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Hypoadiponectinemia has been widely observed in
patients with gestational diabetes mellitus (GDM). To
investigate the causal role of hypoadiponectinemia in
GDM, adiponectin gene knockout (Adipog~'~) and wild-
type (WT) mice were crossed to produce pregnant
mouse models with or without adiponectin deficiency.
Adenoviral vector-mediated in vivo transduction was
used to reconstitute adiponectin during late pregnancy.
Results showed that Adipog~’~ dams developed glu-
cose intolerance and hyperlipidemia in late pregnancy.
Increased fetal body weight was detected in Adipoq~/~
dams. Adiponectin reconstitution abolished these met-
abolic defects in Adipoq" ~ dams. Hepatic glucose and
triglyceride production rates of Adipoq™/~ dams were
significantly higher than those of WT dams. Robustly
enhanced lipolysis was found in gonadal fat of
Adipoq" ~ dams. Interestingly, similar levels of insulin-
induced glucose disposal and insulin signaling in meta-
bolically active tissues in Adipog~/~ and WT dams
indicated that maternal adiponectin deficiency does
not reduce insulin sensitivity. However, remarkably de-
creased serum insulin concentrations were observed in
Adipog~’~ dams. Furthermore, pB-cell mass, but not
glucose-stimulated insulin release, in Adipoq_’_ dams
was significantly reduced compared with WT dams.
Together, these results demonstrate that adiponectin
plays an important role in controlling maternal meta-
bolic adaptation to pregnancy.

Gestational diabetes mellitus (GDM) is a metabolic com-
plication of pregnancy. GDM affects not only pregnancy
outcomes but also metabolism in later life of both the

GDM mothers and their offspring (1-4). Insulin resistance
and insulin insufficiency have been considered to be
the main underlying mechanisms of GDM (5). However,
the causes of insulin resistance and insulin insufficiency
are still largely unclear, which impedes the develop-
ment of preventive and therapeutic approaches to re-
ducing GDM and its impact on enhancing obesity in
the offspring.

Adiponectin is an adipocyte-secreted hormone that
enhances insulin sensitivity and improves glucose me-
tabolism. During pregnancy, adiponectin is expressed and
circulated in maternal and fetal compartments separately
(6,7). In humans, maternal blood adiponectin concentrations
dedline during late pregnancy, which has been proposed as a
potential underlying mechanism for insulin resistance that
develops during late gestation in normal pregnancies (8).
Obesity is a key risk factor for GDM, and obesity decreases
adiponectin gene expression. Significantly low levels of blood
adiponectin (hypoadiponectinemia) have been widely ob-
served in pregnant women with obesity and/or GDM (9).
Most importantly, hypoadiponectinemia before pregnancy
and during the first and second trimesters is a major risk
factor for GDM (10-13). Therefore, results from these hu-
man studies strongly suggest that hypoadiponectinemia may
underlie GDM. However, there is no experimental evidence to
support this hypothesis or to darify how hypoadiponectine-
mia contributes to the metabolic defects in GDM.

Using genetic mouse models, the current study in-
vestigated the regulatory effects of adiponectin on ma-
ternal glucose and lipid metabolism during pregnancy.
Our study found that, unlike virgin Adipog” /™ mice, preg-
nant Adipog”’~ mice spontaneously developed glucose
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intolerance and hyperlipidemia during late pregnancy.
Significantly increased body weight and blood glucose lev-
els were observed in fetuses from Adipog ’~ dams. After
delivery, blood glucose and lipid profiles of Adipog /"~
dams were restored to the levels of wild-type (WT)
mice. Remarkably increased hepatic glucose and triglycer-
ide (TG) production rates and enhanced lipolysis of white
adipose tissue (WAT) were detected in pregnant Adipog ’~
dams. Decreased serum insulin concentrations and (-cell
mass indicated insulin insufficiency in pregnant Adipog ’~
mice. Furthermore, in vivo adiponectin reconstitution
attenuated adiponectin deficiency-induced glucose intol-
erance and restored fetal body weight. Together, these
results indicate that hypoadiponectinemia may play a
role in the development of GDM. Our study also revealed
that pregnant Adipog™’~ mice provide a mouse model
for GDM study.

RESEARCH DESIGN AND METHODS

Materials

Glucose, glucose oxidase, BRL37344, DMEM, and RPMI
1640 medium were from Sigma-Aldrich (St. Louis, MO).
Antibodies against Akt, phospho-Akt (Ser473), hormone-
sensitive lipase (HSL), phosphor-HSL (Ser660), adipose
triglyceride lipase (ATGL), peroxisome proliferator—activated
receptor y (PPARy), CCAAT/enhancer binding protein o
(C/EBPa), Ki-67, AMPK, and phosphor-AMPK (Thr172)
were from Cell Signaling Technology (Danvers, MA).
Antibody against mouse adiponectin was from R&D
Systems (Minneapolis, MN). Anti-GAPDH, PEPCK, glucose-
6-phosphatase (G6Pase), and horseradish peroxidase-
linked secondary antibodies were from Santa Cruz
Biotechnology (Santa Cruz, CA). The lipoprotein lipase
(LPL) activity assay kit was from Cell Biolabs (San
Diego, CA). Free fatty acid (FFA) and TG assay kits ware
purchased from Wako Diagnostics (Richmond, VA).
NuPAGE gels, SuperScript III reverse transcriptase, and
oligo(dT)15_1g primer were from Invitrogen (Carlsbad,
CA). The mouse diabetes multiplex assay kit was from
Bio-Rad (Hercules, CA).

Experimental Animals

Adipog™’~ mice were created as previously described (14)
and had been back crossed to C57BL/6. C57BL/6 mice
were purchased from The Jackson Laboratory (Bar Harbor,
ME). Ten- to twelve-week-old nulliparous female mice were
randomly selected for mating. Adipoq” /™ female mice were
mated with WT males or WT female mice mated with
Adipog™’~ males. This cross breeding produced all fetuses
that were Adipog ’*. For the studies of maternal metabolic
adaptation during pregnancy, C57BL/6 mice were mated.
Pregnancy was determined by the presence of a vaginal
plug and was assigned the embryonic day (E) 0.5. To re-
constitute adiponectin, 1 X 10° pfu of purified adenoviral
vectors encoding adiponectin (Ad-Adipog) or green fluores-
cent protein (Ad-gfp) were injected through the tail vein
into Adipoqf/ " dams at E15.5 (15,16). Glucose tolerance
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tests (GTTs) were performed at E16.5 after 6-h fasting
with intraperitoneal injection of glucose (2 g/kg of body
weight). Maternal tissues, placentas, and fetuses were
collected at indicated gestational days through cesarean
section. Except for some studies with fasted mice (see
detail in the legends of Figs. 2D and 5B), tissue samples
were collected when the mother was in the fed state.
Body composition was determined by using EchoMRI
System (Houston, TX). Experiments using mouse models
were performed under the Association for Assessment
and Accreditation of Laboratory Animal Care guidelines
with approval from the University of California San
Diego Animal Care and Use Committee.

Hyperinsulinemic-Euglycemic Clamp Assay

As we previously described (17), 4 days after surgery, the
hyperinsulinemic-euglycemic clamp experiments began with
a constant infusion of D—3—3H-g1ucose (5 wCi/h; DuPont
NEN, Boston, MA). Hepatic glucose production (HGP) and
glucose disappearance rate (GDR) were calculated in the
basal state and during the steady-state phase of the damp.

Hepatic TG Production

Hepatic TG secretion rates were measured at E18.5 after
inhibiting endogenous LPL activity by intravenous in-
jection of Poloxamer-407 (1,000 mg/kg; BASF, Mount
Olive, NJ), as we previously described (16). Mice were
fasted for 4 h before injection. Blood TG concentrations
were measured using a Wako kit.

WAT Lipolysis

WAT explants were collected at E18.5 for measuring
lipolysis (18). Approximately 20 mg of gonadal adipose
tissue explants were incubated in DMEM with 0.5% fatty
acid—free BSA. 33-Adrenergic receptor agonist BRL37344
was added into medium at 50 ng/mL. Medium samples
were collected at 30-, 60-, 120-, and 180-min intervals
after adding BRL. The levels of FFA and free glycerol
were measured and normalized to the weight of adipose
explants.

Plasmid Constructs and Generation of Adenovirus
Vectors

Adenoviruses encoding mouse adiponectin or GFP were
created using the pAd/CMV/V5-Dest vector (Invitrogen).
Construction and purification of the viral vectors were
previously described (16).

Immunohistochemistry and B-Islet Morphometric
Analysis

Pancreatic biopsy samples were fixed in 10% neutral-
buffered formalin, processed, and paraffin embedded. Tissue
sections were blocked with 2% H,0, in PBS and then heated
in 0.1 mol/L pH 6.0 ditrate buffer for 15 min at 95°C for
antigen retrieval. After second round blocking, immunostain-
ing of insulin was done using anti-insulin primary antibody
(10 pg/mL) or rabbit serum (for negative control) for 4 h.
The sections were visualized using 3,3'-diaminobenzidine
(Vector Laboratories, Burlingame, CA) at room temperature
for 1.5 min and counterstained with hematoxylin. -Islet and



1128  Adiponectin and GDM

pancreas areas were measured using insulin-stained series of
sections with the Leica SlidePath software. The percentage of
B-islet area in the pancreas was determined by dividing
the area of insulin-positive cells in one section by the area
of the section. The B-cell mass was calculated by multiplying
the pancreas weight by the percentage of islet area (19).
Immunofluorescence was performed using sheep anti-insulin
or rabbit antiglucagon primary antibody with paraffin-
embedded pancreas sections.

B-Islet Isolation and Insulin Secretion

Pancreases were collected at E18.5. Islets were isolated
by collagenase digestion and differential centrifugation
through Ficol gradients using a protocol previously de-
scribed (19). After overnight culture in RPMI with 5 mmol/L
glucose, similar size islets were handpicked and incubated
for 1 h in Krebs-Ringer medium with 2 mmol/L glucose.
The islets were stimulated by adding glucose (20 mmol/L)
or KC1 (30 mmol/L) for 1 h. Medium was collected for
insulin measurement.

Western Blot and Real-time PCR Assays

Protein samples were extracted from fat, livers, or skeletal
muscle and separated using NuPAGE gels. Proteins were
blotted with the indicated antibodies (see details in figure
legends). The bands from Western blots were quantified
using Quantity One software (Bio-Rad). Total RNA was
prepared from tissues or cells using Trizol according to
the manufacturer’s protocol. cDNA was synthesized using
SuperScript III Reverse Transcriptase and oligo(dT)15 15
primer. Real-time PCR was performed using an Mx3000P
Real-Time PCR System (Stratagene, San Diego, CA) and spe-
cific primers (Table 1). The levels of PCR product were calcu-
lated from standard curves established from each primer pair.
Expression data were normalized to the amount of 18S rRNA.

Statistical Analysis

Data are expressed as mean = SEM. Statistical analyses
were performed using the Student ¢ test or ANOVA, fol-
lowed by Bonferroni posttests using Prism software. Dif-
ferences were considered significant at P < 0.05.

RESULTS

Maternal Metabolic Adaptation in C57BL/6 Mice
Although mouse has become the premier mammalian model
in biomedical research due to its genetic and physiological

Table 1—Sequences for real-time PCR primers
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similarities to humans and easy manipulation of the genome,
information about maternal metabolic adaptation in mice is
very limited. Using C57BL/6 mice, our study showed that
pregnant mice gained significant amounts of body weight
(data not shown). The increase of the dam’s body weight was
mainly manifested through increasing liver and fat tissue
mass (Fig. 1A and B). Similar to humans (20), the dam’s blood
glucose concentrations were significantly decreased in late
pregnancy (Fig. 1C). The decrease of maternal blood glucose
may be due to expansion of blood volume and the steadily
increasing utilization rates of glucose by the uteroplacenta
and fetus during late pregnancy. In contrast, maternal blood
TG, FFA, and insulin levels were robustly elevated during
pregnancy (Fig. 1D-F). Two weeks after delivery, most of
these metabolic phenotypes, including blood glucose, TG,
FFA, and insulin, recovered (Fig. 1C-F).

We also characterized pregnancy-induced WAT expan-
sion. Analyzing gonadal fat histology (inguinal fat was
not analyzed because of its mixture with fat and the
mammary gland), we found that pregnancy increases
maternal white adipocyte size (Fig. 1G) but not cell num-
ber (data not shown). A remarkable decrease in phosphor-
ylation of HSL and protein levels of ATGL were found in
gonadal fat (Fig. 1H and I). However, despite increased fat
tissue mass, expression of the adipogenic transcription
factors PPARy and C/EBPa was reduced during pregnancy
(Fig. 1H and I). These results indicate that pregnancy
increases maternal WAT mass mainly by increasing lipid
accumulation but not recruitment of new adipocytes.
These results also indicate that WAT lipolysis is signifi-
cantly suppressed during normal mouse pregnancy, which
is similar to that in early and midpregnancy in humans.
Also similar to pregnant women (8), significantly de-
creased adiponectin was observed in blood (data not
shown) and WAT (Fig. 1H and I) of pregnant mice from
E14.5 to the end of gestation.

Using hyperinsulinemic-euglycemic clamps at E16.5,
our study found that insulin-stimulated GDR was signif-
icantly reduced (Fig. 1J) but basal HGP rates were signif-
icantly increased in pregnant mice (Fig. 1K). However,
insulin-suppressed HGP reduction rates were similar be-
tween pregnant and nonpregnant mice (Fig. 1L), in line
with human and dog studies (21-23). In addition, phos-
phorylation of AKT was significantly decreased in both
gonadal fat and skeletal muscle (Fig. 1H, I, M, and N),

Gene Forward (5’ to 3’) Reverse (5’ to 3')

18S rRNA CGAAAGCATTTGCCAAGAAT AGTCGGCATCGTTTATGGTC
Dgat1 TCGTGGTATCCTGAATTGGTG AGGTTCTCTAAAAATAACCTTGCATT
Fasn ACTCCACAGGTGGGAACAAG CCCTTGATGAAGAGGGATCA
Srebpic GGTTTTGAACGACATCGAAGA CGGGAAGTCACTGTCTTGGT
Vidir CCTATAACTAGGTCTTTGCAGATATGG GAGCCCCTGAAGGAATGCC
Mittp GCCCAACGTACTTCTAATTTATGG TGCTGGCCAACACGTCTA
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Figure 1—Maternal metabolic adaptation in mice. Nulliparous C57BL/6 mice (10-12 weeks old) were used. Pregnancy was determined by
the presence of a vaginal plug and assigned as E0.5. Tissue samples were collected at fed state at indicated gestational or postpartum (P)
14 days. Increased maternal liver (A) and body fat (B) were observed during pregnancy and during lactation. Serum glucose (C), TG (D), FFA
(E), and insulin (F) concentrations were measured using commercial kits. Adipocyte areas were analyzed using ImageJ software with
hematoxylin-eosin-stained gonadal fat sections (G). Phosphorylation and protein levels were determined by Western blotting using
proteins from gonadal fat (H), skeletal muscle (M, top), and liver (M, bottom). Western blotting of fat (/) and skeletal muscle and liver (N)
were quantified by measuring image densities. Insulin-stimulated GDR (IS-GDR) (J), basal HGP (K), and insulin-suppressed HGP reduction
(L) were measured using hyperinsulinemic-euglycemic clamping at E18.5. Data are presented as mean + SEM; n = 8-10. *P < 0.05 and
*P < 0.01 vs. Non-Preg (nonpregnant). AU, arbitrary units.

but not in the liver (Fig. 1M and N). These results indicate
that pregnancy reduces insulin sensitivity in WAT and
skeletal muscle and increases basal HGP in mice.

Adiponectin Deficiency Increases Maternal Blood
Glucose, TG, and FFA Concentrations and Fetal Weight
We created adiponectin-deficient and control pregnant
mouse models by crossing Adipoq’~ with WT mice. This

breeding scheme produced Adipog ’* fetuses, which
avoided difference in fetal adiponectin. As we recently
reported (24), there was no difference in pregravid body
weights, adiposity, or litter size between Adipog /™ and
WT dams (data not shown). Surprisingly, blood glucose,
FFA, and TG concentrations in Adipog /~ dams were signif-
icantly higher than those of WT dams at E18.5 (Fig. 2A-C).
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Figure 2—Adiponectin deficiency induces glucose intolerance and hyperlipidemia in mice. Adipoq’/’ and WT mice were cross mated to
produce Adipog '~ and WT dams and all resultant fetuses were Adipog ’*. Blood glucose (A), FFA (B), and TG (C) concentrations and fetal

weight (E) were measured using samples from fetuses sacrificed and

6-h fasting. Adiponectin was reconstituted by injecting Ad-Adlipog virus at E15.5 of Adipog

autopsied at E18.5 of fed dams. GTT (D) was performed at E16.5 after
~/~ dams (F-/). Ad-gfo was used as control.

Dams’ blood glucose (F), TG (G), and FFA (H) concentrations and fetal weight (/) were determined at E18.5 at fed state. Data are presented

as mean * SEM; n = 6-8. *P < 0.05, P < 0.01, and **P < 0.001

vs. WT or Ad-gfo-treated Adipog™~ dams.

Furthermore, glucose intolerance was detected in Adipog "~
dams, including significantly increased fasting blood glucose
concentrations (Fig. 2D, E16.5). Fetal body weights of
Adipog~”~ dams were significantly higher than those of fetuses
from WT dams (Fig. 2E). We used an adenoviral vector-
mediated in vivo gene transduction technique to reconsti-
tute maternal adiponectin in some Adipog”’/~ dams
(15,16,25). Results showed that 3-day adiponectin recon-
stitution reduced maternal blood glucose, TG, and FFA con-
centrations and fetal body weight at E18.5 compared with
Ad-gfp-treated Adipog™’~ dams (Fig. 2F-I). In addition,
4 weeks after delivery, blood glucose, TG, and FFA levels of
Adipoq~’~ dams were completely recovered (data not shown).
These results indicate that adiponectin plays an important
role in controlling maternal metabolic adaptation to pregnancy.

Adiponectin Deficiency Does Not Induce Insulin
Resistance but Increases Hepatic Gluconeogenesis in
Pregnant Mice

Decreased glucose utilization in maternal peripheral tissues
and/or increased HGP might impair glucose tolerance in
GDM (26,27). Using hyperinsulinemic-euglycemic clamp
assays, our studies found that insulin-stimulated GDRs
of Adipog’~ dams were comparable to WT dams (Fig. 3A).
Both basal and insulin-stimulated phosphorylation of AKT

protein in metabolically active tissues, such as skeletal musde,
liver, and WAT, were similar to those of WT dams (Fig. 3B,
quantified data not shown). These results indicate that adi-
ponectin deficiency did not induce insulin resistance in preg-
nant mice. Similarly, intact insulin sensitivity has been
observed in chow-fed Adipog™’~ male mice (14).

Despite the fact that the underlying mechanism is still
under debate, the inhibitory effect of adiponectin on hepatic
gluconeogenesis has been well documented (14,28-31). Similar
to nonpregnant mice (14), our damp assay found that basal
HGP rates were significantly increased in Adipog /™ dams (Fig.
30). Expression levels of PEPCK and G6Pase, rate-limiting en-
zymes of gluconeogenesis, were significantly increased in the
livers of Adipoqg ’~ dams (Fig. 3D). Interestingly, insulin-
induced HGP reduction and phosphorylation of AMPK in
livers were similar between Adipog ’~ and WT controls
(Fig. 3D and E). These results indicate that adiponectin
deficiency increases maternal hepatic gluconeogenesis
via a mechanism independent of insulin and AMPK sig-
nal transduction.

Adiponectin Deficiency Increases Maternal WAT
Lipolysis and Hepatic TG Production

Our studies showed that lipolysis in WAT was remarkably
suppressed during normal pregnancy (Fig. 1H and I). In a
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Figure 3—Adiponectin deficiency increases hepatic glucose production. Adipog '~ and WT mice were cross mated to produce Adipogq ™/~
and WT dams. Insulin-stimulated GDR (IS-GDR) (A), HGP (C), and insulin-inhibited HGP (E) were measured by hyperinsulinemic-euglyce-
mic clamp at E18.5. B: Phosphorylation of AKT was measured by Western blotting using tissues collected before and after 5-min insulin
bolus stimulation. D: Protein levels were measured by Western blotting using liver samples after 6-h fasting. Data are presented as mean *
SEM; n = 6. *P < 0.05 and **P < 0.01 vs. WT dams. AU, arbitrary units.

previous study we demonstrated that adiponectin inhibits
lipolysis in adipocytes (18). Therefore, in the present
studies, we measured WAT lipolysis in Adipog /™ dams.
We found that phosphorylation of HSL was significantly
increased in gonadal fat of Adipoqf/ ~ dams (Fig. 44). Pro-
tein levels of the rate-limiting enzyme ATGL, but not
perilipin and CGI58 (coactivator of ATGL), were also sig-
nificantly increased in gonadal fat of Adipog ™/~ dams (Fig.
4A). Using gonadal fat explants, we found that both basal
and B3-adrenergic agonist BRL37344-stimulated glycerol
release rates were significantly increased in WAT of
Adipoq™’~ dams (Fig. 4B). Together, these results indicate
that lipolysis of WAT was significantly enhanced in preg-
nant mice with adiponectin deficiency.

Remarkably increased blood TG concentrations were
observed in Adipoqf/ " dams (Fig. 2C). Using male mice,
we had reported that adiponectin improves blood TG pro-
file by enhancing LPL expression in skeletal muscle (16).
Unlike male mice, LPL protein levels (Fig. 4C) and activity
(Fig. 4D) in skeletal muscle were comparable between
Adipog~’~ and WT dams at E18.5. However, hepatic TG
secretion rates of Adipog /~ dams were significantly
higher than those of WT dams (Fig. 4E). These results
indicate that maternal adiponectin deficiency increases
hepatic TG production, which may be the main cause of
hypertriglyceridemia in these pregnant mice. Further-
more, we also found that expression of Dagtl and Mttp,
which are key genes for TG synthesis and VLDL-TG as-
sembly, but not de novo lipogenic genes Fasn and Srebplc,
was significantly increased in livers of Adipog’~ dams
(Fig. 4F). Fatty acids used for VLDL assembly can origi-
nate from sources other than hepatic de novo fatty acid
synthesis (32). Therefore, enhanced lipolysis of WAT
should provide fatty acids for reesterification in hepato-
cytes and TG production.

Adiponectin Deficiency Induces Insulin Insufficiency in
Pregnant Mice
Due to metabolic demand, there is a large compensatory
B-cell expansion during pregnancy (33). A significant in-
crease in maternal blood insulin concentrations (Fig. 1F)
was observed in C57BL/6 dams. Interestingly, despite in-
creased blood glucose concentrations in Adipog™’~ dams
(Fig. 2A and D), their serum insulin concentrations were
significantly lower than those of WT dams at fed state and
during GTT (Fig. 5A and B). These results indicate that
there is an insulin insufficiency in Adipog”’~ dams.
Compensatory expansion of (-cell mass during preg-
nancy occurs mainly through increased B-cell prolifera-
tion, cell size, and reduced apoptosis (33). We performed
a morphometric analysis of the pancreases. B-Cell islets
of Adipog~’~ dams were significantly smaller than those of
WT dams (Fig. 5C and D). Quantitative analysis showed
that B-cell mass of Adipog /~ dams was significantly lower
than that of WT controls (Fig. 5E). In contrast, adiponectin
reconstitution significantly increased maternal blood in-
sulin concentrations and B-cell mass in Adipog /"~ dams
(Fig. 5F and G). We then studied glucose-stimulated in-
sulin secretion using isolated islets. As shown in Fig. 5H,
high concentrations of glucose or KCl stimulated similar
levels of insulin release from islets from Adipoq /™ dams
and WT controls, indicating that B-cells from Adipoq "~
dams were sensitive to glucose-stimulated insulin secre-
tion. These results indicate that decreased B-cell mass is
most likely responsible for the insulin insufficiency of
Adipoq™’” dams.

DISCUSSION

Although hypoadiponectinemia before and during early
pregnancy closely associates with the development of
GDM in late pregnancy (10-13), the casual relationship
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Figure 4—Adiponectin deficiency enhances lipolysis in WAT and hepatic TG production. Tissue samples were collected from Adipog/~
and WT dams at E18.5. Phosphorylation and protein levels in the gonadal fat (A) and skeletal muscle (C) were measured by Western
blotting. Lipolysis was studied by measuring glycerol release rates using gonadal explants at basal and after 33 ligand BRL stimulation (B).
LPL activities were measured using skeletal muscle lysates (D). Hepatic TG production rates were measured after 4 h fasting and injection
of LPL inhibitor (E). mRNA levels in the livers were measured by real-time PCR (F). Data are presented as mean = SEM; n = 8. *P < 0.05 vs.

WT. AU, arbitrary units.

between hypoadiponectinemia and GDM has not been
experimentally verified. Using genetic mouse models,
this study demonstrated that pregnant mice with adipo-
nectin deficiency spontaneously developed glucose intoler-
ance, hyperlipidemia, and fetal overgrowth. Furthermore,
adiponectin reconstitution during late pregnancy restored
maternal metabolism and fetal body weight. Together,
these data demonstrate that adiponectin plays an impor-
tant role in controlling maternal metabolic adaptation to
pregnancy. Maternal adiponectin deficiency induces ma-
jor metabolic defects of GDM in mice, including glucose
intolerance, hyperlipidemia, and high fetal weight. This
experimental evidence further enforces the idea that
hypoadiponectinemia plays a potential role in the devel-
opment of GDM in humans.

Three lines of Adipog ’~ mice have been created
(14,34,35). Interestingly, without high-fat diet challenge,
two lines (including the line used in this study) do not
exhibit any peripheral insulin resistance or glucose intoler-
ance (14,35). We have analyzed virgin Adipog~ "™, Adipog~ ",
and WT littermates from heterozygous matings and found

that their blood glucose and insulin concentrations were
comparable during a period from weaning to 1 year old
(data not shown). We were surprised to observe glucose
intolerance and hyperlipidemia in Adipog ”~ dams. There-
fore, these results indicate that pregnancy induces Adipog "~
mice to develop glucose intolerance and hyperlipidemia,
which are the main characteristics of GDM. In addition, sig-
nificantly increased fetal weight of Adipog ”~ dams resembles
the macrosomia characteristics of GDM. Together, these ob-
servations indicate that pregnant Adipog ’~ mice provide a
useful mouse model of GDM. It should be pointed out that a
human study reported that hypoadiponectinemia during
pregnancy predicts postpartum insulin resistance and {3-cell
dysfunction (36). After giving birth, women with GDM may
still have metabolic defects and have a much higher risk for
developing type 2 diabetes (2,3,37). However, our study
found that 4 weeks after delivery, all metabolic alterations
in Adipog’~ dams were recovered, which indicates the dif-
ference between human GDM and this genetic mouse model.
It is known that GDM is a multifactor disease (5,37). We
speculate that adiponectin gene knockout resembles only
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Figure 5— Adiponectin deficiency impairs compensatory 3-cell expansion during pregnancy. Blood samples were collected from fed dams
at E18.5 (A and F) or during GTT after 6-h fasting (B). Insulin concentrations were measured using a Bio-Plex kit (Bio-Rad). C, D, E, and G:
Pancreases were collected at E18.5. C: Islet architecture was detected by immunofluorescence staining of pancreas with insulin (green)
and glucagon (red) (original magnification X10). Islet areas were measured using anti-insulin antibody-stained sections with Leica
SlidePath software (D). B-Cell mass was calculated using serially step-sectioned pancreatic samples (E and G). Islets were isolated
by collagenase digestion and differential centrifugation (H). Similar-size islets were handpicked and cultured in Krebs-Ringer medium
with 2 mmol/L glucose (LG), 20 mmol/L glucose (HG), or 30 mmol/L KCI for 1 h. Insulin concentrations of medium were determined. Data

are presented as mean = SEM; n = 8. *P < 0.05 vs. WT or vs. Ad-gfp-treated Adipoq’/’ dams.

hypoadiponectinemia, which may be one of the multiply un-
derlying mechanisms of GDM. In humans, hypoadiponectine-
mia is usually induced by prolonged obesity, which impairs
metabolism through various pathways in addition to adipo-
nectin. Adipog /"~ dams were not obese. Therefore, this ge-
netic mouse model provides a tool to study the regulatory role
of adiponectin in modulating maternal metabolism during
pregnancy. Although their metabolic phenotypes resemble
GDM, other factors such as obesity and insulin resistance
are absent in Adipog ’~ dams. Insulin resistance has been
detected in skeletal muscle of human subjects with GDM
and has been considered an underlying mechanism of glucose
intolerance in GDM (26,27). Interestingly, despite glucose in-
tolerance in Adipoq ’~ dams, insulin-stimulated glucose dis-
posal rates and insulin signaling in metabolically active tissues
were not significantly altered. Obviously, we cannot attrib-
ute insulin resistance to glucose intolerance of pregnant
Adipog’~ mice. Consistent with the studies of nonpregnant
Adipog~’~ mice (30), our study indicates that adiponectin
deficiency increases HGP in pregnant mice, which might con-
tribute to increased basal blood glucose of Adipog ’~ dams.
Our cdamp study also revealed that although expression of
rate-limiting enzymes of gluconeogenesis and basal HGP rates

were remarkably elevated, insulin infusion still efficiently sup-
pressed HGP in Adipoq /~ dams. Furthermore, our study
found that phosphorylation levels of AMPK in livers of
Adipoq /"~ dams were similar to those of WT control dams.
Therefore, our results indicate that adiponectin deficiency
increases HGP in pregnant mice through a mechanism(s)
independent of insulin and AMPK signaling. Similarly, Birn-
baum and colleagues (31) demonstrated that adiponectin
inhibits hepatic gluconeogenesis independent of AMPK. Re-
garding insulin signaling, adiponectin is known for its insulin-
sensitizing effect. Mouse studies, including our own work,
reveal that adiponectin deficiency does not alter insulin sig-
naling when mice were fed with chow (14,35). One study
even reported an inhibitory effect of adiponectin on insulin
signaling in trophoblast cells (38). Due to the scope limitation,
our study does not provide any experimental data to explain
the lack of effect of adiponectin deficiency on insulin signal-
ing. However, these animal studies at least indicate that the
beneficial effect of adiponectin on insulin sensitivity may be
through an indirect effect(s) instead of directly stimulating
protein(s) in the insulin network.

Hyperlipidemia is another hallmark of GDM (39). Sim-
ilar to higher blood glucose concentrations, significantly
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increased blood TG and FFA in Adipog™/~ dams were only
observed during pregnancy. Although many factors affect
blood TG levels, high blood TG concentrations are com-
monly caused by increased hepatic TG production and/or
decreased TG catabolism in tissues. Unlike nonpregnant
mice (16), the current study found that LPL expression
and activity in skeletal muscle of Adipog/~ dams were
similar to those of WT controls. Our study does not pro-
vide any data that explain the inconsistency between
pregnant and nonpregnant mice. However, LPL activity
in skeletal muscle is significantly reduced during normal
pregnancy (Supplementary Fig. 1), which may obscure the
regulatory effects of adiponectin on LPL expression dur-
ing pregnancy. However, our study found that hepatic TG
production rates were robustly increased in Adipog ’~
dams, which may underlie adiponectin deficiency—induced
hypertriglyceridemia during pregnancy. Furthermore, sim-
ilar to nonpregnant mice, increased lipolysis was found in
WAT of Adipoq™”~ dams. Increased WAT lipolysis should
contribute to increased blood FFA but also provide sub-
strates for hepatic TG synthesis and lipoprotein particle
packing.

During pregnancy, the development of physiological
insulin resistance and maternal metabolic adaptations
impose a prolonged demand for insulin (33). To meet this
demand, a compensatory expansion of B-cell mass occurs
(33), resulting in increasing blood insulin concentrations
(21). Inadequate B-cell expansion causes insulin insuffi-
ciency and GDM (40-42). Our study revealed that both
B-cell mass and blood insulin concentrations were signif-
icantly decreased in Adipoq ’~ dams, which indicate that
maternal adiponectin deficiency induces insulin insuffi-
ciency in mice. Our study also revealed that insulin sen-
sitivity was intact in most metabolically active tissues of
Adipog™’~ dams. Therefore, insulin insufficiency should
play an important role in maternal adiponectin defi-
ciency-induced glucose intolerance and hyperlipidemia.
Regarding how maternal adiponectin deficiency induces
insulin insufficiency, a human study reported a strong
association between maternal blood adiponectin and
B-cell function in late pregnancy and suggests that hypo-
adiponectinemia plays a key role in mediating (-cell
dysfunction and the pathogenesis of GDM (43). Other
studies have reported that adiponectin enhances B-cell
proliferation (44,45). Interestingly, the effects of adipo-
nectin on insulin secretion were inconsistent in those
studies (43,44,46,47). Our study observed a significant
decrease in B-cell mass of Adipog”’~ dams, whereas adi-
ponectin reconstitution restored maternal 3-cell mass and
blood insulin concentrations. Therefore, maternal adipo-
nectin deficiency might impair pregnancy-induced com-
pensatory B-cell proliferation and islet mass expansion,
which together likely produced insulin insufficiency. High-
molecular-weight adiponectin has been suggested as a
main determinant of B-cell function in subjects with
GDM (48). Since adiponectin expression was completely
blocked in the Adipoqf/f mice (14), our study does
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not provide any clue about which multimeric adiponec-
tin enhances compensatory 3-cell proliferation during
pregnancy.

In summary, using a genetic mouse model, our study
demonstrates that maternal adiponectin deficiency induces
spontaneous development of the main characteristics of
GDM, incuding glucose intolerance, hyperlipidemia, and
enhancement of fetal growth. Our study also provides
evidence indicating that insulin insufficiency, enhanced
WAT lipolysis, and hepatic glucose and TG production
mediate adiponectin deficiency-impaired metabolism in
pregnant mice. Further studies are required to dissect the
relationship between -cell expansion and direct effects on
metabolically active tissues in adiponectin-controlled ma-
ternal metabolic adaptation to pregnancy.
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