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ABSTRACT OF THE DISSERTATION

Assessment, analysis, and applications of geomagnetic paleointensity for 0-2 Ma

by

Leah B. Ziegler

Doctor of Philosophy in Earth Sciences

University of California, San Diego, 2011

Professor Catherine Constable, Chair

Earth’s magnetic environment is dominated by its mainly dipolar inter-

nally generated magnetic field. The ancient field has permanently magnetized

surface rocks and sediments, and these materials yield information about the field

direction and strength through time. I explore recently compiled databases of

paleomagnetic field intensity to assess uncertainty and bias in the data, create

time-varying models of paleomagnetic axial dipole moment, and constrain field

generation processes. First, I examine the statistics of absolute paleointensity

data for 0-1 Ma. Virtual axial dipole moments (VADMs) from lavas are on aver-

age about 10% higher and show greater dispersion than those from archeological

materials. Combining data from all igneous sources reveals an apparent bimodality

in the VADMs probability density function. An analysis of stochastic models of

the geomagnetic field spectrum demonstrate that the bimodality likely arises from

long term changes in field strength.

Both absolute and relative paleointensity data and a new penalized max-

imum likelihood approach are used to construct PADM2M, a time-varying model

for Paleomagnetic Axial Dipole Moment (PADM) over the past 2 million years.

PADM2M has a lower mean than existing VADM reconstructions but has similar

long-period variability. The average axial dipole moment over 0-2 Ma is 53 ZAm2

with a standard deviation of 15 ZAm2. The Brunhes chron average (62 ZAm2)

is higher than for earlier epochs of the Matuyama chron (48 ZAm2). PADM2M

xvii



is used to study rates of change over the past two million years revealing that

for periods longer than about 25 ky there is a clear asymmetry in the statistical

distributions for growth versus decay rates of the dipole strength. At 36 ky period,

average growth rate is about 20% larger than the decay rate, and the field spends

54% of its time decaying, but only 46% growing. These differences are not limited

to times when the field is reversing, suggesting that the asymmetry is controlled

by fundamental physical processes underlying all paleosecular variation. Finally,

I use these techniques to make regional models of axial dipole moment (RADMs)

based on geographically clustered data. These have similar long period behavior,

but some major differences, especially around geomagnetic excursions.

xviii



Chapter 1

Introduction

1.1 Preface

The deep interiors of Earth and other planetary bodies are hidden forever

from direct observation. All knowledge of these depths are gained through indirect

geophysical techniques which measure surface observables and interpret them in

terms of their source processes at depth. Churnings of molten iron in Earth’s outer

core layer almost 2900 kilometers below the surface, with some influences from the

solid metal inner core, give rise to a strong, long-lived, distinctive magnetic field

surrounding the planet.

Although knowledge of the Earth’s magnetic field core source wouldn’t

come until the mid- to late 20th century, William Gilbert (1544-1603) was able

to establish that the Earth’s magnetic field was internal, and that it was dipolar

in nature (like a bar magnet’s, see figure 1.1). In the following centuries direct

observations of primarily field direction were made both for scientific purposes and

for practical, applied purposes such as navigation. These lent more details to the

magnetic field description, including the idea that the magnetic poles (not aligned

perfectly with the Earth’s rotational poles) were not static, but changed with time.

Not only is the magnetic field measurable at Earth’s surface today, it

has imprinted iron-bearing rocks throughout Earth’s history, leaving an accidental

1
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record of magnetic field characteristics and changes over the ages. The permanent

magnetization imparted on rocks, sediments, and other materials by the Earth’s

magnetic field through several natural mechanisms is referred to as a Natural

Remanent Magnetization (NRM). The field of paleomagnetism studies the ancient

magnetic field captured in the rock record by various measurements of NRM (see

Tauxe (2005); Merrill (2007)). It has proven useful for many applications related

to uncovering Earth history.

Early 20th century studies in paleomagnetism focused on paleofield di-

rections and found that occasionally and irregularly, the north and south magnetic

poles switched. With a mid-20th century rise in radiometric dating techniques, pa-

leomagnetic studies became more abundant, and through their efforts (e.g. Hospers

(1951)), a chronology of ‘polarity reversals’ was thoroughly mapped out. Again

magnetic field observations proved to be a useful tool: the mapping of the po-

larities of sea-floor NRM led to strong evidence to support plate tectonics theory

(Vine and Matthews, 1963) and further to reconstruct plate motions. The growing

body of observations was also establishing the very dynamic nature of the field.

In parallel to these efforts in the early to mid 20th century, theorists were

investigating the nature of the source of the geomagnetic field. Larmor (1919)

suggested that the dynamic nature of the field meant that the internal source of

Earth’s magnetic field was generated by fluid motions in the internal Earth. By the

1950s theoretical dynamo mechanisms established the possibility of a geodynamo

in the core (see e.g. Jones (2007)), and by 1995 the first computer-generated model

of dynamo action made from magneto-hydrodynamics equations (Glatzmaier and

Roberts, 1995).

Recent efforts flesh out our understanding of ancient magnetic field fluc-

tuations - referred to as paleosecular variation, or PSV - through the increased

measurements of paleofield intensity, as well as direction. The picture painted by

paleointensity shows an ever-changing field, with both short term and long term

growth and decay. The results of recent paleomagnetic field intensity studies un-
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derscore the dynamic nature of the Earth’s magnetic field, and have led to new

constraints and more detailed understandings of the core processes responsible for

field generation.
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Figure 1.1: (a) Illustration of magnetic lines of force for a dipole field surrounding
a bar magnet source. (b) Illustration of vertical field component at the surface of
the earth for an internal dipole source, with color contours showing field magnitude.
Positive and negative values denote lines of force pointing toward or away from the
surface respectively (see (a)). Adapted from (Tauxe, 2005)

1.2 Motivations for this work
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Figure 1.2: (a) Scalar magnetic field at Earths surface in µT for the average of the
CALS7K.2 model over the 0-7 ka time interval, and (b) from Olsen’s (2002) Oersted
secular variation model, OSVM. Reproduced from Constable (2007)

The magnetic field is a shield, protecting life on Earth from potentially

harmful solar wind radiation. The magnetic field is currently stronger than average,

sheltering a growing number of satellites in an amply large region of protection
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called the magnetosphere. However, regional features of the field, which depart

from the globally dominant dipole field, include some regions of low field strength

such as the south Atlantic anomaly seen in figure 1.2(b) over South America and

the south Atlantic ocean. These regions pose greater hazard to spacecraft and

satellites in particular. The evolution and longevity of such features are a relevant

topic for this technologic age. The modern field is well measured by satellite

and land based observatories, but must be contextualized through paleomagnetic

studies of the ancient field. Understanding of the field evolution over millions of

years can lead to better estimates of potential hazards related to geomagnetic field

fluctuations.

Also, the record of magnetic field behavior is a crucial key to understand-

ing deep earth processes and ancient Earth development. As more data become

available on the historical and ancient field and its (paleo)secular variation, core

flow and core evolution studies have made strides in describing the hidden workings

of the deepest layers of our Earth.

Yet much progress remains to be made in understanding the ancient mag-

netic field. Data are comparably plentiful for recent ages, and become scarcer as

we look further back in time. For the most recent few centuries direct observations

of field intensity and direction are recorded and can be exploited for magnetic field

and core studies. Beyond that we rely on the natural remanent magnetization of

rocks, sediments and archeologic objects for indirect observations.

The amount of potentially useful paleomagnetic data from a given time in

Earth’s history is fundamentally related to typical ages of Earth’s crust. Younger

surface rocks and sedimentary deposits available to be sampled and measured for

paleomagnetic information are simply more plentiful, as older rocks may become

buried or altered in their lifetime. Additionally, older rocks and sediments which

are available at the surface for sampling are more likely to have minor alterations

or episodes of re-heating and re-magnetization at points in their long lifetimes.

And finally, the ages of rocks millions of years old become increasingly hard to
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determine precisely.

In the last few decades, ocean drilling projects have greatly expanded the

database of paleomagnetic field observations (Sager et al., 2006). Long cores of

sediment represent tens of thousands to millions of years of deposition, and record

magnetic field data during that same span. Whereas individual rocks, typically

igneous rocks formed in volcanic eruptions, could provide only spot recordings

of field strength and direction/polarity, these cores provided time series of field

behavior: a rich source of new observations. These time series have additional

limitations as well, as the depositional magnetization process is less understood

and includes time averaging effects which need to be accounted for in interpretation

of the observations.

As the amount of paleomagnetic data has been systematically increas-

ing, several groups have undertaken efforts to compile and maintain databases for

shared use by the scientific community, namely the PINT databases (e.g. Perrin

and Schnepp (2004) Biggin et al. (2009)), the Geomagia50 database (Donadini

et al., 2009), and the MagIC database (http:/earthref.org/MAGIC), which hosts

many data related to rock magnetism and paleomagnetism, including a compi-

lation of relative paleointensity data assembled in Tauxe and Yamazaki (2007)).

Now, as these have grown to a global compilation of data, a few opportunities are

ripe for taking. First, statistical investigations can be undertaken given large data

sets. Additionally, comprehensive models made from the data can synthesize the

individual observations into a big picture of the global axial dipole field through

time.

Using paleomagnetic observations of the ancient field in these and other

applications requires careful efforts to consider the many sources of error and un-

certainty in these imperfect natural recorders. Uncertainties and potential biases

in paleointensity determinations, along with uncertainties in their corresponding

ages both need to be addressed when analyzing and interpreting the data. Re-

search efforts examining the effects of these uncertainties are helping resolve what
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can and cannot be robustly learned from these data sources given these limitations.

A primary open question to address is how dominant the dipole is over

the span and resolution of the data set. That the dipole is the primary component

is well established. The task at hand is to describe in greater detail axial dipole

variations on million year timescales and to take preliminary steps in understanding

the feasibility of recovering non-axial-dipole field details from the relatively scarce,

uncertain data.

1.3 Outline

The research contributions of this dissertation are laid out in chapters

2-5. Given the above mentioned recent gains in paleointensity data and the oppor-

tunities they afford, these analyses will deal exclusively with paleointensity data.

First, I address questions related to observations of absolute paleofield

intensity as recorded in igneous rocks, archeomagnetic artifacts, and submarine

basaltic glasses. I create a bootstrap technique for resampling the dataset which

accounts for the over-represented nature of young data to produce an estimate

of mean field strength, and other statistical characteristics of 0-1 million year old

paleointensities. The field intensities recorded by different paleomagnetic materials

are compared.

In Chapter 3 I build a comprehensive model of paleointensity variations

over the last 2 million years. A major part of this work was the development of

a robust maximum likelihood inverse modeling method for use in modeling axial

dipole field strength from a joint set of absolute and relative paleointensity data.

This method is then applied to a large compilation of paleointensity data from the

databases cited above to create the PADM2M model of paleomagnetic axial dipole

moment for 0-2 Ma. Results and implications from this model are also discussed

in chapter 3.

I investigate paleosecular variation on million year timescales through
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analysis of the PADM2M model derivatives, in a study on the rate of change of

the field. The study explores the difference between rates of field growth and rates

of field decay, showing disparity between the two on average.

Finally in Chapter 5, I compare relative paleointensity data derived from

sediments clustered geographically through the construction of regional paleomag-

netic axial dipole models. These models are constructed with the same methods

developed in Chapter 3 applied to regional (not global) relative paleointensity data.

We find some some features in paleointensity distinctive to geographic regions, and

attribute them to non-axial-dipole field components.

Conclusions are discussed separately in each chapter. Chapter 6 has a

very brief summary of all the conclusions along with a discussion of implications

of these findings for future directions of investigations.

1.4 Appendix: Brief description of geomagnetic

measurement elements

Figure 1.1
Figure 1.3: Geomagnetic elements in a local coordinate system. D is declination,
I inclination, B magnetic field strength, Bh horizontal component of magnetic field.
Reproduced from Constable (2007)
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A magnetic field is a vector field, with magnitude and direction describ-

ing an observation of the field at a particular location. It can be measured and

expressed in terms of its north, east, and down vector components (see fig. 1.3).

Alternatively and most commonly, field components are expressed in terms of

declination, inclination, and magnitude (intensity). The mathematical conversion

between systems is not elaborated here, but a visual representation of the relation-

ship of these systems is shown in figure 1.3.

When a geocentric axial dipole source is assumed, the field inclination

and intensity vary systematically with latitude through a straightforward relation.

Figure 1.1(a) illustrates a dipole source as a bar magnet at the center of a sphere

(e. g. Earth) and the resulting field; figure 1.1(b) the variation of vertical field

component with latitude. Under this approximation, where the magnetic pole axis

is aligned with the Earth’s geographic (spin) axis, the intensity at any given site

is a function only of latitude and of the strength of the magnetic dipole producing

the field. Global intensity are often converted into Virtual Axial Dipole Moment

(VADM) data by calculating what moment aligned with the Earth’s rotation axis

would produce the observed intensity at the latitude of their location. Thus,

geographically diverse intensity measurements which are not directly comparable

due to their latitudinal dependence become directly comparable as VADM data

for use in field strength studies which assume a geocentric axial dipole source.

The equation relating paleomagnetic VADM (V ) to intensity (B) and

co-latitude (θ) is

V =
4πr3

µ0(1 + 3 cos2 θ)1/2
B

where µ0 is the permeability of free space and r is the Earth’s radius (see e.g.

(Tauxe, 2005).
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Chapter 2

Testing the Robustness and

Limitations of 0–1 Ma Absolute

Paleointensity data

Abstract

Absolute paleomagnetic field intensity data derived from thermally mag-

netized lavas and archeological objects provide information about past geomagnetic

field behavior, but the average field strength, its variability, and the expected statis-

tical distribution of these observations remain uncertain despite growing data sets.

We investigate these issues for the 0-1 Ma field using data compiled in Perrin and

Schnepp (2004), 1124 samples of heterogeneous quality and with restricted tem-

poral and spatial coverage. We accommodate variable spatial sampling by using

virtual axial dipole moments (VADM) in our analyses. Uneven temporal sampling

results in biased estimates for the mean field and its statistical distribution. We

correct for these effects using a bootstrap technique, and find an average VADM of

7.26±0.14×1022Am2. The associated statistical distribution appears bimodal with

a subsidiary peak at approximately 5×1022Am2. We evaluate a range of potential

sources for this behavior. We find no visible evidence for contamination by poor

quality data when considering author–supplied uncertainties in the 0–1 Ma data

11
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set. The influence of material type is assessed using independent data compilations

to compare Holocene data from lava flows, Submarine Basaltic Glass (SBG), and

archeological objects. The comparison to SBG is inconclusive because of dating

issues, but paleointensity estimates from lavas are on average about 10% higher

than for archeological materials and show greater dispersion. Only limited tests

of geographic sampling bias are possible. We compare the large number of 0-0.55

Ma Hawaiian data to the global data set with no definitive results. The possibility

of over-representation of typically low intensity excursional data is discounted be-

cause exclusion of transitional data still leaves a bimodal distribution. No direct

test has allowed us to rule out the idea that the observed pdf results from a mixture

of two distinct distributions corresponding to two identifiable intensity states for

the magnetic field. We investigate an alternative possibility that we were simply

unable to recover a hypothetically smoother underlying distribution with a time

span of only 1 Myr and the resolution of the current data set. Simulations from a

stochastic model based on the geomagnetic field spectrum demonstrate that long

period intensity variations can have a strong impact on the observed distributions

and could plausibly explain the apparent bimodality. Our 0-1 Ma distribution of

VADMs is consistent with that obtained for average relative paleointensity records

derived from sediments.

2.1 Introduction

Absolute paleointensity data are important constraints on our knowledge

of the geodynamo. They allow the possibility of exploring how geomagnetic field

strength has varied over Earth’s history and are essential for providing appropriate

scaling to both time-averaged and time-varying magnetic field models that extend

beyond the historical record. Time varying field models on centennial and millen-

nial time scales already exist (Jackson et al., 2000; Korte and Constable, 2005),

and have proved useful for studying prehistoric secular variation, but the extension
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of such models to million year time scales has not yet been accomplished. They

will, however, be important in understanding low frequency field variations, and

giving better context to observations of the current and historical field.

Magnetic field models, generally derived by fitting mathematical func-

tions to globally distributed observations of field intensity and direction, are lim-

ited in spatial and temporal resolution by the quality and abundance of available

data. An ideal data set would include time series of intensity and directional varia-

tions of the magnetic field at many geographically diverse locations. In reality, we

have two types of data: spot recordings of absolute field intensity, inclination, and

declination found from magnetized igneous rocks and archeological objects, and

time series of absolute inclination variations and relative intensity and declination

variations from magnetized sediment cores. Field intensity data have been partic-

ularly sparse until fairly recently, and are still less abundant than directional data.

Yet, with a gathering supply of absolute paleointensity data, modeling of field in-

tensity variations on million year timescales should be possible - especially if these

data can be used in conjunction with time series of relative intensity variations

derived from sediment cores.

The SINT relative paleointensity stacks (Guyodo and Valet, 1996, 1999;

Valet et al., 2005), which are formed by averaging some tens of globally distributed

relative paleointensity records, have already hinted at interesting features of long

term field variations worth further investigation - for instance intensity lows at

excursions and the proposed sawtooth paleointensity pattern near reversals (Valet

and Meynadier, 1993). However, these stacks are limited in that they utilize only

relative paleointensity data to create the model of field variations. The two most

recent SINT curves (SINT800 and SINT2000 spanning the past 800 ka and 2 Ma,

respectively) have used absolute paleointensity data to scale the SINT curves to

represent absolute variations in virtual axial dipole moment (VADM), but different

scaling procedures resulted in significantly different estimates of the mean VADM

for the Bruhnes chron (6×1022Am2 and 7.5×1022Am2 for SINT800 and SINT2000
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respectively). The SINT curves also lack the predictive power of a mathematical

model for the field: they cannot be expanded to geographic variability beyond that

of an axial dipole field, cannot be downward continued to examine the field at the

Core Mantle Boundary (CMB), and are not easily differentiated to show rate of

change in the field.

Using paleointensity data for modeling, or even for other more basic in-

ferences about the field is not necessarily straightforward. For example, various

authors have found conflicting estimates of the mean field strength (e.g. (McFad-

den and McElhinny, 1982; Constable and Johnson, 1999; Selkin and Tauxe, 2000;

Tauxe and Kent, 2004)). Differing estimates are often caused by including data

based on variable standards of reliability (as determined by uncertainty, laboratory

methods, materials used, and other factors) or which cover different age ranges.

Since the process of determining paleointensities is far from standardized, with new

developments still frequent in this field, the debate over what data are reliable is

unlikely to be resolved soon. As mentioned above, progress still needs to be made

on how to use both relative paleointensity records and absolute paleointensity data

together to create time varying field intensity models. Since each type of data has

different sources of noise, we need to look at each data source in detail in order to

assess how they can be used together most appropriately to produce paleointensity

models.

Here, we assess the current global absolute paleointensity data set to

characterize its statistics and to evaluate it for its use in future modeling. We first

review the data that are currently available, and some possible drawbacks of the

data set. Then we use statistical techniques to test the consequences of restricting

the available data based on certain criteria. We look specifically at data from

0-1 Ma, where both absolute paleointensity data and relative paleointensity data

are adequately distributed in space and in time to make field intensity modeling

potentially viable.
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2.2 Data

A number of absolute paleointensity compilations have been made over

the past few decades and subjected to detailed analyses to determine the average

dipole moment, and the statistical distribution of the observations. We follow a

precedent established in the 1980s (McElhinny and Senanayake, 1982; McFadden

and McElhinny, 1982) when data sets for the 0-50 ka time interval were consid-

ered separately from those spanning million year time scales. For the 0-1 Ma time

scale we use absolute paleointensity data derived from igneous geological materials,

typically lava flows, that acquire a thermoremanent magnetization. The primary

data set chosen is the PINT03 compilation (Perrin and Schnepp, 2004). To facil-

itate comparisons of results from different material types we use a subset of the

more abundant archeomagnetic and lava data set from the 0-50 ka Geomagia50

database, and our own compilation of data from Submarine Basaltic Glass (SBG).

2.2.1 PINT03

The PINT03 database consists of 3128 globally distributed data from ig-

neous and baked contact sources. More data have been published since this com-

pilation, so it represents a minimum of igneous sourced data available at present.

Perrin and Schnepp did not do quantitative analysis on the data compilation, cit-

ing some potential sources of biases in estimating paleointensity statistics with the

currently available data (e.g., biased temporal and regional distributions of data,

data quality variability) and the low density of data in time. However, for the 0-1

Ma time period there are 1124 data, and we feel that the number, temporal and

spatial coverage ( Figure 2.1) are sufficient to justify some quantitative analyses.

Beyond 1 Ma, both absolute and relative paleointensity data are less plentiful. We

also investigate the influence of some of the previously mentioned potential sources

of bias on the resulting field intensity statistics.
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(a) 0-1 Ma Global Paleointensity Distribution
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Figure 2.1: (a) Global distribution of 0-1 Ma absolute paleointensity plotted as a
probability density function on a log scale (units of (×1022Am2)−1). Red (purple)
values show areas with a high (low) concentration of data. Blank (white) areas have
no data. (b) Paleointensity data are converted to VADM (see text) and plotted vs.
age.

2.2.2 Geomagia50

The Geomagia50 database (Donadini et al., 2006) compiles globally dis-

tributed data from both lava flows and archeological objects with ages in the range

0-50 ka. We specifically look at the time interval 0-7 ka, since data are concen-

trated in this range (2793 archeological data and 311 lava flow data). The PINT03

database contains data from igneous sources only. Absolute paleointensities can

also be determined from archeological objects. For the purposes of evaluating the

0-1 Ma field, adding archeointensity data to the PINT03 compilation provides ad-

ditional data in the small time interval over which data density is already highest.
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For this reason, we stick to using only the PINT03 data compilation to evaluate

the 0-1 Ma field, and only use Geomagia50 to compare paleointensity data from

archeological and igneous sources. Since these two data sources have different min-

eralogies and cooling rates, they could potentially give different results. We also

use this database as a source of 0-7 ka lava data in this comparison, as it is a

more recent compilation and with more data in this time range than the PINT03

database. Figure 2.2 shows the temporal and regional distributions of data from

archeological and igneous sources with ages between 0 and 7 ka, plotted in the

same fashion as Figure 2.1.
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(a) Geomagia50 Archeointensity data (b) Geomagia50 Archeointensity data

(c) Geomagia50 Igneous Paleointensity data (d) Geomagia50 Igneous Paleointensity data

Figure 2.2: Distribution of data from the Geomagia50 database with ages of less
than 7 ky. (a) and (c) show distributions in time of data from archeological and
igneous sources respectively (with intensity converted to VADM). (b) and (d) show
geographical distributions of data from archeological and igneous sources respectively
(format as for Fig. 2.1).

Some statistical analysis has already been done using this data compila-

tion to test the correlation of data found from differing material types and labora-
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tory methods (Donadini et al., 2007). A comparison with their findings is included

in our discussion.

2.2.3 Submarine Basaltic Glass

Within the category of igneous sources, we can also compare SBG data

and other lava flow data. SBG has a distinct fabric and cooling history, and

so could potentially provide different results than other igneous data, and has

sometimes yielded average field strengths which differ from those computed from

other igneous data (Selkin and Tauxe, 2000; Tauxe and Yamazaki, 2007; Heller

et al., 2002; Valet, 2003). The PINT03 data set contains only a handful of SBG

data, but more data can be added (i.e. (Bowles et al., 2006; Gee et al., 2000)).

Before mixing these material types into a larger compilation, results obtained from

the different material types should be quantitatively compared. The SBG data

used in this study are a compilation of data from (Bowles et al., 2005, 2006; Carlut

et al., 2004; Carlut and Kent, 2000; Gee et al., 2000; Mejia et al., 1996; Pick and

Tauxe, 1993) yielding 313 data all with nominal ages less than 100 ka based on

crustal ages calculated from spreading rates and distances from the ridge axis. The

actual ages are likely to be much younger than 100 ka (Bowles et al., 2006), and

we discuss this later.

2.2.4 Potential Drawbacks of the Data Set

Given that the Earth’s magnetic field is predominantly dipolar, it is com-

mon to account for gross geographical variations in intensity data by converting to

Virtual Axial Dipole Moments (VADM) (Barbetti, 1977). Temporal and spatial

distributions of the PINT03 data are plotted in Figure 2.1. The global distribu-

tion is plotted as a probability density function on the globe, with higher values

(indicated by the pink end of the color spectrum) indicating higher data density.

The time distribution is shown by plotting VADM vs. age. Data are unevenly dis-

tributed in time, with a high concentration of young data. A bias toward Northern
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hemisphere data is also clearly evident, as noted by Perrin and Schnepp (2004).

Notably, over 512 data (almost half of the data set) are from Hawaii. In looking

at global data sets of VADMs to calculate mean field strength, it is assumed that

non-dipole components will be a source of noise, but contribute no bias in field

statistics. However, if a large portion of data is from a single geographic region,

the data compilation could potentially be biased toward reflecting any persistent

non-dipole field components at that location (as shown by Korte and Constable

(2005b)). To assess the accuracy of the assumption that the time averaged field

is dipolar, we plot VADM vs. latitude (Figure 2.3), along with the mean field

strength (black line) and average VADM values for 15o latitude bins. If the dipole

approximation is accurate, the time averaged VADM should be a constant, regard-

less of latitude. The bin averages show considerable scatter. Although this scatter

could be attributed to non-dipole field effects, it is clear in Figure 2.3 that a few

bins contain data from very small time ranges, which is likely the source of scatter:

that is, each bin average reflects the average VADM over different time ranges.
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Figure 2.3: PINT03 0-1 Ma VADM data plotted by latitude, and colored to corre-
spond to age (circles). Color scale in Ma. Black squares are mean VADM values for
15o bins, with error bars showing 95% confidence bounds, calculated as 2× standard
error in the mean. Black line is the average VADM for 0-1 Ma.

Besides the uneven temporal and spatial distribution, variable quality
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could also contribute to variance or bias in the currently available data set. The

PINT03 database compiles all published data with no restrictions, but also con-

tains fields of information which could be used to restrict data based on quality

controls. One measure of data quality is the reported uncertainty in the paleoin-

tensity estimate, calculated as the standard deviation of the mean paleointensity

of several specimens from a single cooling unit. However, paleointensity data are

often only reported from a single specimen, in which case reported uncertainly is

absent. Preferably, paleointensity estimates are made from more than one speci-

men, and have low reported uncertainty. Any reasonable restriction of this kind

will significantly reduce the number of data.

Data quality can be checked or improved by employing laboratory meth-

ods which detect or minimize the potential for alteration. Paleointensity deter-

minations could be inaccurate for this or other rock magnetic reasons. Several

methods have been developed to specifically address these concerns, but debates

over which methods are most appropriate still continue. Details of these topics are

not discussed here; for more information see Tauxe and Yamazaki (2007) and Valet

(2003). We note, however, that data obtained using the Thellier-Thellier method

with pTRM checks (denoted T+ in the PINT03 intensity methods field) are often

taken to be the most reliable, as they have built in heating steps which check for

alteration. For this reason, we look at restricting the data by this criterion. An

alternative method of guarding against data contaminated by alteration effects,

the Shaw method, is not be evaluated here, because of the small number of data

in PINT03 gathered using this technique.

Finally, we note that the estimated ages of paleointensity data are often

poorly constrained, with large or absent age uncertainties. This can be a big issue

when looking at time-varying field intensity, and can also be an issue when looking

at average field strength and investigating how methods, geographic bias, and

materials may influence average paleointensity determinations. When comparing

paleointensities from different geographic locations, materials, and methods, these
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paleointensities must be from the same time (or time span) so that differences

in intensity results are not attributable to their simply sampling different field

strengths.

2.3 Methods

We evaluate the 0-1 Ma absolute paleomagnetic data set with statistical

methods, estimating the mean and variance as well as the probability distribution

function (pdf) and empirical cumulative distribution function (ecdf). We use these

properties to directly compare the original 1124 member data set with specific

restricted subsets. Pdf estimation is done with an adaptive kernel method (i.e.

kernel bandwidth varies with data density), using Abramsons square root law

(Abramson, 1982) to determine bandwidth, as described by Silverman (1986). This

non-parametric approach allows us to compare pdfs of subsets of data without

imposing a potentially inappropriate parametric form. The empirical cdf (the

probability that a value X will be less than or equal to x) is calculated directly

from the data as a ratio of data less than or equal to x to total number of data,

with linear interpolation to evaluate the function at evenly spaced values of x.

First, we need to address the uneven temporal distribution of the data.

Since data concentration is heavily skewed toward young ages, our resulting statis-

tics will be biased toward describing the recent field, instead of the 0-1 Ma field.

If all paleosecular variation occurred with periods less than a few tens of kyr, it

would not matter that the recent few kyr is so heavily represented, as it would

not necessarily have a mean or other statistics which differed from a longer time

range of data. However, long period variations are clearly evident in sedimentary

relative paleointensity records (e.g. (Valet et al., 2005)). We cannot be sure that

PSV with periods of longer than 1 Ma are not also occurring in the time varying

field (see Discussion). Therefore, our results should be interpreted as describing

the 0–1 Ma field only.
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To correct for the uneven temporal distribution we use a variation of a

bootstrap method (Efron and Tibshirani, 1993) to resample the original data set:

we generate a set of n ages from 0-1 Ma randomly (with uniform probability) and

from there choose from our original data set the paleointensity data whose ages

most closely match each of the simulated ages as members of our new resampled

data set. In this way, we bootstrap a distribution of n data from our original

data set to create a resampled data set which is spread more evenly in time. We

generate 1000 resampled sets of n = 500 data. Estimates of statistics do not

change significantly with more than 1000 simulations (and actually converge with

fewer simulations, so this is a conservative number). A mean VADM (µ̄) can

be estimated by finding the average of the 1000 resampled means (x̄i). We can

also calculate the standard error in the mean of µ̄, σµ. Variance σ̄2 and standard

error of the variance σσ2 can be found analogously. Specifically, we calculate these

statistics using:

µ̄ =
1

k

k∑
i=1

x̄i (2.1)

σµ =

√√√√ 1

(k − 1)

k∑
i=1

(x̄i − µ̄)2 (2.2)

σ̄2 =
1

k

k∑
i=1

s̄2
i (2.3)

σσ2 =

√√√√ 1

(k − 1)

k∑
i=1

(
s̄2
i − σ̄2

)2
(2.4)

where k = 1000, s̄2
i is the variance of a resampled distribution, and the other

variables are described above. Using this method, we not only attempt to correct

for the uneven temporal sampling, but we can also find a reliable estimate on the

error or stability of our estimate of mean and variance.

Figures 2.4 (a) and (b) show histograms of the ages of the original 1124

data, and of one resampled data set. The resampled distribution has ages spread
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Figure 2.4: (a) Histogram showing the age distribution of the 1124 0-1 Ma data
from Pint03. (b) Histogram of the age distribution of a resampled set of 500 data
(see text). (c) Ecdfs of the original Pint03 0-1 Ma data set (green), a resampled set
of 500 data (red), and a uniform distribution (black).
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much more evenly in time. Figure 2.4 (c) illustrates this again by plotting the em-

pirical cumulative distribution functions (ecdfs) of both data sets, along with the

cdf of a uniform distribution for comparison. Since the 0-1 Ma data set has some

gaps in time, we cannot truly create resampled data sets which are uniformly dis-

tributed in time. To test whether the temporal distribution of a typical resampled

data set is distinguishable from a uniform distribution, we perform a Kolmogorov-

Smirnov (KS) test, to quantify the difference between their ecdfs, see (Press et al.,

1986). We find a KS significance level of 0.61, where the level is on a scale of

0 to 1 with small values indicating a low probability that the samples come from

the same underlying distribution. This test shows that the resampled distributions

are not distinguishable from a uniform distribution. This technique eliminates bias

generated by the high concentration of young data. Our results, discussed below,

show that resampling significantly affects our estimated mean, variance and pdf.

Therefore, we use this temporal resampling in all comparisons of the original data

set to subsets based on restrictive criteria to make sure differences we see are not

attributable to time-sampling issues.

2.4 Results

2.4.1 0-1 Ma Field Statistics: Temporal Sampling Effects

As shown in Table 2.1, the mean VADM of the original 0-1 Ma data set

is 7.71± .09× 1022Am2. Using our bootstrap procedure to simulate a temporally

evenly distributed data set, the new estimate of the mean is 7.26±0.14×1022Am2.

A t-test confirms that we can reject the null hypothesis that these means are the

same at the α = .01 level (i.e. if there were no difference, our observed difference

would occur with a probability of less than .01). The lower mean is to be expected,

since the procedure effectively reduces the influence of the higher than average

young data. We also estimate the pdf and ecdf of the resampled data by averaging

the 1000 distributions of data to find a mean distribution and 95% confidence
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bounds. These are plotted in Figure 2.5 (a) and (b), respectively. Looking at

the estimated distributions in comparison to the originals, the significant changes

can be identified by noting where the original distribution (black) lies outside the

confidence bounds we have estimated (red dashed). In Figure 2.5 (a), some of the

high VADM tail seen in the original distribution is absent in the mean resampled

distribution. On the other end, the resampled data pdf shows more low VADM

values. There is a sidelobe in the pdf around 5×1022Am2 which is not removed by

accounting for the uneven temporal distribution.

2.4.2 An abundance of Hawaiian data

The spatial distribution of data is limited with a high concentration of

northern hemisphere data. The distribution is too uneven to allow us to correct

for its inadequacies as we have done for the temporal distribution. However, as

mentioned above, 512 out of the 1124 data are from Hawaii. Only 4 Hawaiian

data are older than 0.55 Ma. In the 0-0.55 Ma age range, 508 out of 944 data

are from Hawaii. For this reason, we investigate the influence of Hawaiian data

by comparing data from Hawaii only, data from everywhere but Hawaii, and the

combined data set (Hawaiian and non-Hawaiian data) over the time range 0-0.55

Ma. We again simulate 1000 distributions of 500 data points for each data set.

Results are shown in Table 2.1 and Figure 2.5 (c) and (d).

The bootstrapped mean for the Hawaiian data is slightly lower than that

of the combined data set. However, the combined 0-0.55 Ma data set has a mean

virtually identical to the data set without any Hawaiian data. Though at first

glance it seems unexpected that the combined data set has a mean very similar

to the non-Hawaiian data set despite the fact that the Hawaiian data has a lower

mean than the non-Hawaiian data, this is clarified by looking at the medians for

these distributions (which are often more robust estimates for the expected value

of distributions which are non-gaussian). The estimated median of the combined

data set (7.61×1022Am2) falls between the median of the Hawaiian data (7.35
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Figure 2.5: (a) Pdf of the original 0-1 Ma Pint03 data set (black), the mean pdf
of the 1000 pdfs of the resampled (temporally evenly distributed) data sets (red),
and 95% confidence bounds of the mean pdf (red dash). (b) Ecdfs of original and
resampled data with same color coding as (a). (c) and (d) Mean pdfs and ecdfs
respectively for the complete 0-0.55 Ma data set (black), Hawaiian data only (red),
and all locations except Hawaii (blue). (e) and (f) Mean pdfs and ecdfs respectively
for the complete 0-1 Ma data set (black), data with reported errors less than 20%
or 5µT (red), data found using versions of the Thellier method with pTRM checks
(blue), and data which are both reported to have low errors and which are found
using Thellier methods with pTRM checks (green).
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×1022Am2) and the median of the non-Hawaiian data set (7.80 ×1022Am2), as

one would expect, and t-tests show that we cannot reject the null hypotheses that

the means of the subsets are the same as the mean of the combined data set.

This indicates that little bias is introduced to the combined data set by having

such an abundance of data from one small region. However, the medians of the

Hawaiian data and non-Hawaiian data are significantly different from each other

(α = .02), which could be due to persistent non-dipole field contributions at the

Hawaii location. It is difficult to quantify how much of the small but statistically

significant difference in mean and median values between these two subsets is

due to non-dipole field components and how much of it is a time sampling issue,

since simulating uniform time distributions with these smaller data sets becomes

increasingly difficult (see Discussion).

Mean pdfs and ecdfs from the resampled distributions are plotted in Fig-

ure 2.5 (c) and (d). They are not significantly different from each other, except

for a more pronounced sidelobe in the ’No Hawaii’ data set. We do not show the

confidence bounds in these figures for ease of viewing, but they overlap, confirming

that differences among these 3 data sets are insignificant.

2.4.3 Restricting Data Quality

We next investigate whether higher quality data has different properties

from the complete 0 - 1 Ma data set. As we already noted, there is still consid-

erable debate over how to judge data reliability, and this is further complicated

by the heterogeneous reporting of data and uncertainties. For now, we assess the

influence of restricting the data based on reported error (reported errors must

be either less than 20% or less than 5 µT for each result, with each result and

reported uncertainty supposed to represent a cooling unit of a determined age),

separately restrict the original data set to include only data produced using the

Thellier-Thellier method with pTRM checks, and finally apply both of these re-

quirements. Each subset of data spans the time range 0-1 Ma. Again, we resample
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1000 distributions of 500 data points to estimate statistics and pdfs for each data

set. Results are shown in Table 2.1 and Figure 2.5(e) and (f).

Comparing µ̄ for each of these subsets to the µ̄ of the original data set,

t-tests show we cannot reject the null hypothesis that they are the same (α > .05

in each case). This result indicates that although including less reliable data in

our estimates of field intensity statistics is not desirable, it does not significantly

bias the results.

Pdfs for the various groups of observations are similar and all include the

sidelobe seen in the complete data set, although the amplitude of the sidelobe varies

for each data set. The subset of data which satisfy both the low error and Thellier-

Thellier method with pTRM check criteria (green distribution in Figure 2.5(e), (f))

has a sidelobe with amplitude almost equal to that of the main peak. In this case,

the exaggeration of the sidelobe is an artifact of our resampling procedure, which

attempts to resample evenly in time, but runs into problems if large age ranges

have little or no data. We find that there is a temporal gap for data meeting these

strict requirements at around 0.6 Ma, and that on either side of the gap are data

with values of about 5 ×1022Am2. Our procedure picks these two data points (on

the edges of the gap) to represent the intensity over the entire time range of the gap

in data, leading to an artificially large sidelobe at around 5 ×1022Am2. This issue

is also evident in the lack of smoothness in the ecdf at the same VADM value: the

sharp jump most likely is a result of a particular point or two being chosen many

times for each resampled distribution. The effect this would have on the mean in

this instance would be to bias it low (since 5 ×1022Am2 is a lower than average

VADM). Indeed, the mean of the highly restricted data set is lower (though not

significantly lower) than that of the complete data set and the subsets of data

restricted based on method or reported error alone. Thus, the small differences

between data sets in the investigation of using quality criteria restrictions reflect

the limitations of the specific temporal sampling available rather than significant

differences among the data sets themselves.
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Table 2.1 Statistics of data sets used in this study.
# Mean Var µ̄ σµ σ̄2 σσ2

All 0-1 Ma 1124 7.71 9.38 7.26 0.14 8.58 0.57
Low err 783 7.67 8.29 7.23 0.14 8.77 0.55
T+ only 874 7.60 9.59 7.16 0.14 9.73 0.63
T+ and low err 574 7.60 9.07 7.06 0.14 9.73 0.57

All 0-0.55 Ma 944 7.84 8.92 7.64 0.12 7.41 0.57
HI 0-0.55 Ma 508 7.84 8.43 7.29 0.13 7.57 0.57
No HI 0-0.55 Ma 436 7.83 9.64 7.68 0.15 11.41 1.18

Arch. 0-7 ka 2793 9.54 5.07 8.74 0.10 5.00 0.36
Lava 0-7 ka 311 9.56 6.02 9.77 0.14 6.41 0.55
Lava 0-7 ka cr∗ 311 8.31 4.55 8.50 0.13 4.87 0.42
SBG 0-100 ka∗∗ 313 8.33 7.74 - - - -
SBG 0-10 ka∗∗ 158 9.40 2.61 - - - -

Table 2.1: # is the number of data in data set, Mean and Var are of the original data
sets, µ̄ is the mean mean value of the bootsrapped distributions, σµ is the standard
error in the mean, σ̄2 is the mean variance of the bootstrapped distributions, σσ2

is one standard error of the mean variance. cr∗ denotes the lava data after being
adjusted for a hypothetical 15% high bias due to cooling rate. ∗∗ denotes ages
calculated as crustal ages (see text)
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2.4.4 Influence of material type

Archeological vs. Lava data

Compared to intensity estimates from igneous sources, archeointensity

data may be more reliable. The mineralogy of archeological objects is generally

more uniform (at least within site) than for igneous sources, and the magnetic

carrier is more likely to be hematite in archeological objects, and so less prone

to alteration during lab procedures. Additionally, archeological objects may cool

more quickly (and uniformly within site) than lava flows, and so yield results less

biased by large differences between the natural and lab cooling rates.

Here, we compare archeointensity data to paleointensities derived from

igneous sources over the age range 0 - 7 ka (as compiled in Geomagia50). There are

only 311 igneous paleointensities in this time range, compared to 2793 archeointen-

sity data . Despite this, some meaningful comparisons can be made. Interestingly,

the simple averages of VADMs of the two original data sets (without temporal

resampling done) are almost identical. However, the picture changes after com-

pensating for the uneven temporal sampling yielding a µ̄ of 8.74×1022Am2 for the

archeointensity data set - significantly lower than the 9.77×1022Am2 obtained for

the lava data set. We note that we have used n = 300 in the resampled igneous

data distributions (instead of n = 500) due to the small size of the original data set.

Igneous data have a higher variance both before and after correction for temporal

sampling.

The mean pdfs and ecdfs of the corrected bootstrapped distributions (Fig-

ure 2.6 (a) and (b)) illustrate these differences. The igneous data pdf (black curve

in Figure 2.6(a)) is broader than the archeointensity pdf, and is offset to higher

values of VADMs. Similarly the ecdfs in (b) (archeological data set in red, igneous

in black) show the significant difference between the two data sets. This large

difference merits further investigation (see Discussion).
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Figure 2.6: Mean pdfs (a) and ecdfs (b) (as in Fig. 2.5) for 0-7 ka archeointensities
(red) and paleointensities from lava flows (black). (c) and (d) Mean pdf and ecdf
respectively for archeointensities (red) and adjusted paleointensities from lava flows
(black), for data whose ages of span 0-7 ka. Adjusted paleointensities calculated by
reducing the actual paleointensities to account for a hypothetical 15% bias high due
to lack of cooling rate corrections(see Discussion section).

Submarine Basaltic Glass

Some discussion has occurred about the reliability of SBG data (Heller

et al., 2002; Valet, 2003; Tauxe and Yamazaki, 2007). Here, we attempt a com-

parison of SBG data to other igneous data and to archeointensity data over the

same age range. However, this is not straightforward, as young SBG data are

difficult to date. Many SBG data in our compilation have age estimates based on

distance from the ridge axis (Mejia et al., 1996; Gee et al., 2000), so that the age

corresponds to the crustal age, but is not necessarily the age of the uppermost lava
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flow which is being sampled. Bowles et al. (2006) derived ages using correlation

with global paleointensity variations, but for this study we have recalculated these

ages based on distance from the ridge axis and spreading rate to have an indepen-

dent age estimate. Some studies have only restrictions on age (i.e. ”less than 10

ka”), with no exact ages reported (e.g. (Carlut et al., 2004; Bowles et al., 2005).

Bowles et al. (2006), using paleointensities and geological features, showed that

larger flows from the ridge axis and/or off-axis volcanism can lead to very young

data ( < a few ka ) derived from locations kilometers from the ridge. In this case,

ages estimated by calculating crustal age based on spreading rates can be off by

tens of kiloyears. Nominally, our SBG compilation ranges in age from 0-100 ka.

However, the results of Bowles et al. (2006), indicate it is possible that the upper

end of the range is much younger. To complicate the issue further, we cannot use

our technique to resample evenly in time since the data ages are so uncertain. This

is a real problem with the SBG compilation since data are heavily concentrated

along the ridge axis.

To allow for these large uncertainties, we compared the SBG compilation

to other data types in several age ranges, including lava data for 0-100 ka, 0-40

ka, and to lava data and archeointensities of ages 0-3 ka. By far, the best match

in distributions for the SBG data is to compilations of paleo- and archeointensity

data of 0-3 ka (Figure 2.7(a)) (note that again, the subaerial lava data show some

high paleointensites not seen in archeointensity data, although the effect is not as

pronounced in this smaller data set). This supports the idea that data within a

couple of kilometers of the ridge axis (which comprise the majority of this data

compilation) are only a few thousand years old, rather than sharing the crustal

age of 20 ky. Data from Gee et al. (2000) and Bowles et al. (2006) are plotted vs.

distance from ridge axis (Figure 2.7(b)). These account for 237 out of 313 of the

SBG data in our compliation. Comparing the pattern of SBG paleointensities vs.

distance from the ridge axis to a plot of paleointensities (from other lava sources)

vs. age in Figure 2.7(c), the SBG paleointensities vs. distance plot looks like a
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Figure 2.7: Pdfs of archeointensities (red) and paleointensities from lava flows
(black) as in Fig. 2.6 with ages spanning 0-3 ka, along with the pdf of SBG data
(green) with ages spanning 0-100 ka as calculated by distance from the ridge axis,.
Note that the pdf of SBG data is simply the pdf of our compilation of SBG data, not a
mean pdf of resampled data sets. (b) SBG paleointensity data (converted to VADMs)
from (Bowles et al., 2006) and (Gee et al., 2000) in blue and red respectively plotted
vs. distance from the ridge axis. (c) 0-100 ka paleointensity data from subaerial lava
flows (converted to VADMs) plotted vs. age.

stretched and truncated version of the paleointensity vs. age plot. This comparison

further illustrates that ages of samples close to the ridge axis do not correlate well

with crustal age.

The age uncertainties limit our ability to make conclusive detailed com-

parisons between SBG data and data from archeological objects or other igneous

sources. It does seem clear that SBG samples give paleointensities comparable to

those of other materials. We see no evidence that SBG paleointensities are biased

low, as argued by some (Heller et al., 2002; Valet, 2003). If anything, the SBG

data are high, though it seems clear that the high values are reasonable given the

age uncertainty of the data.
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2.5 Discussion and Conclusions

2.5.1 Archeo- and Paleointensity

Paleointensities determined from igneous sources are higher on average

and have more scatter than archeointensities of the same age range (0-7 ka). The

difference in means is a little over 10%. We considered two possible explanations

for this. The first is that a systematic bias might arise from the laboratory methods

used to determine paleointensity. From the Geomagia database it is straightfor-

ward to determine the general technique used (it is recorded for 88% of igneous and

83% of archeomagnetic results), and following an anonymous reviewer’s comment

that “it is well known that the microwave method yields lower determinations

compared with the Thellier method” we assessed the relative distribution among

Shaw, Thellier, and microwave methods in the two data groups. Only 1.5% of

the archeomagnetic data were acquired using the microwave technique, compared

with 14% of the igneous data. Thus the use of the microwave method can only be

the source of bias if microwave paleointensities in this data set are systematically

higher rather then lower than those from Thellier, Shaw and undocumented meth-

ods. We note that in general it is difficult to make systematic assessments of the

influence of particular experimental methods because it is only in rare cases that

direct comparisons have been made on identical samples.

A second explanation for the difference could be that lava flows and arche-

ological objects have different natural cooling rates. It has been shown (Halgedahl

et al., 1980; Dodson and McClelland-Brown, 1980; Fox and Aitken, 1980; Leon-

hardt et al., 2006) that when materials cool in nature at much slower rates than

they do when cooling in laboratory paleomagnetic experiments, the paleointensi-

ties derived from the lab work can be biased high. If archeological objects cool

more quickly in nature than lava flows, they would be less biased high than the

lava data. While both materials likely have variable cooling rates from site to site,

and so an exact correction cannot be applied to a global data set, we can test to
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see if the higher mean VADM for lavas (relative to archeointensity data) can be

accounted for by a reasonably realistic cooling rate bias. If we assume that all

paleointensities from igneous sources are 15% high (this easily falls in the observed

range of cooling rate error) and adjust these data, the pdf and mean of the lava

data look much more similar to those of the archeointensity data set (Figure 2.6(c)

and (d), Table 2.1). Of course, the archeointensity data could also be in need of a

cooling rate correction (Fox and Aitken, 1980). However, as archeological objects

generally cool more quickly and have higher blocking temperatures than lava spec-

imens, they would incur less of a cooling rate error and need smaller corrections.

Donadini et al. (2007) assessed the correlation among intensities derived from lavas

and archeological objects, and found that the correlation was good (inferring from

this that intensities derived from lavas are reliable), but the relationship between

the two data sources was not 1:1, especially if considering only lava specimens

which were analyzed using Thellier-Thellier method techniques. We do not test

specifically for correlation, but also conclude that there is some discrepancy be-

tween the two data sets - enough to warrant more investigation and/or a correction

factor but not enough to deem one source unusable.

2.5.2 Significance of Sidelobe in PDF

In the original data set, we see an unusual sidelobe in the pdf of the

VADM data set around 5×1022Am2. This feature did not disappear under any

circumstances tested in this study.

The sidelobe could be due to typically low paleointensity transitional data

(data which have virtual geomagnetic poles lower than a certain cutoff latitude -

usually 45o, labeled ’T’ in Pint03). We tested this by looking at a subset of 0-1 Ma

data which specifically excluded transitional data. The sidelobe is still present.

Previous studies have noted bimodal distributions of virtual dipole mo-

ments (VDMs) for various time ranges and hypothesized that this might indicate

two distinct states of geodynamo behavior (Heller et al., 2002, 2003). The struc-
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Figure 2.8: (top) Empirical paleomagnetic power spectrum, reproduced from Con-
stable and Johnson (2005) and model (heavy black). (middle) One million years
of simulated paleointensity (see text). (bottom) Pdfs of entire 0-100 Myr simulated
paleointensities (heavy black) and three pdfs of paleointensities from 1 Myr intervals
(gray).
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ture in probability density we see in Figure 2.5(a) appears somewhat more subtle

than two distinct distributions. Additionally, we see no obvious two-state signal

in the pattern of VADM vs. time (see Figure 2.1b).

It is possible that the data set is not yet large enough to resolve a smooth

pdf. However, it is also possible that the structure reflects some distinct property

of geomagnetic field behavior, that could be resolved if we had a better under-

standing of how the magnetic field varies over time. To interpret the significance

of the structure we see, we first investigate if a 1 Myr time series with the given

temporal resolution (around 1000 data points per 1 Myr) is adequate to determine

the underlying distribution associated with long term paleofield behavior. For this

purpose, we simulate time series which share the same spectral properties as pa-

leomagnetic field intensity variations and then compare their statistical properties

with those of our real data set. We model the spectral content using the paleomag-

netic power spectrum for the dipole moment estimated by Constable and Johnson

(2005) and shown in Figure 2.8. For our tests we choose a simple functional form

to approximate the empirical spectrum with a plateau at low frequency and a

power law decay at high frequency. That is we suppose the spectrum S(f) has the

following functional form:

S(f) =
a

b+ cfp
(2.5)

and present specific results from the model function:

S(f) =
1

1 + 0.005f 2
(2.6)

The empirical paleomagnetic power spectrum and our model power spec-

trum are plotted together in Figure 2.8. The simplistic model generally follows the

trends of the empirical power spectrum. We make no attempt to derive a best fit

model here, as it is not necessary for this exploratory exercise.

We simulate a 100 Myr time series of paleointensity data with the spec-

trum S(f), and study the distributions of the 100 Myr record as well as 1 Myr
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subsets. The simulation has 1000 points per million years, to be comparable in

data density to the 0-1 Ma absolute paleointensity data set. Figure 2.8 shows an

example of 1 Myr of simulated data and probability density distributions associ-

ated with the entire 100 Myr of simulated data as well as a few examples of 1 Myr

distributions. Although the 100 Myr distribution is smooth and approximately

normally distributed, we see a range of structures in the 1 Myr pdfs and variable

levels of similarity to the 100 Myr pdf. One pdf agrees very well with the 100 My

pdf, one has a sidelobe similar to the one we see in the real 0-1 Ma paleointensity

distribution, and one has even more structure. This result indicates that we should

not expect a time series with spectral properties of the paleofield intensity to be

adequately represented by a 1 Myr time sample. Although the one million year

samples have relatively similar means to each other and to longer time samples, 1

Myr is not long enough to recover the shape of the underlying distribution asso-

ciated with field intensity. This simple experiment shows that we do not need to

call upon two states of the geodyamo or other physical explanations to explain the

structure we see in the 0-1 Ma absolute paleointensity data set.

Our interpretation of the sidelobe in the pdf for VADMs as a reflection

of actual geomagnetic field behavior in the 0–1 Ma interval can be strengthened

by supporting data from sedimentary relative paleointensity records. Figure 2.9

shows the corresponding pdf derived from the most recent half of the SINT2000

dipole strength estimate (Valet et al., 2005), after re-normalization to the equiv-

alent mean value. The sedimentary record (in gray) does indeed have a similar

structure to the absolute intensity curve (black), but its variability is subdued in

comparison. This is expected from the heavy smoothing that arises in temporal

alignment and averaging of data from diverse sedimentary records. Such smooth-

ing is well demonstrated by the power spectrum for SINT800 (Guyodo and Valet,

1999) which appears as the orange curve in Figure 2.8. The power at frequencies

higher than about 10–20 Myr−1 is attenuated substantially in SINT800 compared

with other spectra derived from individual cores (brown, green, and blue curves),
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Figure 2.9: Mean pdf of 0-1 Ma Pint03 resampled data sets (black) with 95%
confidence bounds (black dash) identical to the red pdf in Fig. 2.5 (a) and pdf of
data points from the 0-1 Ma time interval of the SINT2000 relative paleointensity
stack (see text).

and corresponds to a reduced variance in the time domain. Individual relative

paleointensity records derived from sediments might in principle provide a higher

resolution pdf, but in our experience so far many of these are difficult to interpret

directly because of the influences of varying sedimentation and other complicating

factors.

2.5.3 Suitability and Limitations for Field Modeling

The absolute paleointensity data set compiled in Pint03, including data

from all laboratory techniques, reported error, and geographic locations can be used

to evaluate average field behavior over the 0-1 Ma time range. The small variability

in bootstrapped estimates of mean and variance indicate that the amount and

quality of data provide robust estimates of these statistics. Our studies show that

the mean VADM for the last million years is 7.26±0.14 × 1022Am2. This result

incorporates temporal resampling to correct for the uneven age distribution of the
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data. Further, the result changes only insignificantly when restricting the data

used in the estimate to be of a certain reported uncertainty, to be obtained using

Thellier-Thellier methods with pTRM checks, or to exclude data from Hawaii.

This is reassuring, especially in the context of time varying field modeling, since

it means that using lower quality data (and hence using a much larger data set)

does not seem to greatly affect the resulting field.

Careful consideration will be needed when combining intensity estimates

found from differing material types. Recent data from SBG, as compared to data

from subaerial lava flows and archeological objects, seem to give comparable in-

tensities. Detailed comparisons are difficult because of age uncertainties in very

young SBG data. For young SBG data, the uncertainties in ages are too great to

make the data useful for time varying field modeling, but for older samples the age

uncertainties for SBG will be comparable to those in other materials. Nothing in

this study indicated that young SBG data are biased to low values of VADM.

Further investigation into causes of observed differences in archeointen-

sities and paleointensities derived from lavas will be necessary to find the most

appropriate way to combine these data types in modeling. Differences in cooling

histories between the two data sources could explain differences in mean intensities

seen in our results, though we have not ruled out other reasons for the discrepancy

between these two data types. The cooling rate explanation is significant because

it would imply that lava data are biased to high values. A more detailed study of

the differences would be be useful in confirming our observations and finding more

conclusive explanations.

One of the greatest limitations of the 0-1 Ma paleointensity data set is

the poor spatial coverage, which restricts the capacity for any quantitative analysis

in search of non-dipole signals and/or assessing their influence on field inferences

based on the geocentric axial diople (GAD) assumption. Testing the GAD as-

sumption would require (ideally) that data at each latitude (or in each latitude

bin) cover the same time span, and that that time span is long enough and the data
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plentiful enough to be able to have a robust time-averaged field estimate at that

latitude. In the small latitude range where these conditions are met (Figure 2.2),

the latitude bin averages are similar enough that adhering to the GAD assumption

and converting data to VADM is not unreasonable. However, more investigation

is needed and we can expect greater clarity on this issue as more data become

available. An ongoing systematic analysis combining the absolute paleointensity

data with relative paleointensity records from sediments should also help in this

area.
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Chapter 3

PADM2M: A Penalized

Maximum Likelihood Model of

the 0-2 Ma Paleomagnetic Axial

Dipole Moment

Abstract

We present a new time-varying model for Paleomagnetic Axial Dipole

Moment (PADM) for the past 2 million years and compare it with earlier Virtual

Axial Dipole Moment (VADM) reconstructions which have been based on stack-

ing and averaging scaled relative paleointensity records. The PADM is derived

from both absolute and relative paleointensity data and constructed using a new

penalized maximum likelihood (PML) approach to recover a cubic B-spline rep-

resentation of axial-dipole field variations on million year timescales. The PML

method is explicitly intended to reduce bias in estimating the true axial dipole mo-

ment that arises in average VADM reconstructions. We apply the PML method

to a set of 96,032 published data (1,800 paleointensities from igneous rocks, 3,300

archeointensities, and 86 relative paleointensity time series of variable lengths and

resolutions). Two models are discussed: PADM2Mp is a trial model based on a
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subset of the 9 longest available sedimentary records; PADM2M uses a compre-

hensive data set (76 records, 81,446 data; 10 records were eliminated ) and is our

preferred model. PADM2M has a lower mean than existing VADM reconstruc-

tions but shows similarities in long-period variability. Some differences in timing,

amplitude, and resolution of certain features can be attributed to variations in age

assignments. Others result from our more comprehensive data set and a reduction

in bias attributable to PML modeling. PADM2M has an average axial dipole mo-

ment over 0-2 Ma of 5.3 × 1022Am2 with a standard deviation of 1.5 × 1022Am2.

The Brunhes chron average (6.2 × 1022Am2) is higher than for earlier epochs of

Matuyama (4.8×1022Am2), as seen in some previous studies. The power spectrum

for our model agrees with previous estimates of the global paleomagnetic power

spectrum for frequencies up to about 102Myr−1. We see no distinctive evidence

in the power spectrum for orbital forcing of geodynamo behavior.

3.1 Introduction

Earth’s history can be investigated through the paleomagnetic record.

Dynamic processes in the core drive the continuously changing geomagnetic field,

which is recorded on Earth’s surface by newly forming igneous rocks and sediments.

On centennial and millennial time scales, time-varying spherical harmonic models

of Earth’s magnetic field derived from historical, archeomagnetic, and/or paleo-

magnetic data (Jackson et al. (2000); Korte and Constable (2005); Korte et al.

(2009)) have yielded insights into dynamo processes (e.g. Amit and Olson (2006);

Dumberry and Finlay (2007); Wardinski and Korte (2008)).

On million year timescales, time-varying reconstructions of paleomagnetic

field behavior are limited by the quantity and quality of available data. As a start-

ing point, the field is often approximated by a dipole, or more specifically a field

resulting from a geocentric axial dipole (GAD) source. The GAD approximation is

sometimes made under the assumption that it provides an accurate representation
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of the time-averaged field structure. Numerous studies have shows that this is not

exactly the case (Wilson (1970); Johnson and McFadden (2007); Johnson et al.

(2008)), but it remains a useful starting point for understanding field changes on

long time scales. The axial-dipole alone represents the largest geographic and tem-

poral variations in the geomagnetic field, and (depending on the available data)

may be the only structure recoverable through the data uncertainties. The spatial

structure has large geographic variability but is static, so time variations under the

GAD model are restricted to changes in the strength of the Paleomagnetic Axial-

Dipole Moment (PADM), the terminology we will use for strength of the axial

dipole. When paleointensity data are considered under the GAD model they are

usually converted into Virtual Axial Dipole Moment (VADM) data – the VADM

is the equivalent moment associated with a dipole source aligned with Earth’s ro-

tation axis that is needed to produce the paleointensity datum at the latitude of

the specific observation. This transformation removes the geographic variations in

paleointensity that would be expected for an axial-dipole source. The goal of this

work is to use VADM data to find optimal estimates for the PADM.

Under the GAD approximation, a number of time-varying paleomagnetic

field strength reconstructions have been made both from globally distributed data

(Valet et al., 2005; Channell et al., 2009) and regional data sets (Stoner et al.

(2002); Laj et al. (2000)). These efforts involve stacking and averaging relative

paleointensity time series derived from sediments and sometimes calibrating the

resulting stack to absolute VADM variations through comparison with absolute

paleointensity derived from igneous rocks.

These VADM models are somewhat limited in temporal resolution, and

are clearly limited by the fixed geographic structure, but nevertheless provide useful

information for testing the feasibility of particular dynamo regimes. Investigations

to date have included characterizing the timescales associated with field reversals

and excursions (Valet et al., 2005), observations of possible asymmetry in the

field decay and growth processes associated with reversals (commonly referred to



48

as ‘sawtooth’ paleointensity signals), e.g. Valet and Meynadier (1993); McFadden

and Merrill (1997); Valet et al. (2005), deriving the power spectrum associated with

field intensities including corner frequencies and falloff (Constable and Johnson,

2005; Driscoll and Olson, 2009), among other things. VADM models are also

used as magnetostratigraphic tools (e.g. Stoner et al. (1998); Brachfeld et al.

(2003)) with global intensity variations providing much higher resolution than the

geomagnetic reversal record, but these applications are not the focus of this study.

In this paper we first describe the available VADM data (Section 3.2),

then motivate, develop, and apply a new approach for recovering paleomagnetic

axial dipole moment variation on million year timescales (Section 3.3). We show

that a simple average of VADM data leads to a biased estimate of the PADM (Ap-

pendix 3.8), illustrating that the noise distribution associated with VADM data

is non-gaussian and asymmetric. We introduce a simple but flexible parametric

model for the noise that can take account of variability among the various data

records. We develop a penalized maximum likelihood (PML) inversion procedure

to recover estimates of PADM that are less biased and apply it to construct a

regularized, cubic B-spline model of time-varying PADM over the last two million

years (Section 3.3, Appendix 3.9). The resulting PADM2M model is made from a

combination of globally distributed absolute paleointensity (API) data and relative

paleointensity (RPI) records from sediment cores. As part of the modeling pro-

cedure we solve for scaling factors needed to calibrate the relative paleointensity

records to virtual axial dipole moments. Our results are presented in Section 3.4,

where we describe a preliminary model PADM2Mp constructed from 9 records,

each spanning more than 1.5 Myr and including the Brunhes/Matuyama polarity

reversal, and our preferred model PADM2M derived from a much larger and more

heterogeneous set of currently available RPI time series.
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3.2 VADM Data for Global Modeling

For the construction of time-varying paleomagnetic field models, we would

ideally use many tightly dated, globally distributed records of intensity variation.

In practice, the data available consist of spot recordings (from igneous rocks and

archeological artifacts) of absolute field intensity values, and time series (from sed-

iments) of relative field intensity variations. The spot recordings are dated using

a range of techniques with correspondingly diverse uncertainties. Although this

statement is true of sedimentary data as well, the sequential nature of magnetic

measurements taken at regular spacings through a core mean that at least the

temporal order is certain. The time series generated from long cores provide infor-

mation on field strength variations for up to millions of years but cannot constrain

the absolute field strength, while the spot recordings adequately constrain field

strength but on their own are too sparse to give a picture of field variations on

million year time-scales. Our modeling uses both absolute paleointensities (API)

and relative paleointensity (RPI) time series to develop a composite picture of field

intensity variations over the last two million years.

All data used in this study are drawn from previously published work.

We take advantage of freely available, public domain databases in our efforts to

build comprehensive data sets suitable for analysis (described below). The exact

data compilation used in this study is archived in the EarthRef Digital Archive

(http://earthref.org/erda/1138) along with the PADM2M model

(http://earthref.org/erda/1139).

3.2.1 Absolute Paleointensity Data

API data are derived from iron-bearing igneous rocks and archeological

artifacts which were once hot enough to become magnetized in response to the

Earth’s magnetic field present at their formation. As these materials cool through

the blocking temperature spectrum of the relevant magnetic minerals, the rema-
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nent magnetism is frozen in. The theory of thermal remanence acquisition is well

understood for simple systems involving single domain magnetite and forms the

basis for the pioneering Thellier and Thellier (1959) laboratory technique to re-

cover the ancient magnetic field strength which produced the magnetization of

a given sample. There are now many variants on the original method and new

methods, that are intended to reduce measurement error, sample alteration, and

incorporate internal consistency checks on assumptions inherent to the method.

Additionally, various strategies are sometimes employed for making cooling rate or

anisotropy corrections (see Tauxe and Yamazaki (2007) for a more comprehensive

discussion of modern paleointensity laboratory techniques). Lack of uniformity in

laboratory procedures and natural variations in source materials lead to a broad

range of contributions to uncertainties in the resulting paleointensity data.

We are interested in using as many data as possible, and do not restrict

our dataset to any particular minimum uncertainty level, quality criteria, labora-

tory procedure, or source material. In a detailed analysis of a diverse paleointensity

data set, Ziegler et al. (2008) found that field strength statistics derived from the

set of all available records and subsets which excluded less reliable data (based on a

few specific criteria) were not significantly different. They concluded that although

the use of less reliable data is not the preferred strategy, it does not significantly

bias results. This further supports the strategy of using all available paleointensity

data in our models. Ziegler et al. (2008) did note a statistical difference between

data derived from archeological and igneous sources. Here, we use both material

types, but treat them as two distinct data sets.

The most recent Geomagia50.v2 database (Donadini et al., 2009) compiles

API data from archeological and igneous sources with ages less than 50 kyr. We

use all data in this database except for some submarine basaltic glass data which

have poorer age constraints than the rest of the database. In total, we take 4236

data from Geomagia50.v2 as of June 2009 (902 from igneous sources, 3334 from

archeological or unspecified materials). For data older than 50 kyr, we look to
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the PINT paleointensity database, PINT08 (Biggin et al., 2009). This database

contains thousands of data covering all ages older than 50 kyr, but we only use the

868 data with ages greater than 50kyr and less than 2 Myr. We have incorporated

improved ages (Singer et al., 2008) for 16 data. Finally, we have added 30 data

from Lawrence et al. (2009), giving us a total of 898 data with nominal ages of

50kyr-2Myr.
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Figure 3.1: Geographic distribution of data used in this study. Small circles are
for API data (brown for archeomagnetic data, black for igneous data). Triangles
represent sediment cores, where red, blue, yellow, and green correspond to P0, Long,
Young, and Reversal records respectively (see text).

The geographic and temporal distributions of the API data are given in

figures 3.1 and 3.2 , respectively. Data are mainly concentrated at northern mid-

latitudes, although there are some available in the southern hemisphere. Archeo-

magnetic data are generally less than 10 kyr in age, and are particularly dense in

Europe. Hawaii is also noteworthy as a source of volcanic paleointensity records.

The age distribution of API data is very non-uniform, with a disproportionate

number of archeomagnetic contributions and young volcanics (0-10 ka). Age un-
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(a)

(b)

Figure 3.2: API data as a function of age. Black (brown) circles correspond to
igneous (archeological) sources. (a) 0-2 Myr (b) 0-25 kyr.

certainties are also highly variable and often poorly documented. However if we

take the age information at face value, there are data distributed throughout the

past 2 Myr (see Fig. 3.2).

3.2.2 Relative Paleointensity Data

Marine sediments also carry remanent magnetism. However, as opposed

to the thermal remanence acquisition process involved in magnetizing API source

materials, sediments acquire a detrital remanent magnetization (DRM): As already

magnetized detrital grains settle through the water column, they can freely rotate

to align with the ambient geomagnetic field. A sample’s magnetization depends

primarily on the field strength, the amount and type of magnetic material present,

and environmental factors such as the sedimentary matrix; after normalizing for
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variations in the amount of magnetic material present in the core, the normalized

magnetization is supposed to be linearly related to field strength. For already

published data it is generally impractical to account for the influence of changing

environmental factors (e.g., nature of the sediment matrix, magnetic grain size) on

the core’s magnetization. Any such factors present will just be incorporated into

our noise model. Beyond this, theory needed to recover absolute paleofield intensi-

ties from materials which have a DRM is an area of active research. Additionally,

some sedimentary environments and/or high field strength can sometimes lead to

departures from the linear relationship between normalized magnetism and field

strength. A more thorough discussion of sediment RPIs and DRM can be found

in Tauxe and Yamazaki (2007) and Valet (2003). Although limited by the absence

of theory to recover absolute field intensity, sediments have the advantage of be-

ing continuously deposited: sequential measurements down a sediment core give

an ordered time series of relative intensity variations. The individual cores reflect

a variety of source material compositions, sedimentation rates (and hence, signal

resolution and smoothing), normalization proxies, and laboratory procedures.

Recent efforts by the paleomagnetic community have produced a large,

geographically diverse set of RPI time series. Numerous lacustrine records have

been used in Holocene geomagnetic models (Korte et al., 2009) but we omit al-

most all these records from our collection because we already have good coverage

from archeomagnetic data with generally better age constraints. We primarily use

marine cores which provide longer, but typically lower resolution, time series.

We use all the RPI records from the SEDPI06 collection of sediment

cores assembled by Tauxe and Yamazaki (2007) whose timescales are independent

of correlations based on RPI information and for which we were able to acquire the

data. One significant advantage of using the SEDPI06 compilation is that all data

have been adjusted to conform to a common Geomagnetic Polarity Time Scale

(GPTS) with reversal ages tied to CK95 (Cande and Kent, 1995). This leads to

some minor variations from the age models originally published with the data, but
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Figure 3.3: Age spans of RPI records, colors as in Fig. 3.1 (red, blue, yellow, and
green correspond to P0, Long, Young, and Reversal records respectively). (a) Each
bar corresponds to age span of one RPI time series. Names of cores are omitted, but
cores are plotted by latitude, with highest latitude records at the top, and decreasing
toward the bottom. (b) Total number of RPI time series at each age.
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provides us with an internally consistent data set.

Summary information for all 86 cores is given in table 3.1, where for

illustrative purposes and to guide our modeling, we have categorized the data into

four sets corresponding to the color and letter codes in figures 3.1 and 3.3 . The

groups are as follows: 9 (P0) records, 34 Long Records (LR), 35 Young Records

(YR) and 8 records focused on the Brunhes/Matuyama Reversal (BM). P0 data

all span more than 1.5 of the last 2 Myr and include the Brunhes/Matuyama

reversal. LR generally span several 100 kyrs, but may begin at any age. YR are

shorter records that do not extend past 250 ka in age. BM records are very short

time series developed for studying the Brunhes/Matuyama reversal. In total, the

records range from 19 kyr to 2 Myr in length providing variable coverage of the

0-2 Ma interval. Sedimentation rates range from 0.3 to 35 cm/kyr, which provides

some idea of the variability in temporal resolution.

Figure 3.4: P0 RPI records, plotted as RPI vs. Age, where each record has a mean
of 1 (offset between records for visual clarity only). Names of cores on right axis.

The geographic distribution of cores is shown by the color-coded triangles
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in Fig. 3.1. As with API data, the northern hemisphere data are more numerous,

but there is a reasonable number of cores from the southern hemisphere. Fig. 3.3

gives a sense of the actual temporal coverage for the 0-2 Ma interval, plotting the

age ranges spanned by each core (with each bar representing one core) along with

a plot of the number of cores as a function of age.

The P0 time series form the basis of our preliminary model PADM2Mp

and are illustrated in Fig. 3.4, where the differences among the 9 records make

it clear that the data reflect more than a simple time-varying axial dipole. The

challenge is to extract the PADM, which we first attempt with the P0 data alone

and then with the entire set of 86 records. The results are described in Section

3.4, but first we motivate and describe the PML modeling algorithm.

3.3 A Penalized Maximum Likelihood Method

In this section we provide a brief rationale and description of the PML

method that is the backbone of our modeling strategy for recovering the PADM.

We refer those interested in the details of the algorithm to Appendix 3.9.

From the previous section we abstract the concept of having two distinct

kinds of data, and a total of K distinct data series. Each series consists of distinct

elements dk,i, with subscript k, i refering to the ith point in the kth dataset, where

each set is either an RPI time series from a specific location, or a collection of

globally distributed API data. Our goal is to recover a time varying description of

the PADM, here designated ν(t) and to outline a specific strategy to accomplish

that. There are four aspects to this: (1) choosing a parameterization for ν(t);

(2) using a misfit measure that accommodates the asymmetric noise distribution

that is a perennial characteristic of VADM data; (3) recognizing that we want a

model whose resulting temporal resolution and complexity is explicitly controlled

by the inversion process rather than by the number of model parameters allowed;

(4) including an implicit calibration of the RPI data.
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The PML strategy that results is basically a merger of a Maximum Likeli-

hood type estimation for parameters in non-Gaussian noise (Constable, 1988) and

a quadratic regularized inversion that penalizes roughness to provide a smoothly

varying model as a function of time (Constable and Parker, 1988; Parker, 1994)

with modifications to suit the specific noise distributions found in the 0 − 2 Ma

VADM data and to accommodate the joint use of absolute and relative intensity

data.

3.3.1 Cubic B-spline Parameterization

Following a strategy widely used for time-varying spherical harmonic

models of the geomagnetic field (Bloxham and Jackson, 1992; Jackson et al., 2000;

Korte et al., 2009) we write the time-varying PADM, ν(t), as a linear combination

of p cubic B-splines,

ν(t) =

p∑
j=1

βjcj(t) (3.1)

where cj(t) are cubic B-spline basis functions evaluated at time t and βj are the

corresponding coefficients. We describe our observations (dk,i) at time tk,i as the

sum of the model plus a noise term (εk,i), incorporating the scaling of RPI records

as follows,

ζkdk,i = ν(tk,i) + ζkεk,i (3.2)

=

p∑
j=1

βjcj(tk,i) + ζkεk,i (3.3)

where ζk, k = 1, . . . , K provides the scaling factor needed to calibrate the kth

RPI data series into pseudo-absolute VADMs. In the case of API data ζk = 1 if

the data are expressed as VADMs.

3.3.2 Non-Gaussian noise

When designing or choosing a modeling method, we first need to consider

the noise distribution of the data, the statistics of the εk,i. In the case of pale-
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ointensity data, the distribution function associated with data noise is unknown

- although often implicitly assumed to be gaussian or at least symmetric. The

noise associated with VADM data arises from multiple sources including: natural

variations inherent to the data materials, uncertainties associated with lab mea-

surements, and contributions associated with local non-axial-dipole field features

that are carried along in translating paleointensities into VADMs. None of these

noise sources can be assumed gaussian, not least because the scalar paleointensities

themselves are bounded below at zero, and the noise may reflect this asymmetry.

In Appendix 3.8 we show that the expected distribution is non-gaussian and this

introduces bias to estimates of PADM derived by the standard strategies of stack-

ing and averaging multiple RPI records. This bias is in part a consequence of

using the scalar intensities only instead of the complete vectors when studying the

magnetic field, and is consistent with the conclusion of Love and Constable (2003)

who found that an arithmetic mean of intensity data does not correspond to the

intensity of the mean field vector.

As an illustration of asymmetry in VADM data that can lead to bias in

PADM estimates, consider the 2005 magnetic field as represented by the Interna-

tional Geomagnetic Reference Field (IGRF 2005) (Maus et al. (2005),

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). We manufactured a dataset

of field magnitudes at globally distributed locations, and then convert these into

VADMs. If the noise were gaussian, the true axial dipole moment would be best

estimated by taking the mean of the data. However, the resulting distribution

shown in Fig. 3.5a is non-gaussian and quite asymmetric. In this case, a simple

average of the data produces a mean field strength estimate of 8.1 × 1022Am2,

while the true axial dipole moment is 7.6 × 1022Am2. A better estimate of the

axial dipole moment would be the mode of the distribution ( ∼7.8 × 1022Am2).

While this particular distribution is strongly influenced by the spatial structure of

the non-axial-dipole field of IGRF 2005, the skew seen here is a feature also seen in

datasets which span long periods of time. For example, a skewed distribution and
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corresponding bias in the mean was noted for 0-5 Ma VADMs by McFadden and

McElhinny (1982). The distributions associated with the data in Fig. 3.4 are also

long-tailed on the positive side (see Fig. 3.5b). Our modeling procedure (described

below), estimates the noise distributions of paleointensity data empirically using

the residual distributions after model fitting. Residual distributions of the data in

Fig. 3.4 for the final PADM2M model are plotted in Fig. 3.5c along with a repre-

sentative normal distribution. They clearly depart from a normal distribution.

The asymmetry also means that the usual least squares measure of misfit

is inappropriate when modeling these data. Alternatively, maximum likelihood

(ML) methods will generally give asymptotically unbiased, efficient parameter es-

timates (Rice, 1995) and can be a better alternative to parameter estimation when

noise is known to be non-gaussian (or when one wants to avoid making this as-

sumption). We therefore develop a maximum likelihood approach to our PADM

modeling.

3.3.3 Maximum Likelihood Methods

As mentioned above, we parameterize the time-varying PADM with cubic

B-splines, and build on ML fitting methods developed by Constable (1988). There,

an ML-type method is used to find a best fitting set of model parameters, where

these parameters are coefficients βj, j = 1, . . . , p for a set of basis functions (in

our case, cubic B-splines). When the noise distribution is known the solution to

the non-linear ML problem is reframed in the form of an iteratively re-weighted

least squares problem, which is solved using one of a number of readily available

computational tools (see Press et al. (1986)). Constable (1988) proposed that when

the probability density function (pdf) for the noise is not known a priori, it can

be estimated iteratively from the residuals to a best fitting model provided there

are sufficient data. In the original formulation, the determination of the pdf was

completely empirical and non-parametric (as in Fig. 3.5a, for example), but here

we adopt a simple parametric model for the pdf of the noise. We use the best
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Figure 3.5: (a) Histogram (gray) and pdf (black) of VADMs from the IGRF 2005
field model at a grid of globally distributed locations. Black square corresponds
to the true axial dipole moment (from g0

1), dashed line and asterisk correspond to
the mode and mean of the distribution respectively. (b) RPI pdfs for the 9 P0
records, expressed in terms of VADM with a normalized mean of 1. (c) Residual
distributions (after PADM2M model fit) for the 9 P0 records (gray) along with a
normal distribution (black) with a mean of 0 and a variance intermediate of the
residual distributions for reference
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fitting Asymmetric Power Distribution pdf (Komunjer, 2007) which has 2 shape

parameters, a location and a scaling parameter, to describe the distribution of

the residuals. Fig. 3.6 illustrates the broad range of potential APD pdf shapes;

a mathematical definition is provided in Appendix 3.9. Both the previous non-

parametric estimation and the new APD pdf estimation have the flexibility to take

on a variety of shapes in order to fit the unknown noise distribution. However,

estimating the pdf of the noise parametrically streamlines the whole fitting routine

significantly. The broad range of available APD shapes allows us to accommodate

different noise distributions for each of the K time series.

Once the pdf is estimated it is straightforward to recast the ML opti-

mization criteria in the form of an iteratively re-weighted least squares problem

and find parameter estimates which maximize the probability of getting the data

observed. The method is elaborated in Appendix 3.9, but briefly we note that in

order to find a spline model for a single data series of length nk with noise pdf

fk(x) we would use the following strategy.

The function to be maximized in this case, the likelihood function, Lk(β̂),

is the joint pdf, Fk, of the sample errors, which is in turn the product of the pdfs

evaluated at the ML estimate of the parameters β. If the residuals are independent,

identically distributed (i.i.d.):

Lk(β̂) = Fk(ε, β̂) =

nk∏
i=1

fk(εi, β̂) (3.4)

As is generally done, in practice we minimize the negative log likelihood (lk(β̂)),

so that the product becomes a sum making the problem more tractable:

lk(β̂) =
n∑
i=1

ρk(εi), (3.5)

where ρk(ε) = −ln[fk(ε, β̂)] and is termed the loss function.

For the K data sets, minimizing with respect to the model parameters

β̂, and reframing as an iterative weighted least squares problem yields the set of

equations:
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Figure 3.6: Example APD pdfs for an array of shape parameters (see text, Ap-
pendix 3.9). µ = 0, σ = 1 in all cases. (Top) λ = 0.75, α = 0.1, 0.2, 0.3, 0.5 (Middle)
λ = 2, α = 0.5, 0.7, 0.8, 0.9 (Bottom) λ = 4.5, α = 0.1, 0.3, 0.5, 0.7
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∂l

∂βqj
=

K∑
k=1

nk∑
i=1

wqk,icj(tk,i)

(
˜dk,i −

p∑
j=1

βqj cj(tk,i)

)
= 0 (3.6)

wqk,i = N q−1
k Cq−1

k

∣∣∣∣∣ ˜dk,i −
p∑
j=1

βq−1
j cj(tk,i)

∣∣∣∣∣
Dq−1

k

(3.7)

˜dk,i = ζkdk,i − µq−1
k (3.8)

The weights used in the qth iteration involve residuals from the previous

(q − 1)th model iteration and factors derived from the noise pdf parameters esti-

mated from those residuals (here labeled Cq−1
k and Dq−1

k , but explicitly defined in

Appendix 3.9, equations 3.38 - 3.40). In the case written above, a distinct noise

pdf is calculated for each of the k data series (giving k distinct values of C and D).

However, we can also group datasets together under the same noise distribution if

that is appropriate. For ease of notation we refrain from writing that out explicitly,

but note here that we often group very short RPI data with others from similar

geographic regions to provide enough data points for a more robust estimate of the

pdfs. The weights also incorporate a normalization factor (N q−1
k ) used to account

for the size of the kth dataset, so that each data set (regardless of size) contributes

equal weight over any specific time interval in the minimization.

3.3.4 Penalizing the Maximum Likelihood Method

We have not yet dealt with the question of how to choose p, the number of

B-spline parameters. We follow the strategy outlined as item (3) at the beginning of

Section 3.3, recognizing that we want a model whose resulting temporal resolution

and complexity is explicitly controlled by the inversion process rather than by the

number of model parameters allowed. Framed this way, we choose p to be large,

then combine the ML method outlined above with the regularized weighted least

squares cubic B-spline model fitting routine developed in Constable and Parker

(1988), which penalizes the model roughness, R(β̂), for the PADM, ν(t). R(β̂)
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is specified in terms of the integrated squared second derivative of the resulting

model:

R(β̂) =

∫ tn

ti

[
∂2
t

p∑
j=1

βjcj(t)

]2

dt (3.9)

A tradeoff parameter, Λ, controls the balance between minimizing roughness and

minimizing the loss function ρk defined in the previous subsection. This adds in

the penalty part of the PML algorithm. The resulting objective functional to be

minimized over β and Λ is

U(β) = lk(β) + ΛR(β) (3.10)

The approach advocated by Constable & Parker (1998) for penalized splines and

by Constable et al. (1987) for analogous nonlinear problems to solve for Λ generally

supposes that the likelihood function corresponds to that expected for normally

distributed uncertainties and an associated expected value for the rms misfit which

is χ2 distributed. A side constraint is imposed with

[lk(β)] = T

with T chosen so that for misfit normalized by uncertainty the expected value of the

misfit corresponds to that for the χ2 distribution when the data uncertainties are

independently and identically Gaussian distributed. Here we have a more complex

likelihood function associated with the APD pdfs and knowledge of the relative

uncertainty of the various data contributions may be derived empirically during

the fitting procedure. A more robust approach to determining a suitable value for

Λ is on the basis of recovering an appropriate frequency resolution for the model.

This is not an arbitrary choice but draws on relevant literature which investigated

the reliability of RPI records, especially given their age uncertainties, to choose an

appropriate target resolution for our model. A visual inspection of the frequency

spectrum of the model is used to settle on a value of Λ and corresponding value of

T which gives the target resolution.
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3.3.5 The Complete Algorithm

The flowchart in Fig. 3.7 shows the complete iterative PML algorithm.

First we fit a low resolution penalized spline model to the sparse absolute paleoin-

tensity data using a 2-norm or regular least squares misfit measure (PLS spline in

Fig. 3.7). We use this to predict a PADM value at every time point where we have

RPI data, then estimate the scale (ζk) needed to transform each RPI series into

pseudo-absolute VADMs. From there, we solve the PML equations above, where

the 0th iteration is a Least Squares fit to find an initial set of residuals from which

pdf parameters and new PML weights can be estimated. We then iteratively find

residuals, noise pdfs, weights, and updated models until the model stops chang-

ing significantly (in practice, we iterate 5 times at which point the model norm

changes less than 1%). Note that each updated PML model is regularized, and the

tradeoff parameter needed for a target misfit is also estimated through an iterative

process as in Constable and Parker (1988). At that point we have the option of

recomputing the scale values using the updated PML model, and re-running the

PML fitting routine with the updated scale values. Rescaling once or twice is often

useful since the initial scales are calculated from a low resolution model, which may

not provide an adequate initial estimate for the true VADM. We note that there

is no guarantee of convergence in the scaling procedure, but in practice this has

not been a problem.

3.4 Results

We apply the PML algorithm to the API data and to two compilations

of RPI data and generate two distinct models, PADM2Mp and PADM2M, which

are compared before we turn to a more general discussion. In both cases, we

treat API data from igneous and archeological sources as data sets with distinct

noise distributions because Ziegler et al. (2008) found that these data types were

statistically different and have differing temporal distributions and resolutions.
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Figure 3.7: Flowchart of computational algorithm used in this study. See text,
Section 3.3.5 for details.

For each model we specify up front the density of spline knot points, the

target misfit, and the maximum number of iterations for (i) scale value estimation

(ii) noise distribution estimation and (iii) tradeoff parameter estimation. The

appropriate number of iterations involved in estimating the tradeoff parameter

and noise distributions is straightforward (we iterate 5 times in each case). We

rescale twice for reasons discussed in Section 3.3.5. Both models are made using

2000 knot points (1 per kyr), providing a sufficient number of parameters to ensure

that the temporal resolution is controlled by the regularization. The regularization

needed is specified by the target misfit, T, and is less obvious. We turn to the

frequency domain to address this issue. McMillan et al. (2002) showed that due to

age uncertainties in sediments, intensity variations on timescales less than 10 kyr

are difficult to resolve from this data source. We therefore choose the amount of

regularization (through Λ) in each case which suppresses energy at timescales of 5-

10 kyr (frequencies less than 2-1 ×102Myr−1), and judge from the power spectrum

of the resulting model that this is criterion is met. Since the value of Λ in equation
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Figure 3.8: PADM2Mp model (red), made from a subset of nine RPI time series and
API data. Pink shading represents upper and lower jacknife bounds on PADM2Mp
(see text). PADM2M in black, with bounds in blue-gray shading. Gray bars indicate
known reversals. (Top) 0-1 Ma. (Bottom) 1-2 Ma.

(10) needed to meet this criterion is not known a priori, we look at a range of

models incorporating differing levels of smoothing and their power spectra (not

shown here) to choose the most appropriate regularization parameter.

The first model discussed, PADM2Mp, is a preliminary model using only

9 of the available RPI time series (Section 3.4.1). The second, PADM2M, is our

preferred model from a more complete set of RPI records (Section 3.4.2). Both are

plotted in Fig. 3.8, and discussed below.
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3.4.1 PADM2Mp

PADM2Mp is a preliminary time-varying, 0-2 Ma PADM model created

using the P0 subset of nine globally distributed RPI data sets (see table 3.1),

together with the PINT08 and Geomagia50 API data sets. These RPI records,

already shown in Fig. 3.4, each span more than 1.5 million years, and have sig-

nificant amounts of data both before and after the Brunhes/Matuyama reversal.

They provide a good starting point for using the PML algorithm on a real data set,

characterizing uncertainties in the model, and comparing features of the Brunhes

and Matuyama chrons (Section 3.5).

PADM2Mp is shown in red in Fig. 3.8 and shows the expected lows at

field reversals and excursions and estimates the current field strength to within 1%

(ν(0) = 7.55±.09×1022Am2, where the true value is 7.6×1022Am2). Uncertainties

have been estimated using a delete-1 jacknife procedure, where we recreate a model

nine times leaving out one of the nine RPI records each time. The PADM2Mp

uncertainties plotted in Fig. 3.8 are the minimum and maximum value of the

suite of jacknife models at any given time. Uncertainties quoted are ±2σ of the

values instead of the minimum and maximum. The uncertainties illustrate both the

consistency of the datasets and that PADM2Mp is not predominantly controlled

by any one dataset. The areas of highest variability are in sections of the model

older than 1.5 Myr.

We evaluate the effectiveness of our modeling by calculating the variance

reduction for each data set individually and find that values for the RPI series

range from 21% to 42%, and the PINT08 and Geomagia50 API datasets have

variance reductions of 34% and 30% respectively. Variance reduction is limited by

poor age controls for some data and by high resolution signal recorded in data but

inaccessible in million year field modeling.

PADM2Mp successfully shows the viability of PML modeling. We turn

now to a model using all available information.
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3.4.2 PADM2M

We created a model using our PML routine, the PINT08 and Geomagia50

API data, and 86 RPI records from the compilation discussed in Section 3.2. After

obtaining an initial model using this dataset, we found that 10 RPI series have

negative variance reduction (i.e. there is more variance in the residuals after a fit

than in the raw data), indicating that these data series are incompatible with the

model. These RPI records, discussed further in Section 3.5, are marked with an

asterisk in table 3.1 and are eliminated from our preferred model.

The remaining 76 relative paleointensity records and API data are used to

produce PADM2M (Paleomagnetic Axial Dipole Moment for 0-2 Ma). The model

provides a reasonable fit to the data, with variance reductions of 31% and 24% for

PINT08 and Geomagia50 data sets respectively, and variance reductions ranging

from -4% to 62% for the RPI datasets, with a median of 22%. Three more RPI

records have a slightly negative variance reduction after the fit to 76 records, but

we refrained from iterating the process of trimming data and refitting. Variance

reduction for all RPI data are listed in table 3.1 for reference. For the 10 records

eliminated from the final model, the variance reduction listed in parenthesis is

in relation to the 86 record model. The range of agreement between the model

and individual RPI data sets reflects RPI quality, but also differences in temporal

resolution between the model and each time series. Uncertainties are found in the

same manner as described for PADM2Mp.

PADM2M reproduces the current field to within 1% (ν(0) = 7.55± .05×

1022Am2) and shows intensity lows at reversals and excursions (Fig. 3.8). While

incorporating a much larger dataset, PADM2M generally agrees with the prelim-

inary model made from only nine long records at most time periods. The most

notable difference occurs between approximately 600 and 700 ka, where an inten-

sity peak seen in PADM2Mp is muted in PADM2M. The larger global compilation

of 23 records used in PADM2M should give a more reliable result than the subset

of nine used in PADM2Mp. In the youngest part of the models ( < 100 ka), where
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PADM2M adds many tens of RPI series, there are also some moderate differences

between the preliminary model and PADM2M.

3.5 Discussion

3.5.1 Comparison to VADM models

In Fig. 3.9 we compare PADM2M with two published VADM models,

Sint-2000 (Valet et al., 2005) and PISO-1500 (Channell et al., 2009). PISO-1500 is

a scaled stack of 13 RPI records. Sint-2000 is a composite of a 33 RPI series stack

(0-800 ka) and a 10 RPI series stack (800-2000 ka). PISO-1500 has a noticeably

different variance and resolution from Sint-2000 and PADM2M (Fig. 3.9) because

it is constructed from RPI records of higher sedimentation rates. All models show

lows at reversals and excursions, and share similar long-period behavior, but with

a few differences.

In comparison to Sint-2000, particularly in the Brunhes chron, PADM2M

tends to peak at lower amplitudes. This is in part because our PML method ad-

dresses and, unlike the VADM stacks, accounts for bias in VADM data. From

600-700 ka, where PADM2M and PADM2Mp disagree most, both Sint-2000 and

PISO-1500 show the more pronounced peak in field strength seen in PADM2Mp.

For this time period, PADM2M incorporates more than twice as many RPI records

as the Sint-2000 and PISO-1500 stacks (23, 10, and 6 RPI records used respec-

tively). For this particular feature, the amplitude difference is due both to our

PML method and to PADM2M’s incorporation of a larger global dataset.

In the older part of the models (> 1.3 Ma) the timing of some features

differ among Sint-2000, PISO-1500 and PADM2M. We note that PADM2M uses

published age models for most RPI data, except for some minor age recalibrations

to use consistent ages for reversal boundaries (see Section 3.2). Sint-2000 corre-

lates some intensity minima before stacking (Valet et al., 2005), and PISO-1500

uses the Match protocol of Lisiecki and Lisiecki (2002) to correlate intensity and



71

Figure 3.9: PADM2M (black) plotted with Sint-2000 (blue) and PISO-1500 (red)
models. Gray bars indicate known reversals. (Top) 0-1 Ma. (Bottom) 1-2 Ma.

oxygen isotope information before stacking. The timing differences reflect these

methodology differences. We prefer to avoid geomagnetic tuning, so that our age

scale is independent of RPI data.

Finally, because the other models are made from RPI data only (which

weakly constrain the most recent field behavior because tops of cores are often

missing or damaged in the coring process) and PADM2M incorporates well-dated

recent API data, PADM2M is better suited to recover estimates of the current

field strength. PISO-1500 does not model 0-5 ka field strength; Sint-2000 does not

model 0-1 ka and has a low VADM of 4.8 × 1022Am2 for t = 1 ka, but has more

reasonable field values starting at 2 ka.
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3.5.2 Statistical Analysis of PADM2M

Table 3.2 gives some statistics of PADM2M, including the mean and stan-

dard deviation of the full 0-2 Ma model, the Brunhes chron, and the Matuyama

chron younger than 2 Ma. PADM2M has a mean field strength of 5.3× 1022Am2

for the last 2 Ma and a standard deviation of 1.5 × 1022Am2. There is a differ-

ence in mean between the Brunhes and older portion of both the PADM2M and

PADM2Mp of 1.4 × 1022Am2 (see Table 3.2). For PADM2M (evaluated every 1

ka), the average Brunhes model, and average upper and lower model bounds are

6.2, 5.9 and 6.5×1022Am2; for the 0.78 - 2 Ma Matuyama segment, these numbers

are 4.8, 4.5 and 5.4× 1022Am2. The non-overlapping bounds show that the means

of the Brunhes and Matuyama chrons are distinctly different. PADM2Mp shows

similar non-overlapping bounds. This result is consistent with the conclusions of

Valet et al. (2005) for Sint-2000, but with a smaller difference in mean PADM for

the two chrons (1.4 vs. 2.3 × 1022Am2). For PISO-1500 the difference in chron

means is 0.7× 1022Am2, and is considered statistically insignificant. For perspec-

tive, Table 3.2 also lists means over these time ranges for the preliminary PLS

low resolution model fit, the first step of our PML algorithm. This preliminary

estimate is made only from API data and does not include the ML estimation,

hence the overall higher mean values. Yet the PLS spline also shows a substan-

tial difference in Brunhes/Matuyama means (of 1.9× 1022Am2). The difference in

means seen in PADM2M and Sint-2000 is not confined to the RPI datasets. This

is important because it rules out possible VRM contamination of RPI records as

a source of differences in the Brunhes/Matuyama chron means.

The lowest value of PADM2M is 1.08× 1022Am2 and occurs at 1.208 Ma

(the Cobb Mountain Excursion), with other reversals having similar lows. The

highest PADM2M of 9.7 × 1022Am2 occurs at 2 ka; the highest value outside the

last few thousand years is slightly lower at 9.3× 1022Am2 and occurs at 0.657 Ma.

Many of the highest values of 0-2 Ma API derived VADMs in the PINT08 database

are from 2-3 ka as well, indicating that the intensity peak of 2-3 ka may be the
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Figure 3.10: 0-1 Ma axial dipole moment distribution for PADM2M (black), along
with 0-1 Ma axial dipole moment distribution from API data found in Ziegler et al.
(2008) (red).

high point of the last 2 million years. Some individual archeointensities also show

a very high field at this age (see e.g. Ben-Yosef et al. (2009)). However, the first

few thousand years of our model are constrained primarily by API data, which can

capture the true high frequency variation of the field in this time interval better

than the inherently smoothed RPI records that constrain most of the model. This

limitation of low sedimentation rate RPI data makes it unlikely that they can fully

recover the true magnitude of older peaks.

Fig. 3.10 compares the distribution of the PADM2M model with the

API distribution from Ziegler et al. (2008) for 0-1 Ma. As expected, the model

distribution shows a smaller variance, because high frequency field variations are

averaged out by the sedimentary processes and lost in model fitting. In the case of

PADM2M, resolution is on the order of 10 kyr. The model pdf shows a variation

of the slightly bimodal distribution seen in the API distribution, supporting the

conclusions in Ziegler et al. (2008) that this feature is likely an accurate represen-

tation of the true distribution and temporal variations of 0-1 Ma intensities rather

than an artifact generated by subsets of poor quality data.
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Figure 3.11: Power spectral density function of PADM2M (black), Sint-2000 (blue)
and PISO-1500 (red) plotted on top of the composite paleomagnetic power spectrum
of Constable and Johnson (2005) (gray). Dashed lines represent ±2σ bounds. Green
arrows indicate frequencies of 23, 41 and 100 kyr, corresponding to orbital periods.

3.5.3 Power spectrum

We calculate the power spectrum of PADM2M, both to look for any sig-

nals associated with orbital frequencies and to compare it with the paleomagnetic

power spectrum Constable and Johnson (2005) constructed from several separate

field models and sediment records. The PADM2M spectrum is calculated using

the same multi-taper spectral estimation techniques described in Constable and

Johnson (2005).

Plotting the PADM2M spectrum along with the paleomagnetic power

spectrum (Fig. 3.11), we see that the PADM2M spectrum lies on top of portions

corresponding to moderate resolution sediment records. At frequencies higher than

102Myr−1, the slope of the spectrum is proportional to f−8 which reflects the

power spectrum associated with the effective filter of the smoothing spline regu-

larization (Constable and Parker, 1991) and is not characteristic of the data. As
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mentioned in section 3.4, we have intentionally chosen an amount of regularization

which filters out these high frequencies, considering them unreliably estimated by

the currently available data. We calculate and plot the power spectra of Sint-

2000 and PISO-1500 for comparison. Sint-2000 has a power spectrum similar to

PADM2M, whereas PISO-1500 has additional energy at higher frequencies because

it is constructed from higher resolution, geomagnetically-tuned sediment records

and agrees with the portion of the paleomagnetic power spectrum constructed from

high resolution sediment records.

Some authors have seen a correlation between orbital cycles (i.e. eccen-

tricity, obliquity, and precession) and relative paleointensity records (e.g. Channell

et al. (1998); Channell and Kleiven (2000); Yamazaki and Kanamatsu (2007)). The

PADM2M spectrum has no peaks in power at orbital cycle frequencies (e.g. pe-

riods of 23, 41 or 100 kyr), or at any others. Therefore, our model, in agreement

with other VADM models like PISO-1500 (Channell et al., 2009), shows no obvious

connection between orbital cycles and geomagnetic field behavior.

3.5.4 Anomalous Data

In section 3.4, we found that some records strongly disagreed with the

PADM2M model. From visual assessment, most of these anomalous records seemed

similar to the model, except that the ages of peaks and lows would often be offset

from those of the model. This indicates that misfit has more to do with timing er-

rors than errors in paleointensity measurements. Some rock magnetic information

from sediments in regions producing the anomalous RPI data suggest the data are

possibly affected by reduction diagenesis, and record a lag between the age of the

sediments and the age of remanent magnetization acquisition (e.g. (Rowan et al.,

2009; Stoner et al., 2003)). Because our ML method attributes the noise to inten-

sity uncertainties, and explicitly uses the pdf associated with the noise/residuals in

the estimation procedure, it was inappropriate to use these data with this method.

However, efforts to incorporate timing uncertainties into future methods might
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allow for the use of these records.

Six of the rejected RPI series are categorized as LR and four are YR (see

table 3.1). Of the six LR, four are from the southern hemisphere - whereas 8 of

the total 34 LR are southern hemisphere. This disproportionate misfit of southern

hemisphere records may indicate that there are real regional differences in pale-

ointensity signals, in addition to or instead of only timing errors. An investigation

of this is beyond the scope of this paper, but suggests that it might be useful to

make separate regional models using our PML method and compare the results.

3.6 Conclusions

We have developed a method for efficiently generating paleomagnetic ax-

ial dipole moment models from a joint set of absolute paleointensity data and many

relative paleointensity time series. The use of penalized maximum likelihood fit-

ting criteria minimizes the influence of outliers and avoids bias in the fit due to the

asymmetric noise associated with paleomagnetic data. We generate PADM2M, a

time-varying, 2 million year model with 5-10 kyr resolution, and confirm that it

often agrees both with the data and with other recent axial dipole moment models,

with some notable differences discussed in Section 3.5.

We find that the Brunhes chron shows a mean about 20% higher than that

for the Matuyama, but note that our model does not cover the entire Matuyama

chron. This result was seen in our PADM2M model, in the 9 record version

(PADM2Mp) made from very long RPI records, which have significant amounts of

data both before and after the reversal, and in an interim model based only on API

data so we are confident the observation is not a result of our scaling or modeling

procedures. Field strength models alone cannot resolve whether this reflects any

difference in geodynamo processes during the two chrons or whether it is simply

an observation of non-stationarity of the field over 2 Myr intervals.

The power spectrum of PADM2M shows no extra power at orbital fre-
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quencies, indicating that the field strength has no strong correlation with orbital

forcing. A comparison with the paleomagnetic power spectrum of Constable and

Johnson (2005) shows that as expected, some high frequency energy is lost through

the process of finding a best fitting model to a highly variable set of data.

Our modeling efforts were able to incorporate both API data and RPI

datasets with a range of lengths, sedimentation rates (and therefore, resolutions)

and global locations. We examined quantitatively how well each dataset fit with a

resulting model, and found a subset of records which fit poorly. Although we elim-

inated these records from our final model, we do not conclude that they are simply

‘bad’ data or unusable. Rather, this result points to the need to address timing

uncertainties and more complicated geographic structure in future paleomagnetic

field models.
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3.8 Appendix: Bias due to Noise in estimating

Axial Dipole Moment from VADM data

Intensity data are converted by a linear transformation to Virtual Ax-

ial Dipole Moment (VADM) data through the geocentric-axial-dipole (GAD) field

assumption, with non-axial-dipole (NAD) intensity contributions, measurement,

and recording error manifesting as noise in the VADM data. This noise is of-

ten implicitly assumed to be gaussian - or at least symmetric - with a mean of

zero. In paleomagnetic studies VADM noise is generally treated as being zero-

mean gaussian so that on average, VADM is thought to represent the true axial

dipole moment. We show below that the true paleomagnetic axial dipole moment

(PADM) is non-linearly related to field intensity. Because of this non-linearity,

VADMs produce a biased estimate of axial dipole moment.

We derive here the relationship between field intensity (|B(t)|) and axial

dipole strength (g0
1), including a consideration of NAD and other implicit noise.

At any given location we express the measured squared field strength as:

B2(r, θ, φ, t) = B2(t) = (Br(t)
2 +Bθ(t)

2 +Bφ(t)2) (3.11)

= (krg
0
1(t) +R)2 + (kθg

0
1(t) + T )2 + (H)2 (3.12)

where kr = 2 cos θ and kθ = sin θ, and R, T , H are independent random

variables which express non-axial-dipole contributions to the field strength. They

might be Gaussian, but relaxing that restriction allows for a more flexible approach

to noise contributions. For now, we can suppose that E[R] = E[T ] = E[H] = 0

and has no time variation (implying NAD vector field contributions average to

zero).

Taking (3.12) and expanding the RHS we get a quadratic equation that

can be solved for g0
1(t), namely:

(k2
r + k2

θ)[g
0
1(t)]2 + 2(krR + kθT )g0

1(t) +R2 + T 2 +H2 −B2(t) = 0 (3.13)
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Solving for g0
1(t) we find

g0
1(t) = ± B(t)

(k2
r + k2

θ)
1/2

[
1− (R2 + T 2 +H2)

[B(t)]2
+

krR + kθT

[B(t)]2(k2
r + k2

θ)

]1/2

− krR + kθT

(k2
r + k2

θ)
(3.14)

and invoking the binomial expansion

g0
1(t) ≈ ± B(t)

(k2
r + k2

θ)
1/2

[
1− (R2 + T 2 +H2)

2[B(t)]2
+

krR + kθT

2[B(t)]2(k2
r + k2

θ)
+ · · ·

]
− krR + kθT

(k2
r + k2

θ)
(3.15)

Transforming the axial dipole intensity, g0
1(t), into axial dipole moment

is just a matter of multiplicative constants:

PADM(t) = ν(t) =
4πr3

µ0

g0
1(t) (3.16)

with Earth average radius r = 6371km and µ0 = 4π× 10−7H/m. Applying this to

equation 3.15 and noting that (k2
r + k2

θ)
1/2 = (1 + 3 cos2 θ)1/2 gives the relationship

between PADM and field intensity:

ν(t) ≈± 4πr3

µ0(1 + 3 cos2 θ)1/2

[
B(t)− (R2 + T 2 +H2)

2[B(t)]
+

krR + kθT

2[B(t)](1 + 3 cos2 θ)
+ · · ·

]
− 4πr3

µ0

krR + kθT

(1 + 3 cos2 θ)
(3.17)

The usual paleomagnetic VADM (V (t)) is

V (t) =
4πr3

µ0(1 + 3 cos2 θ)1/2
B(t)

which is in fact the first (and largest) term on the RHS of the equation for PADM

(3.17). However, it takes no account of the additional RHS terms. If R, T, and

H are gaussian random variables with zero means, the last term would be zero on

average but the other terms would not. In practice, R, T, and H are not known,

but one can restate the relationship between PADM and VADM as:

V (t) = ν(t) + b

where b is a bias term, which is a random variable of ’noise’ which has a non-zero

mean and an unknown (but certainly non-gaussian) distribution function.
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3.9 Appendix: Penalized Maximum Likelihood

Inversion

The penalized maximum likelihood algorithm follows the outline given

in Section 3.3.5 and presented in the flowchart of figure 3.7. In Section 3.9.1 we

outline how the PML method would be applied to a single time series of absolute

paleointensity data with a common noise distribution, then in Section 3.9.2 discuss

additional complexity associated with incorporating and calibrating heterogenous

sediment records of variable resolution.

3.9.1 PML for a Single (Absolute) VADM Data Series

In Step 1 we follow the algorithm of Constable and Parker (1988) to find ν0(t), a

penalized cubic B-spline model of PADM for a single (absolute) paleointensity data

series. The observations (di, i = 1, . . . , n) are represented as a linear combination

of cubic B-spline basis functions cj(ti) and a noise term (εi):

di = ν(ti) + εi =

p∑
j=1

βjcj(ti) + εi (3.18)

where βj are the corresponding spline coefficients, and are the initial model pa-

rameters we seek. In this first step we do not yet have an estimate for the noise

distribution so the objective functional minimized over β̂ is

U(β) = l0(β̂) + ΛR(β̂) (3.19)

with l0(β̂) corresponding to the standard 2-norm misfit measure anticipated for a

least squares fit. That is

l0(β̂) =
n∑
i=1

(di − ν0(ti))
2 =

n∑
i=1

ε2i (3.20)

The model roughness, R(β̂), is given by the integrated squared second

derivative of the resulting spline:
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R(β̂) =

∫ tn

ti

[
∂2
t

p∑
j=1

βjcj(t)

]2

dt (3.21)

The tradeoff parameter Λ in equation 3.19 controls the balance between

fitting the data and penalizing roughness in ν(t).

The usual ML method finds the parameter estimates which maximize the

probability of getting the data that were actually observed using an appropriate pdf

for the noise. The function to be maximized in this case, the likelihood function,

L(β̂), is the joint pdf, F, of the sample errors, which is in turn the product of the

individual pdfs if the errors are independent, identically distributed:

L(β̂) = F (ε, β̂) =
n∏
i=1

f(εi, β̂) (3.22)

Step 2 is to make a first estimate of the noise distribution f(ε), using the residuals

of the data from ν0(t). For a given dataset, we describe the statistical distribution

of the residuals (εi) using an Asymmetric Power Distribution (APD), whose pdf

function is by definition:

f(εi) =
δ
1/λ
α,λ

σΓ(1 + 1/λ)
exp

[
− δα,λ
γ(εi)

∣∣∣∣(εi − µ)

σ

∣∣∣∣λ
]

(3.23)

where

δα,λ =
2αλ(1− α)λ

αλ + (1− α)λ
(3.24)

γ(εi) = αλ εi ≤ µ

= (1− α)λ εi > µ (3.25)

and µ, σ, α and λ are the location, scale, and two shape parameters respectively.

The shape parameter α has the range 0 < α < 1 and corresponds to asymmetry,

where 0.5 means there is an equal amount of data on either side of the mode.
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The second shape parameter, λ, corresponds to tail shape, and has the range

λ > 0, though it is generally between 1 and 3 (see table 3.1). High values of λ

mean flatter-topped distributions, with λ = 2 (and α = 0.5) corresponding to a

symmetric gaussian distribution (see Fig. 3.6). µ is unbounded, and σ > 0.

We estimate the pdf parameters (µ, σ, α and λ) of the noise empirically

from the residuals resulting from iterative PML fits:

εqi = di −
p∑
j=1

βq−1
j cj(ti) (3.26)

where q represents the qth iteration.

The maximum of likelihood and minimum of the negative log likelihood (l(β̂))

coincide, so we can rewrite the problem as:

max
β̂

L(β̂) = min
β̂
l(β̂) = min

β̂

n∑
i=1

ρ(εi), (3.27)

where ρ(ε) = −ln[f(ε, β̂)] and is termed the loss function.

Now, combining this with the APD description for f , we can define our

condition to minimize as:

min
β̂

l(β̂),

l(β̂) =
n∑
i=1

−ln[f(εi, β̂)]

l(β̂) =
n∑
i=1

−ln
(

δ1/λ

σΓ(1 + 1
λ
)

)
+

δ

σλγλ
|εi − µ|λ

(3.28)

The minimum is found where the derivatives with respect to the param-

eters, βj, are zero - i.e. ∇l(β) = 0. Using Equation 3.26, we get:

∂l

∂βj
=

n∑
i=1

λδcj(ti)

σλγλ

∣∣∣∣∣di −
p∑
j=1

βjcj(ti)− µ

∣∣∣∣∣
λ−2(

di −
p∑
j=1

βjcj(ti)− µ

)
= 0 (3.29)
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Although this is non-linear it can be solved iteratively in the form of a

weighted least squares problem (Constable, 1988) by rewriting the above equation

as:

∂l

∂βqj
=

n∑
i=1

wqi cj(ti)

(
d̃i −

p∑
j=1

βqj cj(ti)

)
= 0 (3.30)

wqi =
λδ

σλγλ

∣∣∣∣∣d̃i −
p∑
j=1

βq−1
j cj(ti)

∣∣∣∣∣
λ−2

(3.31)

d̃i = di − µ (3.32)

Note, the parameters (µ, σ, α, λ) and δ are all derived from the (q − 1)th

iteration as well, though the superscripts have been left off in the above notation

to avoid clutter. In matrix notation we will express this as:

CTWqCβ̂ = CTWqd (3.33)

In 3.33, C is the design matrix of B-spline functions, d the vector of observations,

d̃i, β̂ the model vector of coefficients βj, and Wq is the n × n diagonal matrix of

‘weights’ calculated from residuals produced from the previous (q− 1)th iteration.

Successive iterations of β̂ and weights are calculated until specified convergence

criteria are reached. Recasting the solution of the nonlinear ML problem as an

iteratively re-weighted least squares problem conveniently allows us to use the

same algorithm as in Step 1 to recover a penalized maximum likelihood solution

by adding the roughness penalty in Equation 3.21. Equation 3.19 is thus directly

updated to include the correct likelihood function lq(β) for the asymmetric noise

distribution expected for the absolute VADM data.

U(β) = lq(β̂) + ΛR(β̂) (3.34)

We call the algorithm that solves Equation 3.34 a Penalized Maximum Likelihood

(PML) inversion, because of the explicit tradeoff between finding the ML solution

and the penalty on roughness in the resulting model.
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3.9.2 Using Relative Paleointensity Time Series in PML

Models

Section 3.9.1 has described fitting a PML model to a single data series of

n absolute observations of VADM with a common noise distribution. In practice,

we have both spot recordings of VADM from igneous samples, and several indepen-

dent time series of relative variations in VADM from sediment records. Multiple

absolute data sets can be treated in the same way but with distinct noise pdfs

where necessary. However, the incorporation of RPI data into our model requires

appropriate choices for calibrating these data to absolute values and appropriate

weightings of the contribution of series some of which are very densely sampled in

time.

Calibration of RPI data

The calibration of RPI observations is a simple scaling by a multiplicative

factor to transform them to absolute values of VADM. Explicitly stated, for RPI

we have di = ζkSk,i, where Sk,i denotes the ith data point in the kth time series

and ζk is the scale value for the kth dataset such that equation 3.18 becomes:

ζkSk,i =

p∑
j=1

βjcj(tk,i) + ζkεk,i (3.35)

We estimate scale values by finding a low resolution preliminary PADM

model from the sparse absolute paleointensity data. Using this model, we calculate

the ratio of the model to the RPI time series at each time, and use the median

of this ratio as the scale estimate. There is a small bias-correction factor (∆m−1
k )

needed for non-symmetric noise, where ε̄ 6= 0. These scale estimates are then

recalculated m times (usually 2-3 times) after an updated ML model is made from

the absolute and scaled RPI data.

ζmk = median

(∑p
j=1 β

m−1
j cj(ti)

Sk,i −∆m−1
k

)
(3.36)
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Note that ∆m−1
k is the difference between the mean and the mode of a given set of

εi normalized by the scale value, ζm−1
k , (since εi are in essence scaled as the data

are scaled).

Temporal Normalization

For RPI records, sediment type and accumulation rate directly control

the resolution possible, since a finite thickness of sediment is required for pale-

ointensity analysis. Thus, each data point in the time series provides a temporal

average paleointensity over 100s or 1000s of years. Additionally, some studies of

post-depositional remanent magnetization (pDRM) in sediments suggest that the

process of remanent magnetization acquisition in sediments itself acts as a low-pass

filter and may contribute to signal smoothing (e.g Roberts and Winklhofer (2004)).

For our goal of finding a global average of dipole moment, we want each time series

to contribute equally to the resulting model at any given time. We weight each

sediment record so that it contributes equally over a given time range. There are

two things to consider for this goal. First, high resolution records simply contain

more data points over a given time range (sometimes an order of magnitude more),

so we divide by the number of data (nk) per age range (∆t) to reduce this influ-

ence. In addition to the data density being controlled by sedimentation rate, it also

affects the variability of the paleointensity (and subsequently the residuals after a

fit). Given that each data point is itself an average of a time interval, the longer

the time interval over which it averages, the less variable the data. This influences

the values of our ML weights - which are derived from a pdf. Pdfs by definition,

integrate to 1, such that if there is more variance in the data, the peak ends up

being lower relatively speaking, which translates into the ML weights having a

different average for each time series. Therefore, we also normalize the weights by

dividing by the average weight for each distribution. These normalization factors

(Nk) are absorbed into the PML weights:
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Nk =

(
∆t

nk

)(
1

1
nk

∑nk

j=1wk,j

)
(3.37)

3.9.3 The Combined Problem: Absolute and Relative Pa-

leointensity Series

For the joint inversion of API and several RPI datasets, we start with the

assumption that each dataset has a unique noise distribution (f(εi, β̂)) and unique

scale factor. For K datasets, this updates equations 3.30-3.32 into:

∂l

∂βqj
=

K∑
k=1

nk∑
i=1

wqk,icj(tk,i)

(
˜dk,i −

p∑
j=1

βqj cj(tk,i)

)
= 0 (3.38)

wqk,i = N q−1
k

(
λδ

σλγλ

)q−1

k

∣∣∣∣∣ ˜dk,i −
p∑
j=1

βq−1
j cj(tk,i)

∣∣∣∣∣
λq−1

k −2

(3.39)

˜dk,i = ζkdk,i − µq−1
k (3.40)

In matrix notation, in a scenario with (K − 1) RPI records and one API

data set:


CT

1

...

CT
K−1

CT
a




W1 0

. . .

WK−1

0 Wa




C1

...

CK−1

Ca

 β̂ =


CT

1

...

CT
K−1

CT
a




W1 0

. . .

WK−1

0 Wa




ζ1S1

...

ζK−1SK−1

A



(3.41)

where C are cubic B-spline matrices, W are weight matrices and A and S are

data vectors of absolute and relative paleointensities respectively. β̂ is the vector

of model parameters: the coefficients for the B-splines.
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Table 3.2 Comparison of Model Statistics

Model µ2M σ2M µb σb µm σm

PLS Spline 6.0 1.4 7.2 1.2 5.3 1.0

PADM2Mp 5.3 1.7 6.2 1.5 4.8 1.5

PADM2M 5.3 1.5 6.2 1.2 4.8 1.4

Sint-2000 6.2 2.0 7.6 1.7 5.3 1.6

PISO-1500 - - 7.5 2.6 - -

Table 3.2: Mean (µ) and one standard deviation (σ) of the four axial dipole models
discussed in text and the Penalized Least Squares fit (PLS Spline) to absolute pale-
ointensities used in the construction of PADM2M over three age ranges. Subscripts
2M, b, and m represent age ranges of: 0-2 Ma, 0-780 ka (the Brunhes chron) and
780 ka - 2 Ma respectively.
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Chapter 4

Asymmetry in growth and decay

of the geomagnetic dipole

Abstract

The geodynamo in Earth’s core is responsible for magnetic field changes

on diverse timescales, including numerous enigmatic reversals of the dipole field

polarity. Understanding the physical processes driving them is an active area of

investigation via both paleomagnetic work and numerical simulations of the geo-

dynamo. Some previous studies on geomagnetic field intensity detected a sawtooth

pattern of intensity around reversals: a gradual decay in field strength preced-

ing a reversal followed by rapid growth afterwards. Here we characterize distinct

statistical properties for increasing and decreasing dipole strength over the past

two million years. Examining the geomagnetic field and its time derivative on

a range of time scales reveals that for periods longer than about 25 ky there is a

clear asymmetry in the statistical distributions for growth versus decay rates of the

dipole strength. At 36 ky period, average growth rate is about 20% larger than the

decay rate, and the field spends 54% of its time decaying, but only 46% growing.

These differences are not limited to times when the field is reversing, suggesting

that the asymmetry is controlled by fundamental physical processes underlying

all paleosecular variation. The longer decay cycle might suggest the possibility of
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episodic periods of subcritical dynamo activity where the field is dominated by dif-

fusive processes, followed by transient episodes of strong convection. However, our

work finds no clear separation of timescales for diffusive and convective processes

influence on dipole moment: both seem to play an important but asymmetric role

on the 25-150 ky timescale.

4.1 Introduction

Relative paleointensity variation records from marine sediments have con-

tributed enormously to current views of how the geomagnetic field changes on time

scales of thousands to millions of years. A 4 My long sediment record of relative

paleointensity Valet and Meynadier (1993), first provided the idea of a sawtooth

pattern, namely that field intensity is highest immediately after a polarity rever-

sal, slowly decays until the next reversal occurs, and rebounds to a high after the

reversal thus beginning a new cycle. The slow decay might be interpreted as a

steady diffusive process (with faster advective influences overlaid) but the charac-

teristic time scale of several hundred thousand years is long compared with the

dipole free decay time of 15 ky (Backus et al., 1996). The sawtooth interpretation

was immediately debated (Kok and Tauxe, 1996) and, despite being subsequently

observed in some relative paleointensity records, has not been universally seen or

accepted (see Tauxe and Yamazaki (2007); Valet (2003) for reviews). A pared

down version of this observation has subsequently been uncovered in the Sint-2000

stack of about 30 sediment records Valet et al. (2005), in which field intensity takes

tens of thousands of years to decay preceding 5 of the 7 reversals between 780 and

2000 ka, and only a few thousand years to grow back to values more typical of

stable polarity intervals. It was suggested that diffusive processes dominate the

pre-reversal episode.

We take a new approach to testing this observation, and examine the

statistical distributions of time derivatives of the comprehensive PADM2M model
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Figure 4.1: Axial dipole moment variations and rate of change for the time period
0-2000 ka: (a) PADM2M (gray)(Ziegler et al., 2011) and PADM2M s36 (black),
smoothed to damp variations with periods shorter than 36 ky. Left axis gives axial
dipole moment, pA in units of 1021Am2. Right axis give equivalent value in µT
for g0

1 the axial dipole coefficient in spherical harmonic representation of the field,
pA(t) = 4πr3

µ0
g0
1(t) = 2.58621g0

1(t) ZAm2 (b) Rate of change for PADM2M s36,
showing stronger average dipole growth than decay.

of dipole strength at various frequency resolutions.

4.2 Methods

PADM2M (Ziegler et al., 2011) was constructed using a penalized maxi-

mum likelihood inversion technique that efficiently uses 5000 globally-distributed

individual absolute paleointensity data and 76 sedimentary relative paleointensity

records with variable lengths and sedimentation rates to produce a calibrated,

continuous, time-varying model of Paleomagnetic Axial Dipole Moment (PADM).
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Time variations in PADM2M are parametrized by cubic B-splines allowing a di-

rect calculation of the rate of change with time. The model is expected to robustly

resolve features at timescales longer than 10 ky.

We fit a family of smoothing splines (Constable and Parker, 1988) to

the PADM2M model, with each one effectively creating a low-pass filtered version

of the original, and calculate uniformly sampled time derivatives. Models have

effective cutoff periods ranging from 10 –180 ky, where the cutoff is the period at

which the smoothed model power spectrum has been damped to half the power

of the original PADM2M. Each is named according to its cutoff period (xx) as

PADM2M sxx.

4.3 Results

4.3.1 Asymmetry in Rate of Change

Figure 4.1a shows PADM2M together with a representative smoothed

model, PADM2M s36, in which variations with periods shorter than 36 ky have

been suppressed. A plot of the time-derivative for PADM2M s36 (Fig. 4.1b) shows

that extreme values of the growth rates tend to exceed those of decay rates. To

investigate further, we construct a histogram of evenly sampled derivative values,

and find a distinct, but subtle, asymmetry that depends on the filter period. For

PADM2M s36 the average growth rate is about 20% larger than the decay rate and

peak growth values are approximately 50% larger, suggesting the field has episodes

of strong growth with no equivalent in the decay process. Additionally, the field is

decreasing a larger fraction of the time (54%), suggesting intervals of decay which

are longer than comparable spans of growth. This result is not specific to limited

windows surrounding polarity reversals, but applies to the full two million year

time span. In Figure 4.2, the Brunhes (0-780 ka) and Matuyama (780-2000 ka)

chrons are considered separately, excising 50 ky on each side of the reversal at

780 ka. In both cases, the histograms are asymmetric, with slightly more values
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exhibiting dipole decay than growth, and the magnitude of extreme growth rate

is larger than for extreme decay. A calculation of separate empirical cumulative

distribution functions (ECDFs) for the magnitudes confirms that rates of decrease

are concentrated at lower values than for increase.

Notably, the Brunhes chron shows the asymmetry in derivative distribu-

tion, but contains no reversals, although there are multiple geomagnetic excursions.

Therefore, these differences in growth and decay statistics are not limited to times

when the field is reversing, suggesting that the asymmetry reflects fundamental

physical processes underlying the paleosecular variation. The robustness of our re-

sult is tested by repeating the analysis using other dipole moment reconstructions

for the 0-2 Ma time interval. The Sint-2000 stack shows the same asymmetry in

both chrons. Another reconstruction, the PISO-1500 stack (Channell et al., 2009)

does not, but there are major methodological differences in its reconstruction.

Intensity changes occur on a range of timescales, and their structure de-

pends on the temporal resolution of the curve being studied. Fig. 4.3 shows a

sampling of histogram derivatives from several of the PADM2M sxx models (the

full suite is provided in Supplemental Figure 1 (Figure 4.5 at end of chapter). The

original, unfiltered PADM2M model resolves changes down to 5-10 ky, and the

peak dipole strength attained over the past 2 My appears to be capped around its

recent values (Fig. 4.1a). Growth and decay on the timescale of the model reso-

lution (5-10 ky) appear to be well balanced, which could be interpreted as similar

processes governing growth and decay on this relatively short timescale. However,

as we filter higher frequency field strength variations and look at progressively

longer timescales, the pattern of longer duration of decay increasingly stands out.

When periods shorter than 10 ky are heavily damped there is an unambiguous

asymmetry in the distribution of rates of change, and when variations shorter

than 25 ky are damped the fraction of time spent growing is noticeably smaller

than that spent decreasing. As expected the magnitudes of rate of change decrease

with increasing cutoff period. The structure of the asymmetry also evolves with
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Figure 4.2: Asymmetric distributions of rate of change of axial dipole strength
for PADM2M s36: (a) the evenly sampled Brunhes and (b) Matuyama segments of
PADM2M s36 show rapid rates of axial dipole growth and slower decay. Note 50 ky
segment of time series was removed from each side of Brunhes/Matuyama boundary.
Also negative derivative corresponds to growth because age decreases with flow of
time. Right panels shows ECDFs for magnitudes of growth (blue) and decay (red),
with the values of distribution extrema labeled.

increasing cutoff. Figure 4.4a summarizes this dependence, showing the percent-

age of time spent growing as a function of cutoff frequency in the PADM2M sxx

family of models. From cutoffs of 40 My−1 to 19 My−1 (periods of 25 ky to about
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Figure 4.3: Progressively asymmetrical derivates: Six panels show histograms of
rates of dipole intensity change for progressively smoother PADM2M s family models
(see Methods). PADM2M is in the top left, and family models are ordered and
labeled according to their cutoff period (xx) as PADM2M sxx. Asymmetry is most
pronounced where cutoff period is around 50 kyr.

50 ky respectively) the percentage growth/decay asymmetry becomes increasingly

distinct. From 19 My−1 to 7 My−1, the asymmetry remains, but becomes less

pronounced. This probably reflects the fact that the field today is stronger than

in the past, so the overall trend for the past two-million years is one of growth.

Extreme damping of the PADM2M sxx family eventually recovers the signal of

long term growth rather than decay in the field, so that when damping variations

with periods over 150 ky (frequency of 7 My−1) we see a majority of the time is

spent in growing. However, the actual distribution of growth and decay remains

asymmetric even at very long periods (Fig. 4.3a).
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Figure 4.4: Power spectrum for PADM2M and impact of smoothing on asymmetry
in growth and decay: (a) Percentage of time spent in periods of intensity growth vs.
frequency cutoff of smoothing. Gray circle indicates the value corresponding to the
smoothed PADM2M s36 model analyzed in this study. (b) PADM2M power spec-
trum (black) highlighted with colors to show distinct behavioral regimes. Spectrum
of smoothed PADM2M s36 is shown in gray. All power spectra are calculated with
prolate multi-taper techniques (Thomson, 1982), with time bandwidth product of
12 and frequency resolution of 5.4 My−1.

4.3.2 Ties to Features in the Power Spectrum

Fig. 4.4b shows that this behavior can be tied to several distinct regimes

in the power spectrum of PADM2M. From about 1 to 12 My−1 the spectrum
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is roughly flat, as expected for randomly occurring reversals and excursions in

a Poisson-like process with specific average rate (Constable and Johnson, 2005).

From about 12 to 60 My−1 the power spectrum falloff is about f−7/3; then from

60 to 100 My−1 the slope is a bit shallower, with a falloff more like f−1 My−1.

The time scales of roughly 10-100 ky covered by these two regions can be expected

to reflect paleosecular variation of the magnetic field, although the transition to

f−1 might also be impacted by increasing age uncertainties in correlating multiple

sediment paleointensity records. Above 100 My−1 the falloff is mainly controlled

by regularization of the PADM2M model inherent in the inversion, accounting for

uncertainty in the various contributing data.

The onset of the pattern of asymmetric growth and decay trend at high

frequencies correlates with the change in spectral slope from f−1 to f−7/3My−1.

This supports the idea that distinct processes are dominating the paleosecular

variation within the various frequency ranges. The asymmetric growth and decay

would be associated with the processes characterized by a f−7/3 trend in the power

spectrum a power law dependence that has been identified in some numerical

simulations (Olson et al., 2009; Driscoll and Olson, 2009). We note that while

the Sint-2000 record shows the same asymmetry of growth and decay, it does not

seem possible to clearly identify regimes in the power spectrum characterized by

different falloff slopes.

4.4 Discussion & Conclusions

The transitions among the various parts of the power spectrum in Fig.

4.4b are gradual and hard to identify with precision, as are any exact power law

dependencies, but the asymmetries of Fig. 4.4a and Fig 4.3 are clear. Figures 4.2

and 4.4a are compatible with the idea that between 25 and 150 ky periods de-

creasing dipole moment is dominated by diffusive processes with slow decay most

concentrated at rates less than 0.5 µT (ky)−1. However, on the same timescales
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there is evidence for systematic growth that occurs more rapidly than the decay.

Neither growth nor decay occurs in a sustained uninterrupted fashion. Given the

apparent inhibition on axial dipole growth to values much larger than those seen

in the past few millennia, our analysis provides some support for an intrinsically

unstable dynamo (Zhang and Gubbins, 2000), with changes in convection strength

driven by changes in magnetic field strength, which may then lead to periods of

diffusive decay in the dipole. In some numerical dynamos (Liu and Olson, 2009)

mixing flows lead to partial dipole field collapse that is accelerated by radial diffu-

sion and meridional advection, but actual field reversal seems to require a sustained

mixing event with magnetic flux opposing the dominant polarity (perhaps initiated

by a diffusive process) being advected polewards and contributing to a long term

decrease in the dipole (Olson et al., 2009). After reversals field strength may be

restored through rapid transient growth, as demonstrated by some equatorially an-

tisymmetric zonal field configurations in kinematic model studies (Livermore and

Jackson, 2006, 2004).

Our observations indicate that in the 10– 150 ky period range there is no

clean separation of the diffusion and advection timescales, but that changes in the

dipole are more likely influenced by the combined influence of both slow diffusive

and more rapid regeneration processes. A scenario that might lead to geomagnetic

reversal is one where the regeneration process fails to engage for some dynamical

situation, leading to dominance of diffusive processes and a low in dipole strength

somewhat like what was envisaged in an early demonstration (Backus, 1958) of a

successful kinematic dynamo. Yet, lows in dipole strength occur often as part of

paleosecular variation, sometimes with excursional paleomagnetic directions, but

do not necessarily produce a reversal. Our finding that slow decay also occurs

in intervals dominated by excursions now links them more closely than ever to

reversals in terms of generation mechanism. It may not be necessary to distinguish

the processes that produce ordinary paleosecular variation in the dipole moment

from those producing a reversal: the physics and time scales may be the same.
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The only distinguishing feature of a reversal would be the dynamics producing

persistent or recurring decay of field strength in the absence of an appropriate

dynamical configuration to reinvigorate the dipole field.

Understanding the complex dynamo process requires analysis of secular

variation on timescales of years to millions of years. Characteristic changes in

the dominant global dipole field for the past 2 million years provide important

constraints for dynamo simulations, since several reversals and excursions occur

over this range of time. We can anticipate new time-varying field models that will

incorporate characterization of the spatial scale of regional changes contributing

to dipole moment, sharpening the views obtained for the past few centuries and

millennia (Jackson et al., 2000; Korte et al., 2009) about the persistence of flux

lobes, the influence of the tangent cylinder, and any hemispherical biases on these

longer time scales. A move to regional views of field behavior may also illuminate

tradeoff between rapid convective growth, and how mixtures of advection and

diffusion contribute to the dipole decay process.
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4.6 Supplementary Material

This sequence of figures shows histograms of rates of change of paleomag-

netic axial dipole moment for PADM2M s family of models. At the top left of the

first page we show derivatives for PADM2M. From left/top to right/bottom the S

family models are progressively smoother as power in higher frequency variations

is damped. Titles PADM2M sxx on each subfigure indicate the cutoff period (xx),

defined by a reduction by a factor of two at the cutoff and increased damping at

higher periods. Negative derivatives indicate growth and positive derivatives rep-

resent decay because the time axis is expressed in positive numbers of years before

present. PADM2M is fairly symmetric, but the distributions of rates of change be-

come increasingly asymmetric as the cutoff period progresses from 10 ky upwards

to about 150 ky. Beyond 150 ky the distribution is increasingly dominated by the

long term trend towards higher average field strength in the Brunhes chron. Even

the whole time span of 2 My cannot provide a representative average for the axial

dipole moment.
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Figure 4.5: Progressively asymmetrical derivates: Full Suite of PADM2M s models
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Figure 4.5 continued



119

Smoothest

Figure 4.5 continued



References

Backus, G., 1958: A Class of Self-sustaining dissipative spherical dynamos. Annals
of Physics, 4(4), 372–447.

Backus, G., Parker, R., and Constable, C., 1996: Foundations of Geomagnetism.
Cambridge University Press.

Channell, J. E. T., Xuan, C., and Hodell, D. A., 2009: Stacking paleointensity and
oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett.,
283(1-4), 14–23. doi:10.1016/j.epsl.2009.03.012.

Constable, C., and Johnson, C., 2005: A paleomagnetic power spectrum. Phys.
Earth Planet. Int., 153(1-3, Sp. Iss. SI), 61–73. doi:10.1016/j.pepi.2005.03.015.

Constable, C., and Parker, R., 1988: Smoothing, splines, and smoothing splines -
their application in geomagnetism. J. Computational Physics, 78(2), 493–508.

Driscoll, P., and Olson, P., 2009: Polarity reversals in geodynamo mod-
els with core evolution. Earth Planet. Sci. Lett., 282(1-4), 24–33. doi:
10.1016/j.epsl.2009.02.017.

Jackson, A., Jonkers, A., and Walker, M., 2000: Four centuries of geomagnetic sec-
ular variation from historical records. Phil. Trans. Roy. Soc. Lond., 358(1768),
957–990.

Kok, Y., and Tauxe, L., 1996: Saw-toothed pattern of relative paleointensity
records and cumulative viscous remanence. Earth Planet. Sci. Lett., 137(1-4),
95–99.

Korte, M., Donadini, F., and Constable, C. G., 2009: Geomagnetic field for 0-3
ka: 2. A new series of time-varying global models. Geochem. Geophys. Geosyst.,
10, Q06008, 10.1029/2008GC002297. doi:10.1029/2008GC002297.

Liu, L., and Olson, P., 2009: Geomagnetic dipole moment collapse by convective
mixing in the core. Geophy. Research Letters, 36. doi:10.1029/2009GL038130.

120



121

Livermore, P., and Jackson, A., 2004: Preferential axisymmetric field growth
in kinematic geodynamo models. Geophy. Research Letters, 31(22). doi:
10.1029/2004GL021397.

Livermore, P., and Jackson, A., 2006: Transient magnetic energy growth in
spherical stationary flows. Proc. Royal Soc. A, 462(2072), 2457–2479. doi:
10.1098/rspa.2005.1644.

Olson, P., Driscoll, P., and Amit, H., 2009: Dipole collapse and reversal pre-
cursors in a numerical dynamo. Phys. Earth Planet. Int., 173(1-2), 121–140.
doi:10.1016/j.pepi.2008.11.010.

Tauxe, L., and Yamazaki, T., 2007: Paleointensities. In Geomagnetism, editor M.
Kono and G. Schubert, volume 5 of Treatise on Geophysics, 509–563. Elsevier,
Amsterdam.

Thomson, D., 1982: Spectrum Estimation and harmonic analysis. Proc. of the
IEEE, 70(9), 1055–1096.

Valet, J., 2003: Time variations in geomagnetic intensity. Reviews of Geophysics,
41(1). doi:10.1029/2001RG000104.

Valet, J. P., and Meynadier, L., 1993: Geomagnetic-field intensity and reversals
during the past 4 million years. Nature, 366(6452), 234–238.

Valet, J. P., Meynadier, L., and Guyodo, Y., 2005: Geomagnetic dipole strength
and reversal rate over the past two million years. Nature, 435(7043), 802–805.
doi:10.1038/nature03674.

Zhang, K., and Gubbins, D., 2000: Is the geodynamo process intrinsically unsta-
ble? Geophys. J. Int., 140(1), F1–F4.

Ziegler, L. B., Constable, C. G., Johnson, C. L., and Tauxe, L., 2011: PADM2M:
a penalized maximum likelihood model of the 02 Ma palaeomagnetic axial
dipole moment. Geophys. J. Int., 184(3), 1069–1089. doi:doi: 10.1111/j.1365-
246X.2010.04905.x.



Chapter 5

Regional paleointensity features

in the 0-300 ka paleomagnetic

field

5.1 Introduction

Earth’s magnetic field is primarily that produced by an axial dipole: it

is anti-symmetric about the equator, with field magnitude and direction varying

with latitude. Field lines trace a path outward from one hemispherical pole and

inward at the other, and intensity at the poles is double that at the equator. This

fundamental pattern (see figure 5.1), along with observations of secular variation

and occasional global reversals of polarity, informs our basic understanding of the

field generation processes happening in the Earth’s iron core.

In the modern field, the axial dipole component of the field (g0
1) is almost

six times larger than the next largest component of the field (Finlay et al., 2010).

Yet, much of the modern field departs from the simple, global picture of an axial

dipole field. These components can be described mathematically using the usual gml

and hml coefficients of degree l and order m from a spherical harmonic expansion

Ψ for the magnetic scalar potential with B = −∇Ψ. A specific length scale is

122



123

-80

-40

0

40

80

(a) (b)

m

Figure 5.1: (a) Illustration of magnetic lines of force for a dipole field surrounding
a bar magnet source. (b) Illustration of the vertical field component at the surface of
the earth for an internal dipole source, with color contours showing field magnitude.
Positive and negative values of denote lines of force pointing ’into’ or ’out of’ the
surface respectively (see (a)). Adapted from (Tauxe, 2005), reproduced from Chapter
1

associated with each spherical harmonic degree: Jean’s formula gives λ = 2πa
(l+1/2)

,

where a is Earth’s radius, and for l ≤ 15 the field is dominantly from Earth’s core.

More broadly speaking, these components are called simply ‘Non-Axial-Dipole’

field or NAD field, and can be thought of as regional departures from an axial

dipole field. Higher degree terms are dominated by crustal field contributions

which are neglected here.

Figure 5.2: Geomagnetic main field (left) and secular variation (right) power spec-
tra for the models CALS3k.3 (gray filled triangles), CALS3k.3b gray open triangles,
CALS3k.4 (black dots) and CALS3k.4b (black circles). Reproduced from (Korte
and Constable, Submitted)
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NAD field features vary on a different timescale from the GAD (geocentric

axial dipole) field as can be seen in figure 5.2. In time-varying models of the modern

and historical field they are readily observed and mathematically described even at

short length scales (e.g. the CHAOS-2 models based on satellite and observatory

data include secular variation terms up to l = 20, and static terms to l = 60 (Olsen

et al., 2009)). Data quality and availability from the ancient field limit our ability

to describe fine scale regional departures from GAD beyond a few hundred years.

However, millennial scale models which now extend to 10 ka (Korte et al., In Prep.)

recover NAD field out to about degree 4 or 5 (length scales of λ = 2πa
(l+1/2)

, about

8,000 km).

These departures from GAD extend to million year time scales, with time-

averaged field models mainly based on paleomagnetic directional data indicating

that a GAD field does not fit the data as well as one with some NAD structure

(Johnson and Constable, 1997; Gubbins and Kelly, 1995). Aubert et al. (2010)

note in particular longitudinal structure in their model of Brunhes (0-780 ka) time

averaged field. Archeomagnetic paleointensity data spanning the 0-3 ka interval

show clear regional differences in time variations of virtual axial dipole moment

(Genevey et al., 2008).

Much NAD structure on short timescales is highly variable, reflecting

the dynamic non-linear processes generating the field. However, persistence of, or

trends in, NAD features seen over long time scales in the time averaged field may

reflect fundamental, long-term features of fluid flow in the core, such as effects of

the solid inner core on flow (e.g. tangent cylinder effects), or core-mantle boundary

conditions (Gubbins et al., 2007; Aubert et al., 2010).

Persistent NAD structure of the sort seen in time averaged field models

should be visible in time-varying field models over tens of thousands to millions of

years. However, because of limited data availability, typically on these time scales

the GAD approximation has been invoked to produce time-varying reconstructions

of axial dipole field strength based only on paleointensity data (Valet et al., 2005;
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Channell et al., 2009; Ziegler et al., 2011). These studies have yielded significant

insights into long term variations in the axial dipole field. However, some interest-

ing features seen in the centennial and millennial models, such as recurring high

latitude flux patches (Korte et al., In Prep.), cannot be investigated on paleo time

scales from a simple GAD field reconstruction. Additionally, stratigraphic, tec-

tonic, and environmental studies which rely on paleointensity assisted chronology

as a dating tool could have more robust age constraints from a more geographically

precise paleomagnetic reference field.

In an effort to better understand regional field features, the North At-

lantic Paleointensity Stack (NAPIS) and the South Atlantic Paleointensity Stack

(SAPIS) were created and illustrate composite axial dipole moment models made

from a handful of relative paleointensity (RPI) time series geographically clus-

tered in the north Atlantic ocean (NAPIS) and the south Atlantic ocean (SAPIS)

(Laj et al., 2000; Stoner et al., 2002). A comparison of the 75 kyr long stacks by

Stoner et al. (2002) found time spans of close agreement and others with distinct

differences between the two stacks.

Investigations comparing the spectral coherence of individual relative pa-

leointensity time series and stacks can be difficult due to the effects of age uncer-

tainties in the data . Moderate age errors typical in RPI time series can supress the

expected signal of systematic increase in coherence with decreasing geographical

separation of core locations (McMillan et al., 2004). However, stacks or models

made from several regionally clustered data can serve to reinforce strong moderate

to long period signals.

Here we use regionally clustered relative paleointensity data sets and the

modeling techniques developed in Ziegler et al. (2011) to construct geographically

variable models of axial dipole moment. We look at subsets of the data divided by

both latitude and longitude in an effort to isolate large-scale NAD features from

global PADM variations.



126

5.2 Data & Methods
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Figure 5.3: Geographic distribution of data used in PADM2M and this study.
Small circles are for API data (brown for archeomagnetic data, black for igneous
data). Triangles represent sediment cores color coded by age span: 0-2 Ma records
(red), records which span several hundred kyr (blue), records which span between
0 and 200 kyr ago (yellow), and short Brunhes/Matuyama reversal records (green).
Reproduced from Ziegler et al. (2011)

The data and methods used in this work are described in Ziegler et al.

(2011), and are summarized briefly here. We work with a compilation of 86 RPI

records from (Tauxe and Yamazaki, 2007), and absolute paleointensity data from

PINT08 (Biggin et al., 2009) and the Geomagia50.v2 database (Donadini et al.,

2009) that span the age range 0–2 Ma. The modeling technique is a penalized

maximum likelihood method and has previously been used to construct a time

varying paleomagnetic axial dipole field moment parameterized by cubic B-splines,

using the joint set of absolute paleointensity data and RPI time series. Whereas in

the creation of PADM2M the model was fit to the entire RPI set (except for a few

incompatible time series), here we fit PADM models to RPI data from restricted

geographic regions. The RPI time series are anywhere from tens of thousands to

millions of years long and are spread across the globe (see figure 5.3, reproduced

from Ziegler et al. (2011) for global distribution of data). Each regional model

uses only a subset of the global RPI compilation, and the sparse data distribution
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presents some difficulties. We fit regional models to the time span in which a

minimum of five RPI records are present at all times. With this criterion, all

(except one) of the regions considered below have sufficient RPI data for modeling

back to approximately 300 kyr ago. We therefore limit our study to this age range.

In all regional models, we include the entire global absolute paleointensity

data which provide the basic calibration for magnitude of the regional axial dipole

moment (RADM). Data availability made it impractical to use regionally clustered

absolute paleointensity data for each selection of regionally clustered RPI data.

However, the RPI time series contribute significantly more data than the absolute

paleointensity data set, so the model is primarily constrained by those data.

5.2.1 Latitudinal Bands

We initially divided the global RPI set into 3 latitudinal bands for sep-

arate RADM reconstructions. The first extends nominally from 25 to 90 degrees

latitude. 40 records fall into this category and in practice, span latitudes of 25 to

70 degrees, generating our Mid-High Latitude RADM. The next band is designated

Equatorial and nominally extends from +25 to -25 degrees latitude. It contains

40 RPI records, which are actually confined to a band from -15 to +20 degrees

latitudes. A third band stretches from -25 to -90 degrees latitude. However, in

this southern hemisphere mid- to high latitude band there is no point where 5 RPI

time series overlap, and we therefore refrain from modeling the region.

5.2.2 Longitudinal Bands

The global data set is separately divided into 3 regions based on RPI

core longitudinal location. These regions are nominally 0-90, 90-270, and 270-360

degrees longitude, and roughly correspond to the Indian, Pacific, and Atlantic

oceans respectively. The 0-90 degree longitude region has the sparsest coverage,

with a maximum of 12 records in the 0-187 ka span and fewer than 5 beyond

that interval. The Pacific has 45 records and enough data to supply more than 5
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records at any given time well beyond 300 ka, but we plot only to this age to be

comparable to the other longitudinal bands. The Atlantic region has more than 5

records for all times between 0-283 ka, and comprises 21 total records.

5.3 Results

The resulting RADM models are shown in figures 5.4 and 5.5. Figure 5.4

shows the two models made from latitudinal bands of RPI data along with the

number of RPI cores contributing to the model for each age. Model uncertainties

are calculated using a delete-1 jacknife routine, and are shown as the shaded area

surrounding each RADM model. The models look quite similar, especially for 0-

180 ka - the RMS value of the difference between models is 10.0ZAm2 for 0-180

ka and 14.1ZAm2 for 180-300 ka. We plot the difference between the models at

each age explicitly in figure 5.6. Some lows (for instance, at 180 ka) tend to be

lower in the mid- to high latitude band than the equatorial region. On average, the

equatorial region has slightly higher intensity, with a mean difference of 6.3ZAm2.

The equatorial region is missing a small paleointensity low at about 120 ka, and

shows a different shape for the broad paleointensity low at around 180 ka. In the

long period signals, there is general agreement between models.

The three longitudinal RADM models are shown in figure 5.5. The model

covering 0-90 degrees longitude (here loosely categorized as the ‘Indian Ocean’ re-

gion) is constructed from the lowest number of RPI cores, and has a low resolution

due to the data quantity. The Pacific and Atlantic RADMs have resolutions more

similar to each other; uncertainties for these, shown as the shaded area around

each model, are again calculated for these from delete-1 jacknife routines. They

agree with the broad trends of the Indian ocean regional model, but show many

areas of disagreement with each other. The longitudinal regions have more pro-

nounced differences than the latitudinally grouped models, as discussed in further

detail in the next section. In figure 5.6 we see the difference between the Pacific
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and Atlantic regions (regions 5 and 6 respectively) has larger variance. The RMS

of the difference between these two regions is 12.2ZAm2 over the 283 ka they over-

lap, compared to an RMS of 11.6ZAm2 for the difference between the latitudinal

models in this time range, despite the fact that the mean difference between the

longitudinal regional models (4.8ZAm2) is less than the mean difference between

the latitudinal regions.

Figure 5.4: Regional Axial Dipole Moment models: Latitude bands. (Top) RADM
models from mid- to high- latitude RPI data (blue) and equatorial latitude data
(red), along with the PADM2M model. Shaded region surrounding each RADM
model represents ±2σ estimated from a delete-1 jacknife routine. Globally observed
excursions (black circles) and additional excursions (gray circles) are marked at their
estimated ages. (Bottom) Number of RPI records available for each latitudinal model
(colors correspond to top plot).
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Figure 5.5: Regional Axial Dipole Moment models: Longitude bands. (Top)
RADM models from Atlantic ocean longitude RPI data (blue), Pacific ocean longi-
tude RPI data (red) and Indian ocean longitude RPI data (green) along with the
PADM2M model. Shaded region surrounding the Pacific and Atlantic RADM mod-
els represents ±2σ estimated from a delete-1 jacknife routine. Globally observed
excursions (black circles) and additional excursions (gray circles) are marked at
their estimated ages. (Bottom) Number of RPI records available for each latitudinal
model (colors correspond to top plot).

5.4 Discussion

5.4.1 Statistics for Comparisons between Regions

Table 5.1 summarizes some statistical information for each regional model

along with the global 0-2 Ma PADM2M model and the most recent 300 kyr of

PADM2M, including the mean, standard deviation, minimum and maximum pa-

leomagnetic axial dipole moment. By comparison to 2 Myr of paleointensity vari-

ations, the 300 kyr models show similar variability, which indicates they capture

the general spectrum of paleosecular variation of field strength, despite the lack of

reversals in this age range. The minimum of PADM2M is lower than the regional

models though, and corresponds to a reversal outside the 0-300 ka range.

The differences between longitudinal regions are slightly more pronounced
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Figure 5.6: (Top) Difference between regions of different latitude ranges (Reg. 1 -
Mid-High & Reg. 2 - Equatorial). (Bottom) Difference between Reg. 5 and Reg. 6
- the Pacific and Atlantic longitudinal regions.

than between the latitudinal regions (fig. 5.4 and table 5.1). The Atlantic lon-

gitudinal region shows the most variability, which is apparent both from visual

observation and statistical calculations shown in table 5.1. PISO-1500, a global

stack of RPI data which heavily drew from Atlantic records, has greater variabil-

ity than other reconstructions of global axial dipole moment variations e.g (Valet

et al., 2005; Ziegler et al., 2011), which are not as reliant on Atlantic records. The

RADM here, made with the same algorithm as PADM2M using only different RPI

data, suggests the difference in variability between PISO-1500 and other global ax-

ial dipole moment models is at least partially due to the regional biases of datasets

going into the separate models. Alternatively, the higher variability could be in

part due to the smaller number of records used in the Atlantic region. Future

work will involve bootstrap analysis on each regional model for estimates of uncer-

tainties. If uncertainties are on par with those for the global model (see Chapter

3), the higher variability is likely not entirely an artifact of the smaller number

of data. Also, the Atlantic region is lower on average than the Pacific region, as

mentioned in the Results section. Some previous literature has noted many regions
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Table 5.1 Statistics of 0-300 ka in the regional models
0-300 ka: Mean Std Min Max

Reg. 1 (Mid-High Lat) 56.1 13.7 20.1 95.4
Reg. 2 (Equat. Lat) 62.3 10.9 32.8 104.4
Reg. 4 (Ind. Oc.)* 60.3 11.3 44.1 86.2
Reg. 5 (Pac. Oc.) 59.7 12.5 27.8 104.4
Reg. 6 (Atl. Oc.)** 55.2 14.4 11.5 96.6
PADM2M 57.7 11.4 24.5 95.7

0-2 Ma:
PADM2M 53.2 14.8 10.7 95.7

Table 5.1: Statistics of 0-300 ka in the regional models discussed in this study along
with PADM2M of Ziegler et al. (2011). * Ind. Ocean regional model extends only
to 187 ka. ** Atl. Ocean regional model extends only to 283 ka. All units in ZAm2

of the Pacific having higher VADMs on average over 0-20 ka, consistent with what

we see here (Genevey et al., 2008).

5.4.2 Excursions

No reversals occur in the 0-300 ka time frame, but extreme lows in pa-

leointensities are nonetheless present. Many correspond to directional excursions.

Excursions are defined as brief (< 104 kyr) periods of extreme deviation of Vir-

tual Geomagnetic Poles from GAD poles. The details of the cutoff between normal

paleosecular variation in field directional data and excursional behavior is not stan-

dardized. Generally they are defined either as periods when virtual geomagnetic

pole latitudes are less than 45o or when they are fully reversed for a few thousand

years (Laj and Channell, 2007). Excursional field events are hard to understand,

in part because of the lack of precise definition, and relatedly, because no event

seems exactly like another. Some events, such as the Laschamp, are well docu-

mented and present in many globally distributed RPI cores (Laj and Channell,

2007). Others are recorded in only a few locations, indicating the excursional

event could be a regional field feature. Some studies indicate that excursions can

be thought of as ‘failed’ reversals, indicating that they share similar generational
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mechanisms, but with a failure of the field to stabilize in the reversed direction,

instead returning to its original polarity (see e.g. (Hoffman, 1981)). Globally ob-

served excursional events lend support to the idea that excursions are linked to

reversals (another global phenomenon) at some level. However, excursions that

are seen only in a few locations are more ambiguous: they might be global but too

short for detection, or simply examples of very strong regional paleosecular varia-

tions, perhaps part of a continuum linking secular variations to reversals. Support

for this comes from Ziegler and Constable (Submitted), who established a broad

link between excursions and reversals. They evaluated long period oscillations seen

in paleosecular variation, finding that a subtle version of the ‘sawtooth’ pattern

(Valet and Meynadier, 1993) of slowly decaying field strength and comparably

faster field growth existed throughout the excursion filled Brunhes chron and the

reversal filled Matuyama chrons. Previously, such asymmetry in growth and decay

had only been visually assessed and correlated exclusively to field reversals.

In figures 5.4 and 5.5 we have labeled excursions identified in the lit-

erature. Laj and Channell (2007) summarize compilations of excursions from a

multitude of individual RPI cores and compilations and establish a set of well

documented excursions with good age controls. In the past 300 kyr, there are 5:

Mono Lake (33 ka), Laschamp (41 ka), Blake (120 ka), Iceland Basin (188 ka), and

Pringle Falls (211 ka). These are indicated with black dots on the figures. Other,

less certain excursions have been documented to a lesser extent, as mentioned in

(Laj and Channell, 2007). These could be regional features, or events short enough

that their signal was not clear through the natural filtering effects of the remanent

magnetization recording process at most locations. In figures 5.4 and 5.5 we mark

with gray dots additional excursions as listed in a recent compilation by Lund et al.

(2006), to include the broadest set of 0-300 ka excursions.

Our RADM models do show some differences in their recording of ex-

cursions. The Laschamp event is clearer in the Atlantic longitudinal band with a

much more pronounced low than the other longitudinal regions. This agrees with
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other studies that also model the field with a more pronounced minimum in the

Atlantic (Leonhardt et al., 2009). Regional differences in our results are appar-

ent for other excursions, notably the Iceland basin event ( 190 ka). The Iceland

basin event corresponds to a clear, sharp low in paleointensity in the Atlantic, but

a broad low in the Pacific. This could reflect field dynamics, as suggested with

the regional differences in the Laschamp event. Alternatively, the broad low in

our model of a compilation of RPI cores could occur if age control issues led to

misalignment of the low between records. However, there is no reason to suspect

this time interval had particularly bad age controls in contrast to the rest of the

model, where the Pacific model often has highs/lows of comparable width to the

Atlantic model (though not neccessarily comparable amplitude).

Finally we note that our regional models have some distinct field intensity

lows which do not correspond to known field excursions.

5.5 Conclusions

In our regional analysis of relative paleointensity data, we find that there

is a clearer regional signal across models made from longitudinally grouped RPI

data than latitudinally grouped data. The long period behavior across all mod-

els is very similar, but regional differences in RPI recorded are clearly present in

the composite regional models, especially at periods of known excursional events.

The Atlantic region has somewhat larger variability than others, with a very pro-

nounced minimum during the Iceland basin excursional event. Departures from

the GAD field are clearly observed through comparison of regional paleomagnetic

axial dipole moment models.



References

Aubert, J., Tarduno, J. A., and Johnson, C. L., 2010: Observations and Models
of the Long-Term Evolution of Earth’s Magnetic Field. Space Science Reviews,
155(1-4), 337–370. doi:10.1007/s11214-010-9684-5.

Biggin, A., Strik, G., and Langereis, C., 2009: The intensity of the geomagnetic
field in the late-Archaean: new measurements and an analysis of the updated
IAGA palaeointensity database. Earth Planets and Space, 61(1), 9–22.

Channell, J. E. T., Xuan, C., and Hodell, D. A., 2009: Stacking paleointensity and
oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett.,
283(1-4), 14–23. doi:10.1016/j.epsl.2009.03.012.

Donadini, F., Korte, M., and Constable, C. G., 2009: Geomagnetic field for 0-3 ka:
1. New data sets for global modeling. Geochem. Geophys. Geosyst., 10, Q06007,
10.1029/2008GC002295. doi:10.1029/2008GC002295.

Finlay, C. C., Maus, S., Beggan, C. D., Bondar, T. N., Chambodut, A., Chernova,
T. A., Chulliat, A., Golovkov, V. P., Hamilton, B., Hamoudi, M., Holme, R.,
Hulot, G., Kuang, W., Langlais, B., Lesur, V., Lowes, F. J., Luehr, H., Macmil-
lan, S., Mandea, M., McLean, S., Manoj, C., Menvielle, M., Michaelis, I., Olsen,
N., Rauberg, J., Rother, M., Sabaka, T. J., Tangborn, A., Toffner-Clausen,
L., Thebault, E., Thomson, A. W. P., Wardinski, I., Wei, Z., Zvereva, T. I.,
and Int Assoc Geomagnetism Aeronomy Wo, 2010: International Geomagnetic
Reference Field: the eleventh generation. Geophys. J. Int., 183(3), 1216–1230.
doi:10.1111/j.1365-246X.2010.04804.x.

Genevey, A., Gallet, Y., Constable, C. G., Korte, M., and Hulot, G., 2008:
ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the
past ten millennia and its application to the recovery of the past dipole moment.
Geochem. Geophys. Geosyst., 9. doi:10.1029/2007GC001881.

Gubbins, D., and Kelly, P., 1995: On the analysis of paleomagnetic secular varia-
tion. J. Geophys. Res.- Solid Earth, 100(B8), 14955–14964.

135



136

Gubbins, D., Willis, A. P., and Sreenivasan, B., 2007: Correlation of Earth’s
magnetic field with lower mantle thermal and seismic structure. Phys. Earth
Planet. Int., 162(3-4), 256–260. doi:10.1016/j.pepi.2007.04.014.

Hoffman, K., 1981: Paleomagnetic excursions, aborted reversals and transitional
fields. Nature, 294, 67–69.

Johnson, C., and Constable, C., 1997: The time-averaged geomagnetic field: global
and regional biases for 0-5 Ma. Geophys. J. Int., 131(3), 643+.

Korte, M., and Constable, C. G., Submitted: Improvements to millennial geomag-
netic field reconstructions. Phys. Earth Planet. Int.

Korte, M., Constable, C. G., F., D., and Holme, R., In Prep.: Reconstructing the
Holocene Geomagnetic Field. Earth Planet. Sci. Lett.

Laj, C., and Channell, J. E. T., 2007: Geomagnetic excursions. In Geomagnetism,
editor M. Kono and G. Schubert, volume 5 of Treatise on Geophysics, 373–416.
Elsevier, Amsterdam.

Laj, C., Kissel, C., Mazaud, A., Channell, J. E. T., and Beer, J., 2000: North
Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the
Laschamp event. Phil. Trans. Roy. Soc. Lond., 358(1768), 1009–1025.

Leonhardt, R., Fabian, K., Winklhofer, A., M.and Ferk, Laj, C., and Kissel, C.,
2009: Geomagnetic field evolution during the Laschamp excursion. Earth Planet.
Sci. Lett., 278(1-2), 87–95. doi:10.1016/j.epsl.2008.11.028.

Lund, S., Stoner, J. S., Channell, J. E. T., and Acton, G., 2006: A
summary of Brunhes paleomagnetic field variability recorded in Ocean
Drilling Program cores. Phys. Earth Planet. Int., 156(3-4), 194–204. doi:
10.1016/j.pepi.2005.10.009.

McMillan, D. G., Constable, C. G., and Parker, R. L., 2004: Assessing the
dipolar signal in stacked paleointensity records using a statistical error model
and geodynamo simulations. Phys. Earth Planet. Int., 145(1-4), 37–54. doi:
10.1016/j.pepi.2004.02.011.

Olsen, N., Mandea, M., Sabaka, T. J., and Toffner-Clausen, L., 2009: CHAOS-2-a
geomagnetic field model derived from one decade of continuous satellite data.
Geophys. J. Int., 179(3), 1477–1487. doi:10.1111/j.1365-246X.2009.04386.x.

Stoner, J. S., Laj, C., Channell, J. E. T., and Kissel, C., 2002: South Atlantic and
North Atlantic geomagnetic paleointensity stacks (0-80 ka): implications for
inter-hemispheric correlation. Quaternary Science Reviews, 21(10), 1141–1151.

Tauxe, L., 2005: Lectures in Paleomagnetism.
http://earthref.org/MAGIC/books/Tauxe/2005/.



137

Tauxe, L., and Yamazaki, T., 2007: Paleointensities. In Geomagnetism, editor M.
Kono and G. Schubert, volume 5 of Treatise on Geophysics, 509–563. Elsevier,
Amsterdam.

Valet, J. P., and Meynadier, L., 1993: Geomagnetic-field intensity and reversals
during the past 4 million years. Nature, 366(6452), 234–238.

Valet, J. P., Meynadier, L., and Guyodo, Y., 2005: Geomagnetic dipole strength
and reversal rate over the past two million years. Nature, 435(7043), 802–805.
doi:10.1038/nature03674.

Ziegler, L. B., and Constable, C. G., Submitted: Asymmetry in growth and decay
of the geomagnetic dipole. Earth Planet. Sci. Lett.

Ziegler, L. B., Constable, C. G., Johnson, C. L., and Tauxe, L., 2011: PADM2M:
a penalized maximum likelihood model of the 02 Ma palaeomagnetic axial
dipole moment. Geophys. J. Int., 184(3), 1069–1089. doi:doi: 10.1111/j.1365-
246X.2010.04905.x.



Chapter 6

Concluding Remarks and Future

Outlook

This body of work features novel analytical methods for exploring in

depth the growing collection of paleomagnetic field intensity data. Through the use

of a unique bootstrap resampling technique which accommodates uneven temporal

distribution of the data, a mean VADM for 0-1 Ma was estimated. I also found that

paleointensities derived from archeologic objects and igneous samples differed by

10-15% on average. In further work, such as the creation of PADM2M in chapter

3, we treated both sources of paleointensities as reliable, but considered them as

two distinct data compilations with different statistical properties.

The PADM2M model represents the best global picture to date of axial

dipole moment variations over the last two million years. While earlier, comparable

efforts stacked and averaged RPI data to build a composite model, PADM2M is the

first model made using inverse methods. Advances in this regard are the ability of

the new algorithm to incorporate both absolute and relative paleointensities into

the resulting model, and the use of robust methods of estimation for a less biased

result. Additionally, PADM2M is continuous and twice differentiable, allowing

users to evaluate the model and its first and second derivative at any specified

time. While reference models of axial dipole moment are useful for a variety of
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applications including chronostratigraphy and exposure dating, this dissertation

focuses on the implications of ADM variations for geodynamo processes. In chapter

4 through the evaluation of PADM2M derivatives we look in detail at growth

and decay in the magnetic field strength on a variety of timescales. The subtle,

distinct statistical differences between growth and decay rates led to firm support

for connecting excursional and reverse events as part of a continuum of paleosecular

variation.

I look beyond the axial dipole in chapter 5 and explore regional features

in paleomagnetic field strength. While the signature long-period axial dipole vari-

ations are present in all regions, some moderate to large scale differences are clear.

Understanding whether those difference reflect non-axial dipole signal, or are an

artifact of errors and uncertainties in the data is an active area of investigation.

I expect and hope that the PADM2M model will serve as a useful reference

tool for many paleomagnetic applications. Additionally, the associated algorithm

developed to create it and the RADM models of chapter 5 can be incorporated into

future modeling. The algorithm can be used to create PADM and RADM models

on a variety of timescales for global or regional datasets with a flexible variety of

resolutions (depending on the data). Pieces of the algorithm, such as the penalized

maximum likelihood inversion with included parametric fitting of required pdf

functions can be adapted for use in other geomagnetic models involving time-

variations.

The research into RADM models in chapter 5 suggests many potential

follow up studies. A useful place to start, for instance, would be creating higher

resolution models RADM models spanning 0-40 ka, where data coverage is bet-

ter than for older ages. These models would overlap with and have comparable

temporal resolution to Holocene magnetic field models which describe the non-

axial-dipole field, allowing for informative comparisons.




