UCLA

Posters

Title

Actuation-assisted Calibration of Distributed Camera Networks

Permalink

https://escholarship.org/uc/item/86h0z278

Authors

Mascia, Jeffrey M. Lee, Juo-Yu Nikzad, Nima <u>et al.</u>

Publication Date

2007-10-10

Center for Embedded Networked Sensing

Actuation-Assisted Calibration of Distributed Camera Networks

Jeffrey M. Mascia, Juo-Yu Lee, Nima Nikzad, Mohammad Rahimi, Mani B. Srivastava Center of Embedded Networked Sensing, Networked Embedded Systems Laboratory, UCLA

Problem Description: Determine extrinsic parameters for actuated camera networks.

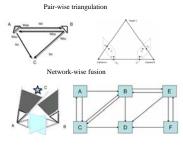
Context

- Calibrate camera poses in 3D space
 - location
 - orientation
- Actuated camera devices use pan and tilt capabilities to adapt FOV.
- Cameras equipped with optical beacons reconfigure their poses to intercept other nodes' optical signal and extract their identities.

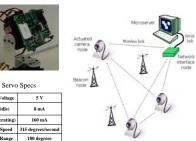
Conclusion

- Actuated camera networks gain significant reduction in network density as opposed to static camera networks.
- Cameras can refine their pose estimates using additional observation that are potentially available in an actuated network.

Methodology, Prototype Platform and System Architecture


ating Voltage

al Range


Current (idle

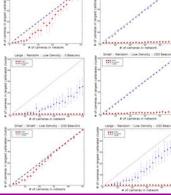
Current (operating Operating Speed

Camera Network Geometry

Actuation Platform

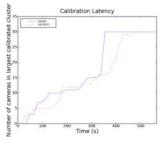
Localization Architecture

Actuation Strategies


- Raster scan: omni-directional beacons
- Random scan: directional beacons
- **Termination Rule**
 - Local rules: exhaustive; neighborhood
 - Global: complete network fusion; negligible marginal
 - change

Simulation and Experimentation

Simulation


- Developed the simulation environment in Python
 - · Generate camera networks
 - · Acquire observation
 - · Execute localization algorithms
 - · Visualize results

dom location locati and smart orientatic random orientation **Node Density**

Calibration Latency

- 30 actuated cameras
- FOV: 45 degrees
- Pan/tilt range: 180 degrees

Testbed environment

- **Crossbow MICAZ motes**
- Cyclops image sensors
- · Running SOS (an operating system for mote-class wireless sensor networks)

Accuracy

UCLA – UCR – Caltech – USC – UC Merced