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Abstract
Parallel evolution of phenotypic traits is regarded as strong evidence for natural se-
lection and has been studied extensively in a variety of taxa. However, we have lim-
ited knowledge of whether parallel evolution of host organisms is accompanied by 
parallel changes of their associated microbial communities (i.e., microbiotas), which 
are crucial for their hosts' ecology and evolution. Determining the extent of micro-
biota parallelism in nature can improve our ability to identify the factors that are as-
sociated with (putatively adaptive) shifts in microbial communities. While it has been 
emphasized that (non)parallel evolution is better considered as a quantitative con-
tinuum rather than a binary phenomenon, quantitative approaches have rarely been 
used to study microbiota parallelism. We advocate using multivariate vector analysis 
(i.e., phenotypic change vector analysis) to quantify direction and magnitude of mi-
crobiota changes and discuss the applicability of this approach for studying paral-
lelism, and we compiled an R package for multivariate vector analysis of microbial 
communities (‘multivarvector’). We exemplify its use by reanalyzing gut microbiota 
data from multiple fish species that exhibit parallel shifts in trophic ecology. We found 
that multivariate vector analysis results were largely consistent with other statistical 
methods, parallelism estimates were not affected by the taxonomic level at which the 
microbiota is studied, and parallelism might be stronger for gut microbiota function 
compared to taxonomic composition. This approach provides an analytical framework 
for quantitative comparisons across host lineages, thereby providing the potential to 
advance our capacity to predict microbiota changes. Hence, we emphasize that the 
development and application of quantitative measures, such as multivariate vector 
analysis, should be further explored in microbiota research in order to better under-
stand the role of microbiota dynamics during their hosts' adaptive evolution, particu-
larly in settings of parallel evolution.
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1  |  INTRODUC TION

Parallel evolution, the repeated evolution of similar traits in inde-
pendent lineages in response to similar selective pressures, is a 
widespread phenomenon and provides strong evidence for natural 
selection (Colosimo et al., 2005; Elmer et al., 2010; Losos et al., 1998; 
Rosenblum et al., 2017; Steiner et al., 2009). Yet, the extent of par-
allelism varies considerably across levels of biological organization 
(e.g., genotype vs phenotype) and across taxa (Bolnick et al., 2018). 
Substantial variation in parallelism can even be found among closely 
related populations adapting to seemingly similar habitats (Stuart 
et al., 2017). Traditionally, (non)parallel evolution has been regarded, 
and classified, as a binary phenomenon (evolution is parallel or not). 
However, it has recently been argued that by considering parallel 
evolution as a quantitative continuum, we will be better able to iden-
tify and understand the genetic and ecological factors that affect 
the extent of parallelism (Bolnick et al., 2018).

The study of parallelism has recently been extended to host-
associated microbial communities and in particular the gut microbi-
ota, the microbial community inhabiting a host's gut (Ley, Lozupone, 
et al., 2008). To investigate microbiota parallelism, it can be useful to 
adopt both theoretical and methodological approaches developed 
for studying parallel evolution (e.g., Rennison et al., 2019). Gut mi-
crobial communities are highly diverse (Brooks et al., 2016; Human 
Microbiome Project Consortium, 2012; Youngblut et al., 2019) and 
affect host physiology in many ways (e.g., nutrient metabolism; 
Turnbaugh et al., 2006). The gut microbiota of an increasing number 
of host species is being characterized, and we are obtaining a more 
comprehensive picture of the extensive diversity of host-associated 
microbes (Song et al., 2020; Tarnecki et al., 2017). The gut micro-
biota is shaped by host genetics and ecological factors (Benson 
et al., 2010; Goodrich et al., 2014; Li et al., 2017; Spor et al., 2011; 
Sullam et al.,  2012), and can impact the ecology and evolution of 
their hosts (Rudman et al.,  2019; Zepeda Mendoza et al.,  2018). 
Study systems in which closely related populations or species have 
independently adapted to similar ecological niches are particularly 
useful for studying the evolutionary ecology of host-associated 
microbial communities (e.g., Härer et al.,  2020). In these systems, 
one can ask whether phenotypic or ecological changes that have 
occurred repeatedly in multiple host populations (i.e., parallel evo-
lution), are associated with parallel changes in microbial communi-
ties (i.e., microbiota parallelism). We would like to emphasize that 
microbiota parallelism solely describes repeatability in the direction 
and magnitude of change of microbial communities, but not neces-
sarily their parallel evolution. There is now growing interest in de-
termining whether parallel adaptation of hosts is associated with 
parallel microbiota changes, as parallelism among independent gut 
microbial communities suggests changes could be predictable and 
adaptive (Delsuc et al., 2014; Härer et al., 2020; Song et al., 2020). 
Integration of microbiota data from a range of host populations that 
have repeatedly and independently adapted to similar ecological 
niches (e.g., Song et al., 2020) provides a powerful opportunity to in-
vestigate the ecological and evolutionary dynamics of host–microbe 
interactions.

Gut microbiota parallelism is predicted if hosts are adapting to 
similar trophic niches, since diet is known to be a major factor shap-
ing gut microbial communities (Bolnick, Snowberg, Hirsch, Lauber, 
Knight, et al.,  2014; Smits et al.,  2017; Turnbaugh et al.,  2009). 
However, several ecological and genetic factors could further pro-
mote or hinder parallelism; these include similarity of host ecology, 
physiology and genetics, as well as, differential environmental expo-
sure, and mode of microbial transmission (see Discussion for more 
details). This begs the question: Does the gut microbiota change in a 
predictable manner during their hosts' parallel adaptation to similar 
trophic niches, and if so, what factors affect the likelihood of ob-
serving parallelism? To address questions of gut microbiota predict-
ability and parallelism, we need hypothesis-driven tests leveraged in 
systems with well-characterized host ecology and repeated patterns 
of niche shifts. It is also imperative to employ quantitative statistical 
metrics. Here we suggest that multivariate vector analysis, a quan-
titative method, can be used to estimate the degree of microbiota 
parallelism, which might allow identifying the key ecological and 
evolutionary processes shaping variation in microbial communities. 
This method, originally termed ‘phenotypic change vector analysis’ 
was developed by Collyer and Adams for studying magnitude and 
direction of multivariate phenotypic change (Adams & Collyer, 2009; 
Collyer & Adams, 2007), and it has previously been applied to study 
variation in phenotypic (Stuart et al.,  2017) and gut microbiota 
(Rennison et al., 2019) parallelism in threespine stickleback fish. In 
this method, vectors connecting the multivariate means (centroids) 
of microbial communities are estimated for pairs of host populations. 
The resulting vectors are then compared in a pairwise fashion for 
all host populations (Figure 1; see Section 2 for more details). This 
approach provides information not only on the direction (angle be-
tween vectors), but also the magnitude (vector length) of microbiota 
divergence. However, it is the angle that quantifies parallelism, the 
smaller the angle between two population pairs, the more parallel 
the pattern of divergence (Figure  1) (Bolnick et al.,  2018; Stuart 
et al., 2017). Crucially, when integrated with additional ecological or 
genetic data, this quantitative approach allows direct tests of factors 
that affect direction and magnitude of microbiota changes.

Parallel divergence in trophic ecology is well-documented 
in several teleost fishes; e.g., threespine stickleback (Bell & 
Foster,  1994; Taylor & Mcphail,  1999), African and Neotropical 
cichlids (Elmer et al.,  2014; Muschick et al.,  2012), lake white-
fish (Bernatchez et al.,  1999) and Trinidadian guppies (Reznick 
et al.,  1996) (Table  A1). To exemplify the utility of multivariate 
vector analysis for quantifying parallelism in compositional and 
functional changes of gut microbial communities, we reanalyzed 
published 16 S rRNA gene sequencing data sets from these model 
systems. We discuss how estimates of magnitude of divergence 
and parallelism can be used to identify factors that affect micro-
bial communities associated with many host lineages and give 
recommendations on the use of this approach. We further ac-
knowledge current limitations of using multivariate vector anal-
ysis for studying microbiota parallelism and emphasize the need 
for further development of this approach in microbiota research. 
When applied to a wide range of host organisms, we argue that 
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multivariate vector analysis has the potential to give a unique in-
sight into the microbiota dynamics associated with their hosts' ad-
aptation to different ecological niches.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

We obtained 16 S rRNA gene sequencing data from six published 
studies of parallel evolution in teleost fishes: herbivorous and 
carnivorous African cichlids (Baldo et al., 2017), benthic and lim-
netic Neotropical Midas cichlids (Härer et al., 2020), benthic and 
limnetic threespine stickleback from British Columbia (Rennison 
et al.,  2019), freshwater and estuarine threespine stickleback 
from Oregon (Steury et al.,  2019), benthic and limnetic lake 
whitefish (Sevellec et al.,  2018), and low-predation and high-
predation Trinidadian guppies (Sullam et al.,  2015). Sample sizes 
for each population are indicated in Table  A1 and information 

on sequencing platform, amplicon region and NCBI archiving are 
listed in Table A2. For each data set, all samples were included in a 
single sequencing run. To improve readability, we will refer to dif-
ferent host lineages as populations, whether they are populations 
of the same species or distinct species. We tested for gut micro-
biota parallelism (i) among population pairs, and (ii) between an 
outgroup and several focal populations (Figure 1). Outgroups were 
selected based on phylogenetic information (see Table A1). Marine 
threespine stickleback colonized freshwater environments around 
10,000–12,000 years ago (Bell & Foster,  1994). Hence, a marine 
population was selected as the outgroup since it represents the 
ancestral state. For Midas cichlids, the species A. citrinellus from 
Lake Nicaragua represents the outgroup to all crater lake species 
investigated, since crater lakes were colonized from the two great 
lakes of Nicaragua (L.  Managua and L.  Nicaragua) within the last 
5000 years (Kautt et al.,  2020). In African cichlids, we selected 
a species from Barombi Mbo as the outgroup to several species 
from Lake Tanganyika based on a recent phylogeny by Irisarri 
et al. (2018). In this study system, the focal carnivorous populations 

F I G U R E  1 Illustration of vector analysis for determination of gut microbiota parallelism. Vectors connect the population means 
(centroids) between population pairs (a) or between an outgroup and several focal populations (b). The phylogenetic trees in (a, b) represent 
schematics to provide general information on the phylogenetic relationships of the studied populations. For the population pair comparisons, 
the two populations used to calculate a vector (γ) were most closely related to each other providing repeated and independent cases of 
ecological divergence. The populations or species included for each analysis are listed in Table A1. Angles between vectors provide a 
quantitative measure of parallelism (c) and range from anti-parallel, to orthogonal to parallel (adopted from Bolnick et al., 2018). Angles 
between multivariate vectors were measured based on PCoA scores and represent a quantitative measure of gut microbiota parallelism. 
Vector lengths (L) provide information on the magnitude of gut microbiota changes. Centroids are shown as bold symbols (squares and 
circles) whereas individual data points are shown as faint symbols to illustrate differences in data distribution. Note that the direction of 
vectors is important and should be consistent across comparisons to obtain biologically meaningful results (e.g., always from ecotype A to 
ecotype B within a study system).
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were chosen to avoid phylogenetic clustering; the closest relatives 
of all focal populations differ in trophic ecology (e.g., herbivores or 
omnivores) (Baldo et al., 2017). Further information on the popula-
tions used can be found in Table A1. Sequence data were down-
loaded from the NCBI Sequence Read Archive (SRA); information 
on sequencing platforms, sample sizes and accession numbers are 
provided in Tables A1 and A2. Data was converted from SRA to 
FASTQ format using the fastq-dump function of the SRA Toolkit 
v2.9.6–1 (https://ncbi.github.io/sra-tools/).

2.2  |  Gut microbiota analysis

Forward reads had higher sequence quality than reverse reads, and 
read lengths varied across studies due to differences in sequenc-
ing technology, which led to non-overlap of reads for some studies. 
Hence, we only used forward reads to achieve higher consistency 
in analysis across the different data sets. Forward reads were im-
ported into the open-source bioinformatics pipeline QIIME2 (Bolyen 
et al.,  2019). Sequence quality control was done with the plugin 
DADA2 (Callahan et al.,  2016) and a phylogenetic tree was pro-
duced with FastTree 2.1.3 (Price et al., 2010); read numbers before 
and after DADA2 filtering are provided in the Dryad database (see 
Data Accessibility Statement). Taxonomy was assigned against the 
16 S rRNA gene Silva database version 132 (Quast et al., 2013) using 
the feature-classifier classify-sklearn plug-in in QIIME2 (Pedregosa 
et al.,  2011). Taxonomic assignment was not done for Trinidadian 
guppies (Sullam et al.,  2015) as this study used a different region 
of the 16 S rRNA gene (V1–V3). Rarefaction depths and sequence 
lengths varied across data sets (Table A1), ASV sequences can be 
obtained from the Dryad database (see Data Accessibility Statement). 
We calculated different phylogenetic (weighted and unweighted 
UniFrac) and non-phylogenetic (Bray–Curtis dissimilarity) metrics 
for bacterial community composition (Lozupone et al.,  2011). To 
infer metagenome function, MetaCyc pathway abundances, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) orthologs and Enzyme 
Commission numbers were predicted with the PICRUSt2 plugin in 
QIIME2 (Douglas et al.,  2020; Kanehisa et al.,  2012) with a maxi-
mum nearest-sequenced taxon index (NSTI) cutoff of 2. Across the 
study systems, more than 90% of ASVs (92.7–99.5%) were below 
this cutoff, except for the study on whitefish where the proportion 
was slightly lower (85.3%; Table A3). Mean and median NSTI scores 
ranged from 0.45–2.689 and 0.072–0.366, respectively. Based on 
distance matrices for all these different metrics, principal coordinate 
analyses (PCoA) were performed and PCoA scores were used as 
input for multivariate vector analyses.

2.3  |  Multivariate vector analysis

We quantified compositional and functional gut microbiota parallel-
ism using multivariate vector analysis and compiled our code into 
an R package that can be obtained from github (https://github.com/

andre​as-haere​r/multi​varve​ctor). We largely followed the method-
ology reported in Rennison et al.  (2019), which to date is the only 
study that has used this approach for studying gut microbiota par-
allelism. We found different degrees of parallelism for gut micro-
biota function than reported in the original study. This is likely due 
to differences in data processing and analysis pipelines, emphasiz-
ing the need to standardize data analysis when making inferences 
across studies. Multivariate vectors were calculated by connecting 
the population means (centroids) of PCoA scores, either between 
population pairs or between an outgroup and focal populations (as 
depicted in Figure 1). The dimensionality of the data sets used to 
estimate angles for gut microbiota composition and function is listed 
in Tables A4 and A5, respectively. Angles were measured between 
these vectors and were calculated for all possible pairwise compari-
sons in each data set (e.g., between all three benthic-limnetic popu-
lation pairs in threespine stickleback from British Columbia, Canada). 
The direction of vectors was held consistent, e.g., from benthic to 
limnetic across all comparisons within a study system, representing a 
repeated measure of evolutionary divergence between populations. 
Yet, we would like to mention that this does not necessarily reflect 
the direction of evolutionary change in all of our study systems 
(i.e., ancestral to derived). Angles for gut microbiota composition 
(Spearman's ρ: 0.47–0.757) and function (Spearman's ρ: 0.965–
0.992) were highly reproducible across different diversity metrics 
(Figures  A1 and A2), and statistical tests for parallelism yielded 
largely similar results (Tables A4 and A5). Hence, in the main text 
we only present Bray–Curtis dissimilarity for gut microbiota com-
position and MetaCyc pathway abundances based on Bray–Curtis 
dissimilarity for the inferred functional metagenome.

The angles provide us with a quantitative measure of parallel-
ism within and across study systems. Smaller angles (below 90°) 
indicate parallelism, angles around 90° indicate orthogonal change 
and larger angles (above 90°) indicate anti-parallelism (Figure 1c). A 
more detailed discussion on different interpretations of the distri-
bution of angles, but also on the limitations of this method can be 
found in Bolnick et al. (2018) and in Watanabe (2022). To statistically 
test for gut microbiota parallelism, previous studies proposed to ei-
ther regard changes as parallel when angles do not deviate from 0° 
(Bolnick et al., 2018) or when angles are significantly smaller than 
90° (Rennison et al., 2019). To give us an initial simplistic indication 
of parallelism patterns, we used one-sample t-tests with an angle of 
90° as the null expectation for non-parallelism since (almost) all data 
were normally distributed based on Shapiro–Wilk tests (Shapiro & 
Wilk, 1965). The only exception was gut microbiota composition of 
threespine stickleback population pairs from Rennison et al. (2019), 
for which we performed a one-sample Wilcoxon signed-rank test 
(Wilcoxon, 1945). However, due to the non-independence of pair-
wise angles (Watanabe,  2022), we also quantified parallelism by 
calculating distributions of random angles in multidimensional space 
(which is centered at 90°) and using Monte Carlo simulations (with 
105 iterations) to test for significant parallelism, or by performing 
a Rayleigh test which is used to examine the unimodal concentra-
tion of directional vectors (Mardia et al., 1979; Watanabe, 2022). We 

https://ncbi.github.io/sra-tools/
https://github.com/andreas-haerer/multivarvector
https://github.com/andreas-haerer/multivarvector
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compare the results obtained using these different methods and dis-
cuss their interpretation.

To quantify the magnitude of gut microbiota changes, we cal-
culated means of vector lengths (meanL) for each population pair. 
Correlation analyses were based on non-parametric Spearman rank 
correlation coefficients, as not all data were normally distributed. For 
the population pair comparisons, we also tested whether the tax-
onomic level at which microbial communities are studied affect the 
magnitude and direction of gut microbiota change based on the mul-
tivariate vector analysis. Taxonomic assignment was done in QIIME2 
(more information provided above), biom tables were created for each 
study system at different taxonomic levels of the bacterial commu-
nities (phylum, class, order, family, genus, species). From each biom 
table, we produced a Bray-Curtis distance matrix and calculated PCoA 
scores. Estimates of angles and vector lengths were calculated based 
on these PCoA scores, similar to the other analyses mentioned above. 
All statistical analyses were done in R v3.5.1 (R CoreTeam, 2021).

3  |  RESULTS

3.1  |  Gut microbiota parallelism across population 
pairs

First, we tested for parallelism across population pairs where vec-
tors connect two closely related populations, representing cases 
of repeated divergence. Levels of gut microbiota parallelism varied 

considerably within and across teleost fish model systems for paral-
lel evolution (Figure 2). Within study systems, we detected a wide 
range of angles (e.g., 38.5–88.8° for gut microbiota composition 
in African cichlids; Figure  2a), and parallelism estimates were also 
highly variable across study systems. When comparing mean an-
gles against a null expectation of 90°, statistically significant paral-
lelism was only found for gut microbial composition (mean: 68. 9°; 
one-sample t-test: p < .001, t = −6.566) and function (mean: 38.9°, 
p < .001, t = −12.513) among herbivorous and carnivorous African 
cichlids (Figure 2a, b). We detected suggestive evidence for parallel-
ism of gut microbial composition in benthic and limnetic threespine 
stickleback from British Columbia (mean: 81°, one sample Wilcoxon 
signed rank test: p = .087), but the sample size of this study was very 
small (n = 3). Similar results were obtained when using Monte Carlo 
simulations to compare mean angles against a multidimensional null 
distribution, we detected significant parallelism for African cichlids' 
gut microbiota composition and function (p < 1 × 10−5 for both tests), 
and suggestive evidence in gut microbiota composition of benthic 
and limnetic threespine stickleback from British Columbia (p = .087) 
as well as in gut microbiota function of freshwater and estuarine 
threespine stickleback from Oregon (p  = .052; Figure  A3). These 
findings were further supported by Rayleigh tests, in which sig-
nificant concentrations of angles were detected for gut microbiota 
composition (S = 113.01, p < 1.26 × 10−9) and function (S = 160.47, 
p  =  6.29 × 10−21) only in African cichlids. When performing multi-
variate vector analysis based on different taxonomic levels of gut mi-
crobial communities (species to phylum), we found that estimates of 

F I G U R E  2 Significant gut microbiota 
parallelism among population pairs was 
detected in African cichlids for (a) gut 
microbiota composition and (b) function. 
In the outgroup comparisons, all three 
study systems showed significant gut 
microbiota parallelism for composition 
(c) and function (except for African 
cichlids; d). For all three study systems, 
outgroups inhabit distinct water bodies 
from the focal populations (Table A1). 
Numbers of comparisons are indicated 
next to the name of each study system; 
the populations used for each analysis as 
well as samples sizes for each population 
are stated in Table A1. Here, we show the 
results of testing mean angles against 90°, 
and no statistical tests were conducted 
for threespine stickleback population pairs 
from lakes and estuaries in Oregon and 
benthic and limnetic Midas cichlids from 
Nicaraguan crater lakes as we only had 
one comparison for each data set (a, b). 
†p < .1, *p < .05, ***p < .001.
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direction and magnitude were generally consistent, and independ-
ent of taxonomic resolution (Figure 3).

Angles for gut microbiota composition and function were 
strongly correlated for population pairs across study systems 
(Spearman's ρ = 0.766, p < .001; Figure 4a). On average, angles for 
gut microbiota function (mean: 70.3°) were smaller than for com-
position (mean: 80.9°), although this was not statistically significant 
(p = .096, t = 1.699, Figure 4b). When considering only comparisons 
that showed evidence of gut microbiota parallelism (i.e., angles were 
smaller than 90°), gut microbiota function angles were significantly 
smaller (i.e., more parallel) (p  < .001, t  =  5.588, Figure A4). There 
was also a significant negative correlation between gut microbi-
ota parallelism (angles) and the mean magnitude of gut microbial 
change (meanL) for composition (ρ = −0.706, p < .001) and function 
(ρ = −0.581, p < .001; Figure A5a, b).

3.2  |  Gut microbiota parallelism across focal 
populations compared to outgroup

When comparing an outgroup to focal populations adapted to simi-
lar ecological niches (Figure 1b), we found strong evidence for com-
positional and functional gut microbiota parallelism across all three 
study systems; almost all angles were smaller than 90° (Figure 2c, d).

By comparing mean angles against a null expectation of 90°, 
gut microbiota changes associated with carnivory in African cich-
lids from Lake Tanganyika (compared to an herbivorous outgroup 
from Lake Barombi Mbo) were significantly parallel for composition 
(mean: 42.7°, p < .001, t = −6.621), but not for function (mean: 85.4°, 
p = .425, t = −0.201). Gut microbiota changes in freshwater benthic 
and limnetic threespine stickleback ecotypes from British Columbia 
were significantly parallel when compared to the ancestral marine 
population (composition, mean: 56.4°, p  < .001, t  = −13.378; func-
tion, mean: 60.5°, p < .001, t = −4.635). In benthic and limnetic Midas 
cichlids from two crater lakes, we also detected significant gut mi-
crobiota parallelism compared to the ancestral population from great 
lake Nicaragua (composition, mean: 42.2°, p  < .001, t  = −12.208; 
function, mean: 31.8°, p  < .001, t  = −14.772). We obtained similar 
results when using Monte Carlo simulations to compare mean an-
gles against a multidimensional null distribution. Angles were sig-
nificantly parallel for gut microbiota composition (p < 1 × 10−5) but 
not for function (p  =  .25) in African cichlids. In threespine stick-
leback from British Columbia, we detected significant parallel-
ism for composition and function (p < 1 × 10−5 for both tests), the 
same was true for benthic and limnetic Midas cichlids (p < 1 × 10−5 
for both tests; Figure  A6). Using Rayleigh tests, we detected sig-
nificant concentrations of angles for gut microbiota composition 
(S = 59.53, p < 6.29 × 10−7) but not for function (S = 14.92, p = .25) 
in African cichlids. In threespine stickleback from British Columbia, 
angles were significantly concentrated for composition (S = 133.77, 
p < 4.64 × 10−15) and function (S = 92.39, p < 2.81 × 10−10). The same 
held true for composition (S = 294.37, p < 2.32 × 10−28) and function 
(S = 248.02, p < 1.17 × 10−26) in benthic and limnetic Midas cichlids.

Angles for gut microbiota composition and function were 
strongly correlated across study systems (Spearman's ρ  =  0.726, 
p < .001; Figure 4c). Angles did not differ between gut microbiota 
composition and function (p = .21, t = −1.279; Figure 4d); even when 
only considering comparisons with angles below 90° for both mea-
sures (p = .723, t = 0.358). There was no correlation between gut 
microbiota parallelism (angles) and mean magnitude of gut microbial 
change (meanL), for composition (ρ  = −0.08, p  = .691) or function 
(ρ = 0.073, p = .716; Figure A5c, d).

4  |  DISCUSSION

Multivariate vector analysis offers the opportunity to quantify di-
rection and magnitude of microbiota changes, thereby allowing 
identification of factors that shape microbial communities across 
host populations. The purpose of our study is to exemplify and ad-
vocate the use of this approach in microbiota research, compare dif-
ferent statistical approaches to test for parallelism, discuss current 
limitations, and give recommendations on methodological aspects. 
To this end, we applied multivariate vector analysis to investigate 
the gut microbiota of several classic teleost fish model systems that 
exemplify parallel ecological shifts. While this manuscript is focused 
on the study of parallelism, multivariate vector analysis can also be 
used to study the extent of convergence or divergence of micro-
biota changes, when incorporating information on the direction of 
evolutionary change in host lineages (Bolnick et al., 2018). It should 
be noted that multivariate vector analysis has only been used in one 
microbiota study (Rennison et al., 2019), and more conceptual and 
methodological research is needed to determine how characteristics 
of microbiota data sets affect parallelism estimates in order to com-
prehensively interpret the biological implications of such results. 
We would also like to emphasize that the small set of study systems 
included here are meant to exemplify the use of this quantitative 
approach. The goal was not to identify or disentangle the effects 
of specific factors that shape gut microbiota parallelism, but we en-
courage future studies to apply quantitative analyses to larger data 
sets in order to investigate general patterns and processes using the 
methods presented here.

4.1  |  Multivariate vector analysis to quantify 
microbiota parallelism

When studying microbiota parallelism, one admittedly simplified 
prediction is that parallel adaptation of hosts to a novel diet trans-
lates to parallel changes of their gut microbiota. However, previous 
studies using a diversity of statistical approaches suggested that 
parallel shifts of the gut microbiota are not necessarily expected 
or commonly observed. For example, across several model systems 
of parallel trophic divergence, gut microbiota parallelism has previ-
ously been reported only for African cichlids (Baldo et al., 2017) and 
benthic and limnetic threespine stickleback (Rennison et al., 2019). 
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There has been no conclusive evidence presented to suggest gut mi-
crobiota parallelism in Nicaraguan Midas cichlids (Härer et al., 2020), 
lake whitefish (Sevellec et al., 2018) or Trinidadian guppies (Sullam 
et al., 2015).

The variation in gut microbiota parallelism described in previ-
ous studies might be biologically real or could be due to differences 
in the methodological approaches used, which limits our ability to 
make inferences across systems. Different statistical methods were 
used to analyze the gut microbiota data of these species; four of 
the studies used permutational analysis of variance (PERMANOVA) 
to determine the effects of ecotype, the environment, and their in-
teraction to infer parallelism. One study on African cichlids further 
inferred parallelism based on PCoA scores of the first axes (Baldo 
et al., 2017). A drawback of such approaches is that gut microbiota 
changes are scored as parallel or non-parallel in a binary manner, 
based on a given significance threshold. Such methods also do not 
provide estimates of the magnitude of change. Thus, we lack quan-
titative information on the extent and variation of (non)parallelism 
(Figure 1c). Multivariate vector analysis allows quantification of vari-
ation across independent population pairs. When applied to large 
data sets, the method can facilitate identification of factors that 

underlie variation in parallelism. This is important as we know that 
a multitude of genetic, ecological, and physiological factors affect 
the composition of microbial communities in different host lineages, 
including teleost fishes (Amato et al., 2019; Baldo et al., 2017; Bletz 
et al.,  2016; Bolnick, Snowberg, Hirsch, Lauber, Org, et al.,  2014; 
Burns et al., 2017; Zhang et al., 2016). When applied to our six case 
studies, we found similar results as other statistical methods; there 
was only strong evidence of parallelism among population pairs of 
African cichlids, and weaker evidence for benthic-limnetic threespine 
stickleback (Figure 2a, b). The consistency of these results highlights 
the suitability of multivariate vector analysis for studying microbiota 
parallelism, with the added value of quantitative data that can be 
used in direct hypothesis testing.

4.2  |  Methodological considerations

We tested whether methodological aspects, such as the choice of 
metric for determining differences in bacterial community com-
position (e.g., Bray–Curtis dissimilarity, weighted and unweighted 
UniFrac) or the taxonomic level at which microbial communities are 

F I G U R E  3 Estimates of direction (left 
column) and magnitude (right column) 
of gut microbiota change did not differ 
substantially with the taxonomic level 
used for multivariate vector analysis.
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studied, affect estimates of direction and magnitude of gut microbi-
ota change. We detected strong correlations among angle estimates 
generated using the different metrics (Figure  A1), and statistical 
significance of parallelism was generally consistent across differ-
ent metrics for both taxonomic composition (Table A4) and inferred 
metagenome function (Table A5). This suggests that the parallelism 
estimates from multivariate vector analysis are not strongly affected 
by the choice of diversity metric. It should be noted that multivari-
ate vector analysis is not restricted to analyzing data from principal 
coordinates analysis (PCoA); data from other ordination methods, 
such as non-metric multidimensional scaling (NMDS), can also be 
used as input for the analysis. NMDS data have been used in a paral-
lelism analysis of the threespine stickleback gut microbiota, and the 
results are qualitatively similar to the PCoA analysis reported here 
(Rennison et al.,  2019). Further, results were robust across taxo-
nomic levels (Figure 3), which was a bit surprising as the composition 
of microbial communities might be more stochastic at lower taxo-
nomic levels. Thus, predictability of microbiota change (i.e., parallel-
ism) could have been expected to be stronger at higher taxonomic 
levels. However, our results suggest that researchers should be able 
to tailor the taxonomic level to the needs of their particular study.

Previous studies utilized different approaches for signifi-
cance testing of angles from multivariate vector analysis (Bolnick 
et al., 2018; Rennison et al., 2019). One study suggested that to infer 
parallelism, methods should be based on the distribution of random 
angles, which depends on data dimensionality (Watanabe,  2022), 
rather than testing against a certain angle (e.g., 90°). Fortunately, 
in highly multidimensional space, such as that of microbiota data, 
random angles approximately follow a normal distribution centered 
around 90° (Watanabe,  2022). Hence, we argue that one-sample 

t-tests comparing the mean angles of our empirical data against the 
null expectation of 90° is a useful first test of parallelism. However, 
given that the 90° value is only a rough approximation, we imple-
mented two additional statistical analyses to test for significant par-
allelism. We used Monte Carlo simulations to compare the estimated 
mean empirical angles against a multidimensional null distribution. 
We further implemented Rayleigh tests which test for the unimodal 
concentration of directional vectors (Mardia et al.,  1979). Across 
these three statistical methods, we obtained largely consistent re-
sults. Since each statistical approach tests for a different property 
(see Watanabe,  2022 for a more detailed discussion), the use of 
multiple approaches helps obtain a more comprehensive and robust 
picture of whether changes of the gut microbiota are consistent with 
a parallel, orthogonal, or anti-parallel pattern of change (Figure 1c).

Multivariate vector analysis was developed for studying a range 
of phenotypic traits (Adams & Collyer, 2009), and has been used to 
study morphological and behavioral parallelism (Stuart et al., 2017). 
Only one study has applied this approach for studying gut microbiota 
parallelism in threespine stickleback (Rennison et al., 2019), hence, 
many open questions remain considering the application of multivar-
iate vector analysis in microbiota research. The highly diverse and 
dynamic nature of microbial communities (e.g., Smits et al.,  2017; 
Youngblut et al., 2019) could affect the interpretation of parallelism 
estimates. For example, more work is needed to determine how mi-
crobiota dispersion within populations and overlap among host pop-
ulations can affect parallelism estimates, as well as their biological 
implications. Simulations of microbiota data could be leveraged to 
quantify how variation in these factors affects the range of possible 
angles observed, which would improve the interpretation of parallel-
ism estimates. At the same time, more empirical studies are needed 

F I G U R E  4 Levels of gut microbiota 
(non)parallelism were strongly correlated 
for gut microbiota composition and 
function for population pairs (a) and the 
outgroup comparisons (c); the dashed 
line has a slope of 1. There was only 
suggestive evidence for a difference 
in angles between gut microbiota 
composition and function for population 
pairs (b) but not for the outgroup 
comparison (d). Information on the 
populations used for each analysis are 
stated in Table A1. †p < .1.
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to obtain a comprehensive picture of microbiota parallelism in a phy-
logenetically and geographically broad range of host lineages.

4.3  |  Progress and prospects in implementing 
multivariate vector analysis

Multivariate vector analysis quantifies changes in microbial commu-
nities and enables testing the effects of ecological or genetic factors 
on parallelism. Across six model systems of parallel evolution, we 
observed extensive variation in gut microbiota parallelism (Figure 2), 
and we sought to conduct preliminary analyses to explore some of 
the factors that might affect parallelism. For example, we found that 
changes in gut microbiota function might be more parallel than in 
taxonomic composition, which is in line with findings of individual 
studies (Figure  4) (Härer et al.,  2020; Rennison et al.,  2019). This 
pattern could be explained by the functional redundancy within 
microbial communities (Ley et al.,  2006). Variation in taxonomic 
composition might be produced by historical contingency, priority 
effects or microbial dispersal ability (Costello et al., 2012; Martinez 
et al., 2018). Yet, taxonomically distinct bacterial taxa can provide 
similar metabolic functions, potentially causing stronger signatures 
of parallelism in gut microbiota function when hosts adapt to simi-
lar ecological niches. At the same time, parallelism estimates for 
gut microbiota composition and function were strongly correlated 
(Figure 4), indicating that similar factors shape the extent of paral-
lelism. We suggest that work integrating parallelism estimates for 
both composition and function from a variety of disparate host taxa 
is needed to explore this pattern further. But, it is important to be 
cautious when interpreting results on inferred metagenome func-
tion using tools such as PICRUSt2, particularly in non-model organ-
isms (Douglas et al., 2020); the reliability of metagenome prediction 
highly depends on the database of available bacterial genomes, 
which can vary across host organisms (Sun et al., 2020).

Shifts in gut microbial communities were found to be most par-
allel among population pairs when the overall magnitude of diver-
gence (meanL) was greatest (Figure A5); this raises the question of 
whether substantial divergence in the gut microbiota might indicate 
shared adaptive changes. Strong selection pressures may lead to 
more determinism in microbial community assembly and, conse-
quently stronger microbiota parallelism. In contrast, when there is 
little microbiota divergence, differences might be produced mainly 
by stochastic processes, e.g., priority effects and drift (Martinez 
et al., 2018). These processes are unlikely to generate similar micro-
biota shifts, and theoretical work suggests that parallelism may only 
be seen when the selection landscape is highly parallel (Thompson 
et al., 2019). For morphological traits and genetic divergence, it has 
been shown that the degree of environmental variation among evo-
lutionary replicates directly predicts the magnitude of parallelism 
based on multivariate vector analysis (Stuart et al.,  2017). If more 
similar selection pressures translate to more parallel host pheno-
typic and ecological change, this could lead to similar shifts in mi-
crobial communities. Accordingly, host adaptation to similar diets, 

when accompanied by changes in gut morphology, is expected to 
promote gut microbiota parallelism (Baldo et al., 2017; Ley, Hamady, 
et al., 2008; Muegge et al., 2011), whereas adaptation to different 
diets could lead to gut microbiota anti-parallelism. Yet, strong paral-
lelism could also be explained by variation in environmental factors, 
as seen in our outgroup comparisons (Figure 2c, d). In these settings, 
focal populations and the outgroups live in strongly differentiated 
environments (Barluenga & Meyer,  2010; Ormond et al.,  2011; 
Torres-Dowdall et al., 2017), suggesting that similar patterns of di-
vergence (parallelism) might be primarily driven by abiotic (physico-
chemical properties) and biotic (microbial communities) differences 
between environments, in addition to or instead of host trophic 
ecology. This was further supported by findings in Midas cichlids and 
threespine stickleback, where angles did not appear to be smaller for 
comparisons that only included the outgroup and a certain ecotype 
(i.e., benthics or limnetics) than for comparisons that included the 
outgroup and both ecotypes (Figure A7). Yet, one should be care-
ful when drawing conclusions from these results since sample sizes 
were small. Future work that estimates the similarity of abiotic and 
biotic factors among host populations will be key to determining 
whether parallel selective regimes generally translate to parallelism 
in changes of microbial communities.

Variation in microbial communities can be strongly associated 
with host phylogeny and the extent of genetic divergence (Benson 
et al., 2010; Brooks et al., 2016; Goodrich et al., 2014; Li et al., 2017; 
Youngblut et al., 2019); thus, increasing genetic (and phylogenetic) 
distance among hosts (Smith et al.,  2015) could affect the like-
lihood of observing microbiota parallelism. Stronger parallelism 
might be predicted for host lineages that split earlier, with sufficient 
time to diverge ecologically. Results from Neotropical and African 
cichlids hint at such an association; the very recently diverged cra-
ter lake Midas cichlids from Nicaragua (<5000 years ago) (Kautt 
et al., 2020) showed no evidence for gut microbiota parallelism. In 
contrast, there was strong evidence in much older African cichlid 
lineages, where divergence times are in the range of millions of years 
(Figure 2) (Baldo et al., 2017). Threespine stickleback and whitefish 
colonized freshwater lakes after the last ice age (<12,000 years ago) 
and formed ecologically distinct species pairs adapted to different 
niches (Bernatchez et al., 1999; Matthews et al., 2010; Schluter & 
Mcphail, 1992). Yet, we only detected some evidence for parallel-
ism in benthic-limnetic stickleback (Figure  2), suggesting that an 
association with host divergence time is not necessarily expected 
in general. Parallelism was also stronger in the outgroup compar-
isons (Figure  2), which could be driven by stronger genetic diver-
gence of the outgroup compared to focal populations (but also by 
environmental differences, see previous paragraph). However, 
for two of the study systems (Midas cichlids and threespine stick-
leback) the outgroup and the focal populations split very recently 
(<12,000 years), whereas population pairs of African cichlids split 
much earlier. Hence, the stronger parallelism in the outgroup com-
parisons cannot be explained solely by host divergence time. Again, 
a diverse sampling of host taxa, potentially including intra- as well as 
interspecific host comparisons, will be key to robustly test whether 
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divergence time is a key factor determining patterns of gut microbi-
ota parallelism.

There are numerous possible uses of multivariate vector analy-
sis to investigate changes in host-associated microbial communities 
as many genetic and ecological factors may determine parallelism. 
For example, it would be particularly interesting to compare patterns 
among trophic specialists and generalists. Specialists might have a 
more stable gut microbiota compared to the gut microbiota of general-
ists, which is expected to fluctuate more over time (Baniel et al., 2021; 
Smits et al.,  2017). Thus, this variation in gut microbiota plasticity 
(Kolodny & Schulenburg,  2020) could affect observed parallelism. 
The mode of gut microbiota transmission could be another interesting 
factor to consider using multivariate vector analysis. The acquisition 
of gut microbiota from environmental sources (i.e., horizontally) vs 
transfer from mother to child (i.e., vertically) could affect the likeli-
hood of observing parallelism, depending on whether these sources 
are shared among hosts (Mulder et al.,  2009; Smith et al.,  2015). 
Further, multivariate vector analysis could also be leveraged in exper-
imental studies to investigate parallelism associated with short-term 
microbiota shifts in response to environmental changes, for example, 
after a host organism is exposed to a novel diet or a certain pathogen. 
It would be interesting to compare the extent of microbiota parallel-
ism over short (ecological) and longer (evolutionary) timescales. To 
obtain a comprehensive understanding of the evolutionary ecology 
of the gut microbiota, future studies should make an effort toward 
combining quantitative measures with a diverse range of genetic and 
phenotypic host data, as well as environmental data.

5  |  CONCLUSIONS

Our study exemplifies the use of multivariate vector analysis for 
studying microbiota dynamics, and discusses potential advantages 
compared to more commonly used statistical approaches. By using 
a common analytical framework, multivariate vector analysis al-
lows quantification of the direction and magnitude of microbiota 
change. When applied across a broad range of host taxa, these 
estimates can be leveraged to examine general patterns of repeat-
ability. Combining quantitative estimates with host-associated and 
environmental data offers the possibility to improve our knowledge 
of the eco-evolutionary processes that shape microbial community 
dynamics. Identification of these factors will improve our ability to 
predict (putatively adaptive) shifts in microbial communities. Hence, 
we encourage further adoption of quantitative measures for study-
ing microbiota dynamics during adaptive evolution of their hosts, 
particularly in settings of parallel evolution.
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APPENDIX A

F I G U R E  A 1 Parallelism estimates among different gut microbiota composition metrics were strongly correlated across comparisons of (a) 
population pairs and (b) outgroups vs focal populations. Angles calculated from the multivariate vector analysis are indicated on the x- and y-axes.
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F I G U R E  A 2 Parallelism estimates among different gut microbiota function metrics were strongly correlated across comparisons of (a) 
population pairs and (b) outgroups vs focal populations. Angles calculated from the multivariate vector analysis are indicated on the x- and 
y-axes.
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F I G U R E  A 3 Histograms showing the distribution of angles among population pairs for gut microbiota composition (left column) and 
function (right column). The vertical dashed line represents the mean angle for each study system, and the multidimensional distribution of 
random angles is illustrated by the red curves, the shape of a curve is determined by the number of PCoA axes included in each analysis.
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F I G U R E  A 4 Across population pair comparisons, angles for gut microbiota function were significantly smaller than for composition 
(p < .001, t = 5.5881) when only considering comparisons that showed evidence of gut microbiota parallelism (angles <90° for composition 
and function).

F I G U R E  A 5 The strength of parallelism (angles) and the mean magnitude of gut microbiota change (meanL) were correlated for 
composition and function across population pair comparisons (a, b); the more parallel gut microbiota changes were (i.e., smaller angles), the 
higher the magnitude of change. No correlation was observed for outgroup vs focal population comparisons (c, d).
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F I G U R E  A 6 Histograms showing the distribution of angles between an outgroup and focal populations for gut microbiota 
composition (left column) and function (right column). The vertical dashed line represents the mean angle for each study system, and the 
multidimensional distribution of random angles is illustrated by the red curves, the shape of a curve is determined by the number of PCoA 
axes included in each analysis.



18 of 22  |     HÄRER and RENNISON

F I G U R E  A 7 For the outgroup 
comparisons, we tested whether 
parallelism is stronger among focal 
populations of the same ecotype 
compared to focal populations of 
different ecotypes for gut microbiota 
composition and function in threespine 
stickleback from British Columbia (a, 
c) and Midas cichlids (b, d). The three 
different categories include angles of 
“outgroup-benthic vs outgroup-benthic”, 
“outgroup-benthic vs outgroup-limnetic” 
or “outgroup-limnetic vs outgroup-
limnetic” comparisons. We did not 
detect evidence that angles were smaller 
when only comparing among the same 
ecotype, suggesting that parallelism is 
mainly driven by the shared adaptation 
to a common environment among the 
focal populations, more so than by the 
adaptation to benthic and limnetic niches 
specifically.
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TA B L E  A 1 Identity of populations/species selected from each dataset that were included in our study, and information on their trophic 
ecology or habitat types as well as sample sizes.

Study system Population Sample size Category Population pairs
Outgroup vs focal 
populations

African cichlids 250 bp/10,000 reads 250 bp/10,000 
reads

Tanganyika E. melanogenys 3 Carnivorous Tan 1 Carni 1

O. ventralis 2 Herbivorous Tan 1

A. fasciatus 5 Carnivorous Tan 2 Carni 2

V. moorii 2 Herbivorous Tan 2

P. straeleni 5 Carnivorous Tan 3 Carni 3

C. coloratus 3 Planktivorous Tan 3

G. pfefferi 3 Carnivorous Tan 4 Carni 4

I. loockii 2 Herbivorous Tan 4

S. pindu 3 Carnivorous Bar 1

Barombi Mbo S. steinbachi 5 Herbivorous Bar 1 Outgroup

S. mariae 4 Carnivorous Bar 2

S. lohbergeri 5 Herbivorous Bar 2

Midas cichlids 250 bp/29,455 reads 250 bp/29,895 
reads

Nicaragua A. citrinellus 10 Outgroup Outgroup

Apoyo A. astorquii 20 Benthic Apoyo Crater 1

A. zaliosus 20 Limnetic Apoyo Crater 2

Xiloá A. amarillo 18 Benthic Xiloá Crater 3

A. sagittae 20 Limnetic Xiloá Crater 4

Threespine stickleback 
- British Columbia

250 bp/125,000 reads 250 bp/98,000 
reads

Oyster Lagoon G. aculeatus 5 Marine Outgroup

Little Quarry G. aculeatus 5 Benthic Benthic 1 Lake 1

G. aculeatus 5 Limnetic Limnetic 1 Lake 2

Paxton G. aculeatus 5 Benthic Benthic 2 Lake 3

G. aculeatus 5 Limnetic Limnetic 2 Lake 4

Priest G. aculeatus 5 Benthic Benthic 3 Lake 5

G. aculeatus 5 Limnetic Limnetic 3 Lake 6

Threespine stickleback 
- Oregon

150 bp/24,966 reads

Siuslaw G. aculeatus 22 Freshwater Fresh 1

G. aculeatus 13 Estuary Est 1

Umpqua G. aculeatus 19 Freshwater Fresh 2

G. aculeatus 19 Estuary Est 2

Lake whitefish 250 bp/3000 reads

Cliff C. clupeaformis 11 Dwarf Dwarf 1

C. clupeaformis 12 Normal Normal 1

East C. clupeaformis 7 Dwarf Dwarf 2

C. clupeaformis 12 Normal Normal 2

Indian C. clupeaformis 11 Dwarf Dwarf 3

C. clupeaformis 13 Normal Normal 3

Temiscouata C. clupeaformis 10 Dwarf Dwarf 4

C. clupeaformis 14 Normal Normal 4

(Continues)



20 of 22  |     HÄRER and RENNISON

Study system Population Sample size Category Population pairs
Outgroup vs focal 
populations

Webster C. clupeaformis 3 Dwarf Dwarf 5

C. clupeaformis 11 Normal Normal 5

Trinidadian guppies 250 bp/1000 reads

Aripo P. reticulata 5 Low predation Low pred 1

P. reticulata 5 High predation High pred 1

Guanapo P. reticulata 4 Low predation Low pred 2

P. reticulata 3 High predation High pred 2

Marianne P. reticulata 5 Low predation Low pred 3

P. reticulata 5 High predation High pred 3

Quare P. reticulata 5 Low predation Low pred 4

P. reticulata 5 High predation High pred 4

Note: Please note that one species of African cichlids (C. coloratus) is planktivorous; it was included in our analyses to provide another comparison 
since it showed gut microbiota variation from the carnivorous P. straeleni in the same direction as other herbivorous species along the major axis of 
differentiation (Baldo et al., 2017). Different subsets were used in the population pair and outgroup vs focal species analyses. For African cichlids, 
the herbivorous species from Barombi Mbo (S. steinbachi) represents an outgroup to the carnivorous species from Tanganyika based on a recent 
phylogeny (Irisarri et al., 2018). For threespine stickleback and Midas cichlids, outgroups are inferred ancestral populations that repeatedly colonized 
novel environments (Bell & Foster, 1994; Kautt et al., 2020). Sequencing read lengths and rarefaction depths used for all analyses are stated in bold 
for each study system and type of comparison.

TA B L E  A 1 (Continued)

TA B L E  A 2 Information on sequencing platforms, amplified region and data archiving for all datasets included in this study.

Study system References Sequencing platform Amplicon Archive

African cichlids Baldo et al. (2017) Illumina MiSeq 16 S V3-V4 PRJNA341982 (NCBI)

Midas cichlids Härer et al. (2020) Illumina HiSeq 2500 16 S V4 PRJNA615202 (NCBI)

Threespine stickleback Rennison et al. (2019) Illumina MiSeq 16 S V4 PRJNA475955 (NCBI)

Threespine stickleback Steury et al. (2019) Illumina HiSeq 4000 16 S V4 PRJNA657232 (NCBI)

Lake whitefish Sevellec et al. (2018) Illumina MiSeq 16 S V3-V4 PRJNA394764 (NCBI)

Trinidadian guppies Sullam et al. (2015) 454 GS FLX Titanium 16 S V1-V3 PRJNA259592 (NCBI)

Study Mean (NSTI) Median (NSTI)
Proportion 
ASVs > 2

African cichlids (population pairs) 0.465 0.366 0.005

African cichlids (outgroup vs focal 
populations)

0.45 0.346 0.008

Threespine stickleback - British Columbia 
(population pairs)

0.853 0.061 0.031

Threespine stickleback - British Columbia 
(outgroup vs focal populations)

0.532 0.102 0.028

Trinidadian guppies (population pairs) 0.606 0.072 0.06

Lake whitefish (population pairs) 2.689 0.078 0.147

Threespine stickleback - Oregon 
(population pairs)

1.231 0.332 0.073

Midas cichlids (population pairs) 0.939 0.156 0.039

Midas cichlids (outgroup vs focal 
populations)

0.898 0.158 0.037

Note: Across the study systems, a larger proportion of ASVs was below this cutoff (85.3–99.5%). 
Mean and median NSTI scores ranged from 0.45–2.689 and 0.072–0.366, respectively.

TA B L E  A 3 Inferred metagenome 
function was predicted with the PICRUSt2 
plugin in QIIME2 with a maximum 
nearest-sequenced taxon index (NSTI) 
cutoff of 2, and reads above this value 
were discarded for these analyses.
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Taxonomic composition - study system Mean (γ) p-value

African cichlids

Population pairs: Bray-Curtis (37) 68.889 6.29E−06

Population pairs: Unweighted UniFrac (41) 66.245 5.94E−08

Population pairs: Weighted UniFrac (28) 57.158 7.09E−06

Outgroup vs focal populations: Bray-Curtis (16) 42.695 5.92E−04

Outgroup vs focal populations: Unweighted UniFrac (16) 50.373 3.34E−04

Outgroup vs focal populations: Weighted UniFrac (13) 60.667 .023

Threespine stickleback - British Columbia

Population pairs: Bray-Curtis* (26) 81.016 .087

Population pairs: Unweighted UniFrac (28) 87.471 .119

Population pairs: Weighted UniFrac* (21) 80.844 .625

Outgroup vs focal populations: Bray-Curtis (30) 56.421 1.15E−09

Outgroup vs focal populations: Unweighted UniFrac (33) 49.217 7.41E−15

Outgroup vs focal populations: Weighted UniFrac (23) 59.771 2.80E−07

Lake whitefish

Population pairs: Bray-Curtis (80) 90.132 .511

Population pairs: Unweighted UniFrac (98) 85.056 .072

Population pairs: Weighted UniFrac (60) 90.407 .531

Trinidadian guppies

Population pairs: Bray-Curtis (39) 105.606 .899

Population pairs: Unweighted UniFrac (29) 91.043 .599

Population pairs: Weighted UniFrac (21) 87.682 .366

Midas cichlids

Outgroup vs focal populations: Bray-Curtis (73) 42.179 3.26E−05

Outgroup vs focal populations: Unweighted UniFrac (87) 47.776 1.04E−05

Outgroup vs focal populations: Weighted UniFrac (54) 55.921 5.42E−04

Note: Statistical significance was determined at the .05 level and results were highly consistent 
across metrics, only for threespine stickleback from British Columbia and lake whitefish did we 
detect some suggestive evidence (p < .1) for parallelism for one of the three metrics, but not in the 
other two. We performed one-sample t-tests when data was normally distributed; for data with 
non-normal distribution one-sample Wilcoxon signed-rank tests were used (indicated by asterisks). 
The dimensionality of each data set is indicated in brackets.
p values between .05 and 0.1 are indicated in bold and italics, p values below .05 are indicated in 
bold.

TA B L E  A 4 Comparison of mean angles 
and statistical tests for parallelism (angles 
<90°) for taxonomic composition of the 
gut microbiota across three different 
metrics: Bray–Curtis dissimilarity, 
weighted and unweighted UniFrac.
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Metagenome function - study system Mean (γ) p-value

African cichlids

Population pairs: PWAB (27) 38.923 2.73E−09

Population pairs: EC* (30) 35.546 3.05E−05

Population pairs: KO* (29) 41.443 3.05E−05

Outgroup vs focal populations: PWAB (12) 85.38 .425

Outgroup vs focal populations: EC (12) 80.94 .341

Outgroup vs focal populations: KO (11) 82.325 .351

Threespine stickleback - British Columbia

Population pairs: PWAB (21) 88.045 .471

Population pairs: EC (20) 89.19 .488

Population pairs: KO (20) 84.645 .413

Outgroup vs focal populations: PWAB (23) 60.485 1.93E−04

Outgroup vs focal populations: EC (29) 54.664 4.77E−06

Outgroup vs focal populations: KO (22) 53.186 2.36E−06

Lake whitefish

Population pairs: PWAB (65) 91.112 .566

Population pairs: EC (68) 90.883 .552

Population pairs: KO (64) 91.456 .584

Trinidadian guppies

Population pairs: PWAB (28) 95.56 .69

Population pairs: EC (28) 94.729 .716

Population pairs: KO (28) 97.021 .766

Midas cichlids

Outgroup vs focal populations: PWAB (54) 31.761 1.29E−05

Outgroup vs focal populations: EC (57) 32.745 2.20E−05

Outgroup vs focal populations: KO (55) 28.123 7.62E−06

Note: Statistical significance was determined at the .05 level and results were consistent across 
metrics for all study systems. We performed one-sample t-tests when data was normally 
distributed; for data with non-normal distribution one-sample Wilcoxon signed-rank tests were 
used (indicated by asterisks). The dimensionality of each data set is indicated in brackets.
p values between .05 and 0.1 are indicated in bold and italics, p values below .05 are indicated in 
bold.

TA B L E  A 5 Comparison of mean angles 
and statistical tests for parallelism (angles 
<90°) for inferred metagenome function 
across three different metrics based 
on bray–Curtis dissimilarity: MetaCyc 
pathway abundances (PWAB), enzyme 
commission numbers (EC) and Kyoto 
encyclopedia of genes and genomes 
orthologs (KO).
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