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AbsTrACT
background a single variant in NAA10 (c.471+2t>a), 
the gene encoding n-acetyltransferase 10, has been 
associated with lenz microphthalmia syndrome. in this 
study, we aimed to identify causative variants in families 
with syndromic X-linked microphthalmia.
Methods three families, including 15 affected 
individuals with syndromic X-linked microphthalmia, 
underwent analyses including linkage analysis, exome 
sequencing and targeted gene sequencing. the 
consequences of two identified variants in NAA10 were 
evaluated using quantitative Pcr and rnaseq.
results genetic linkage analysis in family 1 supported 
a candidate region on Xq27-q28, which included 
NAA10. exome sequencing identified a hemizygous 
NAA10 polyadenylation signal (PaS) variant, 
chrX:153,195,397t>c, c.*43a>g, which segregated 
with the disease. targeted sequencing of affected 
males from families 2 and 3 identified distinct NAA10 
PaS variants, chrX:g.153,195,401t>c, c.*39a>g and 
chrX:g.153,195,400t>c, c.*40a>g. all three variants 
were absent from gnomaD. Quantitative Pcr and 
rnaseq showed reduced NAA10 mrna levels and 
abnormal 3′ Utrs in affected individuals. targeted 
sequencing of NAA10 in 376 additional affected 
individuals failed to identify variants in the PaS.
Conclusion these data show that PaS variants are 
the most common variant type in NAA10-associated 
syndromic microphthalmia, suggesting reduced rna is 
the molecular mechanism by which these alterations 
cause microphthalmia/anophthalmia. We reviewed 
recognised variants in PaS associated with Mendelian 
disorders and identified only 23 others, indicating that 
NAA10 harbours more than 10% of all known PaS 
variants. We hypothesise that PaS in other genes harbour 
unrecognised pathogenic variants associated with 
Mendelian disorders. the systematic interrogation of PaS 
could improve genetic testing yields.

InTroduCTIon
Congenital anophthalmia and microphthalmia 
result from failure of early eye development. Clin-
ical presentation in one-third of affected individuals 
is syndromic,1 2 and it is genetically heterogeneous.3 
X-linked syndromic anophthalmia and microph-
thalmia have been shown to result from pathogenic 
variants in four genes: BCOR4 (MIM:300485, 

MCOPS2), HCCS5 (MIM:300056, MCOPS7), 
HMGB36 (MIM:300193, MCOPS13), and NAA107 
(MIM:309800, MCOPS1). A fifth locus, MCOPS4 
(MIM:301590, also designated as ANOP1), with 
linkage to Xq27-q28, was specified without identi-
fication of an associated gene. HMGB3 and NAA10 
reside on Xq27-q28. A single HGMB3 variant has 
been reported in one family to cause syndromic 
colobomatous microphthalmia.6 Forrester et al8 
described a family segregating what they termed 
Lenz microphthalmia syndrome (LMS) and linkage 
to Xq27-q28. Affected individuals had severe micro-
phthalmia, renal anomalies, high-arched palate, 
cutaneous syndactyly of the hands and severe intel-
lectual disability (ID). A c.471+2T>A splice variant 
in NAA10 was identified as causative, the only study 
to date associating NAA10 variants with syndromic 
microphthalmia.7

The MCOPS4 locus was originally defined based 
on a family reported by Graham et al.9 Their mani-
festations included microphthalmia/anophthalmia 
and ID in multiple affected males. Here, we reana-
lysed this family using genetic linkage analysis and 
exome sequencing, verified our findings in two 
additional families and functionally characterised 
the variants.

MATerIAls And MeThods
 All DNA analyses were performed using standard 
techniques.

linkage and haplotype analyses
Resampling and repeat genetic linkage analyses 
were performed in family 1 (figure 1A) using 30 
microsatellite markers on the X chromosome. Initial 
analyses of 22 markers spanning the X chromo-
some were followed by fine mapping with an addi-
tional eight markers from the region near Xqtel. 
Logarithm of odds (LOD) scores were computed 
using FASTLINK using equal marker allele frequen-
cies.10–12 For multimarker analyses, intermarker 
recombination fractions were derived from the 
Rutgers map.13 The disease locus was modelled 
as X-linked recessive. Analyses were performed 
under two additional possible scenarios: first that 
the individual I-2 was gonadal mosaic and second 
that penetrance was less than 100%. Haplotype 
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analysis was performed assuming a model of X-linked recessive 
inheritance.

sequence analyses
The coding region and consensus splice sites of two candidate 
genes, NAA10 and HMGB3, were analysed in family 1 using 
Sanger sequencing. Exome sequencing was performed on indi-
vidual IV-3 and his parents at the National Institutes of Health 
Intramural Sequencing Center, as described.14 Identified variants 
in the linkage region were filtered for quality, absence in ExAC 
males and absence in 473 males from an in-house dataset.15 16 
Sanger sequence analyses were performed in family 1 to confirm 
segregation. Targeted Sanger sequencing of NAA10 was 
performed in the proband of family 2 (figure 1B). Independently, 
sequence analysis of a panel of 41 genes causally associated with 
severe eye malformations was carried out on the proband in 
family 3 (figure 1C) using a custom-designed Agilent SureSelect 
panel (Agilent Technologies, Santa Clara, California, USA) and 
paired-end DNA sequencing using an Illumina MiSeq platform 
(Illumina, San Diego, California, USA), as per the manufacturer’s 
instructions. Targeted sequencing of the NAA10 polyadenylation 
signal (PAS) was performed in 250 unrelated microphthalmia/

anophthalmia/coloboma patients selected without sex bias from 
the MRC Human Genetics Unit Eye Malformation cohort. A 
further 126 males with developmental eye disorders underwent 
targeted sequencing of the NAA10 PAS. Forty-four of these indi-
viduals with bilateral developmental eye disorders were analysed 
for variants in the coding region and consensus splice sites of 
NAA10.

X-inactivation analyses
X-inactivation studies were performed on genomic DNA from 
11 carrier females (family 1 individuals I-2, II-2, II-6, II-17 and 
III-15; family 2 individuals III-2, III-3, IV-1, IV-5 and V-8; family 
3 individual I-2) using the human androgen receptor (HUMARA) 
assay as described in Allen et al17 with minor modifications. 
Briefly, genomic DNA was digested with Rsa1 either alone or 
with the addition of HpaII (New England Biolabs, Ipswich, 
Massachusetts, USA). Digested DNA was PCR amplified using 
primers HUMAR_F:/56 FAM/ TCCA GAAT CTGT TCCA GAGC-
GTGC and Humara_R:  GCTG TGAA GGTT GCTG TTCCTCAT 
(Integrated DNA Technologies, Coralville, Iowa, USA). Prod-
ucts were run on an 3130xl genetic analyser (ThermoFisher 

Figure 1 Pedigrees for families 1–3. clinically affected individuals are depicted by filled symbols, black symbols depict individuals with eye findings and 
grey symbols depict individuals without eye findings, genotypes of tested individuals are noted.
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Scientific, Waltham, Massachusetts, USA) and analysed using 
GeneMapper v4.0 (ThermoFisher Scientific).

rnA analyses
Total RNA was isolated from whole blood from affected and 
carrier individuals in family 1 and from unrelated male and 
female controls using PAXgene Blood RNA tubes (BD Biosci-
ences, San Jose, California, USA). Total RNA was isolated from 
lymphoblasts from one affected and one unaffected individual 
in family 2 using the RNeasy Mini kit (Qiagen, Germantown, 
Maryland, USA). RNA samples were not available from family 
3. RNA-Seq libraries were constructed from 0.5 µg to 1 µg 
total RNA after rRNA depletion using Ribo-Zero Globin (Illu-
mina). The Illumina TruSeq Stranded Total RNA Kit was used 
according to manufacturer’s instructions. The cDNA inserts 
were ~200 bp after chemical shearing. PCR amplification was 
performed using 10 cycles. Unique barcode adapters were 
applied to each library. Libraries were pooled in equimolar ratio 
for sequencing. The pooled libraries were sequenced on multiple 
lanes of a HiSeq 2500 (Illumina) using version 4 chemistry to 
achieve a minimum of 69 million 125 base read pairs. The data 
were processed using RTA version 1.18.64 and CASAVA 1.8.2. 
RNA-Seq reads were aligned with the STAR aligner,18 using the 
hg19 genome assembly and the Ensembl transcript database 
(release 74). The STAR BAM output file was converted to WIG 
format using the  bam2wig. py script from the RSeqC suite,19 and 
these WIG files were further converted to bigwig format using 
the wigToBigWig tool from the UCSC Genome Browser's binary 
utilities directory.

For qPCR, 400 ng total RNA was converted to cDNA using the 
High Capacity RNA-to-cDNA kit (Applied Biosystems, Beverly, 
Massachusetts, USA). TaqMan assays were performed using 10 ng 
cDNA, gene-specific TaqMan probes (NAA10: HS01125831_g1 
and HA00185854_m1; beta-Actin: Hs99999903_m1 (Ther-
moFisher Scientific) and TaqMan Gene Expression Master Mix 
(Applied Biosystems) on the OneStepPlus Real-Time PCR System 
(ThermoFisher Scientific). Samples were run in triplicate, and 
relative expression levels in affected and carrier individuals as 
compared with control individuals were calculated using the 
delta-delta Ct method.

resulTs
Clinical evaluations
Family 1
Family 1 (figure 1A) was originally described by Graham et al in 
support of a fifth microphthalmia/anophthalmia locus MCOPS4. 
The family was reported to include seven affected males with 
microphthalmia/anophthalmia and ID.9 One man, II-18, was 
reported to have normal eyes with cleft soft palate and a single 
ear tag and was considered unaffected with respect to syndromic 
anophthalmia/microphthalmia. An additional affected male, 
IV-3, with a milder phenotype as compared with his affected 
uncles, was born after publication of the Graham et al paper.9 
Briefly, this male infant was born following a pregnancy in which 
scans were assessed to be normal. However, at birth he was 
noted to have a large open neural tube defect (NTD), right-sided 
anophthalmia and bilateral 2–3 cutaneous syndactyly of his toes. 
When his teeth erupted, they were irregular. He was sociable 
and did not show signs of the severe developmental delay or 
behavioural problems, most notably self-mutilation, seen in 
other affected males in the family.

Family 2
Family 2 (figure 1B) was originally described by Slavotinek  
et al20 as a four-generation family with X-linked anophthalmia 
consistent with linkage to Xq27. The intelligence of two living 
males in family 2 was apparently normal. Carrier females III-2 
and IV-1 had unremarkable eye examinations, and individual 
IV-1 was diagnosed with dyslexia but her intelligence was appar-
ently normal.

Family 3
The male proband (individual II-2; figure 1C) was the second 
child of a non-consanguineous couple, referred for diagnostic 
screening of genes associated with severe eye malformations. 
Family history was remarkable for a maternal uncle with anen-
cephaly. The proband presented with spina bifida at 20 weeks’ 
gestation. He was a term delivery with birth weight 3.2 kg. 
At birth, he was noted to have widely spaced eyes, unilateral 
phthisis bulbi, downturned corners of the mouth, small penis 
and small feet with upturned nails. At 8 months his length, 
weight and head circumference were recorded at ninth centile. 
He had a repaired myelomeningocele, hydrocephalus with a 
ventriculoperitoneal shunt and left grade 2 vesicoureteric reflux 
with a normal renal ultrasound. MRI studies showed ventric-
ulomegaly with a Chiari type 2 malformation. Developmental 
milestones were reported to be normal at 8 months. Array CGH 
was reported as normal.

Molecular data
Family 1
LOD score analyses reported in the original paper showed a peak 
LOD score of 1.9, between the disease and markers on Xq27-
q28, below the 2.0 threshold recommended to declare X chro-
mosome linkage.21 The evidence of linkage was weak unless one 
assumed non-penetrance, pleiotropy, variable expressivity, or 
gonadal mosaicism as the mutant haplotype was shared by II-18 
and his affected relatives.

Repeat multimarker analysis using four informative markers 
DXS8091, DXS1193, DXS8086 and DXS1073 achieved a 
peak LOD score of 1.43 with the disease locus placed on top 
of DXS1073 and assuming full penetrance. The peak multi-
marker score was 2.19 with 75% penetrance, 2.46 with 50% 
penetrance and 3.31 assuming gonadal mosaicism. Haplotype 
analysis was performed assuming a model of X-linked reces-
sive inheritance and showed a recombination event in affected 
individual III-2 between markers DXS8043 and DXS8086 
restricting the possible linkage region telomeric to position 
ChrX(GRCh37):g.144,028,513.

Both HMGB3 and NAA10 lie within this linkage region. The 
coding regions and consensus splice sites of HMGB3 and NAA10 
were interrogated without identification of a pathogenic variant. 
Trio exome sequencing was performed on individual IV-3 and 
his parents, and variants in the linked region were filtered for 
absence in male controls. A single variant was identified in the 
3’UTR of NAA10, chrX:153,195,397T>C, c.*43A>G (refer-
ence cDNA NM_003491.3), altering the consensus PAS from 
AATAAA to AATAGA. The NAA10 variant was verified by 
Sanger sequencing and shown to be present in all affected indi-
viduals available for analysis, the matriarch (I-2), as well as in 
individual II-18, the male previously thought to be unaffected. 
Querying the gnomAD database for variants in the consensus 
PAS for NAA10 did not identify any variants in over 1 70 000 
alleles.
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Family 2
A re-examination of the linkage data showed that family 1 and 
family 2 had overlapping regions near Xqtel consistent with 
linkage. Based on the findings in family 1, targeted Sanger 
sequencing of NAA10 was performed in the proband of family 
2. A second distinct variant in the the 3′ UTR of NAA10, chrX-
:g.153,195,401T>C, c.*39A>G, was identified, which altered 
the consensus PAS from AATAAA to GATAAA. The variant was 
verified by Sanger sequencing in carrier females and was not 
present in two unaffected males.

Family 3
Targeted sequencing of 41 genes causally associated with severe 
eye malformations in the proband from family 3 identified a 
third variant in NAA10, chrX:g.153,195,400T>C, c.*40A>G, 
which altered the consensus PAS from AATAAA to AGTAAA. The 
NAA10 variant in family 3 was confirmed by Sanger sequencing. 
DNA from the uncle with anencephaly was not available for 
testing.

NAA10 sequence analysis in microphthalmia/anophthalmia/
coloboma cohorts
Targeted sequencing of the NAA10 PAS in 250 unrelated patients 
with microphthalmia/anophthalmia/coloboma selected without 
sex bias from the MRC Human Genetics Unit Eye Malformation 
cohort did not identify additional variants. No variants affecting 
the NAA10 PAS were identified in a further 126 males with 
developmental eye disorders. In addition, no pathogenic variants 
in the coding region and consensus splice sites of NAA10 were 
identified in 44 of these individuals who presented with bilateral 
developmental eye disorders.

X-inactivation
Four of 11 carrier females showed greater than 90% skewing 
of X-inactivation, individual II-2 from family 1 and individuals 

III-2, IV-1 and IV-5 from family 2. However, females did not 
show consistent skewing of X-inactivation.

rnA analyses
The consequences of the PAS variants for NAA10 mRNA expres-
sion level and structure were investigated using qPCR and 
RNAseq in families 1 and 2. qPCR showed carrier females from 
family 1 to have similar levels of NAA10 RNA as compared with 
control individuals. In contrast, affected individuals from fami-
lies 1 and 2 demonstrated a decrease in the quantity of NAA10 
RNA of approximately 50% when compared with controls 
(figure 2).

Transcript structure was investigated by mapping RNAseq 
reads to the UCSC Genome Browser. RNAseq data from unaf-
fected (family 2, individual V-9) and control individuals indi-
cated the normal 3′ UTR of NAA10 ended at the approximate 
position of the predicted polyadenylation site (figure 3G-I). In 
contrast, for affected individuals with the PAS variants (family 1, 
individuals III-2, III-5, IV-3 and family 2, individual IV-6), the 
read depth did not decrease as expected at the polyadenylation 
site in the 3′ UTR, but instead declined approximately 600 bp 
further 3′ at a second polyadenylation site predicted by bioinfor-
matic analysis of genomic sequence (figure 3A–C, F).22 A similar 
result was observed in carrier females (family 1, individuals II-2 
and III-15) (figure 3D-E).

dIsCussIon
Six protein complexes, NatA through NatF, carry out Nα acetyl-
ation of proteins in the cell.23 24 NAA10 is the primary subunit 
of the NatA complex and an auxiliary subunit of the NatE 
complex.24 25 The acetylation targets of the six complexes are 
believed to be mostly distinct and dependent on the amino acids 
that follow the methionine in position 1.24 Additionally, data 
from a knockout mouse model suggests that NAA10 plays a role 
in the regulation of methylation through direct DNA binding.26 
Prior to the present publication, the mutational spectrum in 
NAA10 comprised nine missense alterations and the single splice 
site variant identified previously in a single family with what 
those authors called LMS. The first reported variant in NAA10, 
c.109T>C; p.(Ser37Pro), was identified in two families segre-
gating a sex-linked recessive male lethal syndrome with an aged 
appearance and cardiac arrhythmias.27 Eight additional missense 
variants have since been reported in heterozygous females or 
hemizygous males with developmental delay and/or ID with or 
without cardiac involvement and without anophthalmia.28–32 
The majority of these variants were identified as de novo alter-
ations.28 30–32 Functional studies of the missense alterations 
have demonstrated a variable effect on the ability of NAA10 
to acetylate substrates and the clinical phenotype may correlate 
with the level of acetylation dysfunction and affected substrates. 
Alternatively, clinically relevant predicted missense variants in 
NAA10 have been shown to disrupt DNA binding,26 and it is 
likely that different missense alterations will variably contribute 
to this phenomenon.

The polyA_DB database contains human mRNA polyade-
nylation sites based on EST/cDNA evidence33 and predicts four 
sites in the 3′ region of NAA10. Based on the NAA10 poly(A) 
sequence data in the UCSC Genome Browser, the PAS at c.*39–
c.*44 is the most commonly used signal with polyadenylation 
occurring between 12 and 19 nucleotides 3′ of that hexamer. 
Three distinct nucleotides within this six-nucleotide signal are 
mutated in the families described here. Previous in vitro studies 
have demonstrated that these changes in the PAS hexamer 

Figure 2 reverse transcription and quantitative Pcr analysis of NAA10 
expression in mrna; data were normalised to ACTB mrna levels. (a) 
relative NAA10 expression in whole blood from affected individuals (family 
1, individuals iii-2, iii-5 and iV-3), carrier females (family 1, individuals 
ii-2, ii-6 and iii-15) and male and female control individuals (c1–c4). all 
values are shown relative to control c1. (B) NAA10 expression levels in 
lymphoblasts from affected male iV-6 shown relative to the expression level 
in unaffected male V-9, family 2.
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disrupt both cleavage and polyadenylation (figure 4).34 Further-
more, these variants are analogous to variants associated with 
abnormal phenotypes in other genes. The NAA10 3′ UTR variant 
identified in family 1, c.*43A>G, alters the AATAAA consensus 
to AATAGA, similar to the c.*112A>G (reference cDNA 

NM_000518.4) pathogenic variant in the beta globin (HBB) 
gene (Human Gene Mutation Database [HGMD] CR900266) 
(see table 1).35 The 3′ UTR variant of NAA10 identified in 
family 2, c.*39A>G, alters the AATAAA consensus to GATAAA, 
similar to another reported pathogenic variant in the HBB gene 

Figure 3 rna-seq data comparing reads from four affected individuals, two carrier females and three control individuals, one female and two males, for 
NAA10. the variant positions in the NAA10 polyadenylation signal are marked by a filled red arrow. transcription in affected individuals (family 1, individuals 
iii-2, iii-5 and iV-3 and family 2, individual iV-6) and carrier females (family 1, individuals ii-2 and iii-15) continues past the normal polyadenylation cleavage 
site and uses a cryptic signal approximately 600 bp downstream at an alternate polyadenylation cleavage site depicted by an open red arrow. NAA10 gene 
models are from gencODe V.19 as included in the UcSc genome browser (grch37/hg19).
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(c.*108A>G, HGMD CR127145).36 The NAA10 3′ UTR variant 
identified in family 3, c.*40A>G, alters the AATAAA consensus 
to AGTAAA, similar to the variant in the ARSA gene (HGMD 
CR890137) reported by Gieselmann et al37 and a variant in 
the SLC6A4 gene (HGMD CR102248) reported by Gyawali 
et al,38 although it is important to note that the wild-type PAS 
consensus sequence in both ARSA and SLC6A4 genes is AATAAC 
(see table 1). That the NAA10 variant disrupts a consensus PAS 
rather than a non-canonical PAS could be consistent with the 
observation that NAA10 variants are associated with a Mende-
lian disorder, whereas the ARSA and SLC6A4 variants are associ-
ated with lower penetrance traits.

All three families presented here manifested microphthalmia/
anophthalmia with variable additional features. In family 1, 
individuals had variable expressivity ranging from syndromic 
microphthalmia/anophthalmia with severe ID to isolated cleft 
palate and an ear tag. A single individual, IV-3, had an open 
NTD. Affected individuals in family 2 had anophthalmia and 
additional findings including minor skeletal anomalies and atten-
tion deficit disorder, but notably all affected males were reported 
to have normal intelligence. The proband in family 3 had 
syndromic microphthalmia/anophthalmia with complex features 
including spina bifida. By report, a maternal uncle (deceased) 
to the proband had anencephaly; however, his genotype was 
unknown. Although the numbers are small, 2 out of 15 indi-
viduals in this study had NTDs (three if the uncle in family 2 is 
included). Additional families will need to be studied to deter-
mine if NTDs are a feature of NAA10 PAS variants. The mouse 
NAA10 knockout model had variable expressivity ranging from 
embryonic lethality to normal body size, and Lee et al26 suggested 
this variable expressivity may result from the role of NAA10 in 
global methylation. The role of NAA10 in global methylation 
may contribute to the observed variable expressivity in these 
families as well. Specifically, the observed phenotype may result 
from the regions of the genome experiencing defective methyl-
ation in any one individual. As methylation is important in the 

aetiology of NTDs, it is interesting to speculate that the role of 
NAA10 in global methylation may account for the NTDs seen 
in these families. Future studies will be needed to determine if 
methylation or other factors play a role in the variable expres-
sivity seen with these variants.

Cleavage and polyadenylation signals reside in the 3′ UTRs of 
mRNAs and include a number of key cis elements including the 
AAUAAA PAS, which typically resides 10–30 nucleotides upstream 
of the cleavage site (reviewed in refs 39 40). Ninety per cent of 
identified PAS conform to the hexanucleotide sequence AAUAAA, 
and most of the remaining 10% differ by only a single substitution.39 
The AAUAAA hexamer is critical both for cleavage and poly(A) 
addition,41 and the effects of point mutations in this hexamer have 
been determined.34 Disease-associated variants in PAS are rare, and 
consequently, we were surprised to identify three such variants in 
this rare disorder. To identify all known consensus PAS variants, 
we performed a directed search of the HGMD.42 We identified 
31 reported PAS variants in 19 genes (table 1), 23 associated with 
Mendelian disorders and 8 associated with a functional polymor-
phism or susceptibility. Overall, PAS variants account for 23 out of 
the ~195 000 DM variants in HGMD or 0.012% of the total. As 
well as being individually uncommon, such variants have a highly 
non-random distribution across genes. Of the 23 variants associated 
with Mendelian disorders, nine are in HBB, four are in HBA2 and 
two are in FOXP3, the remainder being singletons. Some of this 
distribution can be explained by the depth and detail to which the 
various genes have been studied, HBB being one of the best studied 
of all human genes. To allow for this, the proportion of polyade-
nylation variants to all known pathogenic variants in a given gene 
can be tabulated. When expressed in this way, a very different 
pattern emerges. NAA10 has the highest proportion of PAS variants, 
at 25%. The next highest cluster of genes includes IGF1, NAT1, 
BMP1 and SLC6A4, each of which has a single PAS variant, but a 
relatively small overall number of variants, yielding a high propor-
tion. HBB and HBA2 lie in the middle of the range at about 1% 
of variants, reflecting the large number of variants in these well-
studied genes. Most of the clinical phenotypes associated with PAS 
variants are typical of those seen for loss of function variants in the 
same gene, although they may be found with milder forms of the 
phenotypes; for example, in HBB,36 43 the phenotypes of PAS vari-
ants are described as either typical or mild thalassaemia. The contri-
bution to milder phenotypes has two implications; first, in disorders 
where loss of gene function would be lethal, PAS variants may allow 
sufficient function for viability. Second, for disorders where the 
phenotype is due to complete loss of function, PAS variants may be 
missed if they lead to a milder condition.36 We conclude from these 
data that the phenotypic consequence of pathogenic PAS variants 
is likely due to loss or partial loss of function, consistent with the 
experimental observations of these variants in other genes and the 
qPCR data we show here. Specifically, for NAA10, this suggests that 
partial loss of protein function due to reduced mRNA levels leads 
to a distinct phenotype, as compared with missense variants where 
the functional deficiency may only affect specific acetylation or 
DNA binding functions. The previously reported NAA10 splice site 
variant7 also showed reduced mRNA/protein supporting reduced 
function as causal for the microphthalmia phenotype. Alterna-
tively, sequences within the elongated 3′ end, or within the retained 
intron 7 for the splice variant, may have a novel functional effect. 
Possible novel effects include: altered RNA or protein localisation,44 
altered 3′ UTR-directed protein–protein interactions45 or acqui-
sition of novel regulatory functions. However, since the retained 
sequences are distinct between the splice site variant and the PAS 
variants, a novel property of the mRNA is unlikely to be the mech-
anism accounting for the overlapping feature of microphthalmia. 

Figure 4 comparison of the effects of aaUaaa mutations on cleavage 
and poly(a) addition. Variants identified in this study are noted with an 
asterisk. Figure is reproduced from Sheets et al34 with permission from 
Oxford University Press.34
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Additionally, the absence of a phenotype in carrier females without 
skewed X-inactivation suggests that any effect would need to fit a 
recessive model of inheritance. The general dearth of recognised 
PAS pathogenic variants may be in part due to the inherent diffi-
culty in identifying PAS. In addition, many such variants may not 
be included in next-generation sequence data due to the limitations 
of exome sequencing kits and the predominant use of exome over 
genome sequencing.

The assessment of pathogenicity for non-coding variants in 
Mendelian disorders is challenging. The American College of 
Medical Genetics and Genomics and the Association for Molecular 
Pathology (ACMG/AMP)46 framework includes few criteria that are 
relevant to 3′ UTR variants, reflecting a focus on high penetrance 
coding variants. For the variants we identified here, we invoked 
criteria PS3 (well-established in vitro or in vivo functional studies), 
PM1 (located in a mutational hot spot and/or critical and well-es-
tablished functional domain), PM2 (absent from controls) and PP1 
(cosegregation with disease in multiple affected family members). 
As qPCR is not ‘a well-established functional assay’ because qPCR 
for NAA10 is not established in the diagnostic realm, the PS3 criteria 
can be downgraded to a moderate level of evidence (PS3_Mod). 
Additionally, our segregation data are arguably less than robust 
considering that we have invoked variable expressivity to explain 
the occurrence of the variant in II-18 in family 1 and thus PP1 might 
arguably be dropped. That would leave PS3_Mod, PM1 and PM2, 
which combine to yield a likely pathogenic assessment. Based on 
these pieces of evidence, we conclude that these three PAS variants 
are likely pathogenic.

These data have important implications for the overall process 
of identifying pathogenic variation. We hypothesise that PAS 
variants are candidate pathogenic variants for many Mendelian 
disorders and may be a component of the mutational spectrum of 
patients who are currently ‘mutation-negative’. A full assessment 
of this hypothesis will first require the continued development 
of genome (as opposed to exome) population sequence reference 
databases, allowing a greater understanding of the evolutionary 
constraints operating at 3′ UTR loci. Second, robust methods 
to identify PAS for all genes will need to be developed. While 
trivial for many genes, this is challenging for others as some use 
multiple polyadenylation sites and often the PAS sequence does 
not conform to the consensus, as demonstrated for a number of 
the genes that we reviewed. Third, to the extent that exome anal-
ysis continues to outpace genome analysis, it will be necessary to 
target these sequences in exome capture reagents. Fourth, testing 
laboratories will need to direct their attention to detecting and 
interpreting such variants. Finally, criteria for pathogenicity of 
non-coding variants will need to be updated. We believe that 
the accomplishment of these improvements in variant detection, 
interrogation and interpretation will allow the findings based on 
the three variants reported here as a cause of a rare disorder 
to yield benefits for the diagnosis of patients with many other 
genetic disorders and contribute to the overall improvement in 
clinical genomic sequencing diagnostic yield.
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