
UC Berkeley
UC Berkeley Previously Published Works

Title
A Large-Scale Study of Modern Code Review and Security in Open Source Projects

Permalink
https://escholarship.org/uc/item/86d5w0gn

ISBN
9781450353052

Authors
Thompson, Christopher
Wagner, David

Publication Date
2017-11-08

DOI
10.1145/3127005.3127014

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86d5w0gn
https://escholarship.org
http://www.cdlib.org/

A Large-Scale Study of Modern Code Review
and Security in Open Source Projects

Christopher Thompson
University of California, Berkeley

cthompson@cs.berkeley.edu

David Wagner
University of California, Berkeley

daw@cs.berkeley.edu

ABSTRACT
Background: Evidence for the relationship between code review
process and software security (and software quality) has the po-
tential to help improve code review automation and tools, as well
as provide a better understanding of the economics for improving
software security and quality. Prior work in this area has primarily
been limited to case studies of a small handful of software projects.
Aims: We investigate the effect of modern code review on software
security. We extend and generalize prior work that has looked at
code review and software quality. Method: We gather a very large
dataset from GitHub (3,126 projects in 149 languages, with 489,038
issues and 382,771 pull requests), and use a combination of quan-
tification techniques and multiple regression modeling to study the
relationship between code review coverage and participation and
software quality and security. Results: We find that code review
coverage has a significant effect on software security. We confirm
prior results that found a relationship between code review cov-
erage and software defects. Most notably, we find evidence of a
negative relationship between code review of pull requests and the
number of security bugs reported in a project. Conclusions: Our
results suggest that implementing code review policies within the
pull request model of development may have a positive effect on
the quality and security of software.

CCS CONCEPTS
• Security and privacy→ Economics of security and privacy;
Software security engineering; • Software and its engineering
→ Software development methods; Collaboration in software
development;

KEYWORDS
mining software repositories, software quality, software security,
code review, multiple regression models, quantification models

1 INTRODUCTION
Modern code review takes the heavyweight process of formal code
inspection, simplifies it, and supports it with tools, allowing peers
and others to review code as it is being added to a project [41].
Formal software inspection generally involves a separate team
of inspectors examining a portion of the code to generate a list
of defects to later be fixed [2]. In contrast, modern code review is
muchmore lightweight, focusing on reviewing small sets of changes
before they are integrated into the project. In addition, modern
code review can be much more collaborative, with both reviewer

PROMISE’17, November 8, 2017, Toronto, Canada
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and author working to find the best fix for a defect or solution
to an architectural problem [41]. Code review can help transfer
knowledge, improve team awareness, or improve the quality of
solutions to software problems [3]. It also has a positive effect on
understandability and collective ownership of code [6].

There has been much research into code review process and
how it relates to software quality in general [2, 3, 28, 45], but the
connection to the security of software has been less thoroughly
explored. Software security is a form of software quality, but there
is reason to believe that software vulnerabilities may be different
from general software defects [8, 29, 46].

Empirical evidence for the relationship between code review
process and software security (and software quality) could help im-
prove decision making around code review process. Prior work in
this area has primarily been limited to case studies of a small hand-
ful of software projects [28, 30, 45]. To the best of our knowledge,
we present the first large-scale (in terms of number of reposito-
ries studied) analysis of the relationship between code review and
software security in open source projects.

GitHub, the largest online repository hosting service, encourages
modern code review through its pull request system. A pull request
(or “PR”) is an easy way to accept contributions from outside devel-
opers. Pull requests provide a single place for discussion about a set
of proposed changes (“discussion comments”), and for comments
on specific parts of the code itself (“review comments”).

However, not all projects have such a strictly defined or enforced
development process, or even consistently review changes made to
their code base. Code review coverage is the proportion of changes
that are reviewed before being integrated into the code base for a
project. Code review participation is the degree of reviewer involve-
ment in review. Previous studies have examined the effects of code
review coverage and participation on software quality [28, 45] and
software security [30] among a handful of large software projects.
We extend and generalize these prior studies by performing quanti-
tative analysis of these effects in a very large corpus of open source
software repositories on GitHub.

Our contributions in this paper are as follows:

• We create a novel neural network-based quantificationmodel
(a model for predicting the class distribution of a dataset)
which outperforms a range of existing quantification tech-
niques at the task of estimating the number of security issues
in a project’s issue tracker.
• We perform a large-scale analysis of projects on GitHub,
using multiple regression analysis to study the relationship
between code review coverage and participation and: (1) the
number of issues in a project, and (2) the number of issues
that are security bugs in a project, while controlling for a
range of confounding factors.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

PROMISE’17, November 8, 2017, Toronto, Canada Christopher Thompson and David Wagner

2 DATA PROCESSING
We focused our investigation on the population of GitHub reposi-
tories that had at least 10 pushes, 5 issues, and 4 contributors from
2012 to 2014. This is a conservatively low threshold for projects that
have had at least some active development, some active use, and
more than one developer, and thus a conservatively low threshold
for projects that might benefit from having a set code review pro-
cess (we hypothesize, but do not investigate, that a higher threshold
would yield a population that exhibits stronger effects from code
review). We used the GitHub Archive [24], a collection of all public
GitHub events, to generate a list of all such repositories. This gave
us 48,612 candidate repositories in total. From this candidate set,
we randomly sampled 5000 repositories.

We wrote a scraper to pull all non-commit data (such as descrip-
tions and issue and pull request text and metadata) for a GitHub
repository through the GitHub API [20], and used it to gather data
for each repository in our sample. After scraping, we had 4,937
repositories (due to some churn in GitHub repositories).

We queried GitHub to obtain the top three languages used by
each repository. For each such language, we manually labeled it
on two independent axes: Whether it is a programming language
(versus a markup language like HTML, etc.), and whether it is
memory-safe or not. A programming language is “memory-safe”
if its programs are protected from a variety of defects relating to
memory accesses (see Szekeres et al. [44] for a systematization of
memory safety issues).

Starting from the set of repositories we scraped, we filtered out
those that failed to meet our minimum criteria for analysis:
• Repositorieswith a created_at date later than their pushed_at
date (these had not been active since being created onGitHub;
13 repositories)
• Repositories with fewer than 5 issues (these typically had
their issue trackers moved to a different location; 264 reposi-
tories)
• Repositories with fewer than 4 contributors (these typically
were borderline cases where our initial filter on distinct
committer e-mail addresses over-estimated the number of
GitHub users involved; 1008 repositories)
• Repositories with no pull requests (406 repositories)
• Repositories where the primary language is empty (GitHub
did not detect any language for the main content of the
repository, so we ruled these as not being software project
repositories; 83 repositories)
• Repositories where none of the top three languages are pro-
gramming languages (a conservative heuristic for a reposi-
tory not being a software project; 37 repositories)

This left us with 3,126 repositories in 149 languages, containing
489,038 issues and 382,771 pull requests. Table 1 shows a summary
of the repositories in our sample. Table 2 lists the top 10 languages
used in our repository sample and the total number of bytes in files
of each. We use this dataset for our regression analysis in Section 4.

We found that, in our entire sample, security bugs make up
4.6% of all issues (as predicted by our final trained quantifier, see
Section 3 for how we derived this estimate). This proportion is close
to the results of Ray et al. [40] where 2% of bug fixing commits
were categorized as security-related.

Table 1: Summary of our sample of GitHub repositories.

median min max

Stars 42.5 0 338880
Pull Requests 34 1 9060
Contributors 11 4 435
Issues 46 5 8381
Size (B) 4163 22 6090985
Age (days) 1103 0.3078 3048
Avg Commenters per PR 0.9274 0 5
Unreviewed PRs 2 0 1189
% Unreviewed PRs 5.56 0 100
Security Bugs 1 0 175
% Security Bugs 0 0 68

Table 2: Top primary languages in our repository sample.

Language # Repositories Total Primary Size (MB)

JavaScript 660 1083.27
Python 418 282.98
Ruby 315 93.62
Java 305 755.75
PHP 268 540.87
C++ 172 1147.48
C 140 2929.24
CSS 110 23.13
HTML 107 476.02
C# 83 177.83

3 QUANTIFYING SECURITY ISSUES
Ultimately, our basic approach involves applying multiple linear re-
gression to study the relationship between code review and security.
We count the number of security bugs reported against a particular
project and use this as a proxymeasure of the security of the project;
we then construct a regression model using our code reviewmetrics
and other variables as the independent variables. The challenge is
that this would seem to require examining each issue reported on
the GitHub issue tracker for each of the 3,126 repositories in our
sample, to determine whether each issue is security-related or not.

Unfortunately, with 489,038 issues in our repository dataset,
it is infeasible to manually label each issue as a security bug or
non-security bug. Instead, we use machine learning techniques
to construct a quantifier that can estimate, for each project, the
proportion of issues that are security-related. Our approach is an
instance of quantification, which is concerned with estimating the
distribution of classes in some pool of instances: e.g., estimating the
fraction of positive instances, or in our case, estimating the fraction

A Large-Scale Study of Modern Code Review
and Security in Open Source Projects PROMISE’17, November 8, 2017, Toronto, Canada

of issues that are security-related. Quantification was originally
formalized by Forman [14] and has since been applied to a variety
of fields, from sentiment analysis [16] to political science [23] to
operations research [14]. We build on the techniques in the litera-
ture and extend them to construct an accurate quantifier for our
purposes.

One of the insights of the quantification literature is that it can
be easier to estimate the fraction of instances (out of some large
pool) that are positive than to classify individual instances. In our
setting, we found that accurately classifying whether an individual
issue is a security bug is a difficult task (reaching at best 80-85%
classification accuracy). In contrast, quantification error can be
much smaller than classification error (the same models achieved
around 8% average absolute quantification error—see “RF CC” in
Figure 1). Intuitively, the false positives and the false negatives of
the classifier cancel each other out when the proportion is being
calculated.

For our research goals, the crucial insight is that we are only
concerned with estimating the aggregate proportion of security
issues in a repository, rather than any of the individual labels (or
predicting the label of a new issue). In particular, our regression
models only require knowing a count of how many security issues
were reported against a particular project, but not the ability to
identify which specific issues were security-related. Thus, quantifi-
cation makes it possible to analyze very large data sets and achieve
more accurate and generalizable results from our linear regression
models.

Using our best methods described below, we were able to build
a quantifier that estimates the fraction of issues that are security-
related with an average absolute error of only 4%.

We distinguish our task of quantification from prior work in
vulnerability predictionmodels (as in work by Gegick et al. [17] and
Hall et al. [21]). We are concerned about textual issues reported in
a project’s issue tracker, rather than identifying vulnerable com-
ponents in the project’s source code. Our goal is not prediction,
where we would want to correctly label each new instance we see
(such as has been addressed in work by Gegick et al. [18]). Instead,
the goal of our models is to estimate the proportion of positive
(security-related) instances (issues) in an existing population.

3.1 Basic Quantification Techniques
We start by reviewing background material on quantification. Quan-
tification is a supervised machine learning task: we are given a
training set of labeled instances (xi ,yi). Now, given a test set S ,
the goal is to estimate what fraction of instances in S are from
each class. Quantification differs from standard supervised learning
methods in that the class distribution of the training set might differ
from the class distribution of the test set: e.g., the proportion of
positive instances might not be the same.

Many classifiers work best when the proportion of positive in-
stances in the test set is the same as the proportion of positive
instances in the training set (i.e., the test set and training set have
the same underlying distribution). However, in quantification, this
assumption is violated: we train a single model on a training set
with some fixed proportion of positives, and then we will apply it

to different test sets, each of which might have a different propor-
tion of positives. This can cause biased results, if care is not taken.
Techniques for quantification are typically designed to address this
challenge and to tolerate differences in class distribution between
the training set and test set [14]; a good quantification approach
should be robust to variations in class distribution.

Several methods for quantification have been studied in the
literature. The “naive” approach to quantification, called Classify
and Count (CC) [14], predicts the class distribution of a test set by
using a classifier to predict the label yi for each instance and then
counting the number of instances with each label to estimate the
proportion of positive instances:

p̂ =
1
N

∑
i
yi .

In other words, we simply classify each instance in the test set and
then count what fraction of them were classified as positive.

The Adjusted Count (AC) method [14] tries to estimate the bias
of the underlying classifier and adjust for it. Using k-fold cross-
validation, the classifier’s true positive rate (tpr) and false positive
rate (f pr) can be estimated. For our experiments, we used k = 10.
The adjusted predicted proportion is then

p̂AC =
p̂ − f pr

tpr − f pr
.

Some classifiers (such as logistic regression) output not only a
predicted class y, but also a probability score—an estimate of the
probability that the instance has class y. The Probabilistic Adjusted
Classify and Count (PACC) method builds on the AC method by
using the probability estimates from the classifier instead of the
predicted labels [5]. It also uses estimates of the expected true
positive and false positive rates (computed using cross-validation,
as with AC). The adjusted predicted proportion is then

p̂PACC =
p̂ − E[f pr]

E[tpr] − E[f pr]
.

3.2 Quantification Error Optimization
More recently, researchers have proposed training models to op-
timize the quantification error directly instead of optimizing the
classification error and then correcting it post-facto [4, 13, 32].
Forman was the first to use Kullback-Leibler Divergence (KLD),
which measures the difference between two probability distribu-
tions, as a measure of quantification error [14]. For quantification,
KLD measures the difference between the true class distribution
and the predicted class distribution. Given two discrete probability
distributions P and P̂ , the KLD is defined as

KLD(P |P̂) =
∑
i
P (i) log

P (i)

P̂ (i)
.

The KLD is the amount of information lost when P̂ is used to
approximate P . A lower KLD indicates that the model will be more
accurate at the quantification task. Thus, rather than training a
model to maximize accuracy (as is typically done for classification),
for quantification we can train the model to minimize KLD.

Esuli and Sebastiani [13] use structured prediction (based on
SVMperf [25, 26]) to train an SVM classifier that minimizes the KLD
loss. They call their quantifier SVM(KLD), and it has been used for

PROMISE’17, November 8, 2017, Toronto, Canada Christopher Thompson and David Wagner

sentiment analysis tasks [16]. However, we were unable to repro-
duce comparable KLD scores on simple test datasets, and found
the existing implementation difficult to use. Other researchers re-
port subpar performance from SVM(KLD) compared to the simpler
CC, AC, or PACC quantification methods for sentiment analysis
tasks [36].

3.3 Our Quantifier
Building on the idea of optimizing for quantification error instead
of accuracy, we construct a neural network quantifier trained using
TensorFlow [1] to minimize the KLD loss. TensorFlow allows us
to create and optimize custom machine learning models and has
built-in support for minimizing the cross-entropy loss. We express
the KLD in terms of the cross entropy via

KLD(P |P̂) = H (P , P̂) − H (P),

that is, the difference of the cross entropy of P and P̂ and the entropy
of P . Because for any given training iteration the entropy of the
true class distribution H (P) will be constant, minimizing the cross
entropy H (P , P̂) will also minimize the KLD.

We implement a fully-connected feed-forward network with
two hidden layers of 128 and 32 neurons, respectively. The hidden
layers use the ReLU activation function. The final linear output
layer is computed using a softmax function so that the output is a
probability distribution. Training uses stochastic gradient descent
with mini-batches, using the gradient of the cross entropy loss
between the predicted batch class distribution and the true batch
class distribution.

Naive random batching can cause the neural network to simply
learn the class distribution of the training set. To combat this, we
implemented random proportion batching: for each batch, we ini-
tially set the batch to contain a random sample of instances from
the training set; then we randomly select a proportion of positives p
(from some range of proportions) and select a maximum-size subset
of the initial set such that the sub-batch proportion is p; finally, we
evaluate the model’s KLD on that sub-batch. This objective function
is equivalent to minimizing the model’s average KLD, where we are
averaging over a range of proportions p for the true proportion of
positives. This training procedure forces the model to be accurate
at the quantification task over a wide range of values for the true
proportionp of positives, and thus provides robustness to variations
in the class distribution.

Our network architecture is kept intentionally simple, and as
shown below, it performs very well. We leave heavy optimization of
the network design or testing of alternative architectures to future
work.

3.4 Feature Extraction
In all of our quantification models we used the following features.
We extract features from the text of the issue using the “bag-of-
words” approach over all 1- and 2-grams. We extract all of the text
from each issue, remove all HTML markup and punctuation from
the text, stem each word (remove affixes, such as plurals or “-ing”)
using the WordNet [39] lemmatizer provided by the Natural Lan-
guage Toolkit (NLTK) [27], compute token counts, and apply a term-
frequency inverse document frequency (TF-IDF) transform [42] to

the token counts. Separately, we also extract all of the labels (tags)
from each issue, normalize them to lowercase,1 and apply a TF-IDF
transform to obtain additional features. We also count the number
of comments on each issue, and extract the primary language of
the repository. The combination of all of these were used as our
features for our quantifiers.

3.5 Methodology
To train and evaluate our quantifiers, we hand-labeled 1,097 issues
to indicate which ones were security issues and which were not.
We reserved 10% of them (110 issues) as a test set, and used the
remaining 987 issues as a training set.

We selected the issues in our dataset to reduce class imbalance.
Because security issues are such a small fraction of the total popu-
lation of issues, simply selecting a random subset of issues would
have left us with too few security issues in the training and test
sets. Therefore, we used the tags on each issue as a heuristic to help
us find more issues that might be security-related. In particular,
we collected a set of issues with the “security” tag, and a set of
issues that lacked the “security” tag; both sets were taken from
issues created from January 2015 to April 2016, using the GitHub
Archive (issue events in the GitHub Archive before 2015 did not
have tag information). We restricted the non-security-tagged issues
to one per repository, in order to prevent any single project from
dominating our dataset. We did not limit the security-tagged issues,
due to the limited number of such issues. This left us with 84,652
issues without the “security” tag and 1,015 issues with the “security”
tag. We took all of the security-tagged issues along with a random
sample of 2,000 of the non-security-tagged issues and scraped all
of the text and metadata for each issue using the GitHub API:
• The owner and name of the repository
• The name of the user who created the issue
• The text of the issue
• The list of any tags assigned to the issue
• The text of all comments on the issue
• The usernames of the commenters
• The time the issue was created
• The time the issue was last updated
• The time the issue was closed (if applicable)

We then hand-labeled 1,097 of these issues, manually inspecting
each to determine it was a “security bug” (the uneven number is
an artifact of our data processing pipeline and issues in our overall
archival sample that had since been deleted).We considered an issue
filed against the repository to be a security bug if it demonstrated
a defect in the software that had security implications or fell into
a known security bug class (such as buffer overruns, XSS, CSRF,
hard-coded credentials, etc. [10]), even if it was not specifically
described in that way in the bug report. We treated the following
as not being security bugs:
• Out-of-date or insecure dependencies
• Documentation issues
• Enhancement requests not related to fundamental insecurity
of existing software

1To avoid the potential for overfitting due to interaction with how we selected issues
to be hand-labeled, we remove the tag “security” if present.

A Large-Scale Study of Modern Code Review
and Security in Open Source Projects PROMISE’17, November 8, 2017, Toronto, Canada

0.0

0.2

0.4

0.6

0.8

1.0
p

re
d

ic
te

d
 p

Mean |Error| = 0.306 (0.184)
quantifier = LogReg CC

Mean |Error| = 0.116 (0.090)
quantifier = LogReg PACC

Mean |Error| = 0.057 (0.040)
quantifier = NN Full Range

Mean |Error| = 0.040 (0.034)
quantifier = NN Low Range

0.0 0.2 0.4 0.6 0.8 1.0

true p

0.0

0.2

0.4

0.6

0.8

1.0

p
re

d
ic

te
d

 p

Mean |Error| = 0.078 (0.045)
quantifier = RF CC

0.0 0.2 0.4 0.6 0.8 1.0

true p

Mean |Error| = 0.255 (0.225)
quantifier = RF PACC

0.0 0.2 0.4 0.6 0.8 1.0

true p

Mean |Error| = 0.234 (0.136)
quantifier = XGBoost CC

0.0 0.2 0.4 0.6 0.8 1.0

true p

Mean |Error| = 0.156 (0.138)
quantifier = XGBoost PACC

Figure 1: Plots of predicted proportion vs. true proportion for our quantifiers on our reserved test set. The dotted line marks
the line y = x , which represents the ideal (a quantifier with no error); closer to the dotted line is better. Each quantifier
is labeled with the mean absolute error over all proportions and the standard error of that mean. Our “low range” neural
network quantifier trained over p ∈ [0.0, 0.1] shows the best performance, with a mean absolute error of only 4%.

We compensated for the generally low prevalence of security bugs
by hand-labeling more of the issues from our “security”-tagged
set. After hand-labeling we had 224 security bug issues and 873
non-security bug issues.

The “security” tag on GitHub had a precision of 37% and a re-
call of 99% when compared to our hand-labeling. This very low
precision validates our decision to hand-label issues and develop
quantification models to analyze our main repository corpus.

3.6 Evaluation
We implemented and tested a variety of quantifiers. We tested
CC, AC, and PACC with logistic regression, SVM, random forest,
and XGBoost [9] classifiers under a variety of settings, along with
various configurations of our neural network-based quantifier. Fig. 1
shows the relative error over all proportions p ∈ [0.0, 1.0] for the
top-performing quantifiers. Our neural network quantifier, when
trained on proportions of positives in the range [0.0, 0.1] (the “low
range”), performed the best on our test set, with the lowest mean
absolute error (0.04) and the lowest mean KLD (0.01), so we adopt
it for all our subsequent analysis.

4 REGRESSION DESIGN
In our study design, we seek to answer the following four research
questions:

(RQ1) Is there a relationship between code review coverage and the
number of issues in a project?

(RQ2) Is there a relationship between code review coverage and the
number of security bugs reported to a project?

(RQ3) Is there a relationship between code review participation and
the number of issues in a project?

(RQ4) Is there a relationship between code review participation and
the number of security bugs reported to a project?

Our research questions are similar to McIntosh et al. [28] and
Ray et al. [40], and we use similar model construction techniques.
We use multiple linear regression modeling to describe the relation-
ship between code review coverage and participation (our explana-
tory variables) and both the number of issues and the number of
security bugs filed on each project (our response variables). In our
models we also include a number of control explanatory variables
(such as the age, size, churn, number of contributors, and stars for
each repository). Table 3 explains each of our explanatory variables.

We manually inspect the pairwise relationships between our
response variable and each explanatory variable for non-linearity.
Following standard regression analysis techniques for improving
linearity [15], we apply a log transformation (log(x + 1)) to each
metric with natural number values.

To reduce collinearity, before building our regression models
we check the pairwise Spearman rank correlation (ρ) between our
explanatory variables. We use Spearman rank correlation since
our explanatory variables are not necessarily normally distributed.
For any pair that is highly correlated (|ρ | > 0.7 [31]), we only
include one of the two in our model. Additionally, after building
our regression models, we calculate the Variance Inflation Factor
(VIF), a measure of multicollinearity, for each explanatory variable
in the model. No variables in our models exceeded a VIF of 5, which
is considered a conservative threshold [37].

To determine whether the coefficients for each explanatory vari-
able are significantly different from zero, we perform a t-test on
each to determine a p-value. If a coefficient is not significantly dif-
ferent from zero (p > 0.05), we do not report the coefficient in our
model summary.

PROMISE’17, November 8, 2017, Toronto, Canada Christopher Thompson and David Wagner

Table 3: Description of the control (a), code review coverage (b), and code review participation (c) metrics.

(a) Control Metrics

Metric Description Rationale

Forks Number of repository
forks

The more forks a repository has, the more users are contributing pull requests to the
project.

Watchers Number of repository
watchers

Watchers are users who get notifications about activity on a project. The more watchers a
repository has, the more active eyes and contributors it likely has.

Stars Number of repository
stars

On GitHub, users interested in a project can “star” the repository, making the number of
stars a good proxy for the popularity of a project. More popular projects, with more users,
will tend to have more bug reports and more active development.

Size Size of repository (in
bytes)

Larger projects have more code. Larger code bases have a greater attack surface, and more
places in which defects can occur.

Churn Sum of added and
removed lines of code
among all merged pull
requests

Code churn has been associated with defects [34, 35].

Age Age of repository
(seconds)

The difference (in seconds) between the time the repository was created and the time of the
latest commit to the repository. Ozment and Schechter [38] found evidence that the
number of foundational vulnerabilities reported in OpenBSD decreased as a project aged,
but new vulnerabilities are reported as new code is added.

Pull Requests Total number of pull
requests in a project

The number of pull requests is used as a proxy for the churn in the code base, which has
been associated with both software quality [33, 34] and software security [43].

Memory-Safety Whether all three of the
top languages for a
project are memory-safe

Software written in non-memory-safe languages (e.g., C, C++, Objective-C) are vulnerable
to entire classes of security bugs (e.g., buffer-overflow, use-after-free, etc.) that software
written in memory-safe languages are not [44]. Therefore, we might expect that such
software would inherently have more security bugs.

Contributors Number of authors that
have committed to a
project

The number of contributors to a project can increase the heterogeneity of the code base,
but can also increase the number and quality of code reviews and architectural decisions.

(b) Coverage Metrics (RQ 1, 2)

Metric Description Rationale

Unreviewed Pull
Requests

The number of pull requests
in a project that were merged
without any code review

A pull request merged by the same author who created it, without any
discussion, implies that the changes have not been code reviewed. Such
changes may be more likely to result in both general defects [28] and
security bugs [30].

Unreviewed Churn The total churn in a project
from pull requests that were
merged without any code
review

While churn may induce defects in software, code review may help prevent
some defects introduced by churn. We would expect that the lower the
amount of unreviewed churn, the lower the number of defects introduced.

(c) Participation Metrics (RQ 3, 4)

Metric Description Rationale

Average Commenters Mean number of commenters on
pull requests in a project

Prior work has shown that too many distinct commenters on change
requests can actually have a negative impact on software quality [30].

Mean Discussion
Comments

Mean number of general
discussion comments on pull
requests in a project

We expect that increased discussion on a pull request may be indicative
of more thorough code review.

Mean Review Comments Mean number of comments on
specific lines of code in pull
requests in a project

We expect that more review comments mean more specific changes are
being requested during code review, which may be indicative of more
thorough code review.

A Large-Scale Study of Modern Code Review
and Security in Open Source Projects PROMISE’17, November 8, 2017, Toronto, Canada

We report effect sizes as the regressionmodel coefficients, as they
are more readily interpretable than abstract effect size measures.

5 RESULTS
5.1 RQ1: Is there a relationship between code

review coverage and the number of issues
in a project?

Table 4: Review coverage and overall issues model.

Adjusted R2 0.5459
F(8,3117) 470.6***

log security issues Coef. Std. Err.

(Intercept) ⋄

log forks †

log watchers †

log size 0.1972 (0.0087)***
log churn -0.0209 (0.0089)*
log age 0.0464 (0.0198)*
log contributors ⋄

log stars 0.2065 (0.0105)***
log pull requests 0.2822 (0.0238)***
memory safety 0.2306 (0.0435)***

log unreviewed pull requests 0.0880 (0.0169)***
log unreviewed churn †

† Discarded during correlation analysis (|ρ | > 0.7)
⋄ p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

Prior work has found significant effects between code review cov-
erage and defects in an analysis of three large software projects [28].
To investigate this relationship on a more general sample, we build
a model using the log number of overall issues in a repository as
the response variable, and the log number of unreviewed (but in-
tegrated) pull requests as the explanatory variable. The model is
presented in Table 4.

The amount of unreviewed churn is too highly correlated with
the number of unreviewed pull requests to include in the model.
We chose to keep the number of unreviewed pull requests as it is a
simpler metric, and we argue is easier to reason about as part of an
operational code review process. For completeness, we analyzed
the model that used the amount of unreviewed churn instead and
found that it had no noticeable effect on model performance. The
same was true for RQ2.

We find a small but significant positive relationship between the
log number of unreviewed pull requests in a project and the log
number of issues the project has. Projects with more unreviewed
pull requests tend to have more issues. Holding other variables
constant, with a 1% decrease in the number of unreviewed pull
requests we would expect to see a 0.08% decrease in the number of

issues. Halving the number of unreviewed pull requests we would
expect to see 5% fewer issues.

5.2 RQ2: Is there a relationship between code
review coverage and the number of security
bugs reported to a project?

Table 5: Review coverage and security issues model.

Adjusted R2 0.3663
F(8,3117) 226.8***

log security issues Coef. Std. Err.

(Intercept) -2.1603 (0.3555)***
log forks †

log watchers †

log size 0.1691 (0.0086)***
log churn ⋄

log age 0.0396 (0.0198)*
log contributors ⋄

log stars 0.0883 (0.0103)***
log pull requests 0.2046 (0.0234)***
memory safety 0.2322 (0.0428)***

log unreviewed pull requests 0.0957 (0.0167)***
log unreviewed churn †

† Discarded during correlation analysis (|ρ | > 0.7)
⋄ p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

To explore this question, we replace the response variable of our
previous model with the log number of security bugs (as predicted
by our quantifier for each project). Themodel is presented in Table 5.

We find a small but significant positive relationship between the
log number of integrated pull requests that are unreviewed and
the log number of security bugs a project has. Projects with more
unreviewed pull requests tend to have a greater number of security
bugs, when controlling for the total numbers of pull requests and
issues. Holding other variables constant, with a 1% decrease in the
number of unreviewed pull requests we would expect to see a 0.09%
decrease in the number of security bugs. Halving the number of
unreviewed pull requests we would expect to see 6% fewer security
bugs.

5.3 RQ3: Is there a relationship between code
review participation and the number of
issues in a project?

To explore this question, we alter our model to use a response vari-
able of the log number of issues in a project, andwe replace ourmain
explanatory variable with the log mean number of commenters on
pull requests and the log mean number of review comments per
pull request in each project. The model is presented in Table 6. As

PROMISE’17, November 8, 2017, Toronto, Canada Christopher Thompson and David Wagner

Table 6: Review participation and overall issues model.

Adjusted R2 0.543
F(9,3116) 413***

log issues Coef. Std. Err.

(Intercept) ⋄

log forks †

log watchers †

log size 0.2036 (0.0090)***
log churn ⋄

log age ⋄

log contributors ⋄

log stars 0.1881 (0.0107)***
log pull requests 0.3471 (0.0212)***
memory safety 0.2436 (0.0436)***

log mean commenters per pr ⋄

log mean review comments per pr -0.1105 (0.0477)*
log mean discussion comments per pr †

† Discarded during correlation analysis (|ρ | > 0.7)
⋄ p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

noted in Table 6, we did not include the mean number of discussion
comments in the model as it was highly correlated with the mean
number of commenters. We chose to keep the mean number of
commenters and the mean number of review comments, to capture
both aspects of participation.

We do not find a significant relationship between the average
number of commenters on pull requests and the total number of
issues. However, we did find a small but significant negative rela-
tionship between the log mean number of review comments per
pull request and the log number of issues a project has. Projects
that, on average, have more review comments per pull request tend
to have fewer issues. Holding other variables constant, with a 1%
increase in the average number of review comments per pull re-
quest we would expect to see a 0.11% decrease in the number of
issues. Doubling the average number of review comments per pull
request we would expect to see 5.5% fewer issues.

5.4 RQ4: Is there a relationship between code
review participation and the number of
security bugs reported to a project?

To explore this question, we change the response variable in our
previous model to be the log number of security bugs reported in a
project. The model is presented in Table 7.

We do not find a significant relationship between the average
number of commenters on pull requests and the number of security
bugs. This result is in contrast with that found byMeneely et al. [30].
While they found that vulnerable files in the Chromium project
tended to have more reviewers per SLOC and more reviewers per

Table 7: Review participation and security issues model.

Adjusted R2 0.36
F(9,3116) 196.3***

log security bugs Coef. Std. Err.

(Intercept) -2.0655 (0.3569)***
log forks †

log watchers †

log size 0.1704 (0.0088)***
log churn ⋄

log age ⋄

log contributors ⋄

log stars 0.0797 (0.0105)***
log pull requests 0.2718 (0.0209)***
memory safety 0.2416 (0.0429)***

log mean commenters per pr ⋄

log mean review comments per pr ⋄

lot mean discussion comments per pr †

† Discarded during correlation analysis (|ρ | > 0.7)
⋄ p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

review, we were unable to replicate the effect. (We note that we
looked for an effect across projects, taking a single average for each
project, instead of across files within a single project.)

We also did not find a significant relationship between the aver-
age number of review comments per pull request and the number
of security bugs reported.

6 THREATS TO VALIDITY
6.1 Construct validity
In order to handle the scale of our sample, we used a machine-
learning based quantifier to estimate the dependent variable in
our security models (the number of security bugs reported in a
project). A quantifier with low precision (high variance in its error)
or one that was skewed to over-predict higher proportions could
cause spurious effects in our analysis. We tested our quantifiers
on a sample of real issues from GitHub repositories and selected a
quantifier model that has good accuracy and high precision (low
variance) in its estimations across a wide range of proportions.

This also means that the dependent variable includes some noise
(due to quantifier error). We do not expect errors in quantification to
be biased in a way that is correlated to code review practices. Linear
regression models are able to tolerate this kind of noise. Statistical
hypothesis testing takes this noise into account; the association we
found is significant at the p < 0.001 level (Table 5).

Wemanually label issues as “security bugs” to train our quantifier.
We have a specific notion of what a security bug is (see Section 2),
but we have weak ground truth. We used one coder, and there is
some grey area in our definition. Our use of quantification should

A Large-Scale Study of Modern Code Review
and Security in Open Source Projects PROMISE’17, November 8, 2017, Toronto, Canada

mitigate this somewhat (particularly if the grey area issues are
equally likely to be false positives as false negatives, and thus cancel
out in the aggregate).

It could be possible to test the predictive validity of our opera-
tionalization (the quantifier) on a real-world dataset with known
ground truth (such as the Chromium issue tracker [11]).

Ideally, we would prefer to be able to measure the security of
a piece of software directly, but this is likely impossible. Security
metrics are still an area of active research. In this study we use the
number of security issues as an indirect measure of the security of
a project, rather than trying to directly assess the security of the
software itself. This limits the conclusions that can be drawn from
our results, as we cannot directly measure and analyze the security
of the projects in our dataset.

Our main metric of review coverage (whether a pull request has
had any participation from a second party) is somewhat simplistic.
One concern is if open source projects tend to “rubber stamp” pull
requests (a second participant merges or signs off on a pull request
without actually reviewing it): our metric would count this as code
review, while it should not be counted. Our metric is an upper
bound on code review coverage.

Some of our control explanatory variables are proxies for the
underlying constructs we are trying to control for. These proxies
may be incomplete in capturing the underlying constructs.

6.2 External validity
We intentionally chose a broad population of GitHub repositories
in order to try to generalize prior case study-based research on code
review and software quality. Our population includes many small
or inactive repositories, so our sample may not be representative
of security critical software or very popular software. Looking at
top GitHub projects might be enlightening, but would limit the
generalizability of the results, and might limit the ability to gather
a large enough sample.

While GitHub is the largest online software repository hosting
service, there may be a bias in open source projects hosted on
GitHub, making our sample not truly representative of open source
software projects. One concern is that many security critical or very
large projects are not on GitHub, or only mirrored there (and their
issue tracking and change requests happen elsewhere). For example,
the Chromium and Firefox browsers, the WebKit rendering engine,
the Apache Foundation projects, and many other large projects
fall into this category. Additionally, sampling from GitHub limits
us to open source software projects. Commercial or closed source
projects may exhibit different characteristics.

6.3 Effect of Choice of Quantifier
Prior work in defect prediction has found that the choice of machine
learning model can have a significant effect on the results of defect
prediction studies [7, 19]. We repeated our regression analysis us-
ing the naive classify-and-count technique with a random forest
classifier model (“RF CC”). This was the best performing of our
non-neural network quantification models (see “RF CC” in Figure 1).
The regression models produced using the predictions from this
quantifier had the same conclusions as our results in Section 5, but
with smaller effect sizes on the explanatory variables, and some

differences in the effects of the controls. This is likely due to the
fact that the RF CC model tends to under-predict the number of
security issues compared to our chosen neural network model.

7 RELATEDWORK
Heitzenrater and Simpson [22] call for the development of an eco-
nomics of secure software development, give an overview of how
information security economics can lay the foundations, and put
forth a detailed research agenda to allow for reasoned investment
decisions into software security outcomes. We believe this paper
helps to elucidate a small piece of the secure software development
economics problem.

Edmundson et al. [12] examined the effects of manual code in-
spection on a piece of web software with known and injected vul-
nerabilities. They found that no reviewer was able to find all of
vulnerabilities, that experience didn’t necessarily reflect accuracy
or effectiveness (the effects were not statistically significant), and
that false positives were correlated with true positives (r = 0.39). It
seems difficult to predict the effectiveness of targeted code inspec-
tion for finding vulnerabilities.

McIntosh et al. [28] studied the connection between code review
coverage and participation and software quality in a case study
of the Qt, VTK, and ITK projects. For general defects, they found
that both review coverage and review participation are negatively
associated with post-release defects.

Meneely et al. [30] analyzed the socio-technical aspects of code
review and security vulnerabilities in the Chromium project (look-
ing at a single release). They measured both the thoroughness of
reviews of changes to files, and socio-technical familiarity—whether
the reviewers had prior experience on fixes to vulnerabilities and
how familiar the reviewers and owners are with each other. They
performed an association analysis among all these metrics, and
found that vulnerable files tended to have many more reviews.
In contrast to the results of McIntosh et al., vulnerable files also
had more reviewers and participants, which may be evidence of
a “bystander apathy” effect. These files also had fewer security-
experienced participants.

Ray et al. [40] looked at the effects of programming languages
on software quality. They counted defects by detecting “bug fix
commits”—commits that fix a defect, found by matching error-
related keywords. They found that some languages have a greater
association with defects than other languages, but the effect is small.
They also found that language has a greater impact on specific
categories of defects than it does on defects in general.

8 CONCLUSIONS
We have presented the results of a large-scale study of code review
coverage and participation as they relate to software quality and
software security. Our results indicate that code review coverage
has a small but significant effect on both the total number of issues
a project has and the number of security bugs. Additionally, our
results indicate that code review participation has a small but sig-
nificant effect on the total number of issues a project has, but it
does not appear to have an effect on the number of security bugs.
Overall, code review appears to reduce the number of bugs and
number of security bugs.

PROMISE’17, November 8, 2017, Toronto, Canada Christopher Thompson and David Wagner

These findings partially validate the prior case study work of
McIntosh et al. [28] and Meneely et al. [30]. However, we did not
replicateMeneely’s finding of increased review participation having
a positive relationship with vulnerabilities. More work would be
required to determine if this is a difference in our metrics or a
difference in the populations we study. Our results suggest that
implementing code review policies within the pull request model of
development may have a positive effect on the quality and security
of software. However, our analysis only shows correlation—further
work is needed to show if there is a causative effect of code review
on quality and security.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, et al. 2015. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems. (2015). Software available from
tensorflow.org.

[2] Aybuke Aurum, Håkan Petersson, and Claes Wohlin. 2002. State-of-the-art:
software inspections after 25 years. Software Testing, Verification and Reliability
12, 3 (2002). https://doi.org/10.1002/stvr.243

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In International Conference on Software Engineer-
ing.

[4] Jose Barranquero, Jorge Díez, and Juan José del Coz. 2015. Quantification-oriented
learning based on reliable classifiers. Pattern Recognition 48, 2 (2015). https:
//doi.org/10.1016/j.patcog.2014.07.032

[5] Antonio Bella, Cesar Ferri, Jose Hernandez-Orallo, and Maria Jose Ramirez-
Quintana. 2010. Quantification via probability estimators. In IEEE International
Conference on Data Mining.

[6] M. Bernhart and T. Grechenig. 2013. On the understanding of programs with
continuous code reviews. In International Conference on Program Comprehension.
https://doi.org/10.1109/ICPC.2013.6613847

[7] David Bowes, Tracy Hall, and Jean Petrić. 2017. Software defect prediction:
do different classifiers find the same defects? Software Quality Journal (2017).
https://doi.org/10.1007/s11219-016-9353-3

[8] F. Camilo, A. Meneely, and M. Nagappan. 2015. Do Bugs Foreshadow Vulner-
abilities? A Study of the Chromium Project. In Mining Software Repositories.
https://doi.org/10.1109/MSR.2015.32

[9] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. CoRR abs/1603.02754 (2016). http://arxiv.org/abs/1603.02754

[10] Steve Christey. 2011. CWE/SANS Top 25 Most Dangerous Software Errors. (2011).
https://cwe.mitre.org/top25/

[11] Chromium Project. 2017. Chromium issue tracker. (2017). https://bugs.chromium.
org/p/chromium

[12] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter, Adrian
Mettler, and David Wagner. 2013. An Empirical Study on the Effectiveness of
Security Code Review. In International Symposium on Engineering Secure Software
and Systems. 197–212. https://doi.org/10.1007/978-3-642-36563-8_14

[13] Andrea Esuli and Fabrizio Sebastiani. 2015. Optimizing text quantifiers for
multivariate loss functions. ACM Transactions on Knowledge Discovery from Data
(TKDD) 9, 4 (2015).

[14] George Forman. 2005. Counting positives accurately despite inaccurate classifi-
cation. In European Conference on Machine Learning.

[15] John Fox. 2008. Applied regression analysis and generalized linear models (2nd
ed.). Sage.

[16] Wei Gao and Fabrizio Sebastiani. 2015. Tweet sentiment: from classification
to quantification. In IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM).

[17] M. Gegick, P. Rotella, and L.Williams. 2009. Predicting Attack-prone Components.
In International Conference on Software Testing Verification and Validation. https:
//doi.org/10.1109/ICST.2009.36

[18] M. Gegick, P. Rotella, and T. Xie. 2010. Identifying security bug reports via
text mining: An industrial case study. In Mining Software Repositories. https:
//doi.org/10.1109/MSR.2010.5463340

[19] Baljinder Ghotra, Shane McIntosh, and Ahmed E. Hassan. 2015. Revisiting the
Impact of Classification Techniques on the Performance of Defect Prediction
Models. In International Conference on Software Engineering. 12.

[20] GitHub. 2017. GitHub API. (2017). https://developer.github.com/v3/
[21] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. 2012. A Systematic

Literature Review on Fault Prediction Performance in Software Engineering.
IEEE Transactions on Software Engineering 38, 6 (Nov 2012). https://doi.org/10.
1109/TSE.2011.103

[22] Chad Heitzenrater and Andrew Simpson. 2016. A Case for the Economics of
Secure Software Development. In New Security Paradigms Workshop (NSPW ’16).

https://doi.org/10.1145/3011883.3011884
[23] Daniel J Hopkins and Gary King. 2010. A method of automated nonparametric

content analysis for social science. American Journal of Political Science 54, 1
(2010).

[24] Ilya Grigorik. 2017. GitHub Archive. (2017). https://www.githubarchive.org/
[25] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. 2009. Cutting-plane

training of structural SVMs. Machine Learning 77, 1 (2009).
[26] Thorsten Joachims, Thomas Hofmann, Yisong Yue, and Chun-Nam Yu. 2009.

Predicting structured objects with support vector machines. Commun. ACM 52,
11 (2009).

[27] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit. In
Proceedings of the Workshop on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Linguistics. https://doi.org/10.
3115/1118108.1118117 Software available from nltk.org.

[28] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014. The
impact of code review coverage and code review participation on software quality:
a case study of the Qt, VTK, and ITK projects.. In Mining Software Repositories.
https://doi.org/10.1145/2597073.2597076

[29] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates. 2013.
When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing
Commits. In ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement. 65–74. https://doi.org/10.1109/ESEM.2013.19

[30] A Meneely, ACR Tejeda, B Spates, and S Trudeau. 2014. An empirical investi-
gation of socio-technical code review metrics and security vulnerabilities. In
International Workshop on Social Software Engineering. https://doi.org/10.1145/
2661685.2661687

[31] Lawrence S. Meyers, Glenn Gamst, and Anthony J. Guarino. 2006. Applied
Multivariate Research: Design and Interpretation (1st ed.). Sage.

[32] L. Milli, A. Monreale, G. Rossetti, F. Giannotti, D. Pedreschi, and F. Sebastiani.
2013. Quantification Trees. In IEEE International Conference on Data Mining.
https://doi.org/10.1109/ICDM.2013.122

[33] J. C. Munson and S. G. Elbaum. 1998. Code churn: a measure for estimating
the impact of code change. In International Conference on Software Maintenance.
https://doi.org/10.1109/ICSM.1998.738486

[34] N. Nagappan and T. Ball. 2005. Use of relative code churn measures to predict
system defect density. In International Conference on Software Engineering. https:
//doi.org/10.1109/ICSE.2005.1553571

[35] Nachiappan Nagappan and Thomas Ball. 2007. Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case Study. In International
Symposium on Empirical Software Engineering and Measurement. https://doi.org/
10.1109/ESEM.2007.13

[36] Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin Stoyanov, and Fabrizio Sebas-
tiani. 2016. SemEval-2016 Task 4: Sentiment Analysis in Twitter. In Proceedings
of the 10th International Workshop on Semantic Evaluation.

[37] Robert M. O’brien. 2007. A Caution Regarding Rules of Thumb for Variance
Inflation Factors. Quality & Quantity 41, 5 (2007). https://doi.org/10.1007/
s11135-006-9018-6

[38] Andy Ozment and Stuart E Schechter. 2006. Milk or Wine: Does software security
improve with age?. In USENIX Security.

[39] Princeton University. 2010. AboutWordNet. (2010). http://wordnet.princeton.edu
[40] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.

A large scale study of programming languages and code quality in GitHub. In
International Symposium on Foundations of Software Engineering. https://doi.org/
10.1145/2635868.2635922

[41] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and
Daniel German. 2012. Contemporary peer review in action: Lessons from open
source development. IEEE Software 29, 6 (2012).

[42] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information Processing & Management 24, 5 (1988).

[43] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. 2011. Evaluating Com-
plexity, Code Churn, and Developer Activity Metrics as Indicators of Software
Vulnerabilities. IEEE Transactions on Software Engineering 37, 6 (Nov 2011).
https://doi.org/10.1109/TSE.2010.81

[44] L. Szekeres, M. Payer, T. Wei, and D. Song. 2013. SoK: Eternal War in Memory. In
IEEE Symposium on Security and Privacy. https://doi.org/10.1109/SP.2013.13

[45] P Thongtanunam and S McIntosh. 2015. Investigating code review practices in
defective files: an empirical study of the Qt system. InMining Software Repositories.
https://doi.org/10.1109/msr.2015.23

[46] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. 2011. Security Versus
Performance Bugs: A Case Study on Firefox. In Mining Software Repositories. 10.
https://doi.org/10.1145/1985441.1985457

tensorflow.org
https://doi.org/10.1002/stvr.243
https://doi.org/10.1016/j.patcog.2014.07.032
https://doi.org/10.1016/j.patcog.2014.07.032
https://doi.org/10.1109/ICPC.2013.6613847
https://doi.org/10.1007/s11219-016-9353-3
https://doi.org/10.1109/MSR.2015.32
http://arxiv.org/abs/1603.02754
https://cwe.mitre.org/top25/
https://bugs.chromium.org/p/chromium
https://bugs.chromium.org/p/chromium
https://doi.org/10.1007/978-3-642-36563-8_14
https://doi.org/10.1109/ICST.2009.36
https://doi.org/10.1109/ICST.2009.36
https://doi.org/10.1109/MSR.2010.5463340
https://doi.org/10.1109/MSR.2010.5463340
https://developer.github.com/v3/
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1145/3011883.3011884
https://www.githubarchive.org/
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1109/ESEM.2013.19
https://doi.org/10.1145/2661685.2661687
https://doi.org/10.1145/2661685.2661687
https://doi.org/10.1109/ICDM.2013.122
https://doi.org/10.1109/ICSM.1998.738486
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/ESEM.2007.13
https://doi.org/10.1109/ESEM.2007.13
https://doi.org/10.1007/s11135-006-9018-6
https://doi.org/10.1007/s11135-006-9018-6
http://wordnet.princeton.edu
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/msr.2015.23
https://doi.org/10.1145/1985441.1985457

	Abstract
	1 Introduction
	2 Data Processing
	3 Quantifying Security Issues
	3.1 Basic Quantification Techniques
	3.2 Quantification Error Optimization
	3.3 Our Quantifier
	3.4 Feature Extraction
	3.5 Methodology
	3.6 Evaluation

	4 Regression Design
	5 Results
	5.1 RQ1: Is there a relationship between code review coverage and the number of issues in a project?
	5.2 RQ2: Is there a relationship between code review coverage and the number of security bugs reported to a project?
	5.3 RQ3: Is there a relationship between code review participation and the number of issues in a project?
	5.4 RQ4: Is there a relationship between code review participation and the number of security bugs reported to a project?

	6 Threats to Validity
	6.1 Construct validity
	6.2 External validity
	6.3 Effect of Choice of Quantifier

	7 Related Work
	8 Conclusions
	References

