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Implicit Learning Deficits in Autism: A Neurocomputational Account

Trent Kriete & David C. Noelle (tkriete,dnoelle@ucmerced.edu)
Program in Cognitive Science, University of California, Merced, 5200 N. Lake Road

Merced, CA 95343 USA

Abstract

Experiments using the Serial Response Time Task (SRTT)
have suggested that implicit learning is impaired in people with
autism. Implicit learning is learning that occurs without ex-
plicit awareness of the knowledge being acquired. Researchers
have suggested that poor implicit learning could be a major
factor in other profound learning difficulties exhibited by peo-
ple with autism. In this report, we use a neurocomputational
model of the SRTT to show that disturbed interactions between
the mesolimbic dopamine (DA) system and the prefrontal cor-
tex (PFC) may underlie the implicit learning problems ob-
served in autism. This model is shown to fit reaction time data
from the literature for both individuals with autism and nor-
mally developing controls. This work expands on a previous
body of research showing that abnormal DA/PFC interactions
can account for a disparate collection of autistic behavioral
patterns, suggesting that a common neurological mechanism
might produce executive dysfunction, stimulus overselectivity,
and impaired implicit learning in this population.

Keywords: Autism; Implicit Learning; Serial Response Time
Task (SRTT); Prefrontal Cortex (PFC); Dopamine (DA)

Introduction

Autism is a complex developmental disorder characterized

by deficits across physical, social, and cognitive domains.

Cognitive difficulties are found in tasks assessing executive

function, “mind reading” abilities, integration of informa-

tion, attention, and generalizing learned abilities to novel

contexts (Hughes, Russell, & Robbins, 1994; Baron-Cohen,

Leslie, & Frith, 1985; Frith, 1989). In addition, physi-

cal motor abnormalities, an increased prevalence of seizure

disorders, motor stereotypies, and repetitive behaviors of-

ten accompany the diagnosis (Rinehart, Bradshaw, Brere-

ton, & Tonge, 2001; Tuchman & Rapin, 2002). Com-

plicating matters further, people with autism often possess

“islets” of spared cognitive functioning in some areas, in-

cluding visiospatial tasks such as the embedded figures test

and Weschler’s block design task (Shah & Frith, 1983). In-

deed, the diversity and variance of the traits of autism has

led to a recent proposal to abandon any attempt to find a sin-

gle “monolithic” cause underlying all aspects of the disor-

der (Happe, Ronald, & Plomin, 2006).

While we are sympathetic to the notion that all behavioral

aspects of autism are unlikely to have a single common neu-

rological cause, our previous explorations of computational

models of the prefrontal cortex (PFC), and its interactions

with the mesolimbic dopamine (DA) system, have suggested

that a disparate collection of behavioral patterns observed in

autism might stem from a common deficit in these neural sys-

tems. We propose that abnormal PFC/DA interactions may

underlie multiple aspects of this disorder, providing a neu-

roscientific account of how these aspects are related. Our

previous computational work has demonstrated how deficits

in PFC/DA interactions can account for patterns of execu-

tive dysfunction in autism (Kriete & Noelle, 2005, 2006) and

how the same neural deficits can explain stimulus overselec-

tivity in people with autism along with the associated diffi-

culties in generalizing learned skills to novel contexts (Kri-

ete & Noelle, 2008). In this paper, we present a neurocom-

putational model of implicit learning performance in people

with autism, demonstrating that abnormal PFC/DA interac-

tions can explain the observations in this domain, as well.

Implicit learning is learning that occurs without any aware-

ness of the specific knowledge acquired during the process.

Researchers have suggested that people with autism have a

core deficit in their ability to implicitly learn about the in-

herent relationships that exist between objects and situations

in the world (Mostofsky, Goldberg, & Landa, 2000; Klinger,

Klinger, & Pohlig, 2006). Klinger et al. argue that impaired

implicit learning results in difficulties in recognizing the rela-

tionships that exist across experiences, likely leading to prob-

lems forming general knowledge about categories of items

and types of situations. Difficulties in generalizing learned

knowledge to new situations are commonly observed in peo-

ple with autism, and these difficulties frequently act as a cen-

tral obstacle to the development of behaviors needed for au-

tonomy and independent living. Thus, a precise characteriza-

tion of the mechanisms responsible for these generalization

deficits would be very valuable to any effort to design ways

to mitigate these serious issues in people with autism.

In this paper, we first describe our general computational

account of PFC/DA interactions, and we review our previous

work, showing that abnormalities in these neural systems can

account for the patterns of executive dysfunction and stimulus

overselectivity observed in autism. We then review a common

paradigm for assessing implicit learning, the Serial Response

Time Task (SRTT), and we revisit experimental results that

make use of this task to demonstrate impairments in implicit

learning in people with autism. A neurocomputational model

of healthy performance on the SRTT is then described, and

the results of introducing a PFC/DA deficit into this model

are reported. The model results are fit to both healthy and

autistic SRTT performance data appearing in the literature,

demonstrating the ability of a PFC/DA interaction abnormal-

ity to account for the lack of implicit learning in autism. We

close with a general discussion.

Previous Work

Our proposal is that deficits in the mesolimbic dopamine

(DA) system and/or abnormalities in how dopamine modu-

lates the prefrontal cortex (PFC) can account for the behav-

ioral profiles of people with autism across a diverse range of
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task domains. Thus, we suggest that some behavioral deficits

that have previously been seen as stemming from separate

psychological mechanisms might have a common neurolog-

ical cause. Our strategy for demonstrating the feasibility of

this proposal is to show that a broad array of state-of-the-art

neurocomputational models of healthy human performance

all exhibit autistic patterns of responding when they are min-

imally modified to reflect a failure of DA to properly mod-

ulate PFC. In this section, we review our general theory of

the functional role played by PFC/DA interactions, as well

as our previous modeling demonstrations involving executive

dysfunction and stimulus overselectivity in autism.

Interactions Between DA & PFC

We share an account of PFC function that was initially devel-

oped primarily to explain the role of PFC in cognitive con-

trol and cognitive flexibility (Cohen, Dunbar, & McClelland,

1990; Braver & Cohen, 2000; Rougier, Noelle, Braver, Co-

hen, & O’Reilly, 2005). Cognitive control is the ability to

guide behavior according to explicit goals or rules, especially

when doing so is in conflict with more automatic or prepotent

tendencies. Cognitive flexibility describes the ability to ap-

propriately adapt cognitive control in response to shifting task

contingencies. The PFC has been broadly implicated in cog-

nitive control and cognitive flexibility. In our models, the PFC

supports cognitive control by actively maintaining abstract

rule-like representations that provide top-down modulation

of more posterior brain areas, modifying the regular behav-

ior of these posterior pathways so as to overcome their usual

automatic patterns of responding (Cohen et al., 1990). Bio-

logically, the active maintenance of frontal control represen-

tations is supported by dense patterns of recurrent excitation

in the PFC, as well as intrinsic maintenance currents. Com-

putational models of these neural circuits have shown that the

active maintenance of control representations and the flexi-

ble adaptation of control are at odds, with the mechanisms

that maintain PFC representations, and protect them from dis-

tracting inputs, acting as an obstacle to the rapid updating of

PFC contents in response to shifting contingencies. Thus, in

order to achieve cognitive flexibility, a separate mechanism is

needed to rapidly update the actively maintained PFC control

state in a task-appropriate manner.

A useful analogy for this flexible updating mechanism is

that of a “gate” in a fenced enclosure. When cognitive con-

trol must be strong, the gate is closed, keeping out distracting

inputs that might compromise the needed PFC control sig-

nals. When the current control state is no longer appropri-

ate, the gate opens, allowing the old control state to escape

and allowing a new control representation to enter the PFC

via its inputs. In order for the PFC to maintain situation-

appropriate control as contingencies change, a neural mecha-

nism is needed that can learn to adaptively open and close the

gate on PFC in a task-appropriate manner. Some researchers

have suggested that the mesolimbic dopamine system may

play a central role in learning to control this gate (Braver &

Cohen, 2000; O’Reilly & Frank, 2006). Dopamine cells have

been found to carry reward prediction information critical for

learning associations between behaviors and reward (Mon-

tague, Dayan, & Sejnowski, 1996), and the DA projections to

PFC have been viewed as a likely neural implementation of

the gating signal needed to flexibly adjust the control state of

PFC (Braver & Cohen, 2000).

Under this account, DA interactions with PFC drive the

flexible updating of control. Inflexibility arises when these

interactions are disturbed, frequently resulting in PFC perse-

verating on control representations that are no longer appro-

priate. This insight, along with evidence of DA abnormalities

in autism, has led us to investigate the degree to which the per-

turbation of DA/PFC interactions naturally leads to patterns

of behavior observed in people with autism. Our previous

computationalmodeling work has shown that this mechanism

is sufficient to explain various aspects of executive dysfunc-

tion and stimulus overselectivity in autism (Kriete & Noelle,

2005, 2006, 2008).

Executive Dysfunction

People with autism are impaired across a broad range of cog-

nitive tasks that have been associated with executive control

processes. Indeed, the Executive Dysfunction (ED) theory of

autism seeks to explain many of the behavioral patterns ex-

hibited by these individuals in terms of a failure of executive

control over behavior (Hughes et al., 1994).

There is extensive evidence that the prefrontal cortex plays

an important role in executive control. Along with the central

claim of ED, this suggests that the root cause of many autis-

tic behavioral patterns may lie in abnormalities in this region

of the brain. This view of ED suggests that the irregular de-

velopment of prefrontal cortex may underlie the patterns of

cognitive performance seen in autism.

A more detailed examination of autistic behavior reveals

that not all forms of executive processing are impaired, how-

ever. A perplexing aspect of the executive profile demon-

strated by people with autism is that cognitive flexibility has

been shown to be impaired while fundamental cognitive con-

trol remains robust and relatively unaffected. A classic mea-

sure of cognitive control is the Stroop task (Stroop, 1935), and

a common measure of cognitive flexibility is performance on

the Wisconsin Card Sort Test (WCST) (Berg, 1948). Persons

with autism have been shown to exhibit poor WCST perfor-

mance, but they exhibit no more interference on the Stroop

task than healthy controls (Ozonoff & Jensen, 1999). This

dichotomy challenges the notion that autistic behavior is the

result of a global impairment of executive processes, perhaps

mediated by frontal abnormalities.

One clear way to resolve this issue is to posit separate

mechanism for cognitive control and the flexible adaptation

of control. In people with autism, the ability to actively main-

tain information and influence behavior, the PFC, is intact.

However, the ability to flexibly adapt control, mediated via

the DA system, is impaired.

In order to demonstrate the viability of this account of

executive dysfunction in autism, we made use of an exist-
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ing neurocomputational model of PFC/DA interactions that

had been shown to fit the performance of both healthy and

frontally damaged humans on both the Stroop and WCST

tasks (Rougier et al., 2005). Simply weakening the influence

of DA on PFC in this computational model was sufficient to

both qualitatively and quantitatively capture autistic perfor-

mance on both Stroop and WCST (Kriete & Noelle, 2005,

2006). More specifically, reducing the gating effect of the DA

signal selectively impaired the ability of the system to update

the contents of the PFC, which is vital for the WCST. How-

ever, there was no effect on the ability of the PFC to influence

more posterior brain areas and assist overcoming prepotent

responses during the Stroop task. This computational model-

ing result suggested that executive deficits in autism may be

mediated by weakened PFC/DA interactions.

Stimulus Overselectivity

Stimulus overselectivity is said to occur when an overly re-

stricted set of features of the environment come to drive be-

havior. While some associations between environmental fea-

tures and appropriate action are acquired, many reliable cues

to action are not learned. This phenomenon was first doc-

umented in the early 1970s in people with autism (Lovaas,

Schreibman, Koegel, & Rehm, 1971). Overselective behavior

in people with autism has been seen as a plausible explanation

for the problems many individuals with autism exhibit when

they are expected to generalize learned behaviors to novel sit-

uations. In such situations, restricted, often irrelevant, por-

tions of the environment become tightly coupled with the per-

formance of the desired behavior. If this restricted portion of

the environment is not consistently available to the individual,

generalization to new settings will suffer. For example, an in-

dividual with autism might successfully learn to order a meal

from a simulated cashier in a laboratory but fail to general-

ize the required actions to situations that fail to possess some

key feature, like a particular item of furniture or idiosyncratic

word usage on the part of the cashier. This inability to ap-

propriately generalize learned skills is a major focus of many

behavioral intervention techniques.

In Kriete & Noelle (2008) we presented a computational

account of how overselective representations can develop in

more posterior brain areas when the PFC is unable to flexi-

bly update its contents, due to inappropriate DA modulation.

We used a relatively simple Leabra (O’Reilly & Munakata,

2000) neural network model of conditioning that included a

modulation of the stimulus-response mapping based on the

contents of a layer of simulated PFC neurons. In this case,

the control signals actively maintained in PFC encoded ex-

ecutive attention, selectively highlighting specific aspects of

the current stimulus. With healthy PFC/DA interactions, the

PFC contents flexibly switched from one aspect of the cur-

rent stimulus to another, allowing the network to learn about

all relevant aspects of the stimulus. When the PFC was un-

able to flexibly and appropriately update its contents, how-

ever, representations in cortical areas downstream from the

PFC developed so as to be dominated by an overly restricted,

or possibly even irrelevant, subset of features present in the

stimulus. Poor generalization was exhibited by these net-

works, due to these abnormal cortical representations. In the

model, the inability to flexibly update PFC increased the like-

lihood that the only environmental associations learned in-

volved spurious correlations (i.e., idiosyncratic features of the

training environment), with other, more broadly relevant, fea-

tures escaping the attention of the network. Subsequent de-

pendence on such spurious correlations crippled generaliza-

tion performance. The model’s behavior was favorably com-

pared to previously reported laboratory data involving people

with autism and healthy controls. This finding provides an ad-

ditional example of how a common neurological deficit, dys-

functional PFC/DA interactions, can help to bridge theoreti-

cal gaps across behavioral domains within autism research.

The Serial Response Time Task (SRTT)

In addition to executive dysfunction and stimulus overselec-

tivity, is it plausible that abnormal PFC/DA interactions can

also account for the deficits in implicit learning observed in

people with autism? We address this question by investigat-

ing the effects of PFC/DA dysfunction on the performance of

a psychological test commonly used to assess implicit learn-

ing abilities: the Serial Response Time Task (SRTT).

In a common version of this task, participants are presented

with four buttons, with exactly one button illuminated at any

one time. Participants are asked to simply press the cur-

rently illuminated button as quickly and accurately as pos-

sible. Once a button is depressed, a new button is illumi-

nated, prompting the participant to press the new button, and

this sequence of cued button presses continues for a block of

80 responses, with an experimental session consisting of five

of these blocks. The illumination order of the buttons is the

key manipulation of the SRTT. During the first and the final

(fifth) block the order in which the buttons are illuminated is

random. However, during blocks 2, 3, and 4 there is a hidden

pattern in the responses that are required. This hidden struc-

ture is apparently detected by many healthy participants, as

there is a significant reduction in the reaction time required

to press the correct button across blocks 2, 3, and 4. Impor-

tantly, this reduction in reaction time does not occur during

the randomized first and fifth blocks. The common interpre-

tation of these results is that learned knowledge of the hidden

sequential pattern allows participants to better “anticipate”

which button will be illuminated next, allowing them to pre-

pare this upcoming action and, thereby, speed their response.

Knowledge of the hidden structure is seen as “implicit”, how-

ever, as most participants claim no explicit knowledge of the

sequential pattern (Cleeremans & McClelland, 1991).

People with autism, however, do not show marked im-

provement during the intermediate blocks of the SRTT, pro-

viding support to the claim that autism impairs implicit learn-

ing abilities (Mostofsky et al., 2000). While this result is in-

teresting in its own right, we do not yet have an understanding

of the biological mechanism(s) behind this deficit.
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Some insight might be gained from the neuropsychological

literature involving the SRTT. Specifically, deficits in tasks

assessing implicit learning have been linked to damage to the

cerebellum. This is intriguing, as there is ample evidence of

cerebellar abnormalities in people with autism (Courchesne

et al., 1994). However, other tasks traditionally associated

with the cerebellum, such as judgment of timing, show no

differences between people with autism and normally devel-

oping controls (Mostofsky et al., 2000). Recently, evidence

has emerged suggesting that PFC and the basal ganglia may

be important players in implicit learning as well (Matsumoto,

Hanakawa, Maki, Graybiel, & Kimura, 1999; Pascual-Leone,

Wassermann, Grafman, & Hallett, 2004). It is this latter

connection that we will pursue, here, using an established

computational model of the SRTT to investigate the possibil-

ity that PFC/DA abnormalities may give rise to the implicit

learning problems observed in people with autism.

Modeling Implicit Learning

Seminal work on modeling healthy SRTT performance has

been conducted by Cleeremans et al. (1991). In these neu-

rocomputational models, a simulated neural circuit is pre-

sented with an input that encodes the currently illuminated

button, and the output of this circuit is read as the system’s

expectation for the next button to be illuminated. This in-

put to output mapping is mediated by a collection of hid-

den units, and synaptic learning methods are used to improve

this mapping with experience. Importantly, these networks

also include a “context layer” of neural units which can learn

to actively maintain information about the history of previ-

ously presented inputs, allowing the model to base its pre-

dictions on more than the currently illuminated button. The

activation levels of the neural units in the context layer are

set to be “copies” of the hidden unit activation levels when-

ever a new input is presented, making the Cleeremans model

of SRTT performance essentially a simple recurrent network

(SRN) (Elman, 1990) trained to predict the next button press.

The schematic network architecture is shown in Figure 1.

This model has provided good fits to healthy human perfor-

mance on the SRTT (Cleeremans & McClelland, 1991).

Since the sequential structure in the intermediate blocks

of the SRTT is often complex, the information provided by

the context layer is vital for the success of the model. Im-

portantly, the context layer in this model plays an identical

functional role to the PFC in other models, actively maintain-

ing information that can be used to modulate an input-output

mapping. In our previous executive dysfunction model,

the PFC maintained information about the currently relevant

stimulus dimension (e.g., “focus on the ink color” in Stroop

or “sort cards based on shape” in WCST), so as to modulate

performance. In our stimulus overselectivity model, the PFC

maintained information about the current stimulus feature to

receive executive attention, modulating how the stimulus was

processed. In this model, the context layer maintains infor-

mation about the preceding button presses, allowing that in-

Figure 1: Network Diagram of SRTT Model

formation to modulate the prediction of the next button. The

main difference between our previous PFC models and this

SRTT model involves the timing with which the contents are

updated. In our previous models, the PFC was updated in a

dynamic fashion, based on learned task contingencies. In this

model, the context layer is updated with each new input pre-

sentation. Thus, the SRN context layer is analogous to the

PFC in our previous models, with the updating “gate” forced

to open with each new input, as previously suggested by other

researchers (O’Reilly & Frank, 2006).

It is important to note that, in order to capture the rele-

vant sequential information, the SRN must update the context

layer in a fast and appropriate manner. This flexible updating

of contextual information is precisely the cognitive mecha-

nism we hypothesize to be suspect in people with autism. By

restricting the ability of the SRN to update the context layer,

mirroring the PFC updating failures that arise with weakened

PFC/DA interactions in our other models, we expect to cap-

ture the performance of people with autism.

We made small modifications to a previous implementa-

tion of the Cleermans SRTT model which uses the biologi-

cally grounded Leabra framework, reducing the original im-

plementation’s 10-unit inputs and outputs to only 4, to capture

the structure of the 4-button SRTT (O’Reilly & Munakata,

2000). The resulting network is shown in Figure 1. In this

model, an Input Layer represents the four distinct buttons.

The Hidden Layer learns the predictionmapping and provides

a modeled abstraction of posterior brain systems. A Response

Layer encodes the prediction output of the network. Addi-

tionally, a Context Layer provides a top-down influence on

processing within the Hidden Layer, reflecting role of PFC.

In order to model the performance of people with autism,

we restricted the probability of successfully updating the

Context Layer (PFC) upon each input presentation. Nor-

mally, the Context Layer is updated with each input, but our

autism model only updated the layer with some fixed proba-

bility which was less than one. This is analogous to reducing
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the efficacy of the DA-based gating signal to the PFC. Re-

stricting the updating of the PFC in this manner makes the

temporally extended information normally contained within

this layer much less reliable, making the learning of complex

sequential structures much more difficult for the network.

The measure of interest in the SRTT is the response time

of the participants throughout the training blocks. In or-

der to compare model performance to human reaction times,

Cleeremans et al. (1991) translated network outputs into a

probability distribution over the four buttons using a Luce

choice ratio (Luce, 1963) and then linearly scaled the error

between this prediction distribution and the actual outcome

(i.e., the next button illuminated) to produce a modeled re-

sponse time. This procedure assumes that there is a linear

increase in response time with prediction error. We used this

method, as well, introducing three free parameters for fitting

the model to data: a linear scaling parameter from error to

milliseconds, a base response time (when error is zero) for

the healthy model, and a base response time for the autism

model. Note that different base response times were used for

the normally developing and autism cases in order to capture

the difficulty people with autism regularly exhibit when initi-

ating movements (Rinehart et al., 2001).

Results

Network simulations were repeated 100 times in each of the

experimental conditions, with initial synaptic weights ran-

domized for each repetition. Average performance results for

each block were compared to previously reported response

time data for both people with autism and normally develop-

ing controls (Mostofsky et al., 2000). A grid search was per-

formed over the possible probabilities of updating the Con-

text Layer, testing probabilities from 0.0 to 1.0 in steps of

0.1, with the three linear scaling parameters optimized to re-

duce sum-squared deviation from the human response time

data. The updating probability, and associated scaling param-

eters, that produced the lowest sum-squared deviation from

the human data was identified as the best fit model.

The simulation results match human performance both

qualitatively and quantitatively, providing evidence that im-

pairments in PFC updating can result in implicit learning

deficits like those seen in people with autism. When the

healthy network is restricted to perfectly update its Context

Layer (i.e., with probability one), the corresponding best-fit

probability for the autism network is 0.5, with an SSE of

652.1 The corresponding scaling parameter from error to re-

action time is 261.4, the healthy base time is 458.6 msec, and

the autism base time is 534.5 msec. The resulting modeled

reaction times, along with human data, is shown in Figure 2.

1If the healthy network is allowed to update imperfectly, as well
as the autism network, the best fit arises when the healthy network
updates with 0.6 probability and the autism network updates with
0.2 probability, producing an SSE of 549. Unfortunately, since the
variance of the human data was not reported in Mostofsky et al.
(2000), we cannot assess if these parameters are reliably better at
fitting the human data than the 1.0/0.5 case.

Figure 2: Scaled Model Results & Human Behavioral Data

from Mostofsky et al. (2000)

A repeated measures ANOVA was conducted on blocks

1, 2, 3, and 4 of the model results, and a significant Group

by Block interaction (F(3,97) = 62.007; p < 0.000001) was
detected. From these results we can conclude that the net-

works simulating autistic performance demonstrated signif-

icantly less learning over the crucial training blocks of 2,

3, and 4, as compared to the networks allowed to properly

update their PFC-like Context Layers. Thus, clear implicit

learning deficits were present in the autism model.

Discussion & Conclusion

The breadth of behavioral and neurological abnormalities dis-

covered in people with autism is almost staggering. Using

computational models, constrained by our existing knowl-

edge of biology, is a relatively untapped resource for explor-

ing the neurological underpinnings of autism. Utilizing these

tools in our investigations has provided us with insights into

how a single neurological mechanism — the improper up-

dating of the PFC caused by disrupted interactions with the

mesolimbic DA system — can account for behavior across a

variety of previously unrelated domains of autistic behavior.

The modeling results presented in this report suggest that,

in people with autism, implicit learning deficits may be driven

largely by abnormalities in DA/PFC interactions, causing in-

flexibility in the updating of contextual information. With-

out the proper updating of contextual information, it is es-

sentially impossible to properly integrate temporally sepa-

rated pieces of information, such as the order of items in a

sequence. Thus, our computational account highlights how

PFC/DA dysfunction can lead to problems with information

integration. This is particularly interesting, since one promi-

nent behavioral theory of autism, Weak Central Coherence,

posits that deficits in integrating contextual information lay at

the core of this disorder (Happe, 1999). It is a major point of

our future research to investigate whether abnormal PFC/DA

interactions can account for the various other behavioral pat-

terns currently cited as evidence of weak central coherence.
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