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SUMMARY

Given the increasing interest in their use as disease
biomarkers, the establishment of reproducible, ac-
curate, sensitive, and specific platforms for micro-
RNA (miRNA) quantification in biofluids is of high
priority.We compare four platforms for these charac-
teristics: small RNA sequencing (RNA-seq), FirePlex,
EdgeSeq, and nCounter. For a pool of synthetic miR-
NAs, coefficients of variation for technical replicates
are lower for EdgeSeq (6.9%) and RNA-seq (8.2%)
than for FirePlex (22.4%); nCounter replicates are
not performed. Receiver operating characteristic
analysis for distinguishing present versus absent
miRNAs shows small RNA-seq (area under curve
0.99) is superior to EdgeSeq (0.97), nCounter (0.94),
and FirePlex (0.81). Expected differences in expres-
sion of placenta-associated miRNAs in plasma from
pregnant and non-pregnant women are observed
with RNA-seq and EdgeSeq, but not FirePlex or
nCounter. These results indicate that differences in
performance among miRNA profiling platforms
impact ability to detect biological differences among
samples and thus their relative utility for research and
clinical use.

INTRODUCTION

MicroRNAs (miRNAs) are a class of small (18- to 22-nt) non-cod-

ing RNAs with known roles in gene regulation (Bartel, 2004).

miRNAs can be released from cells into the extracellular space

and have been detected in all tested biological fluids (Godoy

et al., 2018; Sohel, 2016). As potential indicators of tissue
4212 Cell Reports 29, 4212–4222, December 17, 2019 ª 2019 The A
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function, extracellular miRNAs have been proposed as possible

prognostic and diagnostic biomarkers for a variety of diseases

and for monitoring response to therapy (Das et al., 2019).

qPCR, microarrays, and small RNA sequencing (RNA-seq) are

measurement methods that are commonly used to study miRNA

expression in tissues. Systematic comparisons between these

methods have demonstrated their utility for research studies

(Mestdagh et al., 2014; Giraldez et al., 2018; Yeri et al., 2018),

but each of them has limitations that may impact their usefulness

for quantification of extracellular miRNAs for clinical use. In

particular, small RNA-seq is excellent for discovery studies but

is less useful for high-throughput or rapid turnaround applica-

tions, while low sensitivity and long turnaround time are themajor

limitations for microarrays, and qPCR is not easily scalable to

large numbers of miRNAs. Recently, several platforms have

been developed specifically to address these gaps. Understand-

ing differences in reproducibility, bias, and ability to detect

biological differences across these platforms is important for

selection of methods for translation of initial discovery-based

exRNA (extracellular RNA) studies to large-scale clinical valida-

tion and actual clinical use. Here, we use synthetic miRNA pools

and exRNA from plasma (Table S1) to build upon previous

studies by comparing a previously assessed small RNA-

sequencing protocol (Giraldez et al., 2018) to three relatively

novel platforms: HTG Molecular’s EdgeSeq miRNA Whole Tran-

scriptome Assay (EdgeSeq), Abcam’s FirePlex (FirePlex), and

NanoString’s nCounter (nCounter).

For all four miRNA quantification platforms, the numerical

readout for each interrogated miRNA correlates with its abun-

dance in the tested sample. However, how these platforms

measure miRNA varies widely (Table S2). EdgeSeq, FirePlex,

and nCounter are targeted platforms, which detect only those

miRNAs for which target-specific probes are included in the

assay. Small RNA-seq, on the other hand, is a discovery plat-

form, which captures small RNA sequences with a 50 phosphate
uthor(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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and 30 hydroxyl group by adding common 50 and 30 adapter
sequences in a non-sequence-specific manner. The small

RNA-seq method we use here was optimized for low-input sam-

ples and was shown to be less biased than other widely used

commercial small RNA-sequencing methods (Giraldez et al.,

2018). This was primarily achieved by modifying both the 50

and 30 adapters to include four degenerate nucleotides on the

ends that are ligated to the RNA molecule (Jayaprakash et al.,

2011).

EdgeSeq is a multiplexed nuclease protection assay with

next-generation sequencing readout (Girard et al., 2016). First,

probes containing sequences complementary to 2,083 specific

miRNAs and flanking sequences for downstream amplification

are incubated with the miRNA-containing sample. Probes that

successfully hybridize to their cognate miRNA in the sample

are protected from nuclease digestion, amplified with the addi-

tion of barcodes, and then sequenced. Therefore, the output

for EdgeSeq is read count, as in small RNA-seq, but unlike small

RNA-seq, the number of reads reflects the quantity of probes

that were bound by miRNAs and protected from digestion.

The remaining two methods use probes and fluorescent re-

porters. The Multiplex Circulating FirePlex miRNA Assay (Ab-

cam) is based on gel microparticle technology (Chapin et al.,

2011). The FirePlex hydrogel particles contain a central region

that binds specific miRNAs based on complementarity, as

well as two separate end regions with differing fluorescent in-

tensities that serve as a barcode for the central analyte region.

Bound miRNAs are ligated to universal adapters and then

eluted from the hydrogels for amplification by PCR using bio-

tinylated primers specific for the universal adapters. Following

amplification, the now-biotinylated miRNA targets are rehybri-

dized to the hydrogel particles, and a fluorescent reporter spe-

cific for biotin is used for quantitative detection of fluorescence

on a flow cytometer. Analysis of the fluorescence attributed to

the biotin-specific reporter (representative of relative target

miRNA abundance) combined with the unique fluorescent

barcodes on each end of the hydrogel (specific signature for

the miRNA target) allows for multiplexed detection of up to 68

individual miRNAs per assay.

The nCounter platform relies on hybridization of miRNAs to

probes conjugated to unique fluorescent barcodes and can

potentially assay up to 800 different targets at once (Geiss

et al., 2008; Denaro et al., 2017). Unlike the other platforms we

tested, nCounter does not require an amplification step and

counts the total number of fluorescent barcodes to determine

the quantity of miRNA molecules in the sample. EdgeSeq and

FirePlex can use isolated RNA or crude biofluid as input, while

small RNA-seq and nCounter require isolated RNA.

miRNA quantification using each of the tested platforms in-

volves several steps, each of which can display preferences

for certain RNA molecules, resulting in differences in the effi-

ciencies with which miRNAs are detected. For example, during

small RNA-seq library preparation, adapters ligate more effi-

ciently to some miRNAs than others, resulting in bias (Jayapra-

kash et al., 2011; Hafner et al., 2011), whereas in hybridization-

based assays, efficiency of probe binding varies in a

sequence-specific manner, leading to cross-hybridization (Wu

et al., 2005). Additionally, incorporation of incorrect nucleotides
can occur during amplification or sequencing, leading to align-

ment errors or cross-hybridization. These target-specific biases

preclude using signal strength as a direct measure of the abun-

dance of a particular miRNA and can lead to differences in the

ability to detect and reproducibly quantify specific miRNAs.

The NIH-supported Extracellular RNA Communication Con-

sortium (ERCC) was launched to establish foundational knowl-

edge and technologies for extracellular RNA research (Das

et al., 2019). Here, we report the results of an ERCC-supported

miRNA analysis platform comparison that examined reproduc-

ibility, bias, specificity, and relative quantification using both

defined pools of synthetic miRNAs and exRNA from pooled hu-

man plasma samples. The use of synthetic miRNA pools allowed

us to assess performance using complex mixtures of miRNAs at

known concentrations. The use of plasma exRNA samples al-

lowed us to compare performance using a clinically relevant

sample type and to assess the ability of two platforms to assay

miRNAs directly, without RNA isolation.

RESULTS

Reproducibility Across Technical Replicates for
Synthetic miRNA Pools
Three pools of synthetic miRNAs (see STAR Methods) were

analyzed with each of the four platforms. The first pool,

referred to as the equimolar pool, contained 759 synthetic hu-

man miRNAs and 393 synthetic non-human RNA oligonucleo-

tides at the same molar concentration. The other two pools,

referred to as ratiometric pools A and B, each contained 286

human miRNAs and 48 non-human miRNAs at different con-

centrations, with the absolute concentrations of individual

miRNAs varying over a 10-fold range within each pool. The

relative concentrations of a given miRNA between pool A

and pool B varied from 1:10 to 10:1. To assess the reproduc-

ibility of each platform, we examined the coefficient of varia-

tion (CV) of each miRNA’s signal intensity across technical rep-

licates for RNA-seq, EdgeSeq, and FirePlex (Tables S3 and

S4). Only miRNAs considered to be detectable were included

in the analysis (see STAR Methods). Technical replicates

were not performed by NanoString, and therefore, reproduc-

ibility could not be assessed for the nCounter assay. For the

equimolar pool, the median CV was higher for FirePlex

(22.4%) than for small RNA-seq (8.2%) and EdgeSeq (6.9%).

CV decreased as signal increased for RNA-seq and EdgeSeq,

but not for FirePlex (Figure 1A). Ratiometric pools A and B

showed similar CVs as the equimolar pool, although CVs

decreased as signal intensities increased for all platforms,

including FirePlex (Figure S1; Tables S4 and S5). Overall, we

concluded that technical reproducibility was higher for small

RNA-seq and EdgeSeq than for FirePlex.

Assessing the Bias Associated with Each Platform
Equal quantities of two different miRNAs can result in different

signal intensities due to detection bias. Determining detection

bias for a set of miRNAs requires a comparison between the

amounts of these miRNAs in a sample and the signal intensities

associated with each miRNA. In biological samples, the miRNA

concentrations are usually not known. To accurately assess
Cell Reports 29, 4212–4222, December 17, 2019 4213
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Figure 1. Reproducibility and Detection Bias Determined Using a Synthetic Equimolar Pool

(A) Coefficient of variation for technical replicates (small RNA-seq N = 4, EdgeSeq N = 3, and FirePlex N = 3) expressed as a percentage as a function of median

signal. Each boxplot represents ~20%of the total number of detectablemiRNAs, grouped by ascending expression (for total number of detectablemiRNAs: small

RNA-seqN= 988, EdgeSeqN= 451, and FirePlexN = 103). Boxes represent median and interquartile ranges, whiskers represent 1.5 times the interquartile range,

and dots represent outliers.

(B) The observed signal to expected signal (detection bias) is plotted for each platform for the equimolar sample (red), the ratiometric A pool (green), and the

ratiometric B pool (blue). The width of the violin plot represents the density of miRNAs. The lines represent the median (middle) and interquartile ranges (top and

bottom).

See also Figure S1.
the bias for each platform, we used the equimolar and ratiometric

synthetic pools. For each pool, we calculated the expected

signal intensity based on the known concentration of each

component miRNA that is considered detectable and quantified

the detection bias as the ratio of observed to expected counts

(see STAR Methods).

Small RNA-seq exhibited the most bias, with many target RNA

sequences displaying a substantially lower than expected signal

(log2 detection bias <0) and a relatively small number of target
4214 Cell Reports 29, 4212–4222, December 17, 2019
RNA sequences showing a markedly higher than expected

signal (log2 detection bias >0; Figure 1B). With small RNA-seq,

only 31% of the miRNAs in the equimolar pool had signals that

were within 2-fold of the median signal. EdgeSeq had the least

bias (76% within 2-fold of the median signal), while nCounter

(47%) and FirePlex (57%) were intermediate. Results obtained

with the ratiometric pools were similar to results obtained with

the equimolar pool (Figure 1B). Therefore, although the version

of small RNA-seq that we used has lower bias than some other



Figure 2. Relationships between Bias and

GC Content

Detection bias is plotted as a function of GC con-

tent. Lighter blue colors represent a higher density

of miRNAs. Correlation coefficients and p values

were calculated using the Pearson method.

See also Figure S2.
widely used methods, it nonetheless exhibited substantially

more bias than the other three platforms.

Relationships between detection bias and miRNA sequences

differed between platforms. For small RNA-seq, EdgeSeq, and

to a lesser extent FirePlex, the GC content of an RNA sequence

correlated with the detection bias (Figure 2). For EdgeSeq,

miRNAs that were least efficiently detected all had low GC con-

tent (<35%). There wasminimal if any evidence of an association

between bias and GC content for nCounter (Figure 2). We also

explored associations between the bias and the identity of the

50 or 30 nucleotide of the target miRNA for each of the platforms

(Figure S2). In EdgeSeq, signal intensities of miRNAs with a 50

cytosine (n = 64) were higher than those with a 50 uracil (n =

200) (Bonferroni-adjusted p = 1.5 3 10�3). Both small RNA-seq

and nCounter had higher signals for miRNAs with 30 guanines
(n = 218 and n = 85, respectively) compared to 30 uracils (n =

365, n = 175, respectively; p = 4.2 3 10�3 and p = 1.6 3 10�2,

respectively). Overall, GC content and the identities of the 50

and 30 nucleotides had effects on signal intensity that differed

between platforms, but these factors are not sufficient to accu-

rately predict or adjust for bias.

We next examined whether detection biases were consistent

within platforms and compared biases across platforms. Biases

were generally consistent within platforms, as demonstrated by

correlating detection bias determined with one pool to detection

bias determined with another pool (Figure S3). As expected,

biases were less well correlated between platforms (Figure 3).

The highest correlations were between EdgeSeq and small

RNA-seq (R = 0.38) and EdgeSeq and FirePlex (R = 0.29). We
Cell Reports
conclude that detection biases for spe-

cific miRNAs differ substantially between

platforms.

Specificity and Sensitivity Analysis
We used data from the equimolar pool to

determine the ability of each platform to

distinguish between synthetic miRNAs

that were present from those that were

absent. Depending upon the platform,

false-positive signals for miRNAs not

present in samples might be caused by

a variety of phenomena, including incor-

rect nucleotide incorporation during

reverse transcription or DNA amplifica-

tion, sequencing errors, cross-hybridiza-

tion to non-cognate miRNAs or other

probes, or auto-fluorescence. All plat-

forms showed some overlap between

the distribution of signals for miRNAs
that were present in the pool compared with those that were ab-

sent (Figure 4A). As one means to assess false positives, we

calculated the proportion of miRNAs that were absent from the

pool but had signals higher than the fifth percentile of miRNAs

that were present in the pool. This proportion was lowest for

small RNA-seq (31/2,081 miRNAs, 1.5%), intermediate for Fire-

Plex (1/21, 4.8%), and nCounter (22/376, 5.9%), and highest

for EdgeSeq (146/1,632, 8.9%). By other metrics, separation be-

tween present and absent miRNAs was also best for small RNA-

seq (ratio of median signal for present to median signal for ab-

sent = 1,750; area under the receiver operating characteristic

curve [AUC] = 0.99), intermediate for EdgeSeq (ratio = 728,

AUC = 0.97) and nCounter (ratio = 1078, AUC = 0.94), and least

for FirePlex (ratio = 125, AUC = 0.81) (Figures 4A and 4B). Over-

all, small RNA-seqwas superior to the other platforms by each of

these measures of sensitivity and specificity.

We investigated whether false-positive signals could be

related to cross-detection of miRNAs with similar sequences

within the synthetic pool (Figure S4). For EdgeSeq, the rela-

tively small set of absent miRNAs with sequence similarity to

present miRNAs did tend to have higher signals than other

absent miRNAs. This was also observed with small RNA-seq

but was not evident for nCounter. We were unable to assess

FirePlex’s ability to distinguish closely related sequences,

since the smaller set of probes did not include any designed

to recognize absent miRNAs that were similar in sequence

to those present in the pool. Of the other three platforms,

nCounter displayed the least evidence for cross-detection,

whereas EdgeSeq and to a lesser extent RNA-seq showed
29, 4212–4222, December 17, 2019 4215
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Figure 3. Detection Bias Comparison

across Platforms

Each point represents a pairwise comparison of

the detection bias for a miRNA between the

equimolar pool for the different platforms. Corre-

lation coefficients and p values are calculated

using the Pearson method.

See also Figure S3.
some evidence of cross-detection of closely related

sequences.

Relative Quantification of miRNAs
These four platforms are typically used for relative quantification

(i.e., comparing the level of any particular miRNA between sam-

ples, such as case versus control). We used the ratiometric pools

to assess each platform’s accuracy for relative quantification

(Figure 5). Each of the four platforms provided reasonably

good estimates of ratios for most miRNAs, although all platforms

were inaccurate for certain miRNAs. Root-mean-square error

(RMSE) for miRNA log ratios for RNA-seq (0.45), EdgeSeq

(0.47), FirePlex (0.58), and nCounter (0.46) were quite similar.

This evaluation with synthetic miRNA pools indicates that the

four platforms behave similarly well for relative quantification.

Analysis of Reproducibility and Complexity in Plasma
Samples
To evaluate the reproducibility of each platform with biologically

relevant samples, we analyzed exRNA isolated from humanmale

plasma samples in quadruplicate using small RNA-seq and in

triplicate using EdgeSeq. We could not evaluate reproducibility

of purified exRNA on FirePlex, because RNA from these samples

was not included in the FirePlex assay, nor could we evaluate the

reproducibility of purified exRNA on nCounter, because tech-

nical replicates were not performed by NanoString. Because

EdgeSeq and FirePlex can also take as input a small volume of

crude biofluid, we also analyzed exRNA directly from plasma in

duplicate for EdgeSeq and triplicate for FirePlex. Reproducibility

between technical replicates for RNA isolated from plasma was

worse than that observed with the synthetic equimolar pool for

small RNA-seq and EdgeSeq (Figure S5; Tables S5 and S6),

likely due to the lower average concentration of each miRNA in

the plasma RNA samples compared to the synthetic pools. For

isolated RNA, the median CV was higher with small RNA-seq

(33.4%) than with EdgeSeq (14.4%). As previously reported for
4216 Cell Reports 29, 4212–4222, December 17, 2019
RNA-seq (Srinivasan et al., 2019), CVs

decreased as signal increased, but over-

all CVs remained higher for the plasma

RNA samples than for the synthetic

pools.

For crude plasma, the median CV was

lower with EdgeSeq (17.8%) than with

FirePlex (43.2%) (Figure S5). Signal inten-

sities between data generated from iso-

lated RNA versus crude plasma were

moderately well correlated for EdgeSeq

(R = 0.62; Figure S5). To assess whether
the use of crude biofluid biased against miRNAs carried in

certain subcompartments in plasma, we inspected signals for

miRNAs previously found to be differentially associated with

five different subcompartments in human serum: CD63+ extra-

cellular vesicles, CD81/CD9+ EVs, AGO2+ ribonucleoproteins

(RNPs), high-density lipoprotein (HDL), and the lipoprotein-free

fraction (LFF) (Srinivasan et al., 2019). We found no obvious sys-

tematic differences in signal according to the assigned subcom-

partment (Figure S5), suggesting that EdgeSeq is capable of de-

tecting miRNAs that are preferentially associated with each

subcompartment within crude plasma samples.

To assess whether the complexity of the RNA sample affects

themeasurement of miRNAs, we compared the relative signal in-

tensities of spike-in synthetic RNA sequences where possible.

We could not perform this analysis for two of the platforms;

EdgeSeq has only one positive internal control, and the FirePlex

panel we used did not contain any positive internal controls. For

nCounter, there were nine internal positive controls, and for

these, we compared relative signal intensities between datasets

generated from the synthetic equimolar pool and RNA isolated

from the male plasma pool. For small RNA-seq, 58 synthetic

exogenous small RNA sequences were spiked in to a water-

only sample and RNA isolated from the male plasma pool, and

relative signal intensities were compared between the resulting

datasets. The signal intensities correlated extremely well for

both nCounter (R = 0.99) and small RNA-seq (R = 0.98, Pearson

correlation) (Figure S6).

Analysis of Extracellular miRNA in Pregnant Female
Plasma Samples
We next compared miRNA signals across platforms using the

mean normalized signal intensities of pregnant female plasma

samples from two donors and observed moderate correlation

between small RNA-seq and EdgeSeq (R = 0.68), small RNA-

seq and FirePlex (0.78), and EdgeSeq and FirePlex (0.74) but

weaker correlation with nCounter (small RNA-seq R = 0.43,
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Figure 4. Sensitivity and Specificity of Each Platform as Assessed Using the Synthetic Equimolar Pool

(A) Normalized and log2-transformed signal is plotted for detectable miRNAs in the synthetic equimolar pool (small RNA-seq n = 758, EdgeSeq n = 451, FirePlex

n = 50, and nCounter n = 422) and those not in the synthetic equimolar pool (small RNA-seq n = 2,081, EdgeSeq n = 1,624, FirePlex n = 15, and nCounter n = 376).

(B) Receiver operating characteristic curves.

See also Figure S4.
EdgeSeq R = 0.53, FirePlex = 0.63) (Figure S7). In the plasma

samples, the weaker correlation between nCounter and the

other three platforms appeared to be due to reduced sensitivity,

as the nCounter measurements for the large majority of the

miRNAs were near the lower limit of detection (median for

negative control probes = 16.5, median for all human miRNA

probes = 18). In addition, the differences in the patterns of bias

between nCounter and the other methods (as seen with the syn-

thetic pools in Figure 3) may also contribute to the weaker

correlation.

To assess whether there was agreement in results among the

different platformswhen comparing biologically distinct samples,

we examined the expression of a cluster of 50 placenta-specific

miRNAs in chromosome 19 known to be specifically expressed

during pregnancy (Ouyang et al., 2014). For all platforms, we

compared signals for these miRNAs in pregnant female plasma

samples versus a pool of non-pregnant female plasma (see

STAR Methods). For all platforms, these miRNAs generally

yielded signals that were near the lower end of the range for all

miRNAs, suggesting that the placenta-associated miRNAs pre-

sent in pregnant female plasma are generally less abundant

than many other miRNAs found in both pregnant female and

non-pregnant female plasma. A statistically significant increase

in the expression of these miRNAs in the plasma of pregnant

women compared to non-pregnant women was observed for

13/13 miRNAs detected by small RNA-seq (p = 1.2 3 10�4,

Mann-Whitney test) (Figure 6; Tables S5 and S6). EdgeSeq was

also able to detect differences (10/11 miRNAs increased, p =

9.8 3 10�4), although fold differences tended to be smaller

than with RNA-seq. FirePlex (2/5 miRNAs increased, p = 0.41)
and nCounter (4/12 miRNAs increased, p = 0.69) did not show

a significant difference in placenta-associated miRNAs. We

conclude that RNA-seq and, to a lesser extent, EdgeSeq were

able to detect differences in relatively low abundance miRNAs

of placental origin, whereas FirePlex and nCounter were not.

DISCUSSION

Two major objectives of Phase 1 of the ERCC were to identify

methods for robust and reproducible quantification of extracel-

lular miRNAs in biological fluids and to establish their utility as

biomarkers. Here, we explored four miRNA measurement plat-

forms, three of which could serve as potential alternatives to

small RNA-seq for relative quantification of extracellular miRNA.

The platforms, which utilize diverse technologies, were selected

based on rapid turnaround time and ease of use, properties that

are attractive for biomarker assays. The four platforms evaluated

in this study included a small RNA-sequencing protocol

optimized for low-input samples that had previously been

compared to the more widely known commercially available

small RNA-seq library preparation kits (Giraldez et al., 2018),

EdgeSeq, FirePlex, and nCounter. A recent report compared

the performance of small RNA-seq, FirePlex, EdgeSeq, and

QIAGEN miRNome on standardized samples of brain, liver,

and placenta (Yeri et al., 2018). To our knowledge, a systematic

study using extracellular RNA, crude biofluid, and synthetic RNA

mixes that allow for accurate evaluation of assay performance

has not been previously performed. Overall, our findings (sum-

marized in Table 1) demonstrated that each platform had spe-

cific advantages and drawbacks that need to be taken into
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Figure 5. Accuracy of Relative Quantifica-

tion Determined by Pools of Synthetic

miRNAs at Ratiometric Concentrations

The expected fold change of a miRNA in pool A

and pool B is plotted against the observed fold

change, represented here as a log2-transformed

ratio. Each violin plot represents the distribution of

observed ratios for a particular expected ratio. The

lines represent the median (middle) and the inter-

quartile range (top and bottom). The dots repre-

sent the actual ratios. The black line is the line of

identity, and the red line is the best-fit line as

calculated using linear regression.
consideration when selecting a technology for exRNA studies,

particularly those aimed at development and clinical application

of extracellular miRNA biomarkers.

Our study evaluated the performance of each platform with

respect to reproducibility, bias, specificity, and relative quantifi-

cation using standardized samples. Our samples consisted of

three pools of synthetic miRNAs, one of which contained the

same concentration of each component miRNA (the equimolar

pool) and two that contained different concentrations of the

component miRNAs, designed such that the relative concentra-

tion of individual miRNAs between these two ratiometric pools

ranged from 1:10 to 10:1. While these pools were critical for

determining the bias, accuracy, and specificity of each platform,

we also analyzed exRNA from pooled healthy male plasma,

pooled healthy non-pregnant female plasma, and pregnant fe-

male plasma samples from two individual donors. These plasma

exRNA samples allowed us to compare how the platforms per-

formed on biological samples.

Small RNA-seq is the only platform we studied that does not

require hybridization, making it the only truly non-targeted plat-

form. Given that small RNA-seq will capture any small RNA of

acceptable (>17 nt and less than �30 nt used here) length with

a 50 phosphate and 30 hydroxyl group, it enables measurement

of all RNA biotypes, which may be advantageous when studying

clinically useful biofluids in which miRNAs comprise a small

fraction of the exRNA, such as urine (Godoy et al., 2018). How-

ever, the turnaround time for small RNA-seq is slow, requiring

at least a week for RNA isolation, cDNA library generation,

sequencing, and analysis. Moreover, the reproducibility of small

RNA-seq is strongly and negatively affected when different RNA

isolation and library preparation protocols are used (Giraldez

et al., 2018; Srinivasan et al., 2019). Even when the same proto-
4218 Cell Reports 29, 4212–4222, December 17, 2019
cols are used, reproducibility of measure-

ments of plasma miRNAs with signal in-

tensities less than 32 normalized counts

was poor, potentially making it difficult

to reliably quantify low-abundance miR-

NAs across samples. Small RNA-seq is

also impeded by bias introduced during

adapter-ligation due to sequence-depen-

dent T4 RNA ligase bias (Jayaprakash

et al., 2011; Hafner et al., 2011). Although

less biased than other commercially

available small RNA-sequencing kits
(Giraldez et al., 2018), our small RNA-seq protocol exhibited

higher bias compared to the three other tested platforms. This

bias was partially dependent on GC content. Small RNA-seq de-

tected a small number of reads that mapped to miRNAs not pre-

sent in the synthetic equimolar pool, which may have been

caused by errors introduced during PCR or sequencing or

caused by contamination. Although most of these detected

‘‘not present’’ miRNAs had very low signal intensities, a few

had greater than 500 normalized counts. Although all platforms

could detect known differences in the synthetic ratiometric

pools, small RNA-seq showed better detection of expected dif-

ferences between biological samples than the other platforms,

with the largest number of placenta-specific miRNAs having

significantly higher levels of expression in pregnant female

plasma compared to non-pregnant female plasma.

EdgeSeq is a high-throughput semi-automated assay that

can process up to 96 samples in 24 hours, excluding the time

for sequencing, with the multiplexing limit determined by the

number of sequencing barcodes available. Additionally, its abil-

ity to use as little as 25 mL of crude plasma as input makes Edge-

Seq an attractive platform for clinical use. Software for the align-

ment of fastq files and generation of miRNA counts is built into

the same instrument that processes the samples, excluding

the need for extra computational resources. For both crude

plasma and isolated RNA technical replicates, EdgeSeq was

more reproducible than small RNA-seq. One important advan-

tage of EdgeSeq is its ability to directly assay miRNAs in small

volumes of biofluid. Assays using crude plasma (25 mL) were

only slightly less reproducible than those using isolated RNA (ex-

tracted from 200 mL plasma). Comparisons of results from crude

plasma and isolated RNA suggest that there are no major differ-

ences in the ability of EdgeSeq to detect miRNAs from these two
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Figure 6. Expression of Placenta-Associated miRNAs in Non-pregnant Female Plasma and Pregnant Female Plasma

Each pair of connected dots represents miRNA signals for non-pregnant female plasma (pooled samples) and pregnant female plasma (mean of two pregnant

female plasma samples assayed separately). See also Figures S5 and S7.
starting materials. On the other hand, the correlations between

results from crude plasma and isolated RNA were not high

enough to allow us to recommend direct comparisons between

data derived from these two input types. EdgeSeq did not suffer

as strongly from detection bias as small RNA-seq; for the syn-

thetic oligonucleotide pools, most miRNAs were detected at

signal intensities near the expected signal. Although sources of

bias in EdgeSeq are unknown, very low GC content was strongly

associated with low signal intensity. EdgeSeq profiling of the

equimolar pool showed high signal for several miRNAs not pre-

sent in the equimolar pool, in extreme cases reaching signal in-

tensities greater than the maximum signal intensity achieved

by miRNAs in the pool. Although there was evidence of some

signal from cross-hybridization, sequence similarity did not

seem to explain most of the false-positive signals. These signals

may be attributable to other factors like incomplete digestion of

unbound probes or cross-hybridization of probes in the assay.

Placenta-specific miRNAs were detected at increased levels in

pregnant female plasma compared to non-pregnant female

plasma by EdgeSeq, but fold differences were modest

compared to small RNA-seq, likely due to EdgeSeq’s lower

sensitivity for quantification of low-abundance miRNAs. This is

consistent with small RNA-seq showing slightly better perfor-
mance in relative quantification for the ratiometric pools

(Figure 5).

Like EdgeSeq, FirePlex can use as input a small volume (20 mL)

of crude plasma. The number of miRNAs that can be analyzed in

a single FirePlex assay is smaller than for the other methods, but

FirePlex miRNA panels are easily customized, which offers the

advantage of only focusing analysis on miRNAs of interest. Pro-

cessing of samples takes �1.5 days and requires the use of a

flow cytometer for signal detection. Of all tested platforms, Fire-

Plexwas the least reproducible for the synthetic samples but had

similar reproducibility as small RNA-seq for the plasma samples.

FirePlex had low bias, with median signal intensities close to the

expected signal. The source of detection bias in FirePlex is un-

known and was only slightly affected by GC content. A small

number of miRNAs not present in the synthetic equimolar pool

were detected at levels comparable to those present in the

pool, but because there were no FirePlex probes for sequences

within an edit distance of 4 from these false positives, we could

not determine whether sequence similarity contributed to false

positives. Althoughwe evaluated reproducibility of technical rep-

licates of crude plasma, we did not perform the FirePlex assay

using RNA isolated from the same crude plasma sample, so

we could not compare the reproducibility of crude plasma versus
Cell Reports 29, 4212–4222, December 17, 2019 4219



Table 1. Summary of Performance Characteristics

Small

RNA-Seq EdgeSeq FirePlex nCounter

Reproducibility of

synthetic equimolar

samples (% CV)

8.2 6.9 22.4 NA

Reproducibility of RNA

isolated from plasma

(% CV)

33.4 14.4 NA NA

Reproducibility of

crude plasma (% CV)

NA 17.8 43.2 NA

Bias (% miRNAs within

2-fold of the median)

31 76 57 47

Specificity and

sensitivity (AUC)

0.99 0.97 0.94 0.81

Relative quantification

of ratiometric equimolar

samples (RMSE)

0.45 0.47 0.58 0.46

Relative quantification

of maternal miRNAs

(number of differentially

expressed placenta-

associated miRNAs)

13/13 10/11 2/5 4/12

NA, not applicable.
purified exRNA for this platform. For FirePlex, all of the placenta-

specific miRNAs were detected with low signal, and thus, the

failure to detect differences may be due to poor reproducibility

of measurements near the threshold of detection. At the time

of publication, a newer version of FirePlex is now marketed

that has increased the dynamic range of the assay, but we did

not test the performance of this newer version.

While nCounter does not accept crude plasma as input, it can

assay up to 800 miRNAs, making it a higher-throughput assay

than FirePlex. The turnaround time for the nCounter assay is

�2 days. Like EdgeSeq, software for fluorescence detection, de-

multiplexing, background subtraction, and reporting of signal in-

tensities, is incorporated into the processor. One limitation to our

study is that technical replicates were not performed by Nano-

String, so reproducibility could not be assessed for nCounter.

nCounter had less bias than small RNA-seq but more bias than

the other two platforms. GC content did not seem to have any ef-

fect on the detection bias, and the detection bias for nCounter

was not correlated with any other platform, suggesting unique

biases. nCounter involves direct detection and eliminates poten-

tial bias associated with amplification. However, our analysis in-

dicates that the other aspects of the assay are subject to bias and

that results from nCounter and the other three platforms tested

cannot be used to directly infer absolute miRNA quantities. We

observed that for all of the plasma exRNA samples, nCounter

yielded amuch smaller fraction of miRNAs detected above back-

ground compared to the other three platforms, and thus, the fail-

ure to detect differences between pregnant and non-pregnant

serum could be due to lower sensitivity of this platform.

Our study reveals differences in performance that are relevant

when selecting a platform for a specific application. Small RNA-

seq is well suited for discovery applications, had the best ability
4220 Cell Reports 29, 4212–4222, December 17, 2019
to distinguish between miRNAs that were present in or absent

from the synthetic pool, and was best able to meet the biological

challenge of detecting placenta-associated miRNAs in pregnant

female plasma. However, due to throughput and turnaround time

considerations, small RNA-seq may not be practical for clinical

use. EdgeSeq offers the ability to detect a large number of

miRNAs in either isolated RNA samples or crude plasma, had

relatively low detection bias, and had modest success in detect-

ing placenta-associated miRNAs in pregnant female plasma.

FirePlex, with a smaller number of probes per assay, is best

suited for more targeted analyses and like EdgeSeq can be

used with crude plasma as well as isolated RNA, but this plat-

form did not offer clear advantages in terms of reproducibility,

bias, sensitivity, specificity, or relative quantification compared

with the other methods and could not detect placenta-associ-

ated miRNAs in pregnant female plasma. For nCounter, we

were unable to assess reproducibility, but we found that the

absence of an amplification step did not reduce bias below

that seen with the other two probe-based platforms, and we

were unable to detect placenta-associated miRNAs in pregnant

female plasma.

The results from our analysis of placenta-associated miRNAs

in pregnant and non-pregnant female plasma are largely consis-

tent with those found in a previous study comparing the number

of differentially expressed miRNAs among brain, placenta, and

liver using data generated from small RNA-seq, EdgeSeq, Fire-

Plex, and a qPCR assay from QIAGEN (miRnome) (Yeri et al.,

2018). In that study, of all miRNAs detected as differentially ex-

pressed across tissue types using small RNA-seq, �80% were

also differentially expressed using EdgeSeq and �70% using

FirePlex. In our study, small RNA-seq and EdgeSeq were also

the most concordant in identifying biological differences be-

tween sets of samples. Specifically, EdgeSeq and small RNA-

seq were able to identify differential expression of placenta-

associated miRNAs in pregnant and non-pregnant female

plasma samples, while FirePlex was not. A difference between

the two studies is that FirePlex was able to distinguish among

the three tissue types in the Yeri et al. study, but was not able

to distinguish between pregnant and non-pregnant female

plasma in our study. The likely reason for this is that the miRNA

profiles differ more widely among the tissue types (which are

composed only of RNA from the cognate tissue) than between

pregnant and non-pregnant female plasma (noting that the esti-

mated fraction of exRNA originating from the placenta in preg-

nant female plasma is only �3.4%–15.4% in the 2nd–3rd trimes-

ters) (Koh et al., 2014).

With the exception of small RNA-seq, samples were analyzed

by the manufacturers of the platforms, and the resulting data

were sent to us for analysis. It is important to recognize that

different versions of these platforms may have different perfor-

mance characteristics. For example, we observed that the

version of the FirePlex assay used here was superior for relative

quantification but was less reproducible than an earlier version

tested with some of the same samples (data not shown).

The analyses that we report here provide a useful comparison

of available platforms for miRNA quantification and highlight

limitations that should be considered when developing

future technologies. Our results also highlight the fact that



platform-specific issues related to reproducibility, bias, sensi-

tivity, and specificity must be taken into account when interpret-

ing the results of extracellular miRNA analyses.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

HTG EdgeSeq miRNA WTA (1x96) HTG Molecular

Diagnostics, Inc.

NA

FirePlex Custom miRNA Panel Abcam NA

nCounter NanoString NA

miRNeasy Micro Kit QIAGEN Cat#217084

RNeasy Mini Kit QIAGEN Cat#74104

TruSeq Small RNA Kit Illumina Cat#RS-200-0012

T4 RNA Ligase 2, Deletion Mutant NEB Cat#M0242L

E. Coli Single Stranded Binding Protein Promega Cat#M3011

50 Deadenylase NEB Cat#M0331

RecJF NEB Cat#M0264

SuperScript II Invitrogen Cat#18064-014

Deposited Data

Small RNA-sequencing of maternal and non-maternal plasma dbGaP phs001892.v1.p1

Small RNA-sequencing of the equimolar pool of synthetic RNA oligonucleotides GEO GSE94584

Small RNA-sequencing of the ratiometric pools (A and B) of synthetic RNA

oligonucleotides

GEO GSE94585

Small RNA-sequencing of the pool of healthy human male plasma GEO GSE94582

Oligonucleotides

Equimolar pool of synthetic RNA oligonucleotides Table S7 Giraldez et al., 2018

Ratiometric pools A and B of synthetic RNA oligonucleotides Table S7 Giraldez et al., 2018

30-4N Adaptor: 50-/5rApp/(N1:25252525)(N1)(N1)(N1)TGGAATTCTCGGGTGCC

AAGG/3ddC/-3oo0
IDT N/A

50-4N Adaptor: 50rGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCrCrGrArCrGrArUrCr

(N:2525252525)r(N)r(N)r(N)r(N)-30
IDT N/A

Software and Algorithms

limma Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

raster Hijmans, 2019 https://cran.r-project.org/web/

packages/raster/index.html

ggplot2 Wickham 2009 https://cran.r-project.org/web/

packages/ggplot2/index.html

DescTools Signorell et al., 2019 https://cran.r-project.org/web/

packages/DescTools/index.html

extracellular RNA processing toolkit (exceRpt) pipeline Rozowsky et al., 2019 genboree.org
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Louise

Laurent (llaurent@ucsd.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Biofluid samples were labeled with study identifiers; no personally identifiable information was shared among participating

laboratories.
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Human plasma from 10 healthymale and 10 healthy female donors 21-45 years of agewere collected, processed, and combined to

create a male pool and a non-pregnant female pool (Human Non-Pregnant Female Plasma Pool #2) by the laboratory of Dr. Ionita

Ghiran at Beth Israel Deaconess Medical Center (BIDMC). The BIDMC IRB approved the protocol to consent participants and collect

samples (Giraldez et al., 2018). Blood was collected from a peripheral vein using a 19 g butterfly needle with K2EDTA as the antico-

agulant at room temperature and centrifuged at 500 xg for 10min (Giraldez et al., 2018). The supernatant was removed and re-centri-

fuged at 2,500 xg for 10 minutes. The plasma was divided into 1 mL aliquots and stored at �80�C until exRNA isolation was

performed. The pooled male plasma from BIDMC was used to assess reproducibility for small RNA-seq, EdgeSeq, and FirePlex

(Table S1).

Pregnant female plasma from two healthy pregnant donors (36-37 years of age) during the 2nd and 3rd trimester and non-pregnant

female plasma from 10 healthy non-pregnant female donors (22-25 years of age) were collected under an IRB protocol approved by

the Human Research Protections Programs at the University of California San Diego (UCSD). Blood was collected from a peripheral

vein using a 19 g butterfly needle with K2EDTA as the anticoagulant at room temperature and centrifuged at 2,000 xg for 20 min to

remove cells and cell debris. Pregnant female plasma was divided into 1 mL aliquots. For the non-pregnant female plasma pool (Hu-

man Non-Pregnant Female Plasma Pool #1), plasma samples were pooled using equal volumes from each donor and divided into

1.5 mL aliquots. All aliquots were stored at �80�C until exRNA isolation was performed.

For the pregnant versus non-pregnant female plasma comparisons, pregnant female plasma samples from UCSD were used to

quantify expression of placenta-associated miRNAs on all four platforms, pooled non-pregnant female plasma from UCSD (Human

Non-Pregnant Female Plasma Pool #1) was analyzed using small RNA-seq, EdgeSeq, and nCounter, and pooled non-pregnant

female plasma from BIDMC (Human Non-Pregnant Female Plasma Pool #2) was analyzed using FirePlex (Table S1).

METHOD DETAILS

Synthetic RNA Pools
The three pools of synthetic miRNAs used in this study were distributed to members of the NIH Extracellular RNA Communication

Consortium (ERCC) and have been described previously (Giraldez et al., 2018; Table S7). The equimolar pool was produced by

combining 962 human and non-human synthetic miRNAs from the miRXplore Universal Reference (Miltenyi Biotech) with a custom

set of 190 other RNA oligonucleotides at equal molar concentrations (total of 1,152 RNA oligonucleotides, including 759 that corre-

spond to known humanmiRNA sequences). The ratiometric pools contain 334 synthetic miRNAs, 286 of which correspond to human

miRNA sequences, and were generated by IDT.

RNA Isolation
Total RNA from the pool of healthy human male plasma was isolated as follows (Giraldez et al., 2018). 6 mL of QIAzol Lysis Reagent

was added to 1.2 mL of plasma. After vortexing and incubating for 5 minutes at room temperature, 200 mL of chloroform was added,

followed by vigorous shaking for 15 s. Samples were incubated for 3 minutes at room temperature and centrifuged for 15 minutes at

12,000 x g at 4�C. The upper aqueous phase was transferred to a new tube where 1.5 volumes of 100%ethanol was added. 700 mL of

the mixture was added to an assembled RNeasyMinElute spin column and centrifuged for 15 s at 1,000xg at room temperature. This

step was repeated until the rest of the sample had been loaded. The spin column was washed and centrifuged three times: the first

wash was with 700 mL Buffer RWT and centrifuged for 15 s at 8,000 x g at room temperature, second with 500 mL Buffer RPE and

centrifuged for 15 s at 8,000 x g at room temperature, and third wash was with 500 mL of fresh 80% ethanol and centrifuged for 2 mi-

nutes atR 8,000 x g at room temperature. The lid of the spin column was opened and spun at full speed spin for 5 minutes at room

temperature to remove residual ethanol. RNA was extracted from the column by applying 30 mL of RNase-free water directly to the

column and centrifuging for 1 minute at 100 x g and for another minute at full speed. 5 mL was aliquoted into 1.5 mL and frozen at

�80�C.
Total RNA from the pools of non-pregnant female plasma (Human Non-Pregnant Female Plasma Pool #1) and the two pregnant

female plasma samples (for placenta-associated miRNA expression analysis) was isolated as follows: Frozen plasma samples

were thawed on ice, centrifuged at 2,000 x g for 5 minutes at 4�C, and the QIAGEN miRNEasy Micro Kit was used to isolate RNA

from 200 mL of plasma according to the manufacturer’s protocol except that 1 mL of Qiazol and 180 mL of chloroform were used

(Godoy et al., 2018).

Small RNA-Sequencing
For small RNA-sequencing of the synthetic equimolar and ratiometric pools, a total molar concentration of 10 femtomoles were used

as the starting input. For small RNA-sequencing of the healthy human male plasma, 2.1 mL of isolated RNA was used as input, cor-

responding to �84 mL of plasma. For small RNA-sequencing of the pool of non-pregnant female plasma (Human Non-Pregnant Fe-

male Plasma Pool #1) and the two pregnant female plasma samples (for placenta-associated miRNA expression analysis), 5 mL of

isolated RNA was used as input, corresponding to 200 mL of plasma. RNA from the pool of healthy human male plasma was run

in quadruplicate; RNA from all female plasma samples was run in duplicate.

Libraries were sequenced using amodified version of the TruSeq Small RNA Library Prep (previously described as 4N protocol D in

Giraldez et al., 2018). To ligate the 30-4N adaptor, 1 mL of 4 mM 30-4N adaptor and 5 mL of RNA were added to each tube containing
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dried 15%PEG (prepared beforehand) and incubated at 70�C for 2 minutes. Samples were immediately placed on ice. To each sam-

ple, 2 mL of Ligation Buffer (HML), 1 mL of RNase Inhibitor, and 1 mL of T4 RNA Ligase 2, DeletionMutant were added and incubated at

28�C for 1 hour. To remove residual 30-4N adaptor, 1 mL of 1 mg/mL E. Coli SSBP was added and incubated on ice for 10 minutes.

Then, 1 mL of 50 deadenylase was added and incubated at 30�C for 45 minutes. Lastly, 1 mL of RecJF was added and incubated

at 37�C for 45 minutes. To ligate the 50-4N adapters, 1 mL of 10 mM 50-4N adaptor was added to a separate tube and incubated at

70�C for 2 minutes. To this tube, 1 mL of 10 mM ATP and 1 mL of T4 RNA Ligase was added. All 3 mL were transferred to the

30-4N adaptor-ligated RNA from the previous step. Mixture was incubated at 28�C for 1 hour and placed on ice for 2 minutes. Sam-

ples were concentrated down from 14 mL to 6 mL in preparation for reverse transcription and amplification. 1 mL of RNA RT primer

was added to each tube and incubated at 70�C for 2 minutes and on ice for 2 minutes. 2 mL of 5X First Strand Buffer, 0.5 mL of

12.5mMdNTPMix, 1 mL of 100mMDTT, 1 mL of RNase Inhibitor, and 1 mL of SuperScript II were added to each sample and incubated

at 50�C for 1 hour. For PCR amplification of the library, 8.5 mL of ultra pure water, 25 mL of PCRMix, and 2 mL of RNA PCR primer were

added to each tube. 2 mL of a unique PCR Primer Index is added to each tube for barcoding. PCR thermocycler program was as

follows: 98�C for 30 s, 20 cycles of 98�C for 10 s, 60�C for 30 s, and 72�C for 15 s, followed by 72�C for 10 minutes, and an infinite

hold at 4�C. Libraries were run on the Bioanalyzer High Sensitivity DNA Chip for quality control (expected peak at 152 bp) and size-

selected using the Pippin Prep per manufacturer’s recommendation.

Synthetic equimolar pools were sequenced to a median read depth of 12,569,524 for total reads and 11,230,216 for miRNA reads,

11,130,839 and 5,987,818 for synthetic ratiometric pools, 23,262,217 and 2,367,895 for human male plasma, 17,823,762 and

2,072,402 for human female plasma, and 11,901,781 and 3,314,000 for pregnant female plasma samples. The libraries correspond-

ing to the synthetic pools and the pool of healthy humanmale plasma were sent to the laboratory of Muneesh Tewari at the University

of Michigan, Ann Arbor for sequencing on an Illumina HiSeq 4000. For all other plasma samples, sequencing was done at the Center

for Advanced Technology at the University of California, San Francisco on a HiSeq 2500. Fastq files were shared and aligned via the

extracellular RNA processing toolkit (exceRpt) pipeline (Rozowsky et al., 2019). Sequences smaller than 17 nt were removed prior to

alignment. No mismatches were allowed when aligning to the synthetic pools; 1 mismatch was allowed for the human plasma

libraries. Small RNA-seq results for the synthetic pools and pools of healthy human male plasma have been previously reported

(Giraldez et al., 2018).

HTG EdgeSeq Assay
We shipped 40 nM stocks of the synthetic equimolar and synthetic ratiometric pool to HTG Molecular that were then diluted to 1 pM

in HTG Lysis Buffer just prior to processing. 25 mL of the dilution was added to each well for a total molar concentration of 0.025

femtomoles. Crude plasma from the pool of healthy humanmale plasma, human non-pregnant female plasma pool #1, and two preg-

nant female plasma samples was prepared by adding 40 mL of sample to 40 mL of HTG Plasma Lysis Buffer followed by addition of

8 mL of Proteinase K, and incubated for 180minutes. 25 mLwere used as the final volume for each replicate, corresponding to 13 mL of

plasma. For RNA from the pool of healthy human male plasma, 5 mL of RNA (corresponding to �200 mL of plasma) isolated as

described in Godoy et al. (2018) were added to 20 mL of HTG Lysis Buffer per reaction. For all reactions, the final volume was

25 mL. All samples were run on the HTG EdgeSeq Processor using the HTG EdgeSeq miRNA WT assay, which included 2,102 total

probes, 2,083 of which were designed to recognize human miRNAs. Three technical replicates were run for each of the three

synthetic samples, the pool of humanmale plasma, and RNA isolated from the humanmale plasma. Nine technical replicates of preg-

nant female plasma and non-pregnant female plasma were run. Barcodes and adapters were added to processed samples using 16

cycles of PCR. Libraries were sequenced on an Illumina MiSeq.

Abcam FirePlex Assay
We shipped RNA isolated from the human male plasma and crude pregnant female plasma from 2 donors, along with the synthetic

pools and pools of humanmale and female plasma (Human Non-Pregnant Female Plasma Pool #2) to Abcam for processing with the

FirePlex assay. This assay included 131 total probes, all of whichwere designed to recognize humanmiRNAs. miRNAswere included

in the panel based on their presence in the synthetic pools and plasma small RNA-sequencing libraries and covered a broad range of

expression. 5 of the placenta-specific miRNAs were also included in the panel. Two separate panels were run in order to accommo-

date all 131 total probes, as FirePlex is limited to 68 fluorescent barcodes per panel. The first panel contained 66 miRNA probes,

the second contained 65. 6 miRNAs were present in both panels; for these miRNAs only the signal intensity for the miRNA in the first

panel was kept. For each panel, 0.57 femtomoles of the synthetic equimolar pool was added to each well. For the ratiometric pool,

0.33 femtomoles were added. 20 mL of crude plasma was used for each replicate. All samples were run in triplicate.

NanoString nCounter Assay
The nCounter assay included 828 total probes, 798 of which were designed to recognize human miRNAs. The target concentration

for each miRNA in the synthetic pools was 10 attamoles. Therefore, for the equimolar synthetic pool, which contained �1200 RNA

sequences, we sent the manufacturer 3 picomoles total at a concentration of 12 femtomoles/mL. For each ratiometric pool, which

contained 334 RNA sequences, 1.5 picomoles total at a concentration of 3.4 femtomoles/mL were sent. For the exRNA samples

isolated from pregnant female and non-pregnant female plasma using the RNA isolation method described in Godoy et al. (2018),
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we sent the equivalent of the amount contained in 20 mL of plasma, as recommended by the manufacturer. The manufacturer (Nano-

string) analyzed the samples on the nCounter Human v3 miRNA panel.

Detectable miRNA Criteria
For small RNA-sequencing, we mapped reads to the complete set of synthetic RNA oligonucleotides in each pool. The equimolar

pool contained 164 synthetic RNAs that were outside of the miRNA size range (< 18 nt or > 30 nt) or were not 50 phosphorylated
and these were excluded from the analysis. Only 759 of the 988 detectable miRNAs were human miRNAs; however, non-human

miRNAs are still considered detectable for small RNA-seq as they are the appropriate length and contain the appropriate end mod-

ifications. Non-human miRNAs consisted of rat, mouse, and viral miRNAs. For the other platforms, detectable miRNAs were defined

as those which were targeted by a probe in the assay.

QUANTIFICATION AND STATISTICAL ANALYSIS

Signal Intensity
For small RNA-seq and EdgeSeq, signal intensities were determined from the numbers of mapped reads. For FirePlex and nCounter,

the manufacturer adjusted the signal intensities by subtracting background fluorescence from raw signal intensities. For all analyses,

signal intensities were quantile normalized using the normalizeQuantile function in the R library limma (Ritchie et al., 2015).

Analysis of Reproducibility
To assess reproducibility of the synthetic miRNA pools and the human male plasma samples, coefficient of variation (CV) was calcu-

lated as a percentage using the cv function in the R library raster (Hijmans, 2019). For analysis of the relationship between CV and

signal intensity, miRNAs were then divided into 5 equal-sized groups for the synthetic pools and 4 equal-sized groups for the plasma

samples according to median signal intensity across replicates. All plots were produced using ggplot2 (Wickham 2009).

Analysis of Bias
To analyze bias, we calculated bias as the ratio of observed signal to expected signal. For the equimolar pool, the expected signal

was defined as the total signal intensity (sum of averaged normalized signal intensities across technical replicates for all detectable

miRNAs) divided by the number of detectable miRNAs. For the ratiometric pools, the expected value for any given miRNA was made

proportional to the relative concentration of that miRNA (e.g., a miRNA at 10X had a signal intensity 10 times greater than a miRNA at

1X). We used the Spearman method (cor function in R library stats) to correlate GC content and detection bias. To evaluate whether

there was a relationship between the 50 or 30 nucleotide and normalized signal in the synthetic equimolar pool, we performed Mann-

Whitney tests between each combination of nucleotides using the wilcox.test function in the R library stats. P values were corrected

using the Bonferroni method using the p.adjust function in the R library stats (R Core Team 2018). Correlation of bias in the synthetic

equimolar pools (observed/expected) across platforms was calculated using the Pearson method.

Analysis of Sensitivity and Specificity
For small RNA-seq, ‘‘absent miRNAs’’ were defined as all miRNAs in miRbase (version 21) that were not present in the synthetic pool.

We only considered miRNAs in the synthetic pools that were human. For EdgeSeq, FirePlex, and nCounter, ‘‘absent miRNAs’’ were

defined as all miRNAs that had probes but were not present in the synthetic pool.

To generate receiver operator characteristic curves, the true positive rate and false positive rate were calculated using only the

signal intensities from the synthetic equimolar pool for each platform. We set each threshold as the expected value for each platform

multiplied by all numbers from 0 to 200 with an increment of 0.05. The number of true positives was calculated as the number of

miRNAs in the synthetic equimolar pool with a signal intensity greater than or equal to the threshold. Similarly, the number of false

negatives was equal to the number of miRNAs with a signal intensity less than the threshold. In the samemanner, the number of false

positives and true negatives were calculated formiRNAs not in the synthetic equimolar pool. The true positive rate is calculated as the

number of true positives divided by the sumof the number of true positives and false negatives. The false positive rate is calculated as

the number of false positives divided by the sum of the number of false positives and true negatives. The area under the curve was

calculated using the AUC function in the R library DescTools (Signorell et al., 2019).

We calculated the minimum Levenshtein edit distance between each absent miRNA and any miRNA present in the pool using the

Levenshtein python package.

Analysis of Relative Quantification
The expected count for each miRNA was calculated by dividing the sum of all miRNA signal intensities by the relative number of

detectable miRNAs. For example, in EdgeSeq, there were 242 overlapping miRNAs between the ratiometric pool and the EdgeSeq

probe set. However, because miRNAs were present at varying concentrations (e.g., 139 at 1X, 14 at 1.5X, 14 at 2X), the sum of signal

intensities was not divided by 242 but by the sum of the number of miRNAs multiplied by the relative concentration (e.g., 139*1 + 14 *

1.5 + 14*2 + .). Once the expected count was calculated, it was adjusted for each miRNA based on its relative concentration.
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The expected ratio for each miRNA was calculated as the concentration of a miRNA in pool A divided by the concentration in pool

B, unless the concentration in B was higher than in A, in which case the expected ratio was the inverse. The observed ratio for each

miRNA was calculated from quantile normalized intensities.

The best fit line was calculated using the lm function in the R library stats, and the correlation coefficient and p value were calcu-

lated using the Pearson method using the cor function in the R library stats.

Analysis of Spike-In Signal Intensities
2.5 3 10�18 moles of 58 RNA oligonucleotides ranging from 16 – 70 nucleotides with sequences that do not align to human were

spiked-in to RNA isolated from human plasma and water prior to library generation. Libraries were generated using the 4N protocol

B as previously described (Giraldez et al., 2018) with the following exceptions: the 50 adaptor was substituted with the adaptor from

the 4N C protocol, and PippinHT gels were run using marker 30G and the range of 134-162bp was collected. Sequencing was done

on an Illumina NextSeq 500. Fastq files were processed as described above and were additionally aligned to the sequences corre-

sponding to the spike-ins. For nCounter, 9 sequences are included in the assay as internal positive controls. These were considered

as spike-ins. Raw signal intensities from spike-ins were quantile normalized, averaged, and log2-transformed. For small RNA-

sequencing, signal intensities from the water only sample were compared to RNA isolated from human male plasma. For nCounter,

signal intensities from the synthetic equimolar sample were compared to RNA isolated from humanmale plasma. No water only con-

trol was included in the nCounter assay due to limited space. Correlation coefficients were calculated using the Pearson method.

Placenta-Associated miRNA Expression in Plasma
The 50 miRNAs arising from chr19:53666679-53788773 (hg19) were considered to be placenta-associated miRNAs (Ouyang et al.,

2014). Technical and biological replicates were quantile normalized and log2-transformed signal intensities from pregnant female and

non-pregnant female samples were compared for all of the 50 miRNAs that were detected in each platform. Since 9 technical rep-

licates were run for the non-pregnant female plasma and pregnant female plasma, we randomly chose 3 replicates for this analysis.

For small RNA-seq, EdgeSeq, and nCounter, the non-pregnant female comparator was the pool of healthy non-pregnant female

plasma collected at UCSD. For Fireplex, the comparator was the pool of healthy non-pregnant female plasma collected at BIDMC.

In a previous run of FirePlex, both pools were run simultaneously and had high correlation coefficients (R > 0.92), suggesting similar

miRNA expression levels.

DATA AND CODE AVAILABILITY

All normalized signal intensities for all samples across all assays are provided in the supplement. The accession number for data

generated from small RNA-sequencing of the maternal and non-maternal plasma samples reported in this paper is dbGaP:

phs001892.v1.p1 (https://www.ncbi.nlm.nih.gov/gap/). Data generated from small RNA-sequencing of the synthetic RNA pools

and the pool of healthy human male plasma were deposited by Giraldez et al. (2018) and are available on the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession numbers GEO: GSE94584 (equimolar), GSE94585 (ratiometric

pool A and pool B), and GSE94582 (humanmale plasma). Samples corresponding to this study have the following prefix: 4N_D.Lab1.
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