figure 4.2: Example Spatio-Temporal Receptive Field
Example STRF of an OFF center cell. Bottom insets shows the spike triggered
average over time. Time preceding the spike increases to the left. The average
stimulus preceding each spike is a gray screen 33ms before the spike. The average
stimulus was below gray screen 50 ms and is the lowest 83 ms prior to the spike.
The center of the receptive field is not influenced by stimuli more than 100 ms
before the spike. The surround is slower. Its influence starts later then the center’s
infleunce (66 ms) and peaks later (100 ms). The figure shows the overall STRF
across the entire screen 83 ms before the spike.

4.2.2 Choosing Spatial Frequency

Independent of the actual spatial frequency preference of the LGN neurons,

the spatial frequency used was ν = 0.1 cpd or ν = 0.2 cpd.

4.2.3 Effect of Eye Movements

Eye movements were measured using an IR-eye tracking camera. Prelimi-

nary experiments indicated that eye movements were small (typically < 5◦), rare

(< 1Hz) and unrelated to the stimulus when stimulus speed was fast enough.

For slower stimuli, the eyes locked to the leading edge of a grating exhibiting the
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Opto-kinetic reflex. Such eye movements were small enough to measure spatial fre-

quency tuning. However, measuring size tuning requires far more precise control

over the gaze of the animal - a level of control not available in the awake rodent.

The effects of eye movements will affect size tuning measurements the greatest

for small apertures. Spike modulation amplitudes for aperture sizes below 10◦ are

likely to be inaccurate. Considering that the greatest influence on the size of the

response is due to the center, eye movements will tend to suppress the responses of

neurons. Hence, responses at small aperture radii are likely to be underestimates

of their true value.

4.3 Results

The individual size-tuning curves follow. For each single unit, I include

analyses of the receptive field location, as well as the measured size-tuning curve

at various contrasts. If multiple contrasts have been used, the value of the contrasts

is also mentioned.
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Figure 4.3: Size Tuning for Neuron ID:3
The Figure shows size Tuning for Neuron #3. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a) 0.5 (in b) and 0.25 (in c). Also included is the spatio-
temporal receptive field (bottom right). Large panel shows the spatial context at
the maximal deviation of the STA (t = 100 ms prior to spike). Each square is 5◦

in size. Small insets below show the spatial context before, during and after the
context in the large panel.
Responses do not reduce with contrast.
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Figure 4.4: Size Tuning for Neuron ID:7
The Figure shows size Tuning for Neuron #7. X-Axis is the aperture size in degrees
while y-axis is amplitude of the modulation in impulses/s. The nominal contrast
used was 1 (dark curve) and 0.25 (light gray curve).
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Figure 4.5: Size Tuning for Neuron ID:9
The Figure shows size Tuning for Neuron #9. X-Axis is the aperture size in degrees
while y-axis is amplitude of the modulation in impulses/s. The nominal contrast
used was 1 (dark curve) and 0.25 (light gray curve).
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Figure 4.6: Size Tuning for Neuron ID:12
The Figure shows size Tuning for Neuron #12. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a) and 0.25 (in b). Also included is the spatio-temporal
receptive field (bottom). Large panel shows the spatial context at the maximal
deviation of the STA (t = 83 ms prior to spike). Each square is 5◦ in size. Small
insets below show the spatial context before, during and after the context in the
large panel.
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Figure 4.7: Size Tuning for Neuron ID:14
The Figure shows size Tuning for Neuron #14. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a) 0.25 (in b) and 0.5 (in c). Also included is the spatio-
temporal receptive field (bottom). Large panel shows the spatial context at the
maximal deviation of the STA (t = 83 ms prior to spike). Each square is 2.5◦

in size. Small insets below show the spatial context before, during and after the
context in the large panel.
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Figure 4.8: Size Tuning for Neuron ID:16
The Figure shows size Tuning for Neuron #16. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a and b), 0.25 (in c) and 0.5 (in d). Also included is the
spatio-temporal receptive field (bottom). Large panel shows the spatial context at
the maximal deviation of the STA (t = 83 ms prior to spike). Each square is 5◦

in size. Small insets below show the spatial context before, during and after the
context in the large panel.
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Figure 4.9: Size Tuning for Neuron ID:17
The Figure shows size Tuning for Neuron #17. a X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1. Also included is the spatio-temporal receptive field (right).
Large panel shows the spatial context at the maximal deviation of the STA (t = 83
ms prior to spike). Each square is 5◦ in size. Small insets below show the spatial
context before, during and after the context in the large panel.
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Figure 4.10: Size Tuning for Neuron ID:22
The Figure shows size Tuning for Neuron #22. a X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1. Also included is the spatio-temporal receptive field (right).
Large panel shows the spatial context at the maximal deviation of the STA (t = 83
ms prior to spike). Each square is 5◦ in size. Small insets below show the spatial
context before, during and after the context in the large panel.
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Figure 4.11: Size Tuning for Neuron ID:26
The Figure shows size Tuning for Neuron #26. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a), 0.25 (in b), 0.5 (in c) and 0.25 (in d). Also included is
the spatio-temporal receptive field (bottom). Large panel shows the spatial context
at the maximal deviation of the STA (t = 100 ms prior to spike). Each square is
5◦ in size. Small insets below show the spatial context before, during and after the
context in the large panel.
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Figure 4.12: Size Tuning for Neuron ID:33
The Figure shows size Tuning for Neuron #33. a X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1. Also included is the spatio-temporal receptive field (right).
Large panel shows the spatial context at the maximal deviation of the STA (t =
83 ms prior to spike). Each square is 2.5◦ in size. Small insets below show the
spatial context before, during and after the context in the large panel.
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Figure 4.13: Size Tuning for Neuron ID:37
The Figure shows size Tuning for Neuron #37. a X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a) and 0.25 (in b). Also included is the spatio-temporal
receptive field (bottom). Large panel shows the spatial context at the maximal
deviation of the STA (t = 83 ms prior to spike). Each square is 5◦ in size. Small
insets below show the spatial context before, during and after the context in the
large panel.
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Figure 4.14: Size Tuning for Neuron ID:42
The Figure shows size Tuning for Neuron #42. a X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a) and 0.25 (in b). Also included is the spatio-temporal
receptive field (bottom). Large panel shows the spatial context at the maximal
deviation of the STA (t = 83 ms prior to spike). Each square is 5◦ in size. Small
insets below show the spatial context before, during and after the context in the
large panel.
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Figure 4.15: Size Tuning for Neuron ID:43
The Figure shows size Tuning for Neuron #43. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a and c) and 0.25 (in b and d). Also included is the
spatio-temporal receptive field (bottom). Large panel shows the spatial context at
the maximal deviation of the STA (t = 83 ms prior to spike). Each square is 5◦

in size. Small insets below show the spatial context before, during and after the
context in the large panel.
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Figure 4.16: Size Tuning for Neuron ID:45
The Figure shows size Tuning for Neuron #45. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a) 0.25 (in b) and 0.5 (in c). Also included is the spatio-
temporal receptive field (bottom right). Large panel shows the spatial context at
the maximal deviation of the STA (t = 83 ms prior to spike). Each square is 5◦

in size. Small insets below show the spatial context before, during and after the
context in the large panel.
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4.4 Conclusion

How well do the linear DOG models explain size tuning in rodent dLGN

neurons? To test this, we used the receptive field fits obtained as shown in 2.2.9 and

applied it to the model developed in 3.2.1. Fits were typically poor. Ocassionally,

however, the model fit the data at large aperture radii (Figure 4.23).

It still remains to be seen whether simultaneously fitting both the spatial

frequency and the area summation is capable of providing reasonable fits to the

responses obtained. Also, many of the responses obtained do not scale well with

contrast (Figures 4.3,4.4,4.5,4.6,4.13,4.16); and many responses show abnormal in-

crease in activity at high aperture sizes (Figures 4.4 high contrast, 4.5 low contrast,

4.9a, 4.15c, 4.18a, 4.20a). Such responses are not expected by any of the models

described in Chapter 3.

Chapter 4, in part, is being prepared for submission for publication of ma-

terial. Sriram, Balaji; Reinagel, Pamela. The dissertation author was the primary

investigator and the first author of the paper.
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Figure 4.17: Size Tuning for Neuron ID:46
The Figure shows size Tuning for Neuron #46. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1. Also included is the spatio-temporal receptive field (right).
Large panel shows the spatial context at the maximal deviation of the STA (t =
100 ms prior to spike). Each square is 5◦ in size. Small insets below show the
spatial context before, during and after the context in the large panel.
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Figure 4.18: Size Tuning for Neuron ID:48
The Figure shows size Tuning for Neuron #48. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1. Also included is the spatio-temporal receptive field (right).
Large panel shows the spatial context at the maximal deviation of the STA (t =
100 ms prior to spike). Each square is 5◦ in size. Small insets below show the
spatial context before, during and after the context in the large panel.
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Figure 4.19: Size Tuning for Neuron ID:58
The Figure shows size Tuning for Neuron #58. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1. Also included is the spatio-temporal receptive field (right).
Large panel shows the spatial context at the maximal deviation of the STA (t =
100 ms prior to spike). Each square is 5◦ in size. Small insets below show the
spatial context before, during and after the context in the large panel.
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Figure 4.20: Size Tuning for Neuron ID:63
The Figure shows size Tuning for Neuron #63. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1 (in a and b) and 0.25 (in c). Also included is the spatio-
temporal receptive field (bottom right). Large panel shows the spatial context at
the maximal deviation of the STA (t = 133 ms prior to spike). Each square is 5◦

in size. Small insets below show the spatial context before, during and after the
context in the large panel.
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Figure 4.21: Size Tuning for Neuron ID:75
The Figure shows size Tuning for Neuron #75. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1. Also included is the spatio-temporal receptive field (right).
Large panel shows the spatial context at the maximal deviation of the STA (t =
100 ms prior to spike). Each square is 2.5◦ in size. Small insets below show the
spatial context before, during and after the context in the large panel.
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Figure 4.22: Size Tuning for Neuron ID:76
The Figure shows size Tuning for Neuron #76. X-Axis is the aperture size in
degrees while y-axis is amplitude of the modulation in impulses/s. The nominal
contrast used was 1. Also included is the spatio-temporal receptive field (right).
Large panel shows the spatial context at the maximal deviation of the STA (t =
100 ms prior to spike). Each square is 5◦ in size. Small insets below show the
spatial context before, during and after the context in the large panel.
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Figure 4.23: Fit to Size Tuning for Neuron ID:45 The Figure shows fit
to size tuning obtained form the model fit to the Spatia frequency tuning curve
(inset). Data is shown in black with grey error bars (mean ± SEM) while fit is
shown in red.
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