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Quantum oscillations suggest hidden quantum phase transition in the cuprate
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For both electron- and hole-doped cuprates, superconductivity appears in the vicinity of sup-
pressed broken symmetry order, suggesting that quantum criticality plays a vital role in the physics
of these systems. A confounding factor in identifying the role of quantum criticality in the electron-
doped systems is the competing influence of chemical doping and oxygen stoichiometry. Using high
quality thin films of Pr2CuO4±δ, we tune superconductivity and uncover the influence of quantum
criticality without Ce substitution. We observe magnetic quantum oscillations that are consistent
with the presence of small hole-like Fermi surface pockets, and a large mass enhancement near the
suppression of superconductivity. Tuning these materials using only oxygen stoichiometry allows
the observation of quantum oscillations and provides a new axis with which to explore the physics
underlying the electron-doped side of the cuprate phase diagram.

Identifying the nature of ordered states that are proxi-
mal to superconductivity is central to our understanding
of the cuprates. The properties of these states set im-
portant limits on their underlying microscopic descrip-
tion, and can reveal the presence of a quantum critical
point and associated changes in symmetry and dominant
interactions. Describing the physics common to both
electron- and hole-doped cuprates is complicated in large
part because of their different structures. Hole-doped
systems (e.g., La2−xSrxCuO4 and YBa2Cu3O7) have oc-
tahedrally or pyramidally coordinated Cu ions, while
electron-doped systems such as Pr2−xCexCuO4 (PCCO)
have square planar coordinated Cu ions. Moreover, it
is well known that electron-doped cuprates, unlike their
hole-doped counterparts, do not exhibit superconductiv-
ity as grown, but need to be annealed in an oxygen defi-
cient environment [1, 2].

The effect of annealing and its relationship to chemi-
cal doping remains controversial, and has led to spirited
debate over the electron-doped phase diagram [3, 4]. In
particular, the questions of whether antiferromagnetism
(AFM) co-exists with superconductivity or is phase sepa-
rated by oxygen inhomogeneity, and whether a quantum
critical point (QCP) exists near optimal Tc (x ∼ 0.16)
or at much lower (Ce) doping (x ≤ 0.13) [3–7], remain
unresolved. A central difficulty in understanding simul-
taneously doped and annealed cuprates is the role of dis-
order, which is known to affect both magnetism and su-
perconductivity [3, 8]. Magnetic quantum oscillations are
exponentially sensitive to the electronic mean free path
of a material [9], and so cuprates that show quantum
oscillations have facilitated rapid progress in our under-
standing of their physics [10–14]. In particular they have

allowed the identification of the presence of a QCP in
hole and electron-doped systems, indicated by a strong
enhancement in the effective mass as a function of dop-
ing [15, 16]. In this work, we utilize recent advances
in thin film synthesis of Pr2CuO4 to make ultra-clean
samples that are metallic and superconducting without
addition of Ce [8, 17], allowing us to observe quantum
oscillations for the first time. This allows us to investi-
gate the physics of electron-doped cuprates without the
challenge of disentangling the effects of Ce substitution
and annealing.

Our observation of quantum oscillations in high qual-
ity molecular beam epitaxy (MBE) grown films of
Pr2CuO4±δ serves as a direct probe of the Fermi surface
and quasiparticle interactions in this cuprate supercon-
ductor. We reveal a correlation between the electronic
effective mass and the structural c-axis lattice constant,
which can be tuned through oxygen annealing. Our
main findings are summarized in Fig. 1, which shows the
crossover from insulating to metallic temperature depen-
dent in-plane resistivity ρxx as a function of the interlayer
lattice parameter c, as well as the inverse quasiparticle
effective mass of two samples for which we have observed
quantum oscillations and evidence for Fermi surface re-
construction. Also shown is the antiferromagnetic order-
ing temperature TN observed in bulk samples [18], and
the residual resistivity ratio (RRR ≡ ρ(275K)/ρ(30K))
which crosses from metallic (RRR & 1) to insulating
(RRR � 1) behavior at c = 12.205 Å.

Quantum oscillations are the unequivocal signature of
a material’s Fermi surface (FS), which in turn is the defin-
ing characteristic of a metal. Both thermodynamic and
transport properties are acutely sensitive to the density of
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FIG. 1. Transport in Pr2CuO4±δ films. Contour plot of the
in-plane resistivity ρxx as a function of c-axis lattice param-
eter and temperature (right scale), measured on 18 different
Pr2CuO4±δ samples. Also shown (left scale) are the inverse
quasiparticle effective masses determined from quantum os-
cillation measurements on two samples, discussed in the text,
as well as a schematic boundary (thick line) between the an-
tiferromagnetic insulating phase (AFI) as determined from
bulk magnetic measurements of the Neel ordering tempera-
ture TN [18], and the paramagnetic metallic (PMM), insu-
lating (PMI), and superconducting (SC) phases. Top panel:
residual resistivity ratio RRR, defined as ρ(275K)/ρ(30K).

electronic states at this energy. In metals, the electronic
states are quantized in the presence of a magnetic field B.
For sufficiently clean metals the density of states (DOS)
becomes an oscillatory function of B and quantities sensi-
tive to the DOS such as conductivity exhibit quantum os-
cillations periodic inB−1. Quantum oscillations are often
difficult to resolve in complex materials (such as transi-
tion metal oxides) due to disorder effects, which broaden
the Landau levels until they are indistinguishable in lab-
oratory scale magnetic fields. The discovery of quantum
oscillations in hole-doped YBa2Cu3O6.5[10, 11] opened
the search for Fermi surface spectroscopy throughout the
phase diagram of the cuprates. To date a limited range
of hole dopings have been explored in YBa2Cu3O6.5[10,
14], YBa2Cu4O8[19], and in HgBa2CuO4+δ,[20] and
Tl2Ba2CuO6+d [21]. Both large and small Fermi sur-
face pockets have been revealed near optimal Tc in
electron-doped Nd2−xCexCuO4 (NCCO)[12], and for
both electron[15] and hole-doped[16] cuprates the change
of the Fermi surface with doping is accompanied by an
evolution of the effective mass, and interpreted as arising
from correlations near critical doping levels. For recent
reviews see e.g. Refs. [22, 23].

Film preparation and experimental techniques

Films studied in this work are 100 nm thick, grown via
molecular beam epitaxy on (001) SrTiO3 substrates. De-
tails of the synthesis, annealing, and extensive structural

characterization of the films are discussed elsewhere[17].
Aside from a small difference in the post-growth anneal-
ing time, the films studied in this work are prepared iden-
tically, and the only structural difference is variation in
the c-axis lattice parameter (see Table I). Films were pat-
terned into Hall bar geometries for in-ab-plane (ρxx) and
Hall (ρxy) resistivity measurements using four-point low-
frequency techniques at temperatures to 0.3 K with DC
magnetic fields to 16 T, and pulsed magnetic fields to
above 90 T applied perpendicular to the ab-plane. Sev-
eral Hall bar devices were patterned and measured from
each film and showed identical behavior; data shown be-
low are from two devices measured to the highest fields
available. We find no evidence of inhomogeniety in film
materials characterization or our transport studies; ad-
ditional discussion of film characterization data are pre-
sented in the Supplementary Information. Changes to
the oxygen stoichiometry affect both the carrier concen-
tration of the material and the local copper coordination
from square planar to pyramidal (or octahedral). As a
result, in cuprates with square-planar coordinated Cu,
the Cu-O bond length is 10 % longer compared to octa-
hedral coordination, contracting the crystallographic c-
axis. The c-axis length is therefore correlated with, and
hence can be used as a measure of, oxygen stoichiometry
(see Fig. 1).

The prevailing picture of Ce and oxygen doping (see
e.g. Ref. 25 for a thorough review) is that Ce is an elec-
tron donor, and oxygen a hole donor. However, changing
the oxygen stoichiometry δ is known to cause multiple
effects including stabilization of antiferromagnetic order,
addition of charge carriers and tuning of disorder[6, 8].
Based on the known variation of lattice structure with
oxygen content, our Pr2CuO4±δ films are stoichiometric
to within δ ≤ 0.04[26]. The observation of quantum os-
cillations in the high field magnetotransport studies of
these films indicates that disorder is minimal.

Magnetotransport results

Figure 2 shows the temperature dependent resistivity of
two Pr2CuO4 samples (1 and 2), measured in zero field;
the superconducting transition occurs at Tc = 25 K for
both films. The low-temperature residual resistivity (ap-
proximated by ρ30K , above the superconducting transi-
tion) is 30µΩcm for sample 2. This is comparable to
values observed in optimally doped Pr2−xCexCuO4 films
grown using various techniques[8, 27, 28]. An estimate
of the carrier density from the low-temperature, low-field
Hall coefficient (shown in Fig. 3) of RH = 5×10−9 Ωm/T
for sample 1 gives n = 1.0 × 1022 cm−3. The change in
sign of the Hall coefficient for sample 1 and strongly non-
linear Hall effect at low temperature (indicated by sep-
aration of the low-field and high-field RH in Fig. 3 for
sample 2) are inconsistent with a single, large-area FS.
Instead, they indicate the presence of a broken-symmetry
phase and reconstructed FS[5, 29].

The low-temperature (∼ 1.5 K) magnetoresistance for
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FIG. 2. Resistivity and magnetotransport data. First panel: resistivity ρxx versus temperature for two PCO samples. Inset:
tetragonal unit cell of Pr2CuO4. Second panel: magnetoresistance measured to 90 T for both samples near 1.5 K; note the
break in axis scale. Third panel: suppression of both quantum oscillations, and a region of increased resistance at fields between
5 and 40 T, with temperature.

TABLE I. Sample characterization parameters. Data shown for two Pr2CuO4±δ samples measured in this work, as well as (for
reference) a Ce-doped film synthesized using similar conditions. Parameters include film annealing conditions, fractional Ce
content x, interlayer lattice parameter c, low-temperature (30 K) resistivity ρ30K , residual resistivity ratio (RRR), supercon-
ducting transition temperature Tc, and `tr the transport mean free path. Results from the quantum oscillation analysis are
separated at right: `D the mean free path extracted using the Dingle temperature TD, quantum oscillation frequency F , and
the quasiparticle effective mass m∗.

Sample Composition x Tred c ρ30K RRR Tc `tr `D TD F m∗

(Ce content) (K) (Å) (µΩ cm) (K) (nm) (nm) (K) (T) (me)
1 Pr2CuO4±δ - 525 12.196 61 9.6 25.7 17 3.4 230 307±10 0.55±0.1
2 Pr2CuO4±δ - 575 12.201 28 9.2 25.0 23 4.5 76 310±10 1.3±0.2

(Ref. 24) Pr2−xCexCuO4±δ 0.14 - 12.148 21 8.5 24.6 21.1 - - - -

samples 1 and 2 are shown in Fig. 2. Both samples
show a sharp transition to the normal state with a low-
temperature upper critical field Bc2 = 6 T. Below Tc the
MR becomes negative for sample 1 (and strongly negative
for sample 2) between 6.5 T and ∼30 T; such a “hump” in
the MR has been linked to enhanced spin-dependent scat-
tering [30]. After passing through a minimum, the mag-
netoresistance shows Shubnikov-de Haas quantum oscil-
lations in the raw traces for both samples up to 90 T[31].
At elevated temperatures the quantum oscillations are
suppressed (visible for sample 2 in Fig. 2) by thermal
broadening within Landau levels; this suppression allows
for an estimate of the effective mass.

Analysis of magnetic quantum oscillations

To analyze the quantum oscillation spectrum, we sub-
tract a smoothly varying low-order polynomial from the
data shown in Fig. 2 to obtain the relative change in resis-
tivity shown in Fig. 4. For such low frequency of oscilla-
tions, there is some sensitivity of subsequent analyses to
the choice of background subtraction procedure; results
described below have quoted uncertainties that reflect

this sensitivity. Many background subtraction proce-
dures were used to minimize systematic error in the deter-
mination of frequency and mass; details are described in
the Supplementary Information. The first panel of Fig. 4
shows the low-temperature magnetoresistance for sample
2 plotted versus inverse magnetic field, showing periodic
oscillations with a frequency of 0.0032 T−1. The Lifshitz-
Kosevich description of the oscillating component of the
magnetoresistance ∆R(B) of a quasi-2D Fermi surface is

∆R(B) ∝ R0RDRT cos (2πF/B) . (1)

where R0 is an overall amplitude, RD = e−π/ωcτD is the

Dingle factor, RT =
(

2π2kBT/~ωc

sinh(2π2kBT/~ωc)

)
is the thermal

damping factor, F is the quantum oscillation frequency,
ωc ≡ eB/m∗ is the cyclotron frequency, and m∗ the is
quasiparticle effective mass. Fits to Eq. 1 are shown in
the first panel of Fig. 4 and agree with the background-
subtracted data with a single value of F and the oscil-
lation scattering time τD. The orbitally averaged mean

free path lD = τD
~
m∗

√
F
pi ≈ 4 nm is smaller than the
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FIG. 3. Hall coefficient RH versus temperature. Measure-
ments were performed at magnetic fields of 15 T for both
samples, and 55 T for sample 2.

transport mean free path `tr ≈ 20 nm for both sam-
ples, as expected since quantum oscillations are sensitive
to both small and large angle scattering events. Sam-
ple mobilities µ are both ∼ 0.01 T−1 as calculated from
both transport µtr = RH/ρxx and quantum oscillation
µD = τDe/m

∗ measurements.

To precisely estimate F , we fit all of the quantum
oscillatory data to a single temperature-independent
frequency F , and a temperature-dependent amplitude.
(Similar quantum oscillation data and analyses are shown
for sample 1 in the Supplementary Information). The fre-
quencies for the two samples are identical to within their
uncertainties, F1 = 307± 10 T and F2 = 310± 10 T, as
determined using fits to Eq. 1 and analyses of the fast
Fourier transform (FFT) spectra. The FFTs for all tem-
peratures are plotted in Fig. 4 for sample 2, showing a sin-
gle temperature-independent oscillation frequency near
300 T.

The Onsager relation F =
( ~
2πe

)
AF relates the fre-

quency F to the extremal FS area AF . We find Ak = 2.8
nm−2; this is ≈ 1.1 % of the Brillouin zone volume ABZ
= (2π/a)2 = 252 nm−2 (a is the in-plane lattice con-
stant). This small BZ fraction is consistent with the re-
constructed FS indicated by the Hall effect. No other
frequencies are visible in either the raw signal or in the
FFT (Fig. 4), including the vicinity of ∼10 kT (corre-
sponding to AF ∼0.4 ABZ) that would be consistent with
a large FS cylinder or magnetic breakdown as observed
in NCCO [12].

From the temperature dependence of the quantum os-
cillation amplitudes (RT in Eq. 1) we extract the quasi-
particle effective mass m∗, which in general differs from
the band mass due to the renormalization of many-body
effects. The amplitude is plotted versus temperature in
Fig. 5, along with a single-parameter fit to the above ex-
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FIG. 4. Magnetic quantum oscillations in Pr2CuO4±δ sample
2. Top: resistivity versus field, along with fits to the Lifshitz-
Kosevich formula (see text.) Bottom: fast Fourier transform
spectra, showing a single peak near 300 T (at left, linear fre-
quency scale), and no evidence for high frequency oscillations
(note break in axis, and log scale).

pression yielding m∗ = 0.55 ± 0.1me for sample 1, and
m∗ = 1.3± 0.2me for sample 2.

Discussion and implications

The effective mass changes by greater than a factor of
two, with no discernible change in the FS cross-section
(i.e. in the observed frequency F ). It is unlikely that
such a large change in effective mass could originate from
changes in the band structure or band filling caused by a
slight change in either doping or disorder driven by oxy-
gen stoichiometry. A more plausible scenario is that this
change in effective mass is the result of a change in the
renormalizing many-body interactions. The strong varia-
tion in m∗ for the two samples studied here indicates that
this material lies in close proximity to a quantum crit-
ical point on the boundary between ground states with
competing symmetries. As shown in Fig. 1, we iden-
tify the c-axis lattice constant, similar to Ce content x
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in Pr2−xCexCuO4, as a parameter identifying proximity
to one or more broken-symmetry phases. Such proxim-
ity has been seen in the hole-doped cuprates, which evi-
dence an electron-like pocket at low doping that evolves
to a large hole-like pocket for overdoped materials (as
observed via quantum oscillations in Tl2Ba2CuO6+d [21]
and angle-dependent magnetotransport[32]), with one or
more quantum critical points in between[15, 16]. Surface
sensitive probes such as ARPES have observed analo-
gous evolution with Ce doping in electron-doped materi-
als such as NCCO [33–35], while recent work has revealed
the importance of oxygen reduction [36] in the evolution
of apparent FS arcs near “optimal” doping. Our finding
of a broken-symmetry reconstructed FS in Pr2CuO4±δ
suggests that such evolution may occur with oxygen re-
duction for a wide range of Ce content.

The frequency we observe is similar to that found in
bulk samples of NCCO near optimal doping[12, 13, 15],
suggesting that the low-temperature ordered state in the
films studied here is the same. Oscillations arising from
a large FS cylinder as reported in ARPES [33, 36], or
ascribed to magnetic breakdown in NCCO [15], would
appear with F ∼10 kT but were not evident in either
sample at temperatures down to 0.3 K and fields to 90 T.
Our work demonstrates that MBE grown films are a new
platform for studying the Fermi surface of cuprates and
provide an unique method by which to cleanly tune these
materials across a phase diagram without Ce doping. In
particular, sensitivity to the effects of a nearby QCP in
Pr2CuO4±δ opens the exciting possibility of conclusively
identifying not only the existence of a QCP, but of the
pertinent tuning parameter that leads to high tempera-
ture superconductivity in these materials.
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FIG. 5. The quasiparticle effective mass. Quantum oscilla-
tion amplitude extracted from fast Fourier transform analyses
versus temperature for two Pr2CuO4±δ Hall bar devices; er-
ror bars indicate ±1σ standard deviation. Also shown are fits
(continuous curves) to the Lifshitz-Kosevich temperature de-
pendence for each sample (see text) along with broken lines
indicating uncertainty in the best-fit value for m∗.
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X. Béchamp-Laganière, K. D. Truong, P. Fournier,
and P. Rauwel. Antiferromagnetic fluctuations and the
hall effect of electron-doped cuprates: Possibility of a
quantum phase transition at underdoping. Phys. Rev.
B, 81:104509, Mar 2010.
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