
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Achieving Practical Access Pattern Privacy in Data Outsourcing

Permalink
https://escholarship.org/uc/item/8672k3v6

Author
Dautrich, Jonathan L.

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8672k3v6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Achieving Practical Access Pattern Privacy in Data Outsourcing

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Jonathan Jack Laurence Dautrich Jr.

June 2014

Dissertation Committee:

Dr. Chinya Ravishankar, Chairperson
Dr. Marek Chrobak
Dr. Tao Jiang
Dr. Vassilis Tsotras

Copyright by
Jonathan Jack Laurence Dautrich Jr.

2014

The Dissertation of Jonathan Jack Laurence Dautrich Jr. is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, Professor Chinya Ravishankar, for his invaluable

guidance and support over the past six years. I also wish to acknowledge my collabora-

tors Emil Stefanov and Elaine Shi for their insights and assistance with Burst ORAM.

My work was supported in part by the National Physical Science Consortium

Graduate Fellowship and by grant N00014-07-C-0311 from the Office of Naval Research.

The contents of Chapter 2, Compromising Privacy in Precise Query Protocols,

were published in [28]. Chapter 3, Security Limitations of Using Secret Sharing for

Data Outsourcing, was published in [27]. Chapter 4, Burst ORAM: Minimizing ORAM

Response Times for Bursty Access Patterns, will appear in [29].

iv

To my wife Daniella, whose extraordinary patience and selfless support have

been a constant inspiration to me:

You are a treasure.

To my parents Jon and Linda, who taught me hard work, discipline, and balance:

Thank you for the innumerable gifts with which you have blessed me.

To all my family and friends whose undying confidence has kept me going:

Your encouragement means more to me than you know.

To Emil Stefanov, a great friend and collaborator:

You will be missed.

v

ABSTRACT OF THE DISSERTATION

Achieving Practical Access Pattern Privacy in Data Outsourcing

by

Jonathan Jack Laurence Dautrich Jr.

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2014

Dr. Chinya Ravishankar, Chairperson

Cloud computing allows customers to outsource the burden of data manage-

ment and benefit from economy of scale, but privacy concerns hinder its growth. Even

when the stored data are encrypted, access patterns may leak valuable information. We

consider the challenge of providing efficient, privacy-preserving access to data outsourced

to an untrusted cloud provider.

As motivation for providing data outsourcing protocols with strong privacy

guarantees, we introduce two novel attacks against existing “secure” schemes. The first

compromises a protocol based on Shamir’s Secret Sharing Algorithm that makes invalid

security claims. The second sorts encrypted records by their plaintext query-attribute

values, and can be applied to any protocol that supports range queries and returns the

precise set of encrypted records needed to satisfy each query.

Oblivious RAM (ORAM) protocols guarantee full access pattern privacy, but

even the most efficient ORAMs proposed to date incur large bandwidth costs and high

response times. We present two novel ORAM protocols. The first minimizes up-front

bandwidth costs and achieves near-optimal response times during bursts of requests,

while maintaining total bandwidth costs competitive with the best existing ORAM.

vi

The second combines ORAM with Private Information Retrieval (PIR) techniques in

order to achieve the lowest total bandwidth cost of any ORAM protocol known to date.

Finally, we introduce a generalized form of ORAM called Tunably-Oblivious

Memory, which relaxes ORAM’s privacy guarantees to allow a bounded amount of in-

formation leakage in exchange for lower bandwidth costs. We propose a novel special-

purpose Tunably-Oblivious Memory protocol that achieves bandwidth costs lower than

those of the best existing ORAM for suitable workloads, while leaking only a few bits

of information per query.

vii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Simple Encryption and Access Pattern Leakage 2
1.2 Oblivious RAM and Private Information Retrieval 3
1.3 Tunably-Oblivious Memory . 5

2 Compromising Privacy in Precise Query Protocols 7
2.1 Introduction . 7

2.1.1 Our Contributions . 9
2.2 Related Work . 10

2.2.1 Precise Query Protocol Schemes 10
2.2.2 Imprecise Query Protocols . 12
2.2.3 Prior Work on Privacy Loss . 12

2.3 Attack Model and Outline . 13
2.3.1 Precise Query Protocols (PQPs) 13
2.3.2 Permissible Permutations and Loci 15
2.3.3 Using PQ-Trees to Maintain P 17
2.3.4 Characteristic Examples . 18

2.4 Identifying Permissible Loci . 20
2.4.1 Algorithm Outline and Terminology 20
2.4.2 Identifying Loci for Children of Q-Nodes 22
2.4.3 Identifying Loci for Children of P -Nodes 22

2.4.3.1 Each Child Considered Separately 24
2.4.3.2 All Children Considered Together 25

2.4.4 Analysis and Space-Time Tradeoff 28
2.4.5 The κ-Pruning Variant . 31

2.5 Measuring Privacy Loss . 33
2.5.1 Alternate and Related Metrics 33

2.6 Experiments and Evaluation . 35
2.6.1 Progress Before Privacy Compromise 36
2.6.2 Higher Thresholds and Larger κ 38
2.6.3 Permutation Entropy . 40
2.6.4 Effects of Indexes on PQP Privacy 41

viii

2.6.5 Consequences and Alternatives 43
2.6.5.1 Assuming Attribute Distributions are Hidden 43
2.6.5.2 Abandoning PQPs Altogether 43

2.7 Conclusion . 44

3 Security Limitations of Using Secret Sharing for Data Outsourcing 45
3.1 Introduction . 45

3.1.1 Our Contribution . 47
3.2 Data Outsourcing Using Secret Sharing 48

3.2.1 Shamir’s Secret Sharing . 48
3.2.2 Data Outsourcing via Secret Sharing 49
3.2.3 Security . 51
3.2.4 Supporting Range and Aggregation Queries 51

3.3 Attack Description . 52
3.3.1 Recovering Secrets when p is Known and ~X is Private 53
3.3.2 Recovering p when ~X and p are Private 54

3.3.2.1 Computing δ1, δ2. 54
3.3.2.2 Size of δ1, δ2. 55
3.3.2.3 Recovering p from δ1, δ2. 56

3.3.3 Attack Complexity . 57
3.3.4 Example Attack for k = 2 . 57

3.4 Aligning Shares and Discovering Secrets 58
3.4.1 Aligning Shares . 59
3.4.2 Discovering k + 2 Secrets . 59
3.4.3 Inferring Order in the HJ Scheme 60

3.5 Attack Implementation and Experiments 62
3.5.1 Time Measurements . 62
3.5.2 Failure Rate Measurements . 64

3.6 Attack Mitigations . 66
3.7 Related Work . 67
3.8 Conclusion . 68

4 Burst ORAM: Minimizing ORAM Response Times for Bursty Access
Patterns 70
4.1 Introduction . 70

4.1.1 Burst ORAM Contributions . 72
4.2 Related Work . 74
4.3 Preliminaries . 75

4.3.1 Bandwidth Costs . 75
4.3.2 Response Time . 76
4.3.3 ObliviStore ORAM . 77

4.4 Overview of our Approach . 80
4.5 Prioritizing and Reducing Online IO . 82

4.5.1 Prioritizing Online IO . 83
4.5.2 XOR Technique: Reducing Online IO 84

4.5.2.1 XOR Technique Details 84
4.5.2.2 Handling early shuffle reads 86
4.5.2.3 Comparison with ObliviStore 86

4.6 Scheduling and Reducing Shuffle IO . 87

ix

4.6.1 Shuffle Jobs . 88
4.6.2 Prioritizing Efficient Jobs . 89
4.6.3 Reducing Shuffle IO via Level Caching 90

4.6.3.1 Level Caching in Burst ORAM 91
4.7 Detailed Burst ORAM Design . 91

4.7.1 Overall Architecture . 92
4.7.2 Semaphores . 94
4.7.3 Detailed System Behavior . 95

4.8 Pseudocode . 98
4.9 Evaluation . 100

4.9.1 Methodology . 100
4.9.1.1 Baselines . 100
4.9.1.2 Metrics . 101
4.9.1.3 Workloads . 103

4.9.2 Simulator . 104
4.9.3 Endless Burst Experiments . 105
4.9.4 Two-Burst Experiments . 107
4.9.5 NetApp Workload Experiments 109

4.10 Reducing Online Bandwidth Costs of SR-ORAM 111
4.11 Conclusion . 113

5 Combining ORAM with PIR to Minimize Bandwidth Costs 114
5.1 Introduction . 114

5.1.1 Our Contributions . 116
5.2 Related Work . 117
5.3 Preliminaries . 118

5.3.1 Private Information Retrieval (PIR) 118
5.3.2 Oblivious RAM (ORAM) . 120
5.3.3 ObliviStore . 121

5.3.3.1 Partition and Level Structure 121
5.3.3.2 Requests and Evictions 122
5.3.3.3 Shuffling . 123
5.3.3.4 Early Shuffle Reads . 124
5.3.3.5 Level Compression . 125
5.3.3.6 Bandwidth Costs . 125

5.4 Integrating PIR . 126
5.4.1 Choosing a PIR Technique . 128
5.4.2 Trostle-Parrish PIR . 128

5.5 Altering Level Size Factors . 129
5.5.1 Effects of Increasing Level Size Factors 130
5.5.2 Non-Uniform Level Size Factors 132

5.5.2.1 Practical Limits on Level Size Factor Growth 133
5.6 Eliminating Unused Dummies . 134

5.6.1 Causes of Eviction/Request Difference 134
5.6.2 Source of Unused Dummies . 134
5.6.3 Proposed Mitigations . 135

5.7 Bandwidth Cost Enhancements . 136
5.7.1 Enhancement Techniques . 137
5.7.2 Effects and Tradeoffs . 137

x

5.8 Experiments . 138
5.8.1 Simulators and Implementations 138

5.8.1.1 ORAM Simulator . 138
5.8.1.2 PIR Implementation . 139

5.8.2 Evaluating OS+PIR for Mobile Devices 139
5.8.3 Varying Block Count N . 141
5.8.4 Varying Level Size Configuration K 142
5.8.5 Varying Eviction Rate . 142
5.8.6 Evaluating Individual Enhancements 143

5.9 Conclusion . 144

6 Tunably-Oblivious Memory: Generalizing ORAM to Enable Privacy-
Efficiency Tradeoffs 146
6.1 Introduction . 146

6.1.1 Our Contributions . 148
6.2 Related Work . 149

6.2.1 ORAM Protocols . 149
6.2.2 Partial Access Pattern Protection 150

6.3 Tunably-Oblivious Memory . 151
6.3.1 ORAM Review . 151
6.3.2 TOM Model: Trading Off Obliviousness for Efficiency 153
6.3.3 TOM Security Definition . 155
6.3.4 Paddable TOM Protocols . 157
6.3.5 Log-Spacing Strategy for Paddable Protocols 158

6.4 Staggered-Bin TOM . 159
6.4.1 SBT Architecture . 160
6.4.2 SBT Operation . 161
6.4.3 SBT Security . 163
6.4.4 SBT Performance . 165

6.5 SBT Variants . 166
6.5.1 The 2-Choice SBT Variant . 166

6.5.1.1 Random Round Robin Algorithm 167
6.5.1.2 2-Choice SBT Security 168
6.5.1.3 2-Choice SBT Performance 168

6.5.2 The SBT+ORAM Variant . 169
6.5.2.1 SBT+ORAM Security 169
6.5.2.2 SBT+ORAM Performance 170

6.5.3 The Multi-SBT Variant . 171
6.6 Performance Analyses and Proofs . 172

6.6.1 Problem Transformation . 173
6.6.2 SBT Analysis . 174
6.6.3 2-Choice SBT Analysis . 175
6.6.4 SBT+ORAM Analysis . 176

6.6.4.1 Balls and Urns Problem 176
6.6.4.2 Blocks and Bins Problem 181

6.7 Evaluation . 182
6.7.1 Bandwidth Cost Experiments . 182

6.7.1.1 Uniform Random Block Queries (Figures 6.4–6.6) . . . 183
6.7.1.2 Uniform/Zipf Fixed Sequence Queries (Figures 6.7–6.12) 183

xi

6.7.1.3 Other Observations . 185
6.7.2 Maximum Queue Length Measurements 185
6.7.3 Simulator Details . 186

6.8 Conclusion . 186

7 Conclusion 188

xii

List of Figures

2.1 Database As a Service with encrypted data, queries, and results. 8
2.2 Employee records in a PQP. Salaries are known, but not employee-salary

relationships. 10
2.3 Permissible loci of etuples e1 and e2, given permissible permutations P =

{π1, π2, π3, π4}. 16
2.4 Permutation π1 is permitted but π2 is excluded as C1 is split by N /∈ C1

in π2. 19
2.5 PQ-tree with frontier LMNKIJ reduced using clusters {I, J,K}, {L,M}. 19
2.6 Permutation π1 is permitted but π2 is excluded as C2 is split by I, J /∈ C2

in π2. 19
2.7 PQ-tree with frontier NMKLJI reduced using {I, J,K,L}, {K,L,M,N}. 19
2.8 The clusters in C permit only πc and πc. 20
2.9 PQ-tree fully reduced using all size-2 clusters. 20
2.10 Labeled PQ-tree (Example 4). 21
2.11 The loci Λz3 are offset from Λy by ←−ηz3 when y’s children are ordered

left-to-right, and by −→ηz3 when ordered right-to-left. 22
2.12 For P -node y, each subset of children to the left of z3 yield an offset η of

Λz3 from Λy. 23
2.13 Identifying permissible loci for children of P -node y. Each arrow indicates

expansions using the labeled spreads. Eight expansions are performed at
each of three levels. (Example 6) . 27

2.14 Query Count before Privacy Compromise, Random dataset. 36
2.15 Total Return Count before Privacy Compromise, Random dataset. . . . 37
2.16 Random dataset, Gaussian widths: N(105, 5× 104). 39
2.17 Random dataset, Uniform widths: U(0, 108). 39
2.18 Salary dataset, Gaussian widths: N(2× 104, 104). 40
2.19 Salary dataset, Uniform widths: U(0, 373071). 40
2.20 Drop rates of permutation entropy for Gaussian and Uniform query width

distributions on the Random and Salary datasets. 41
2.21 Effects of a binary range tree index on the average Total Return Count

reached before Privacy Compromise. 42

3.1 Secret (salary) data from an employee table is split into shares and dis-
tributed to multiple data servers. A trusted client queries shares from
the data servers and combines them to recover the secrets. 48

xiii

3.2 Range queries indicate that the secrets of shares y1, y2 are contiguous, as
are those of y3, y2. Thus, the secret of y2 falls between the secrets of y1

and y3, though either y1 or y3 may have the smallest secret. 61
3.3 Riverside dataset times, varied b . 63
3.4 Riverside dataset times, varied k . 63
3.5 Synthetic dataset times, varied b . 64
3.6 Synthetic dataset times, varied k . 64
3.7 Attack failure rates for varied k and β 65

4.1 Effective IO. Simplified scheme with sequential IO and contrived ca-
pacity for delaying offline IO. Three requests require same online IO (2),
offline IO (5), and overall IO (7). Online IO for R1 can be handled imme-
diately, so R1’s effective IO is only 2. R2 must wait for 2 units of offline
IO from R1, so its effective IO is 4. R3 must wait for the rest of R1’s
offline IO, plus one unit of R2’s offline IO, so its effective IO is 6. . . . 77

4.2 Reducing response time. Because Burst ORAM (right) does much less
online IO than ObliviStore (left) and delays offline IO, it is able to respond
to ORAM requests much faster. In this (overfly simplified) illustration,
the bandwidth capacity is enough to transfer 4 blocks concurrently. Both
ORAM systems do the same amount of IO. 80

4.3 Reducing online cost. In ObliviStore (left) the online bandwidth cost
is O(logN) blocks of IO on average. In Burst ORAM (right), we reduce
online IO to only one block, improving handling of bursty traffic. . . . 83

4.4 XOR Technique Steps . 85
4.5 Burst ORAM Architecture. Solid boxes represent key system com-

ponents, while dashed boxes represent functionality and the effects of the
system on IO. 92

4.6 Burst ORAM Client Space Allocation. Fixed client space is reserved
for the position map and shuffle buffer. A small amount of overflow space
is needed for blocks assigned but not yet evicted to partitions (data cache
in [77]). Remaining client space is managed by Local Space semaphore
and contains evictions, early shuffle reads, and the level cache. 93

4.7 Online bandwidth costs as a burst lengthens. Burst ORAM maintains
low online cost regardless of burst length, unlike ObliviStore. 105

4.8 Effective bandwidth costs as a burst lengthens. Burst ORAM can han-
dle most bursts with ∼1X effective cost. Each scheme’s effective cost
converges to its overall cost for long bursts. 106

4.9 Response times during two same-size bursts of just over 217 requests
spread evenly over 72 seconds. Client has space for at most 218 blocks.
No level caching causes early spikes due to extra early shuffle reads. . . 108

4.10 (Top) Burst ORAM achieves short response times in bandwidth-constrained
settings. Since ObliviStore has high effective cost, it requires more avail-
able client-server bandwidth to achieve short response times. (Bottom)
Burst ORAM response times are comparable to those of the insecure
(without ORAM) scheme. 110

xiv

4.11 (Top) Insecure baseline (no ORAM) p-percentile response times for var-
ious p. (Bottom) Overhead (difference) between insecure baseline and
Burst ORAM’s p-percentile response times. Marked nodes show that
when baseline p-percentile response times are < 100ms, Burst ORAM
overhead is also < 100ms. 111

4.12 To achieve shorter response times, Burst ORAM incurs higher overall
bandwidth cost than ObliviStore, most of which is consumed during idle
periods. Level caching keeps bandwidth costs in check. Job prioritization
does not affect overall cost, but does reduce effective costs and response
times (Figures 4.8, 4.10). 112

5.1 In ObliviStore, when shuffles cascade upward, all levels ready to be re-
shuffled are downloaded at once, shuffled together with eviction blocks,
and uploaded to a higher level. 124

5.2 In an OS+PIR request, since only one removed block is real, PIR reduces
the response cost for each request to a constant or near-constant size.
During shuffling, only blocks remaining in each level (most of which are
real) need to be downloaded. Because of level compression, we need only
transfer data of size equivalent to the real blocks being uploaded. In
all, dummy transfers in OS+PIR are “free” — we effectively pay only to
transfer real blocks. 127

5.3 Level configurations with size factors k = 2 and k = 4, both with a 15
real-block capacity. When shuffling, all sub-levels in a main level are
combined to form one new sub-level in the next largest main level. The
k = 4 configuration has fewer main levels, and thus lower shuffling costs.
The k = 2 has fewer dummies and sub-levels, and thus lower disk and
PIR costs. 131

5.4 Timing and bandwidth costs of Trostle-Parrish PIR implementation for
varying numbers of blocks in PIR database, using s = 512 bits noise and
2MiB block size. 140

6.1 Client issues secret accesses (reads/writes) to the ORAM/TOM protocol,
which translates them to a sequence of public accesses (stores/fetches) to
the untrusted server. 152

6.2 The SBT in its initial state, with n = 5 blocks on the client, and n(n+1)/2
on the server. The empty server-side incoming bin will be filled in, one
block at a time, by the n blocks from the client. 162

6.3 SBT after 3 steps. Server bins are accessed in a round-robin fashion.
Blocks L,F,D have been fetched to the client-side incoming bin, and
blocks R,Q, P stored to server-side incoming bin. 162

6.4 Uniform random block queries, varying N 184
6.5 Uniform random block queries, varying ` 184
6.6 Uniform random block queries, varying λ 184
6.7 Uniform fixed sequence queries, varying N 184
6.8 Uniform fixed sequence queries, varying ` 184
6.9 Uniform fixed sequence queries, varying λ 184
6.10 Zipf fixed sequence queries, varying N 184
6.11 Zipf fixed sequence queries, varying ` . 184
6.12 Zipf fixed sequence queries, varying λ 184

xv

6.13 Confirmation of analysis. Maximum observed H asymptotically domi-
nated by analytically predicted values. µ = `/n 185

xvi

List of Tables

2.1 Asymptotic costs for existing PQP schemes, with large costs highlighted.
Few papers gave these costs explicitly, so the table reflects our best-effort
analysis. |D| is domain size, n is the etuple count, C is the result set size,
N is a 512–4096 bit number, Kg and Ks are costs of group and symmetric
encryption operations, respectively. δ for OPES is small with unknown
relation to n. 11

2.2 PQP and Attack Notation . 14
2.3 Notation for Node y of PQ-Tree T . 23

4.1 Algorithm Notation . 98

5.1 Notation . 119
5.2 Comparison of different bandwidth-efficient protocols given parameters

tuned for current mobile devices with at least 64GiB storage. Common
parameters: N = 222 data blocks, 2MiB block size, 64GiB total client
storage. 141

5.3 Effect of increasing N on client/server storage and bandwidth cost, with
ε = 1.1 for OS+PIR, ε = 1.3 for ObliviStore. 142

5.4 Effects of changing the level configuration K for N = 228 block count,
512TiB capacity, 512GiB total client storage. Product of all level size
factors for each K is 216. 142

5.5 Effects of changing the eviction rate ε for OS+PIR with N = 228, 512TiB
capacity, given a fixed total client storage of roughly 1TiB. Client space
insufficient to support ε = 1.0. 143

5.6 Effects of selectively applying/excluding enhancements to/from OS+PIR.
Common parameters: N = 228, ε = 1.3 base and 1.1 reduced, K =
(4, 64, 32, 4, 2), 479–491GiB total client storage. 144

6.1 Comparison of [77] with results based on our proposed Multi-SBT using
the ORAM component from [77], with the parameterizations and costs
given below and in [77], with 64 KB block size. Multi-SBT average cost
is for uniform random queries of length ` = 4

√
N,λ = 8. Max. cost is

three times ceiling of ORAM cost. 149
6.2 SBT and TOM Notation . 160

xvii

6.3 Comparison of our λ − TOM protocols, block size B. Numbers are ap-
proximate; estimated average costs taken from Figures 6.4–6.6. Smaller
CMax improves privacy/efficiency tradeoff. λ set to log of SMax to keep δ
constant. lg ≡ log2 . 161

xviii

Chapter 1

Introduction

Cloud computing is a popular paradigm that allows a resource-constrained

client to outsource data storage and management to a paid service provider, which we

refer to as the server. Such cloud servers include Amazon Web Services [3], Google

Cloud Platform [4], and Microsoft Azure [5]. These cloud services take advantage of

economies of scale to reduce hardware and information technology management costs

for their clients.

Since cloud servers are not under the client’s full control, privacy concerns and

data protection regulations lead many clients to keep sensitive data offline [20]. The

server itself is the principal threat to privacy, since it controls all client data, queries,

responses, and processing, so we treat the server as the primary adversary. We assume

that servers are honest but curious, meaning that they correctly follow the prescribed

protocol, but may still try to infer information about client data.

In this work, we investigate novel and existing protocols for protecting the

privacy of outsourced data. We expose fundamental weaknesses in several existing pro-

tocols, and advocate the use of protocols that provide stronger privacy. We then propose

1

and evaluate three privacy-preserving data outsourcing protocols that offer quantifiable

privacy guarantees.

1.1 Simple Encryption and Access Pattern Leakage

A clear first step in protecting the privacy of outsourced data is to encrypt all

data using keys known only to the client before storing it on the server. We may then

treat the server as a simple block store, decrypting data after downloading and encrypt-

ing it before uploading. We may also want to allow the server to directly support more

interesting query types, such as range queries. In such cases, we must also encrypt the

queries and enable the server to satisfy queries homomorphically (without decryption) to

prevent the server from learning the contents of the query or of the returned data. If the

server returns only those encrypted records needed to satisfy each query, the protocol is

known as a Precise Query Protocol (PQP) [88].

In Chapter 2, we present a general attack against any PQP that supports

range queries over a single query attribute, regardless of the specific mechanism used

to enable querying. We demonstrate that the access patterns created by the encrypted

range queries rapidly leak information about the ordering of encrypted records along

the plaintext query attribute. We then show how an attacker can use such ordering

information to efficiently reconstruct the possible locations of each record in the true

ordering, and thereby infer plaintext attribute values.

In Chapter 3, we investigate a suite of PQPs that use Shamir’s Secret Sharing

Algorithm [70] to enable range queries. We expose flaws in these protocols’ security

claims, and show how to efficiently recover all plaintext values when the protocols are

2

assumed secure. The ordering attack presented in Chapter 2 plays a key role in our

attack against the secret sharing protocols.

The attacks from Chapters 2 and 3 illustrate the need for more secure outsourc-

ing protocols that protect access pattern privacy. Various protocols have been proposed

that try to mask access patterns by injecting dummy blocks, creating cover searches that

retrieve decoy blocks, or mixing and re-encrypting blocks on the client before returning

them to the server [30, 61]. Unfortunately, though these schemes offer some bounds on

access pattern information leaked during certain classes of attacks, they ignore other

attacks and fail to quantify or bound total information leakage. We advocate protocols

based on the stronger privacy models of Private Information Retrieval, Oblivious RAM,

and Tunably-Oblivious Memory discussed below.

1.2 Oblivious RAM and Private Information Retrieval

Private Information Retrieval (PIR) [19] and Oblivious RAM (ORAM) [37]

protocols both offer provable access pattern privacy for outsourced data, guaranteeing

that observed access patterns leak no information about client data. Each model has

its own advantages and disadvantages.

In PIR, the client issues an encrypted query for a particular bit or block of

B bits of data stored on the server. The server evaluates each query homomorphically,

returning the desired block without learning anything about which block was requested.

In order to achieve this degree of security, the server must evaluate each query over all

bits in the database, making PIR computationally prohibitive for most full-database

applications [74].

3

In ORAM, the server acts as a simple block store. Data blocks are encrypted

by the client before being stored on the server. Informally, the ORAM defines a protocol

that dictates how the client should download, permute (shuffle), re-encrypt, and upload

blocks in order to prevent the server from learning any information about the client’s se-

quence of plaintext block accesses. ORAM guarantees that the observed access patterns

for any two same-length sequences of block requests are computationally indistinguish-

able to all observers other than the client [77]. Equivalently, the output of a simulator

that has no access to any of the secret information (block contents and requested block

addresses) should be able to produce a sequence of encrypted block transfers that is

indistinguishable from that of the actual ORAM [49].

ORAM requires negligible computation, but may incur substantial bandwidth

costs or storage overheads on the client or server. Even the most bandwidth-efficient

existing ORAM [76] requires roughly log2N block transfers per block request, where N

is the number of blocks. Since most of these transfers are performed before or immedi-

ately after each request is satisfied, response times for individual requests can be high,

especially when bursts of requests arrive together.

In Chapter 4 we propose Burst ORAM, the first ORAM technique that seeks

to minimize response times during a burst of requests. Burst ORAM classifies block

transfers as either online, those needed before a request can be satisfied, or offline, those

that can be performed after the request is satisfied. Burst ORAM reduces the number

of online block transfers from O(logN) to O(1), and uses available client space to delay

offline transfers as long as possible, ideally until an idle period. On bursty workloads,

Burst ORAM achieves near-optimal response times that are orders of magnitude lower

than those of existing protocols, while incurring only slightly higher total bandwidth

cost than the most bandwidth-efficient prior ORAM [76].

4

In Chapter 5, we propose a new ORAM called OS+PIR that achieves substan-

tially lower total bandwidth costs than any existing ORAM. OS+PIR combines PIR

with the ObliviStore ORAM from [76], and permits tradeoffs between bandwidth costs,

client/server storage, and computation costs. For data block counts (N) ranging from

220 to 230, OS+PIR achieves a total bandwidth cost of only 11 to 13 blocks transferred

per request, down from the 18 to 27 of [76]. As N grows, OS+PIR’s bandwidth cost

grows more slowly than that of [76], providing enhanced savings for larger databases.

1.3 Tunably-Oblivious Memory

ORAM protocols pay a high price in terms of bandwidth, computation, or

client/server storage costs in order to achieve full access pattern indistinguishability. In

Chapter 6 we propose Tunably-Oblivious Memory (TOM), a new privacy model that

relaxes and generalizes ORAM, enabling controlled privacy/efficiency tradeoffs. Unlike

ORAM, TOM permits the lengths of publicly visible access patterns to vary, allowing

properties such as locality to be exploited in order to improve efficiency. For each query,

a λ-TOM generates an access pattern with one of λ pre-determined lengths, limiting

information leaked per query to log2 λ bits. λ-TOM protocols with large λ leak more

information and are more efficient, while those with small λ are more expensive and

offer better privacy. 1-TOM leaks no information and is as secure as ORAM.

We also introduce a novel, special-purpose TOM called Staggered-Bin TOM

(SBT). We prove that SBT achieves bandwidth cost O(logN/ log logN) for large quer-

ies with blocks chosen uniformly at random, but has worst-case cost O(
√
N). We

also propose a read-only SBT variant called Multi-SBT, which combines SBT with

an ORAM, storing each block in triplicate. The Multi-SBT achieves bandwidth cost

5

O(1) for large uniform random block queries, and O(logN) in the worst case, and leaks

at most O(log log logN) bits of information per query. Multi-SBT achieves practical

bandwidth costs as low as 6 blocks transferred per request for queries of 4
√
N requests.

6

Chapter 2

Compromising Privacy in Precise

Query Protocols

2.1 Introduction

Cloud computing is a popular paradigm that lets clients outsource data man-

agement, but many users still keep sensitive data offline due to privacy concerns [20]. In

the Database As a Service model [40], clients store, update, and query data on honest-

but-curious cloud servers. Such servers correctly process queries, but do not respect user

data privacy. Data stored on the server are encrypted using keys known only to the client

(see Figure 2.1). Queries are likewise encrypted, and may be issued only by the client.

The server is the principal threat to privacy, having access to all encrypted records,

queries, responses, and processing, so we treat the server as the primary attacker.

Fully secure outsourced databases require a full database scan for each query [47].

To avoid such costs, many schemes [8, 12, 17, 26, 48, 51, 72] adopt the more practical

Precise Query Protocol (PQP) model defined in [88]. In PQPs, records are individually

encrypted and stored on the server as etuples. The protocol is precise since the server

7

Trusted Client Untrusted Server

Data

Keys, Metadata

Queries

Results

Encrypted

Database

Query

Processor

Encrypt

Decrypt

Figure 2.1: Database As a Service with encrypted data, queries, and results.

returns the exact set of etuples needed to satisfy each query. PQPs are efficient as they

return no spurious etuples, but their precision causes them to leak information that we

can use to order the stored etuples.

We propose a novel attack on the privacy of all PQPs that support one-

dimensional range queries over a query-attribute Q. Our attack identifies a set P of

permissible etuple permutations, which are potentially-correct orderings of etuples by

plaintext Q value. The permissible permutations in P define a partial ordering of etu-

ples. We use the precise results returned by successive range queries to exclude permu-

tations from P, refining this partial ordering. Existing attacks that seek to determine

such etuple orderings rely on properties specific to particular PQPs [51].

Every permutation π ∈ P places etuple e at some position π[e]. The set of

positions for e over all π ∈ P yields the permissible loci of e. If we know the permissible

loci, we can make inferences about the plaintext Q value in e. As more range queries

are run, more permutations are excluded from P, and the number of permissible loci for

each etuple drops, improving inferences and further compromising privacy.

Current literature recognizes that revealing etuple order is a privacy threat.

The Order-Preserving Encryption Scheme (OPES) [8], an efficient PQP that explicitly

reveals etuple order, notes that privacy will be compromised if the distribution of the

8

query-attribute is known. It is argued in [26] that schemes such as OPES should be

avoided, as they allow etuples to be ordered easily. Work in [51] shows how to infer

etuple order in PQPs that use prefix-preserving encryption schemes, and claims that

privacy is compromised.

As in [43, 51], our goal is to enable the discovery of sensitive information asso-

ciated with etuples, not necessarily to associate etuples with particular people. PQPs

claim to obscure sensitive values, so revealing them clearly defeats PQP privacy guar-

antees. Information correlated with identity may be inferred through other attacks, or

even stored in the clear.

In the example PQP database of Figure 2.2, etuples are employee records and

range queries are issued on the salary attribute Q. Initially, we know nothing about

which salary matches which etuple, so all 4 loci are permissible for each etuple. However,

if we can use query result sets to exclude all permutations that assign Jim’s etuple to

loci 2 and 3, then only loci 1 and 4 are permissible. Consequently, we know that Jim’s

salary is either 25000 or 70000.

It is common to assume that attribute distributions are known [8, 16, 26, 43, 51],

but our attack does not require exact knowledge of Q values or distributions. Even

attribute distributions estimated from other sources, such as public Census Bureau

data, suffice once we reduce the number of permissible loci sufficiently. Permissible loci

can also be used in a larger attack to recover exact Q values [27].

2.1.1 Our Contributions

We present a novel attack on the privacy of all PQPs that support one-

dimensional range queries. Our work is the first to show that etuples can be efficiently

9

�ame (ID) Etuple

“Jim” mQGiBEXmeSsRBADP+Iw

“Joan” 78sfVYU43aFesycyctZ

“Dave” LsEhZ6LcADNwC7u6ORI

“Tina” sZAQ7cbkTLX/x08YW70

Salary (Q)

q1 = 25000

q2 = 30000

q3 = 55000

q4 = 70000

?

Figure 2.2: Employee records in a PQP. Salaries are known, but not employee-salary
relationships.

ordered in any such PQP. Existing attacks exploit weaknesses specific to individual

PQPs, but the only requirement for our attack is the ability to observe the etuples re-

turned by encrypted queries. In Section 2.3, we outline our attack and show how to use

PQ-trees [13] to efficiently maintain the set of permissible permutations. Our core con-

tribution, given in Section 2.4, is a novel algorithm that uses a PQ-tree to identify the

permissible loci of each etuple. Query-attribute values can be inferred from these per-

missible loci. In Section 2.5, we define equivocation and permutation entropy as metrics

for PQP privacy. Section 2.6 gives experimental results on real and synthetic datasets,

showing that privacy is compromised quickly and that PQPs are highly insecure against

our attack.

2.2 Related Work

Much work exists on applying the Database As a Service model to various

query types [8, 26, 40, 43, 51, 52, 60, 72]. See [69] for a survey.

2.2.1 Precise Query Protocol Schemes

PQPs are used for their efficiency. Table 2.1 shows the asymptotic costs of

several PQPs. The Order Preserving Encryption Scheme (OPES) of [8] maps plaintexts

to ciphertexts while preserving plaintext order and flattening the ciphertext distribution.

10

Table 2.1: Asymptotic costs for existing PQP schemes, with large costs highlighted. Few
papers gave these costs explicitly, so the table reflects our best-effort analysis. |D| is
domain size, n is the etuple count, C is the result set size, N is a 512–4096 bit number,
Kg and Ks are costs of group and symmetric encryption operations, respectively. δ for
OPES is small with unknown relation to n.

PQP Scheme
Scheme
Setup Work

Client Query
Pre-Process
Work

Client
Storage
(Bits)

Server Query
Work

Query
Send Size
(Bits)

Order-Pres. Enc.
(OPES) [8]

O((Ks + δ)n) O(δ)
O(δ log |D|+
logN)

O(|C|+ logn) O(log |D|)
Prefix-Pres.
Enc. [51]

O(Ksn log |D|) O(Ks log2 |D|) O(logN)
O(|C|+
logn log |D|) O(log2 |D|)

Encrypted B+-
Tree [26]

O(Ksn)
O(Ks(|C|+
logn))

O(logN) O(|C|+ logn)
O((|C|+
logn) logN)

1D MRQED [72] O(Kgn log |D|) O(Kg log |D|) O(log |D|·
logN)

O(Kgn log |D|) O(log |D|·
logN)

Hidden Vector
Enc. (HVE) [12]

O(Kgn|D|) O(Kg) O(|D| logN) O(Kgn) O(logN)

HVE with Predi-
cate Enc. [48, 71]

O(Kgn|D|) O(Kg |D|) O(|D| logN) O(Kgn|D|) O(|D| logN)

Indexes can easily be created on the ciphertext, keys are small and nearly constant in

size, and encryption costs are low. However, OPES fully reveals etuple order, making it

highly vulnerable to inferences.

Prefix-preserving encryption [51] encrypts the query-attribute of each record

such that if two plaintexts share a k-bit prefix, their ciphertexts share a (distinct) k-bit

prefix. The prefix-preserving ciphertexts cause this scheme to leak information about

etuple order more rapidly than other PQPs. PQPs such as the encrypted B+-tree

in [26] process queries interactively between client and server, but suffer from heavy

communication loads.

Some PQPs, including MRQED [72], RASP [17], and Hidden Vector Encryp-

tion (HVE) [12], use novel encryption techniques to improve privacy. Recent work [48,

71] has used inner-product predicate encryption to implement HVE and to initially guar-

antee privacy of query-attribute values and query ranges. However, when the scheme is

used to support one-dimensional range queries, we can still infer etuple order using our

attack.

11

Trusted server-side hardware is used in [47] to process queries and re-encrypt

etuples in order to limit the attacker’s ability to make inferences. Oblivious index

traversal techniques [53] are used to maintain privacy for point queries when PQPs use

indexes that are visible to the server.

2.2.2 Imprecise Query Protocols

Many schemes sacrifice query result set precision in favor of improved privacy.

In bucketization [40, 43] the server returns all etuples in a range of buckets, yielding a

superset of the query result. Larger buckets improve privacy, but return more spurious

etuples, raising client-side costs.

Other schemes rely on data fragmentation, assuming that some attributes are

only sensitive when paired with others [23]. Such schemes assume non-colluding servers,

high client storage capacities, or obscured table relations.

Work in [30] uses an encrypted B+-tree and incorporates spurious queries,

client-side caching, and node content shuffling to provide strong query access pattern

privacy. Other schemes with similar goals are based on Oblivious RAM (ORAM) [73] or

Private Information Retrieval (PIR) [63]. Such techniques are becoming more efficient,

but still require several communication rounds per query. Work in [52] uses hierarchical

predicate encryption to achieve access pattern privacy, but depends on non-colluding

proxies and only supports restricted query ranges.

2.2.3 Prior Work on Privacy Loss

Even when the privacy of individual records is guaranteed, privacy can be

compromised by careful analysis of query access patterns or indexes [82, 88]. Work

12

in [43] discusses privacy factors of bucketization in terms of statistical measures such as

variance and entropy, demonstrating a tradeoff between privacy and efficiency.

Using relationships between encrypted records to infer plaintext information

is referred to as inference exposure in [26]. A common technique is to exploit the fact

that identical plaintexts generally produce identical ciphertexts [16, 26]. Other attacks

associate frequently requested etuples with significant plaintexts, yielding probabilistic

assignments of values to etuples [30].

Authors in [51] propose an attack against PQPs that use prefix-preserving

encryption to support range queries. Their attack collects all pairs of etuples known to

be adjacent and uses them to infer order. Our attack leads to stronger inferences as it

uses everything that can be learned about etuple order from the range query results,

not just what can be inferred from adjacent pairs. Further, our attack applies generally

to all PQPs that support range queries.

2.3 Attack Model and Outline

Our attack identifies etuple orderings that are consistent with observed range

query result sets. We call these orderings permissible permutations, and store them using

a PQ-tree [13]. In Section 2.4, we use the PQ-tree to identify the permissible loci of

each etuple, which we use to make inferences about the etuple’s query-attribute values

(Section 2.1). Notation is summarized in Table 2.2.

2.3.1 Precise Query Protocols (PQPs)

In a PQP, each plaintext record r is a tuple of attributes. The data owner, or

client, encrypts each record as a single ciphertext e called an etuple. Let re denote the

13

Table 2.2: PQP and Attack Notation

e, E Encrypted record (etuple), all etuples

re Plaintext record encrypted to form e

Q, re.q Query-attribute Q, Q value of record re
[α, β] Inclusive plaintext range query bounds

Eα,β Etuples needed to satisfy query range [α, β]

πc Correct ordering of etuples according to Q

C Cluster of etuples, defined by a result Eα,β
P Set of permissible permutations of E

Λe Permissible loci of e

plaintext record that produced etuple e. The set E of all etuples is then stored on a

semi-trusted, honest-but-curious server (see Section 2.1).

The client generates range queries over a query-attribute Q, encrypting the

plaintext range [α, β] in each query. We let re.q denote the Q value in record re. The

server, without decrypting the query or any of the etuples, finds and returns the exact

result set Eα,β satisfying the query, where:

Eα,β = {e ∈ E | α ≤ re.q ≤ β}

We can realize such server-oblivious querying protocols using specialized encryption

techniques, ranging from order-preserving encryption to predicate encryption. We do

not present details here, but see [8, 12, 17, 26, 48, 51, 72] for examples of PQPs supporting

range queries.

Queries are encrypted, so they can only be generated by trusted clients, and

an attacker cannot craft his own queries. Instead, he can mount the attack by observing

responses to the queries issued by the client, without knowing the plaintext query ranges.

Etuples may be inserted/deleted, so we let E be the subset of etuples that persist in the

database across the set of issued queries. We exclude inserted/deleted etuples before

mounting the attack.

14

2.3.2 Permissible Permutations and Loci

Definition 1. A correct ordering of E by attribute Q is a permutation π = e1e2 . . . of

E with re1 .q ≤ re2 .q ≤ · · · .

If several etuples have the same Q value, there are multiple correct orderings.

Our attack handles this case, and both our experimental datasets include repeated

values. However, for ease of presentation, we introduce the attack as though only one

correct ordering, πc, exists. We can use clusters to learn which permutations might be

πc.

Definition 2. A cluster C ⊆ E is a subset of etuples that are contiguous in πc. C

denotes a set of clusters.

Let Eα,β ⊆ E be the set of etuples returned by a query on any range [α, β].

Since Eα,β contains precisely those e ∈ E for which α ≤ re.q ≤ β, etuples in Eα,β are

contiguous in πc. Thus, each query result set Eα,β is a cluster.

Definition 3. A cluster C excludes a permutation π of E if an etuple ei /∈ C appears

in π between two ej , ek ∈ C. Once π has been excluded, we know that π 6= πc.

Definition 4. The set P = {π1, π2, . . .} of permissible permutations consists of all

permutations of E not excluded by any cluster. A permutation π is permissible if and

only if for every cluster C, the etuples in C are contiguous in π.

Each permutation in P is potentially the correct ordering, given the observed

clusters, so P defines a partial ordering on E. Initially, every permutation is in P. As

queries arrive, we can identify clusters and use them to exclude from P any permutations

in which clustered etuples are not contiguous, thereby refining the partial ordering.

15

Loci

1 2 3 4

π1 e1 e2 e3 e4

π2 e1 e4 e3 e2

π3 e2 e3 e4 e1

π4 e4 e3 e2 e1

e1

1 32 4

π1, π2 π3, π4

e2

1 32 4

π1 π4π3 π2

Λe1 = {1, 4} Λe2 = {1, 2, 3, 4}

Permissible Loci

Figure 2.3: Permissible loci of etuples e1 and e2, given permissible permutations P =
{π1, π2, π3, π4}.

Consider the etuple set E = {I, J,K}. Initially, all six permutations of E are

permissible. A range query returning J and K defines a cluster C = {J,K}. Permuta-

tions JIK and KIJ are excluded by C, since I 6∈ C appears between J,K ∈ C. Only

four permutations remain permissible.

Definition 5. The locus ` = π[e] of etuple e in permutation π is the position of e in π,

such that e is the `th etuple in π. The permissible loci Λe of e are the set of loci of e

across all permissible permutations π ∈ P (see Figure 2.3):

Λe = {π[e] | π ∈ P}

Λe gives possible positions of e in the correct ordering πc. Etuples in πc are

ordered by query-attribute value, so if we have even partial knowledge of the query-

attribute distribution, we can use Λe to make inferences about the value of re.q. As

more clusters are observed, more permutations are excluded from P, lowering |Λe| and

reducing uncertainty about re.q.

A cluster that excludes any permutation π must also exclude its reverse π.

Thus, given enough distinct clusters, we can exclude permutations until P = {πc, πc},

but no further. Therefore, we always have |P| ≥ 2.

16

2.3.3 Using PQ-Trees to Maintain P

A PQ-tree [13] is a rooted, ordered tree capable of compactly representing the

set of permissible permutations P derived from cluster set C. In fact, PQ-trees were

designed specifically to represent such permutations. Non-leaf nodes in PQ-trees are of

type P or Q. Leaves represent etuples from E, so the terms etuple and leaf will be used

interchangeably. The sequence of leaves reached by a pre-order traversal of a PQ-tree

T forms its frontier F (T), which defines a permutation of E.

Every P -node and Q-node must have at least two children. Children of a P -

node can be arbitrarily permuted, while children of a Q-node may only be reversed.

Each combination of rearranged children in T produces an equivalent tree T ′ ≡ T . The

set PT of permutations consistent with T is PT = {F (T ′) | T ′ ≡ T}.

All PQ-tree leaves start as children of a single P -node, forming a universal tree

consistent with all |E|! possible permutations. Using a cluster C, we can transform T

into a new PQ-tree T ∗ through a reduction operation. The permutations consistent with

T ∗ are those that are consistent with T and in which all etuples in C are contiguous.

The reduction algorithm runs in time O(|C|) [13].

After successively reducing T using each C ∈ C, T precisely represents P,

giving PT = P. With enough distinct clusters, we can reduce T until all its leaves are

children of a single Q-node, at which point PT = {πc, πc}.

Let n = |E| be the number of leaves (etuples) in T . Since every non-leaf node

in T has at least two children, the number of nodes m in the tree is at most 2n − 1.

The height of T ranges from 1 when all etuples are children of a single P or Q-node, to

n− 1, such as when T is left-deep.

17

2.3.4 Characteristic Examples

We now work through a few simple examples to demonstrate our attack. In

each example, we apply a set of clusters C to the etuple set E = {I, J,K,L,M,N},

letting πc = IJKLMN . We then describe the set of permissible permutations P con-

sistent with C, show the corresponding PQ-tree, and identify the permissible loci of

several etuples. PQ-tree diagrams represent P -nodes using circles and Q-nodes using

rectangles. Etuples are represented by their labels I · · ·N .

By Definition 4, a permutation π is in P if and only if for every cluster C ∈ C,

etuples in C are contiguous in π. It is helpful to think of each etuple as a point on a

line, where point e has value re.q. Etuples in a cluster may appear in any order, as long

as they are together on the line and have no other etuples between them.

As more clusters are added, the PQ-tree’s structure can become quite complex,

so we cannot provide examples for all cases here. For a more thorough demonstration

of PQ-trees, see [13]. If C = ∅, all permutations are permissible. In this case, all etuples

are children of a single P node, and every etuple has all 6 possible permissible loci.

Example 1. (Disjoint Clusters) Let C1 = {I, J,K}, and let C2 = {L,M}, as in Fig-

ure 2.4. Permutations in P must not intersperse etuples in C1, C2, and {N}. However,

the sets themselves and the elements within each set may appear in any relative order.

There are 3! ways to permute {C1, C2, {N}}, 3! ways to permute C1, 2 for C2, and 1 for

{N}. The PQ-tree representing P is given in Figure 2.5. For each e ∈ E, we can still

find a π ∈ P that assigns e to any one of the 6 loci, so all etuples have all 6 permissible

loci.

18

L M KN I J

C
2

C
1

π
1
:

I J KN L Mπ
2
:

C
1B

C
1A

C
2

Figure 2.4: Permutation π1 is
permitted but π2 is excluded
as C1 is split by N /∈ C1 in π2.

L M K I J

N C
1C

2

Figure 2.5: PQ-tree with fron-
tier LMNKIJ reduced using
clusters {I, J,K}, {L,M}.

N M LK J I

C
2

C
1

π
1
:

K L JI M Nπ
2
:

C
1

C
2A C

2B

Figure 2.6: Permutation π1 is
permitted but π2 is excluded
as C2 is split by I, J /∈ C2 in
π2.

N M LK J I

L M N

S
1

S
2

S
3

Figure 2.7: PQ-tree with fron-
tier NMKLJI reduced using
{I, J,K,L}, {K,L,M,N}.

Example 2. (Cluster Overlap) Let C1 = {I, J,K,L} and C2 = {K,L,M,N} as in

Figure 2.6. We define sets S1 = {I, J}, S2 = {K,L} = C1 ∩ C2, and S3 = {M,N}.

Considering etuples as points on a line, we know that etuples in C1 appear together, as

do etuples in C2. To meet both of these conditions, etuples in C1 ∩ C2 must together

fall between the remaining etuples. That is, etuples in S2 must be together, and must

separate the etuples in S1 from those in S3.

Thus, S1, S2, and S3 form clusters of their own, and they appear in order

S1S2S3 or S3S2S1. We have 2 ways to permute elements within each of S1, S2, and

S3. The PQ-tree is given in Figure 2.7, where we use a Q node to represent the fact

that the sets S1, S2, S3 can be in one of two orders. Etuples I, J,M,N are restricted to

permissible loci Λe = {1, 2, 5, 6}, while K and L are restricted to Λe = {3, 4}.

Example 3. (All 2-Clusters) Figure 2.8 shows all possible size-two clusters. Applying

arguments from Example 2 to each pair of intersecting clusters, we get P = {πc, πc}.

19

I J LK M Nπc:

N M KL J Iπc:

C

Figure 2.8: The clusters in C
permit only πc and πc.

LK M N

I J LK M N

Figure 2.9: PQ-tree fully re-
duced using all size-2 clusters.

The PQ-tree is given in Figure 2.9. Each etuple has 2 permissible loci. I and N each

have Λe = {1, 6}, J and M have Λe = {2, 5}, and K and N have Λe = {3, 4}.

2.4 Identifying Permissible Loci

We give a novel algorithm for identifying permissible loci Λe of every etuple

e ∈ E given a PQ-tree T . The algorithm runs in time O(n2 log n) and requires O(n log n)

space, where n = |E|, and includes a dynamic programming solution for a series of

related subset sum problems that we must solve for each P node. Partial results for

each solution are cached in a depth-first manner to exploit problem similarities. We also

give a variation called κ-pruning, which finds Λe for etuples with |Λe| < κ in O(nκ log κ)

time and O(κ log n) space. Key notation is summarized in Table 2.3.

2.4.1 Algorithm Outline and Terminology

Let y be a node in PQ-tree T . Our goal is to identify the permissible loci of

each etuple (leaf) in T .

Definition 6. The etuple descendants ∆y of y are the etuples (leaves) descended from

y in T . If y is a leaf, ∆y = {y}.

Definition 7. The spread σy is the number of etuple descendants of y, σy = |∆y|. We

can pre-compute spreads for all nodes in time O(n).

20

N M LK J I

z3

∆y ∆z3

Λy = {1}

Λz3 = {1, 5}

ΛI = {1, 2, 5, 6}

ΛK = {3, 4}

z2z1

y

Figure 2.10: Labeled PQ-tree (Example 4).

Definition 8. The symbol η represents an offset, which denotes the total number of

etuples descended from all siblings that precede a given node in a PQ-tree.

Definition 9. The locus of a node y in PQ-tree T ′ is the position in the frontier F (T ′)

at which etuples in ∆y begin to appear. The permissible loci Λy of y are the set of all

such loci of y across all T ′ ≡ T . If y is the root, Λy = {1}. Since each such frontier is a

permissible permutation of etuples (Section 2.3.3), this definition generalizes Definition 5

from etuples to any node. For brevity, we often refer to Λy as simply the loci of y.

Let z1, . . . , zc be the c ≥ 0 children of y. The locus of zi in T ′ is offset from

the locus of y by the spreads of all children of y that precede zi in T ′. The subsets of

children that may precede zi in any tree T ′ ≡ T are determined by y’s node type (P

or Q). Thus, given Λy, y’s type, and the spreads σz1 , . . . , σzc of each of y’s children, we

can identify Λz1 , . . . ,Λzc . We apply this technique recursively to identify the permissible

loci of all nodes in T , including its leaves.

Example 4. In Figure 2.10, y is the root of a PQ-tree, so no leaves can precede ∆y,

and Λy = {1}. Since y is a Q node, its children can be reversed, so exactly 0 or 4 of

the leaves in ∆y must precede ∆z3 . Thus, the permissible loci Λz3 are offset from Λy by

η1 = 0 and η2 = 4, giving Λz3 = {1, 5}. Similarly, η3 = 0 or η4 = 1 of the leaves in ∆z3

precede ∆I for each locus in Λz3 , so ΛI = {1, 2, 5, 6}.

21

ηz3 = σz1 + σz2
z3 z4z1 z2

y

ηz3 = σz4 z3z4 z1z2

Λy = {1}

Λz3 = {(1+ σz1 + σz2), (1 + σz4)}

Figure 2.11: The loci Λz3 are offset from Λy by ←−ηz3 when y’s children are ordered left-
to-right, and by −→ηz3 when ordered right-to-left.

2.4.2 Identifying Loci for Children of Q-Nodes

Let y be a Q-node in T . We let←−ηzi be the number of etuples in ∆y that precede

∆zi in T , and −→ηzi the number that precede ∆zi in the equivalent tree where y’s children

are reversed. Thus, ←−ηzi =
∑i−1

j=1 σzj and −→ηzi =
∑c

j=i+1 σzj . Λzi are offset from Λy by

either ←−ηzi or −→ηzi , as in Figure 2.11:

Λzi = {`+←−ηzi | ` ∈ Λy} ∪ {`+−→ηzi | ` ∈ Λy} (2.1)

We call this addition/union operation an expansion of Λy to Λzi , since |Λzi | ≥

|Λy|. Since |Λy| ∈ O(n) for all y ∈ T , each expansion takes O(n) time. We perform

one such expansion per child, so the per-child cost is O(n). Pseudocode is given in

Algorithm 1, Lines 12–23. For space efficiency, we perform the expansion for the child

with the largest spread last (see Section 2.4.4).

2.4.3 Identifying Loci for Children of P -Nodes

If y is a P -node in T , any permutation of y’s children z1, . . . , zc yields an

equivalent PQ-tree. Since a child zi may be preceded by any subset of the other c − 1

children, the number of possible offsets for the loci Λzi from Λy may be large. In contrast,

22

z3 z4z1 z2

y

z3 z4z1 z2

z3 z4z1 z2

η1 = σz1 + σz2

η2 = 0

η3 = σz1

z3z4z1 z2 η8 = σz + σz + σz

z3z4 z1z2 η7 = σz2 + σz4

…

Λy = {1}

z3z4z1 z2 η8 = σz1 + σz2 + σz4

Λz3 = {(1+ σz1 + σz2), (1), (1 + σz1), …,

(1 + σz2 + σz4), (1 + σz1 + σz2 + σz4)}

Figure 2.12: For P -node y, each subset of children to the left of z3 yield an offset η of
Λz3 from Λy.

Table 2.3: Notation for Node y of PQ-Tree T

E, n Set/number of etuples (leaves) in T

m Total number of nodes (P , Q, and leaf) in T

PT Set of permutations of E consistent with T

C Cluster of etuples defined by a query result

∆y The set of etuples descended from y

σy The spread of y, σy ≡ |∆y|
Λy The permissible loci of y (starting loci of ∆y)

Φy A set of intermediate loci used in computation

η An offset ; a number of etuples preceding a node

Q-node children may only be reversed, so there are at most two offsets for each child.

Thus, computing loci for P -node children is more challenging.

As Figure 2.12 shows, the sum of spreads of every possible subset of the other

c − 1 children is a valid offset η of Λzi from Λy. To test whether a given value of η is

an offset, we must solve a subset-sum problem, where the target sum is η and the list

of integers is the multiset {σzj | j 6= i} of the spreads of the c− 1 children.

23

2.4.3.1 Each Child Considered Separately

The general subset-sum problem is NP-complete, but we know that the sum

of all child spreads never exceeds n. Using this fact,
∑c

j=1 σzj ≤ n, we can compute

all the offsets of any Λzi from Λy in time O(nc) using the standard pseudo-polynomial-

time dynamic programming algorithm for enumerating subset sums [32]. The dynamic

program is based on the insight that we can choose each child zj , j 6= i to precede or

succeed zi independently. Thus, when computing subset sums, we can independently

add in or not add in each spread σzj , j 6= i, in any order.

Once we compute the possible offsets, we must add them to the loci in Λy

as we did for Q-nodes in Equation 2.1. We can combine both steps by initializing the

algorithm with Λy, yielding the following recurrence for Λzi , where Φj represents the

intermediate loci set obtained after considering the first j children:

Λzi = Φc, where (2.2)

Φj =

Λy, j = 0

Φj−1, j = i

Φj−1 ∪ {`+ σzj | ` ∈ Φj−1}, otherwise

We make no change to the intermediate loci when j = i, since zi cannot precede itself.

As in Equation 2.1, we call each addition/union operation an expansion with O(n) cost.

Identifying Λzi for a single child zi using Equation 2.2 requires c− 1 expansions, so the

per-child cost is O(nc).

Example 5. Let y be a P -node with Λy = {1} and 4 children as in Figure 2.12. Let

σz1 = 2, σz2 = 3, σz4 = 2. We show how to find Λz3 using Equation 2.2 with i = 3. First,

we have Φ0 = Λy = {1}. We expand with σz1 to get Φ1 = {1} ∪ {1 + 2} = {1, 3}, then

expand with σz2 to get Φ2 = {1, 3} ∪ {1 + 3, 3 + 3} = {1, 3, 4, 6}. Φ3 = Φ2 since we skip

24

over σz3 , and we expand with σz4 to get Φ4 = {1, 3, 4, 6} ∪ {1 + 2, 3 + 2, 4 + 2, 6 + 2} =

{1, 3, 4, 5, 6, 8}.

2.4.3.2 All Children Considered Together

If zi, zk are children of y, a direct application of Equation 2.2 identifies Λzi and

Λzk by successively expanding Λy with each spread in {σzj | j 6= i} and {σzj | j 6= k},

respectively. Thus, both Λzi and Λzk require expansions that use the shared spreads

{σzj | j 6= i, k}. We can reduce the per-child cost of our algorithm from O(nc) to

O(n log c) by limiting the number of expansions performed with shared spreads.

Since y is a P -node, all child orders are legal. Thus, when we identify any Λzi

using Equation 2.2, we can change the order in which we consider spreads for expansion,

as long as we skip over σzi . By manipulating the spread order, we can avoid unnecessarily

repeating expansions with shared spreads when identifying both Λzi and Λzk , k 6= i.

For example, we can first expand Λy using all the shared spreads {σzj | j 6= i, k}

to get the intermediate loci set Φzi,zk . We then expand Φzi,zk using σzk to get Λzi , and

expand Φzi,zk using σzi to get Λzk , reducing the number of expansions from 2c− 2 to c.

We can apply this principle recursively to efficiently identify the loci of every child of y.

We use a depth-first divide-and-conquer approach. Expansions using the shared

spreads from the second half of the children, given by σz(c/2)+1
, . . . , σzc , are common to

identifying loci for each of the first half of the children Λz1 , . . . ,Λzc/2 , and vice-versa.

Identifying loci for each fourth of the children we use spreads from the other three

fourths, etc.

Example 6. Let y be a PNode with children z1, . . . , z8, as in Figure 2.13. Let Φzi,...,zk ,

i ≤ k, represent the intermediate loci after expanding Λy using all shared spreads com-

25

Algorithm 1 Identifying Λe for all e ∈ E descended from node y. Children of y are
z1, . . . , zc.

1: procedure TraverseNode(y,Λy)
2: if y ∈ E then
3: report Λe = Λy for etuple e = y
4: else if y is a Q-node then
5: QNode(y,Λy)
6: else
7: sort y’s children s.t. σz1 ≤ σz2 ≤ · · · ≤ σzc
8: PNode(y,Λy, [1, . . . , c])
9: end if

10: end procedure
11:

12: procedure QNode(y,Λy)
13: max ← index of child zmax of y with max σzmax

14: for i← 1 . . . c do
15: if i 6= max then
16: Λzi ← Expand(Λy,

∑i−1
j=1 σzj ,

∑c
j=i+1 σzj)

17: TraverseNode(zi,Λzi)
18: end if
19: end for
20: Λzmax ← Expand(Λy,

∑max−1
j=1 σzj ,

∑c
j=max+1 σzj)

21: Destroy(Λy)
22: TraverseNode(zmax ,Λzmax)
23: end procedure
24:

25: procedure PNode(y,Φ, S)
26: if |S| = 1 then TraverseNode(zS(1),Φ)
27: else
28: Φ′ ← copy of Φ
29: mid ← b|S|/2c
30: for i← (mid + 1) . . . |S| do
31: Φ′ ← Expand(Φ′, 0, σzS(i))
32: end for
33: PNode(y,Φ′, [S(1), . . . , S(mid)])
34: Destroy(Φ′)
35: for i← 1 . . .mid do
36: Φ ← Expand(Φ, 0, σzS(i))
37: end for
38: PNode(y,Φ, [S(mid + 1), . . . , S(|S|)])
39: end if
40: end procedure
41:

42: function Expand(Φ, η1, η2)
43: return {`+ η1 | ` ∈ Φ} ∪ {`+ η2 | ` ∈ Φ}
44: end function

26

L M N
σz5, σz6, σz7, σz8

Λy

Λz1

Φz1,z2

Λz2 Λz3 Λz4 Λz5 Λz6 Λz7 Λz8

Φz3,z4
Φz5,z6

Φz7,z8

Φz1,z2,z3,z4
Φz5,z6,z7,z8

σz1, σz2, σz3, σz4

σz3, σz4 σz1, σz2 σz7, σz8 σz5, σz6

σz2 σz1 σz4 σz3 σz6 σz5 σz8 σz78

8

8

Figure 2.13: Identifying permissible loci for children of P -node y. Each arrow indicates
expansions using the labeled spreads. Eight expansions are performed at each of three
levels. (Example 6)

mon to identifying Λzi , . . . ,Λzk . Our goal is to identify all loci Λz1 , . . . ,Λz8 . We first

identify and cache Φz1,z2,z3,z4 by expanding Λy using spreads σz5 , σz6 , σz7 , σz8 . We then

identify and cache Φz1,z2 by expanding Φz1,z2,z3,z4 using σz3 , σz4 . Finally, we identify

Λz1 by expanding Φz1,z2 using σz2 . We then backtrack and again expand the cached

Φz1,z2 , this time with σz1 , to get Λz2 . We backtrack again to identify Φz3,z4 by expand-

ing Φz1,z2,z3,z4 using σz1 , σz2 , and so on until we identify Λz8 . In all, we perform only

8 log2 8 = 24 expansions, instead of 8 · (8− 1) = 56, as we would if we identified loci for

each child separately.

Pseudocode is given in Algorithm 1, Lines 7, 8, and 25–40. The children are

initially sorted by spread for space efficiency (see Section 2.4.4). S is a sequence of child

indexes, initialized to [1, . . . , c] (Line 8). If |S| = 1, the intermediate loci Φ are the loci of

a particular child (Line 26), and we can recursively find the loci of that child’s children.

Otherwise, we split S in half, and save a copy of Φ. We then expand the copy of Φ using

the second half of the spreads σzS(b|S|/2c+1)
, . . . , σzS(|S|) , and recursively call PNode with

the expanded Φ and the first half of the spreads, given by σzS(1) , . . . , σzS(b|S|/2c) (Lines 28–

27

33). We then repeat the process, expanding Φ using the first half of the spreads, and

recursively calling PNode using the second half of the spreads (Lines 35–38).

The recursion has O(log c) levels, and we expand using each spread at most

once for each level, so the total cost is O(nc log c), with a per-child cost of only O(n log c),

down from O(nc) when the loci of each child are identified separately (Section 2.4.3.1).

2.4.4 Analysis and Space-Time Tradeoff

Algorithm 1 combines our methods for P and Q-node children using a depth-

first approach. Once we identify the permissible loci for a node in T , we immediately

start identifying the permissible loci of its children. Algorithm 1 identifies loci for O(n)

nodes and generates O(n) sets of intermediate loci via recursive calls to PNode, with

O(n) loci in each set.

There is a tradeoff between improved speed if we cache more loci and reduced

space if we cache fewer. One possible extreme is to store all O(n) loci sets, using O(n2)

space. However, since we can easily have n ≥ 106, storing O(n2) items in memory is

unacceptable. (Even storing the permissible loci for every etuple takes O(n2) space, but

we assume that the attacker logs any loci of long-term interest to secondary storage.)

Another extreme is to store only one set of loci at a time, and apply Equa-

tions 2.1 and 2.2 directly. Since we do not cache any intermediate loci, we must start

from the root every time we want to identify Λe for a different e. For each node y on

the path from the root to e, this algorithm takes time O(nc), where y has c children.

Thus, identifying Λe requires O(n2) time for each etuple, but only O(n) total space.

Repeating for all n etuples takes time O(n3).

Algorithm 1 is a compromise between these extremes. It caches intermediate

loci, but discards them as soon as possible (Lines 21 and 34). By carefully structuring

28

our traversal of T , we can find all Λe in time O(n2 log n), using only O(n log n) space.

For example, we can discard the loci of a Q-node as soon as we identify the loci of its

last child. Since T can have height O(n), a näıve traversal still requires O(n2) space, so

we must carefully select the order in which we perform expansions.

Theorem 1. Algorithm 1 takes time O(n2 log n).

Proof. Per-child time is O(n) for children of Q-nodes (Section 2.4.2) and O(n log c) for

children of P -nodes (Section 2.4.3.2). The per-child time for sorting children of P -

nodes (Line 7) is only O(log c). Thus, the worst-case per-child time in Algorithm 1 is

O(n log c) ⊂ O(n log n). Since T has n leaves, and each non-leaf node has at least two

children, there are O(n) nodes, and thus O(n) children, in T . With O(n) children, and

time O(n log n) per child, the total time for Algorithm 1 is in O(n2 log n).

The parameters in Algorithm 1 are pass-by-reference. Before we prove that

Algorithm 1 requires O(n log n) space, we must introduce the following definitions.

Definition 10. A caching call is a procedure call to QNode or PNode for which we

are caching a set of loci (Λy in QNode, Φ′ in PNode). Each call is a caching call until

its cached loci are destroyed (Lines 21, 34), except for PNode calls with |S| = 1, which

are not caching calls.

Definition 11. The coverage of a call is the number of etuples for which Λe is reported

(Line 3) by the call and all its descendant calls. Thus, the coverage of a call is the sum

of coverages of its sub-calls. A TraverseNode or QNode call has coverage σy, and a

PNode call has coverage
∑|S|

i=1 σzS(i) .

Lemma 2. Calls to QNode and PNode in Algorithm 1 always make the sub-call with

the largest coverage last.

29

Proof. For calls to QNode, all sub-calls are calls to TraverseNode on the children

z1, . . . , zc. Thus, by Definition 11, the coverage of a sub-call for child zi is the spread

σzi . Since Algorithm 1 explicitly makes the call for the child with the largest spread

last, it makes the sub-call with the largest coverage last.

For calls to PNode, if |S| = 1, the sub-call with largest coverage is the last and

only sub-call. Otherwise, PNode makes two sub-calls to PNode. The first sub-call has

coverage given by the sum
∑b|S|/2c

j=1 σzS(j) , and the second by
∑|S|

j=b|S|/2c+1 σzS(j) . The

second sub-call’s coverage sums at least as many spreads as the first, since b|S|/2c ≤

|S|/2. Further, the indexes in S are always in increasing order, and the children are

sorted such that for any two children zi, zk, with i < k, we have that σzi ≤ σzk (Line 7).

Thus,
∑b|S|/2c

j=1 σzS(j) ≤
∑|S|

j=b|S|/2c+1 σzS(j) , so the last (second) sub-call has the largest

coverage.

Lemma 3. The coverage of each caching call is at least twice that of its active sub-call.

Proof. Let ψ be a caching call with active sub-call λ and last sub-call ω. By Lemma 2,

ω is the sub-call with the largest coverage. By Definition 10, ψ must be a call to PNode

or QNode, and λ 6= ω, since cached loci are destroyed before sub-call ω is made. The

coverage of ψ is at least that of λ and ω combined, and since the coverage of ω is at

least that of λ, the coverage of ψ is at least twice that of λ.

Theorem 4. Algorithm 1 requires O(n log n) space.

Proof. Let e be a leaf for which we are reporting Λe (Line 3), and let χ be the number

of currently cached loci sets. Since loci are only cached by a caching call, χ is also the

number of caching calls in the current call stack.

The coverage of the root’s TraverseNode call is n. By Definition 11, the

coverage of any call is at least as large as the coverage of each of its sub-calls. By

30

Lemma 3, the coverage of the ith deepest caching call is at least twice that of the

(i + 1)st deepest caching call. Thus, the coverage of the deepest call is at most n/2χ.

The deepest call is the TraverseNode call reporting Λe, which has coverage σe = 1

according to Definition 11. Thus, we have:

n

2χ
≥ 1 → 2χ ≤ n → χ ≤ log2 n (2.3)

Each of the χ cached loci sets consumes O(n) space, so Algorithm 1 requires

O(n log n) space.

2.4.5 The κ-Pruning Variant

Etuples with fewer permissible loci (smaller |Λe|) yield more information (Sec-

tion 2.3.2). Thus, we may want to identify Λe for only those etuples with |Λe| < κ,

for some threshold κ. We can prune the call tree in Algorithm 1 to find such loci

in O(κ log n) space and O(nκ log κ) time. We refer to the resulting algorithm as the

κ-pruning variant.

If zi is a child of y, we expand Λy to get Λzi , so |Λzi | ≥ |Λy|. Thus, if |Λy| ≥

κ, all etuple descendants of y will have |Λe| ≥ κ, and we can prune y, skipping the

TraverseNode calls for y and all its descendants. Since we need only traverse nodes

with |Λy| < κ, we need only store loci sets with at most O(κ) loci, so κ-pruning has

space complexity O(κ log n). When y is a P -node, we may be able to use the following

theorem to prune y even if |Λy| < κ.

Theorem 5. If y is a P -node with children z1, . . . , zc, then for every child zi, |Λzi | ≥

|Λy|+ c− 1.

Proof. Let mj be the maximum value in Φj in Equation 2.2. For each expansion (j 6= i),

σzj is added to each element in Φj−1, including mj−1, and the results are placed in Φj .

31

Thus, mj ≥ σzj + mj−1. Since σzj ≥ 1, mj > mj−1 and thus mj /∈ Φj−1. Since

Φj−1 ⊂ Φj , and Φj has at least one element (mj) that is not in Φj−1, we know that

|Φj | ≥ |Φj−1|+ 1. We perform c− 1 expansions going from Φ0 to Φc, so |Λzi | = |Φc| ≥

|Φ0|+ (c− 1) = |Λy|+ (c− 1), and thus |Λzi | ≥ |Λy|+ c− 1.

By Theorem 5, we know that if y is a P -node, and if |Λy|+ c− 1 ≥ κ, then for

every child zi of y, |Λzi | ≥ κ. Thus, we can prune y if it has at least c ≥ κ − |Λy| + 1

children. Since we always have |Λy| ≥ 1, we can always prune y if c ≥ κ.

Algorithm 1 requires O(1) expansions per child for a Q-node, and O(log c)

per child for a P -node. Since we need only traverse P -nodes with c < κ, we need at

most O(log κ) expansions per child. Loci sets now contain at most O(κ) loci, so each

expansion takes time O(κ). In pathological cases, we still traverse O(n) children, so the

total time for κ-pruning is O(nκ log κ). In practice, κ-pruning runs much faster than

this asymptotic bound.

The following theorem will be used in Section 2.6.

Theorem 6. If at least κ − 1 etuples appear in none of the clusters in C, then every

etuple has |Λe| ≥ κ, for 1 < κ < n.

Proof. Let y be the root of T , with |Λy| = 1. Recall that y starts out as a P -node

with all etuples as its children. If κ > 1 and at least κ − 1 etuples do not appear in

any cluster, then those κ − 1 etuples must still be children of y, and y must still be

a P -node with at least κ children. Therefore, by Theorem 5, every child zi of y has

|Λzi | ≥ |Λy|+ κ− 1 = κ. Thus, since all etuples are descendants of y, every etuple also

has |Λe| ≥ κ.

32

2.5 Measuring Privacy Loss

As the number of permissible loci |Λe| becomes smaller, more information is

revealed about the query-attribute of e, reducing privacy. Equivocation captures this

measure of progress toward compromising PQP privacy.

Definition 12. Etuple e has equivocation εe = |Λe|.

We can compute εe using Algorithm 1. Since πc ∈ P if πc ∈ P, we can have

εe = 1 only if e is the center etuple in πc. Otherwise, εe ≥ 2. When εe ≤ 2, we

have learned all that we can about e using clusters, and e’s privacy has clearly been

compromised. Most clients will not accept the privacy compromise of any of their

etuples, so we can state:

Definition 13. The privacy of a PQP is compromised if εe ≤ 2 for any e ∈ E.

Having εe ≤ 2 for some e ∈ E is sufficient, but not necessary, to compromise

privacy. In requiring all etuples to have equivocation at least 3, we propose a notion of

privacy similar to `-diversity [56], where each entity must be associated with at least `

sensitive values. Here, these values are loci. In Section 2.6, we demonstrate that PQPs

are insecure by showing that at least one etuple’s equivocation quickly drops below 3.

2.5.1 Alternate and Related Metrics

We could also measure progress toward compromising privacy in terms of un-

certainty about which permutation is the correct ordering πc. Each π ∈ P has equal

likelihood of being πc, and each π /∈ P has likelihood zero, so we can measure this

uncertainty using permutation entropy [9].

Definition 14. The permutation entropy of E is log2 |P|.

33

Permutation entropy is straightforward to compute using a PQ-tree T . Since

every tree T ′ ≡ T represents a unique permutation π ∈ PT , there are |PT | trees equiv-

alent to T . Let f(yi) be the number of ways to rearrange the children of node yi

in T . Every combination of valid child arrangements yields an equivalent tree, so

|PT | = f(y1) · · · f(ym). Thus log2 |PT | = log2 f(y1) + · · · + log2 f(ym) gives the per-

mutation entropy, which we can compute in time O(m) = O(n).

If yi is a leaf node, f(yi) = 1. If yi is a Q-node, f(yi) = 2, as yi’s children can

only be in forward or reverse order. If yi is a P -node with ci children, then f(yi) = ci!,

as the children can be arbitrarily permuted.

We give experimental results measuring permutation entropy in Section 2.6.

Permutation entropy adequately measures uncertainty about πc, but it fails to capture

the idea that P may give more information about some etuples than others. Thus,

equivocation is generally preferable.

Another alternative is to extend Algorithm 1 to count the number of permissible

permutations that assign each etuple to each of its permissible loci. Intuitively, loci

deemed permissible by more permutations are more likely to be correct. We could then

merge this information with knowledge of the query-attribute distribution to obtain

a precise metric for the uncertainty about the query-attribute value of each etuple.

Unfortunately, this modification to Algorithm 1 raises its costs to O(n3/ log n) space,

and O(n4) time, leaving equivocation as a better choice when n is large. Due to space

constraints, we omit details for this modification of Algorithm 1.

Work in [26] uses a metric akin to permutation entropy to analyze attacks

based on repeated ciphertexts. Averaging equivocations also resembles work in [26],

and counting etuples with εe < κ relates to confidential intervals in [82].

34

2.6 Experiments and Evaluation

We conducted experiments to study how quickly the privacy of Precise Query

Protocols (PQPs) is compromised. In each experiment, we generate a set E of n etuples,

and create an initial PQ-tree T with all n etuples as leaves of a single P node. We then

generate a series of random range queries, obtain the cluster C of etuples returned by

each query, and use each C to reduce T (see Section 2.3.3). We use the algorithms

described in Section 2.4 to identify permissible loci and compute equivocations when

needed. When averages are reported, they are computed by averaging results from 10

sets of queries issued on a single dataset.

We ran experiments using two datasets. In the Random dataset, each etuple

is given a query-attribute value sampled uniformly with replacement from the domain

D = Z108 . For our real-world Salary dataset, we used a set of 162591 federal employee

salaries [1] with values from D = Z373071. Only a tenth of the salaries are distinct. Over

600 have minimum value 0, while only one has maximum value. In practice, this property

could be used to distinguish low and high-salary etuples, and thus to distinguish the

correct ordering from its reverse. The most frequent salary appears over 7000 times.

The integer center of each query range is sampled from the uniform distribution

U(0, |D|). Integer query widths are sampled either from U(0, |D|) or from a Gaussian

distribution. We refer to such queries as Uniform and Gaussian, respectively. The Gaus-

sian distribution is given by N(105, 5×104) for the Random dataset, and N(2×104, 104)

for the Salary dataset. Uniform query widths tend to be large, while Gaussian widths

are smaller. The Gaussian queries used for the Salary dataset are larger, relative to

|D|, than for the Random dataset, to ensure that at least one query spans each pair

of adjacent etuples. In the Salary dataset, the maximum separation between subse-

35

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Query Count at Privacy Compromise, 10-Trial Average

Total Number of Etuples (n = |E|)

Q
u
e
ry
 C
o
u
n
t

Gaussian: Compromise

Uniform: Compromise

Bound

Student Version of MATLAB

Figure 2.14: Query Count before Privacy Compromise, Random dataset.

quent query-attribute values is nearly 25000, despite its small domain size. We use the

following terms:

• Query Count: The number of queries issued so far.

• Total Return Count: The total number of etuples returned by queries issued so

far.

• Distinct Return Count: The number of distinct etuples returned so far.

• Privacy Compromise: The event of at least one etuple reaching equivocation εe ≤

2, as in Definition 13. Recall that this condition is sufficient, but not necessary,

for PQP privacy to be compromised.

2.6.1 Progress Before Privacy Compromise

Query Count and Total Return Count both measure query processing work

done by the server. We primarily use Total Return Count, as it is less sensitive to the

distribution of query widths. Figures 2.14 and 2.15 show equivalent results under both

metrics for the Random dataset.

Figure 2.14 gives the average Query Count before Privacy Compromise occurs.

These numbers are strikingly low. Privacy is compromised sooner for the larger, Uniform

36

10
3

10
4

10
5

10
6

10
7

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10
Total Return Count at Privacy Compromise, 10-Trial Average

Total Number of Etuples (n = |E|)

T
o
ta
l
R
e
tu
rn
 C
o
u
n
t

Gaussian: Compromise

Uniform: Compromise

Bound

Student Version of MATLAB

Figure 2.15: Total Return Count before Privacy Compromise, Random dataset.

queries since large queries are more likely to intersect with others, and thus exclude more

permutations.

In most cases, for any etuple to have εe ≤ 2, the root of T must be a Q node,

which will not happen until all etuples are linked together or covered by overlapping

clusters. Further, the clusters must be dense enough that the intersection of at least one

pair of clusters contains only one etuple. For a given query width distribution, reaching

sufficient coverage requires a constant number of queries, while reaching sufficient density

requires a number of queries that increases when etuples are more closely spaced along

the domain (larger n).

The larger, Uniform queries reach sufficient coverage before sufficient density,

so as n increases, we need more of them in order to reach Privacy Compromise. However,

the Gaussian queries reach sufficient density before sufficient coverage, so we need nearly

the same number of them for all n. In fact, as n increases, the number of Gaussian

queries needed drops slightly, as the regions where query ranges overlap are more likely

to contain etuples, and thus to yield intersecting clusters.

Figure 2.14 shows that issuing even 100 queries is risky. In principle, even a

single query can cause Privacy Compromise if it returns all but one etuple, as captured

37

by curve Bound. All etuples returned by such a query are contiguous, so the remaining

etuple e must be assigned to locus 1 or n in the correct ordering. That is, e has

Λe = {1, n}, and εe = 2.

Figure 2.15 measures against Total Return Count instead of Query Count. It

shows that for small queries, on average, Privacy Compromise occurs after the Total

Return Count reaches roughly 10 times the database size (10n). Privacy Compromise

is just as quick for the Salary dataset (n = 162591), averaging 13.2 queries or 1.017 ×

106 etuples returned (Uniform), and averaging 100.9 queries or 1.019 × 106 etuples

(Gaussian).

While larger queries exclude more permutations, they exclude fewer permuta-

tions than several small queries with the same total size. Thus, privacy is compromised

sooner for the smaller, Gaussian queries in terms of the Total Return Count, since the

Gaussian queries exclude more permutations per etuple returned. This contrasts with

the fact that privacy is compromised sooner for Uniform queries in terms of Query Count

(Figure 2.14).

2.6.2 Higher Thresholds and Larger κ

If value is distributed across many records, we may permit many etuples to

have small equivocations. In other cases, it is unacceptable for any etuple to have even

a moderate equivocation, such as when an attacker is guessing a passcode and can afford

several attempts. Figures 2.16-2.19 illustrate the rate of privacy loss in such cases by

plotting the fraction of etuples with equivocation εe < κ, for various κ.

We explain the threshold phenomenon in Figure 2.16 by considering the Dis-

tinct Return Count, which is the number of distinct etuples returned so far. If the

38

10
5

10
6

10
7

10
8

0

0.2

0.4

0.6

0.8

1

Total Return Count

F
ra
c
ti
o
n
 o
f
E
tu
p
le
s

Fraction of Random Dataset Etuples with Equivocation < κ

κ = 3

κ = 9

κ = 27

κ = 81

Student Version of MATLAB

Figure 2.16: Random dataset, Gaussian widths: N(105, 5× 104).

10
5

10
6

10
7

10
8

10
9

10
10

0

0.2

0.4

0.6

0.8

1

Total Return Count

F
ra
c
ti
o
n
 o
f
E
tu
p
le
s

Fraction of Random Dataset Etuples with Equivocation < κ

κ = 3

κ = 9

κ = 27

κ = 81

Student Version of MATLAB

Figure 2.17: Random dataset, Uniform widths: U(0, 108).

Distinct Return Count is at most (n− κ+ 1), then at least κ− 1 etuples have not been

returned, and thus do not appear in any cluster. By Theorem 6 (Section 2.4.5), every

etuple e ∈ E then has equivocation εe ≥ κ, for 1 < κ < n. Thus, no etuples have εe < κ

until the Distinct Return Count exceeds n− k + 1.

This threshold is reached with only a few of the large, Uniform queries, but

requires many of the small, Gaussian queries. The numerous Gaussian queries exclude

many permutations, such that many etuples have equivocations only slightly larger than

κ. When the threshold is reached, many such etuples drop to εe < κ together, yielding

the phenomenon in Figure 2.16. With the larger, Uniform queries, fewer permutations

are excluded before the threshold is reached, so the trend is more gradual (Figure 2.17).

39

10
5

10
6

10
7

10
8

0

0.05

0.1

0.15

0.2

Total Return Count

F
ra
c
ti
o
n
 o
f
E
tu
p
le
s

Fraction of Salary Dataset Etuples with Equivocation < κ

κ = 3

κ = 9

κ = 27

κ = 81

Student Version of MATLAB

Figure 2.18: Salary dataset, Gaussian widths: N(2× 104, 104).

10
5

10
6

10
7

10
8

10
9

10
10

0

0.05

0.1

0.15

0.2

Total Return Count

F
ra
c
ti
o
n
 o
f
E
tu
p
le
s

Fraction of Salary Dataset Etuples with Equivocation < κ

κ = 3

κ = 9

κ = 27

κ = 81

Student Version of MATLAB

Figure 2.19: Salary dataset, Uniform widths: U(0, 373071).

This same threshold phenomenon appears for Gaussian queries in the Salary

dataset (Figure 2.18), though it is almost undetectable since the queries are larger

relative to the domain. The Salary dataset contains many indistinguishable etuples

(etuples with duplicate values), so only a few etuples can ever reach low equivocations

(Figures 2.18-2.19).

2.6.3 Permutation Entropy

Figure 2.20 plots permutation entropy against the Total Return Count for

the experiments in Figures 2.16–2.19. Permutation entropy is independent of κ and

captures overall progress toward identifying the correct ordering. In these experiments,

40

10
0

10
2

10
4

10
6

10
8

10
10

10
2

10
3

10
4

10
5

10
6

Permutation Entropy for Both Datasets

Total Return Count

P
e
rm

u
ta

ti
o
n
 E

n
tr
o
p
y
 (
B
it
s
)

Gaussian (Random)

Uniform (Random)

Gaussian (Salary)

Uniform (Salary)

Student Version of MATLAB

Figure 2.20: Drop rates of permutation entropy for Gaussian and Uniform query width
distributions on the Random and Salary datasets.

permutation entropy remains high even after equivocation drops below 3 for several

etuples, at which point privacy is compromised. Thus it appears that equivocation is a

more reliable privacy metric. Permutation entropy stays higher for the Salary dataset

because of the large number of indistinguishable etuples with duplicate query-attribute

values.

Permutation entropy is useful when the query distribution is so skewed that

many etuples are never returned and all equivocations remain large. Privacy may still be

eroding, as etuples that are returned become relatively ordered, allowing the attacker to

make limited inferences. In such cases, permutation entropy is an effective and efficient

privacy metric, whereas equivocation is expensive for large κ and gives no indication of

privacy loss for small κ.

2.6.4 Effects of Indexes on PQP Privacy

We have shown that the privacy of any PQP can be compromised quickly as

queries are issued, regardless of the PQP’s encryption and querying mechanisms. In

41

10
3

10
4

10
5

10
6

10
7

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Total Return Count at Privacy Compromise Index/No Index
10-Trial Average

Total Number of Etuples (n = |E|)

T
o
ta
l
R
e
tu
rn
 C

o
u
n
t

Gaussian: No Index

Uniform: No Index

Bound: No Index

Gaussian: Index

Uniform: Index

Student Version of MATLAB

Figure 2.21: Effects of a binary range tree index on the average Total Return Count
reached before Privacy Compromise.

practice, Privacy Compromise occurs even sooner, as most PQPs use a server-side index

that leaks additional information.

For example, consider a balanced, binary range tree, with nodes that hold

encrypted query-attribute ranges. The children of a single parent node hold disjoint

ranges covering the parent’s range. Each leaf represents a single query-attribute value,

and points to all etuples with that value. The server receives encrypted query range

tokens from the client and uses them to search the tree by homomorphically check-

ing whether query and node ranges overlap, all without learning the plaintext ranges.

Similar indexes can be found in [17] and [51].

In such an index, etuples descended from each node form a cluster. These

clusters, along with those obtained from query result sets, can be used to reduce a

PQ-tree. In Figure 2.21, we see that including such an index dramatically reduces the

average Total Return Count reached before Privacy Compromise.

42

2.6.5 Consequences and Alternatives

The Figures above show that in a PQP that supports range queries, Privacy

Compromise can occur quickly. Faced with this reality, clients have two options: aban-

don PQPs, or assume that query-attribute distributions are hidden.

2.6.5.1 Assuming Attribute Distributions are Hidden

The client may choose to make the dangerous assumption that the attacker

will never learn the query-attribute distribution. In this case, our work shows that the

client should operate under the assumption that the attacker knows the correct etuple

ordering. PQPs like OPES [8] are designed for this scenario, and claim decent privacy

properties [10] and excellent efficiency. Thus it is hard to see much advantage to using

a more complex PQP, which will likely be less efficient (see Table 2.1).

2.6.5.2 Abandoning PQPs Altogether

If the distribution is known, the client must find alternatives to PQPs. One

option is to use partitioning schemes [40, 43], which make privacy guarantees in terms

of entropy and indistinguishability, at the cost of spurious results.

An alternative is to periodically re-encrypt etuples using a new key. The at-

tacker cannot correlate old and re-encrypted etuples, so he must then restart his attack.

As Figure 2.15 shows, we must re-encrypt at least one etuple for every 10–100 returned

to retain even a basic level of privacy.

Re-encryption, also called node swapping or shuffling, is already used to sup-

port privacy-preserving point queries in work on oblivious index traversal techniques [30,

53], and Oblivious RAM [73]. Oblivious index traversals generally use spurious quer-

ies and a tunable constant number of re-encryptions per etuple returned in order to

43

achieve probabilistic privacy guarantees. Existing Oblivious RAM schemes require at

least log n re-encryptions per etuple returned, and achieve provable access pattern in-

distinguishability by requesting spurious items and frequently re-encrypting recently

requested items. Such techniques are promising, but have not yet been optimized for

range queries.

2.7 Conclusion

We have presented an attack that can be used to infer attribute values of en-

crypted records in any Precise Query Protocol (PQP) that supports one-dimensional

range queries. We mounted the attack using PQ-trees and a novel algorithm for iden-

tifying permissible loci. Experimental results demonstrate that our attack requires us

to observe only 104 queries to compromise privacy for a database of over 106 records,

indicating that PQPs are highly insecure when query-attribute distributions are known.

Future research on privacy-preserving range queries should investigate efficient alterna-

tives to PQPs.

We will explore additional privacy metrics for PQPs in future work. We are

also interested in finding an analog to our attack for multi-dimensional queries, where

returned etuples are contiguous along multiple attributes at once.

44

Chapter 3

Security Limitations of Using

Secret Sharing for Data

Outsourcing

3.1 Introduction

As cloud computing grows in popularity, huge amounts of data are being out-

sourced to cloud-based database service providers for storage and query management.

However, some customers are unwilling or unable to entrust their raw sensitive data to

cloud providers. As a result, privacy-preserving data outsourcing solutions have been

developed around an honest-but-curious database server model. In this model, the server

is trusted to correctly process queries and manage data, but may try to use the data it

manages for its own nefarious purposes.

Private outsourcing schemes keep raw data hidden while allowing the server

to correctly process queries. Queries can be issued only by a trusted client, who has

45

insufficient resources to manage the database locally. Most such schemes use specialized

encryption or complex mechanisms, ranging from order-preserving encryption [8], which

has limited security and high efficiency, to oblivious RAM [77], which has provable access

pattern indistinguishability but poor performance.

Three recent works [6, 41, 80] propose outsourcing schemes based on Shamir’s

secret sharing algorithm [70] instead of encryption. We refer to these works by their

authors’ initials, HJ [41], AAEMW [6], and TSWZ [80], and in aggregate as the HAT

schemes. The AAEMW scheme was also published in [7]. In secret sharing, each sensitive

data element, called a secret, is split into n shares, which are distributed to n data servers.

To recover the secret, the client must combine shares from at least k servers. Secret

sharing has perfect information-theoretic security when at most k − 1 of the n servers

collude (exchange shares) [70].

Since secret sharing requires only k multiplications to reconstruct a secret,

proponents argue that HAT schemes are faster than encryption based schemes. Other

benefits of the HAT schemes include built-in redundancy, as only k of the n servers are

needed, and additive homomorphism, which allows SUM queries to be securely processed

by the server and returned to the client as a single value. Each of the HAT schemes

makes two security claims:

Claim 1. The scheme achieves perfect information-theoretic security when at most k−1

servers collude.

Claim 2. When k or more servers collude, the scheme still achieves adequate security

as long as certain information used by the secret sharing algorithm, namely a prime p

and a vector ~X, are kept private, known only to the client.

46

It is doubtful that the HAT schemes truly fulfill Claim 1, as they sort shares by

secret value, which certainly reveals some information about the data [47]. Further, the

AAEMW scheme [6] uses correlated coefficients in the secret sharing algorithm instead

of random ones, which also contradicts this claim. Nevertheless, for the purposes of this

work, we assume that Claim 1 holds.

We are primarily concerned with evaluating Claim 2, which asserts that even

k or more colluding servers cannot easily recover secrets. Claim 2 is stated in Section

4.5 of [41], Section 3 of [6], Sects. 2.2 and 6.1 of [80], and Section 3 of [7].

3.1.1 Our Contribution

Our contribution is to demonstrate that all three HAT schemes [6, 41, 80] fail to

fulfill Claim 2. We give a practical attack that can reconstruct all secrets in the database

when k servers collude, even when p and ~X are kept private. Our attack assumes that

the servers know, or can discover, at least k + 2 secrets. To limit data storage costs, k

is kept small (k ≈ 10), so discovering k + 2 secrets is feasible (see Section 3.4.2). All

three HAT schemes argue that they fulfill Claim 2, so our result provides a much-needed

clarification of their security limitations.

The TSWZ scheme [80] argues that if p is known, secrets could be recovered.

However, it provides no attack description, and argues that large primes are prohibitively

expensive to recover. Our attack recovers 8192-bit primes in less time than [80] needed

to recover 32-bit primes. In fact, we can generally recover large primes in less time than

the client takes to generate them (Section 3.5.1).

In Section 3.2 we review Shamir’s secret sharing algorithm and how it is used

for private outsourcing. In Section 3.3 we give assumptions and details of our attack, and

we show how to align shares and discover secrets in Section 3.4. We give experimental

47

y1,1
y1,2
y1,3
y1,4…

y2,1
y2,2
y2,3
y2,4…

y3,1
y3,2
y3,3
y3,4…

DS1 DS2 DS3

s5 = 40,200840

s4 = 20,700751

s3 = 36,425363

s2 = 20,700219

s1 = 87,650104

SalaryID

Trusted

ClientEmployee Table

Figure 3.1: Secret (salary) data from an employee table is split into shares and dis-
tributed to multiple data servers. A trusted client queries shares from the data servers
and combines them to recover the secrets.

runtime results in Section 3.5, and discuss possible attack mitigations in Section 3.6.

We discuss related work in Section 3.7 and conclude with Section 3.8.

3.2 Data Outsourcing Using Secret Sharing

We now review Shamir’s secret sharing scheme and show how it is used for

private data outsourcing in the HAT schemes [6, 41, 80]. We use an employee table with

m records as our driving example, where queries are issued over the salary attribute.

Each salary s1, . . . , sm is a secret that is shared among the n data servers (see Figure 3.1).

3.2.1 Shamir’s Secret Sharing

Shamir’s secret sharing scheme [70] is designed to share a single secret value

sj among n servers such that shares must be obtained from any k servers in order to

reconstruct sj . The scheme’s security rests on the fact that at least k points are needed

to uniquely reconstruct a polynomial of degree k − 1. Theoretically, the points and

coefficients used in Shamir’s scheme can be taken from any field F. However, to use the

scheme on finite-precision machines, we require F to be the finite field Fp, where p is a

prime.

48

To share sj , we choose a prime p > sj , and k − 1 coefficients a1,j , . . . , ak−1,j

selected randomly from Fp. We then construct the following polynomial:

qj(x) = sj +
k−1∑
h=1

ah,jx
h mod p (3.1)

We then generate a vector ~X = (x1, . . . , xn) of distinct elements in Fp, and for

each data server DSi , we compute the share yi,j = qj(xi). Together, xi and yi,j form a

point (xi, yi,j) through which polynomial qj(x) passes.

Given any k such points (x1, y1,j), . . . , (xk, yk,j), we can reconstruct the poly-

nomial qj(x) using Lagrange interpolation:

qj(x) =
k∑
i=1

yi,j`i(x) mod p (3.2)

where `i(x) is the Lagrange basis polynomial:

`i(x) =
∏

1≤j≤k,j 6=i
(x− xj)(xi − xj)−1 mod p (3.3)

and (xi − xj)−1 is the multiplicative inverse of (xi − xj) modulo p.

The secret sj is the polynomial qj evaluated at x = 0, so we get:

sj =

k∑
i=1

yi,j`i(0) mod p (3.4)

Given only k′ < k shares, and thus only k′ points, we cannot learn anything

about s, since for any value of s, we could construct a polynomial of degree k − 1 that

passes through all k′ points. Thus Shamir’s scheme offers perfect, information-theoretic

security against recovering sj from fewer than k shares [70].

3.2.2 Data Outsourcing via Secret Sharing

We now describe the mechanism used by all three HAT schemes to support

private outsourcing via secret sharing. We first choose a single prime p and a vector ~X,

which are the same for all secrets and will be stored locally by the client. For each secret

49

sj , we generate coefficients a1,j , . . . , ak−1,j , and produce a polynomial qj(x) as in (3.1).

We then use qj to split sj into n shares y1,j , . . . , yn,j , where yi,j = qj(xi), and distribute

each share yi,j to server DSi , as in Figure 3.1.

An important distinction is that the AAEMW scheme performs secret sharing

over the real number field R, so there is no p to choose. However, since the scheme must

run on finite precision hardware, any implementation will suffer from roundoff error.

Our attack works over R, and is efficient because the field is already known. However,

we expect that in practice, the AAEMW scheme will switch to a finite field Fp, so we

do not treat it as a special case.

When the client issues a point query for the salary sj of a particular employee,

he receives a share from each of the n servers. Using any k of these shares, he can

recover sj using the interpolation equation (3.4). Other query types, including range

and aggregation queries, are supported by the HAT schemes. We give some relevant

details in Section 3.2.4, but the rest can be found in [6, 41, 80].

~X and p are re-used across secrets for two reasons. First, storing distinct ~X

or p on the client for each secret would require at least as much space as storing the

secret itself. Second, when the same ~X and p are used, the secret sharing scheme has

additive homomorphism. That is, if each server DSi adds shares yi,1 + yi,2, and we

interpolate using those sums, the recovered value is the sum s1 + s2. With additive

homomorphism, when the client issues a SUM query, the server can sum the relevant

shares, and return a single value to the client, instead of returning shares separately and

having the client perform the addition. Using a different ~X or p for each secret breaks

additive homomorphism.

50

3.2.3 Security

If ~X and p are public, and k or more servers collude, then the HAT schemes are

clearly insecure, as the servers could easily perform the interpolation themselves. On the

other hand, if at most k−1 servers collude, and coefficients are chosen independently at

random from Fp, then the servers learn nothing about a secret by examining its shares,

and Claim 1 is fulfilled.

The HAT schemes state that by keeping ~X [6, 41] and p [80] private, they

achieve security even when k or more servers collude (Claim 2). Our attack shows that

any k colluding servers can recover all secrets in the database, even when ~X and p are

unknown (Section 3.3), contradicting Claim 2.

3.2.4 Supporting Range and Aggregation Queries

We can use the mechanisms that support range and SUM queries in the HAT

schemes to reveal the order of the shares on each server according to their corresponding

secret values. We then use these orders to align corresponding shares across colluding

servers, and to discover key secret values (see Section 3.4).

The AAEMW scheme [6] crafts coefficients such that the shares preserve the

order of their secrets. The HJ and TSWZ schemes [41, 80] both use a single B+ tree

to order each server’s shares and facilitate range queries. TSWZ assumes the tree is

accessible to all servers, while HJ assumes it is on a separate, non-colluding index server.

HJ obscures share order from the servers, but we can reconstruct it by observing range

queries over time (see Section 3.4.3).

51

3.3 Attack Description

We now show that the HAT schemes are insecure when k or more servers

collude, even if ~X and p are kept private. Our attack efficiently recovers all secret values

(salaries in Figure 3.1) stored in the database, and relies on the following assumptions:

1. At least k servers collude, exchanging shares or other information.

2. The number of servers k and the number of bits b in prime p are modest: k ≈ 13,

b ≈ 213. None of the HAT schemes give recommended values for k or b, with the

exception of a brief comment in [6] alluding to 16-bit primes originally suggested

by Shamir. In practice, primes with more than 213 bits take longer for the client

to generate than for our attack to recover, and the cost of replicating data to every

server keeps k small.

3. ~X and p are unknown, and are the same for each secret (see Section 3.2.2).

4. Each set of k corresponding shares can be aligned. That is, the colluding servers

know which shares correspond to the same secret, without knowing the secret

itself. We can align shares if we know share orders (see Section 3.4.1).

5. At least k + 2 secrets, and which shares they correspond to, are known or can be

discovered. Since k is modest, knowing k+2 secrets is reasonable, especially when

the number of secrets m is large (see Section 3.4.2).

In Section 3.6, we show that modifying the HAT schemes to violate these assumptions

sacrifices performance, functionality, or generality, eroding the schemes’ slight advan-

tages over encryption based techniques.

52

3.3.1 Recovering Secrets when p is Known and ~X is Private

As a stepping stone to our full attack, we show how to recover secrets if p

is already known. Without loss of generality, let s1, . . . , sk be known secrets, and let

DS1 , . . . ,DSk be the colluding servers. For each secret sj , we have shares y1,j , . . . yk,j ,

generated by evaluating qj(x) at x1, . . . , xk, respectively. We therefore have a system

of k2 equations of the form yi,j = sj +
∑k−1

h=1 ah,jx
h
i mod p, as in (3.1). The system

has k(k − 1) unknown coefficients ah,j , and k unknown xi, giving k2 equations in k2

unknowns. Thus, it would seem we can solve for the relevant values of ~X, which would

allow us to recover the remaining secrets. Unfortunately, the system is non-linear, so

naively solving it directly requires expensive techniques such as Groebner basis compu-

tation [14].

Instead, we can recover the remaining secrets without solving for ~X. Consider

the following system of equations obtained by applying the interpolation equation (3.4)

to each of the k secrets:

y1,1`1(0) + y2,1`2(0) + · · ·+ yk,1`k(0)− s1 ≡ 0 (mod p)

y1,2`1(0) + y2,2`2(0) + · · ·+ yk,2`k(0)− s2 ≡ 0 (mod p)

... (3.5)

y1,k`1(0) + y2,k`2(0) + · · ·+ yk,k`k(0)− sk ≡ 0 (mod p)

If we treat each basis polynomial value `i(0) as an unknown, we get k unknowns

`1(0), . . . , `k(0), which we call bases, in k linear equations. Since we know p, we can easily

solve (3.5) using Gaussian elimination and back-substitution. We can then use the bases

to recover the remaining secrets in the database via (3.4).

We can construct (3.5) since we know that all shares from a given server DSi

were obtained from the same xi, and thus should be multiplied by the same base `i(0).

53

The client could obscure the correspondence between shares by mixing shares among

servers, but would be forced to store i with each share in order to properly reconstruct

the secret. To completely hide the correspondence, i itself would need to be padded and

encrypted, which is precisely what secret sharing tries to avoid. Further, mixing the

shares would break additive homomorphism.

3.3.2 Recovering p when ~X and p are Private

Let b be the number of bits used to represent p. We can easily have b >

26, so enumerating possible values for p is not practical. However, we can recover p

by exploiting known shares and the k + 2 known secrets. Our attack identifies two

composites δ1 and δ2 both divisible by p (p|δ1, p|δ2), such that the remaining factors of

δ1, δ2 are largely independent. We then take δ′ to be the greatest common divisor of δ1

and δ2, and factor out small primes from δ′, leaving us with δ′ = p with high probability.

Once p is known, we can use the attack from Section 3.3.1 to recover the bases and the

remaining, unknown secrets.

3.3.2.1 Computing δ1, δ2.

Without loss of generality, we let s1, . . . , sk+2 be the known secrets. To compute

δγ , γ ∈ {1, 2}, we consider the system of interpolation equations for secrets sγ , . . . , sγ+k

as in (3.5), represented by the following (k + 1)× (k + 1) matrix:
y1,γ y2,γ · · · yk,γ −sγ
y1,γ+1 y2,γ+1 · · · yk,γ+1 −sγ+1

...
. . .

...
y1,γ+k−1 y2,γ+k−1 · · · yk,γ+k−1 −sγ+k−1

y1,γ+k y2,γ+k · · · yk,γ+k −sγ+k

 (3.6)

54

Since p is unknown, we cannot compute inverses modulo p and thus cannot

divide as in standard Gaussian elimination. However, we can still convert (3.6) to upper

triangular (row echelon) form using only multiplications and subtractions.

We start by eliminating coefficients for `1(0) from all but the first row (j = γ).

To eliminate `1(0) from row j > γ, we multiply the contents of row γ through by y1,j ,

and of row j by y1,γ , producing a common coefficient for `1(0) in both rows. We then

subtract the multiplied row γ from the multiplied row j, canceling the coefficient for

`1(0). Row 1 is left unchanged, but row j now has coefficient 0 for `1(0), and coefficient

(yi,j)(y1,γ)− (yi,γ)(y1,j) for `i(0), i ≥ 2:

y1,γ y2,γ · · · −sγ
0 (y2,γ+1)(y1,γ)− (y2,γ)(y1,γ+1) · · · (−sγ+1)(y1,γ)− (−sγ)(y1,γ+1)
...

. . .
...

0 (y2,γ+k)(y1,γ)− (y2,γ)(y1,γ+k) · · · (−sγ+k)(y1,γ)− (−sγ)(y1,γ+k)

We then repeat the process, eliminating successive coefficients from lower rows,

until the matrix is in upper triangular form:
y1,γ y2,γ · · · yk,γ −sγ
0 c2,γ+1 · · · ck,γ+1 ck+1,γ+1
...

. . .
...

0 0 · · · ck,γ+k ck+1,γ+k

0 0 · · · 0 δγ

 (3.7)

We use ci,j values to denote constants. In the last row of (3.7), the coefficient for every

`i(0) is 0, so the row represents the equation δγ ≡ 0 (mod p). Thus, p|δγ .

3.3.2.2 Size of δ1, δ2.

As coefficients for successive `i(0) are eliminated, each non-zero cell below the

ith row is set to the difference of products of two prior cell values, doubling the number

of bits required by the cell. Thus, the number of bits per cell in (3.7) is given by:

55

b b · · · b b
0 21b · · · 21b 21b
...

. . .
...

0 0 · · · 2k−1b 2k−1b
0 0 · · · 0 2kb

As a result, each of δ1, δ2 has at most 2kb bits. This is closely related to the result that in

the worst case, simple integer Gaussian elimination leads to entries that are exponential

in the matrix size [33].

3.3.2.3 Recovering p from δ1, δ2.

Since δ1, δ2 have 2kb bits, and p has only b bits, it is likely that δ1, δ2 both have

some prime factors larger than p, so factoring them directly is not feasible. Instead,

we take δ′ = gcd(δ1, δ2), where gcd is the greatest common divisor function, which can

be computed using the traditional Euclidean algorithm, or more quickly using Stein’s

algorithm [79].

Since δ1 and δ2 were obtained using different elimination orders and sets of

secrets, they rarely share large prime factors besides p, so all other prime factors of δ′

should be small. Thus, we can factor δ′ by explicitly dividing out all prime factors with

at most β bits, leaving behind only p, with high probability. We know that p is larger

than all shares, so to avoid dividing out p itself, we never divide out primes that are

larger than the largest known share. We have found empirically that the probability that

δ1, δ2, as computed above, share a factor with more than β bits can be approximated

by 2(k−2)/4

2β+1 k for the values of β, k we are interested in (Section 3.5.2). Our attack fails if

δ1, δ2 share such a factor, but we can increase β to make the failure rate arbitrarily low.

56

3.3.3 Attack Complexity

Since δ1 and δ2 are both (2kb)-bit integers, the time required to find gcd(δ1, δ2)

is in O(22kb2) [79]. As k grows, storing δ1, δ2 and computing their gcd quickly become the

dominant space and time concerns, respectively. Thus, recovering p has space complexity

O(2kb) and time complexity O(22kb2).

Recovering the bases, once p is known, has space complexity O(k2b) for storing

the matrix, and time complexity dominated either by computing O(k3) b-bit integer

multiplications during elimination, or O(k) modular inverses during back-substitution.

Clearly, these costs are dominated by the costs of recovering p. Once p and the bases

have been recovered, the time spent recovering a secret is the same for the colluding

servers as it is for the trusted client.

3.3.4 Example Attack for k = 2

We now demonstrate our attack on a simple dataset with m = 6 records shared

over n = k = 2 servers. We choose the 6-bit prime p = 59 and select x1 = 17, x2 = 39.

We then generate secrets, coefficients, and shares as follows:

s1 = 18 a1,1 = 18 q(x1, s1) = 29 q(x2, s1) = 12

s2 = 36 a1,2 = 5 q(x1, s2) = 3 q(x2, s2) = 54

s3 = 22 a1,3 = 17 q(x1, s3) = 16 q(x2, s3) = 36

s4 = 10 a1,4 = 28 q(x1, s4) = 14 q(x2, s4) = 40

s5 = 39 a1,5 = 31 q(x1, s5) = 35 q(x2, s5) = 9

s6 = 57 a1,6 = 51 q(x1, s6) = 39 q(x2, s6) = 40

We assume s1, s2, s3, s4 are known. We first generate the matrix in (3.6) using

s1, s2, s3 (γ = 1), and do the following elimination to get δ1 = 307980:

57

29 12 −18

3 54 −36

16 36 −22

→
29 12 −18

0 1530 −990

0 852 −350

→
29 12 −18

0 1530 −990

0 0 307980

We do the same with s2, s3, s4 (γ = 2) to get δ2 = −33984:

 3 54 −36

16 36 −22

14 40 −10

→
3 54 −36

0 −756 510

0 −636 474

→
3 54 −36

0 −756 510

0 0 −33984

We then compute δ′ = gcd(δ1, δ2) = 2124, and factor δ′ by dividing out the

small prime factors 2 · 2 · 3 · 3, to get p = 59, as expected. Now we can recover the bases

using the following system of equations as in (3.5):

29`1(0) + 12`2(0)− 18 ≡ 0 (mod 59)

3`1(0) + 54`2(0)− 36 ≡ 0 (mod 59)

We eliminate `1(0) from the second equation, giving 55`2(0) ≡ 46 (mod 59). We then

compute the inverse (55)−1 (mod 59) = 44, giving `2(0) = 46 · 44 mod 59 = 18. We

then back-substitute to get `1(0) = 42. To verify, we compute s5 and s6 using (3.4),

giving s5 = 35 · 42 + 9 · 18 (mod 59) = 39, and s6 = 39 · 42 + 40 · 18 (mod 59) = 57, as

expected.

3.4 Aligning Shares and Discovering Secrets

In order to mount our attack, we must be able to align shares across colluding

servers. That is, given the set of shares from each of k servers, we must be able to

identify which subsets of k shares, one from each server, were obtained from the same

polynomial qj (3.1), even if we do not know the secret value sj itself. Further, we must

know, or be able to discover, at least k + 2 secret values and the subset of k shares

58

to which they correspond. We now show how we can satisfy these assumptions for the

HAT schemes [6, 41, 80] using knowledge of share order.

In the AAEMW [6] and TSWZ [80] schemes, the shares on each server are

explicitly, totally ordered (Section 3.2.4). The share order sorts the shares in non-

decreasing order of their corresponding secrets. If two shares are obtained from distinct

polynomials, but the same secret, they have the same relative order on each server. In

the HJ scheme [41], shares are totally ordered, but the order is hidden from the data

servers. In this case, we can infer a partial share order by observing queries over time.

3.4.1 Aligning Shares

When the total share order on each data server is known, we simply align the

jth share from each server. If only a partial order is known, as in the HJ scheme, the

alignment of some shares will be ambiguous. To recover secrets for such shares, we must

either try multiple alignments, or wait for more queries to arrive, and use them to refine

the partial order and eliminate the ambiguity (see Section 3.4.3).

3.4.2 Discovering k + 2 Secrets

We have shown that given k + 2 secrets and their corresponding shares, our

attack can recover all remaining secrets. This weakness is a severe limitation of the

HAT schemes, and contradicts Claim 2 (Section 3.1). In practice, k � m, where m is

the number of secrets, so assuming k + 2 known secrets is reasonable. Our attack is

independent of the mechanism used to discover these secrets.

Simple methods for learning k + 2 secrets include a known plaintext attack,

where we convince the trusted client to insert k+2 known secrets, and a known ciphertext

attack, where the client reveals at least k+2 secrets retrieved by some small range query.

59

Since shares are ordered according to their secret values, we can easily identify which

subsets of shares from the query go with each secret.

We can also infer secret values using share order. Consider an employee table

with secret salaries, as in Figure 3.1. If at least k + 2 employees earn a well-known

minimum-wage salary, then the share order reveals that the first k + 2 shares have

this known salary. Alternatively, there may be k + 2 employees who anonymously post

their salaries. If we can estimate the distribution of salaries in the database, we can

guess roughly where the known salaries fall in the order, and run the attack for nearby

guesses until we get a solution with a recoverable prime and recovered secrets that fit

the expected order.

3.4.3 Inferring Order in the HJ Scheme

If a scheme hides the share order from the data server, share alignment and

secret discovery become harder. The HJ scheme [41] stores the share order for each data

server on a single index server that ostensibly does not collude with any data servers.

The client sends each query to the index server, and the response tells the client which

shares to request from each data server.

In the simplest case, we can align shares by observing point queries, which

return only one share from each server. If the colluding servers all observe an isolated

request for a single share at the same time, they can assume the shares satisfy a point

query, and thus that they all correspond to the same secret. Given enough point queries,

we can align enough shares to mount our attack. However, if point queries are rare, this

technique will take too long to be useful.

More generally, we can order shares on each server by observing overlapping

range queries. In the HJ scheme, a range query appears to the data server as set of

60

OR

y2 y1

y1 y2

OR

y2 y3

y3 y2

OR

y1 y2 y3

y3 y2 y1

y1 y3 y2

Query {y1, y2}

�OTA�D

Query {y3, y2}

Figure 3.2: Range queries indicate that the secrets of shares y1, y2 are contiguous, as
are those of y3, y2. Thus, the secret of y2 falls between the secrets of y1 and y3, though
either y1 or y3 may have the smallest secret.

unordered share requests. Since range queries request shares that have secrets inside

a given range, we know that secrets of requested shares are contiguous. We use this

information to order shares according to their secret values.

Consider an example where a client issues two range queries to the same data

server. The first query returns shares {y1, y2}, and the second, shares {y3, y2}. Each

query is a range query, so the server knows that no secret can fall between the secrets of

y1 and y2 or of y3 and y2. Since y2 appears in both queries, the server knows that the

secret of y2 comes between the secrets of y1 and y3, but is not sure whether the secret of

y1 or of y3 is smaller. Thus, the true share order contains either subsequence y1y2y3 or

y3y2y1, and we say that the server knows the share order of {y1, y2, y3} up to symmetry

(see Figure 3.2).

We can extend this technique to additional range queries of varying sizes. Given

enough queries, we can reconstruct the entire share order on each server up to symmetry.

The full reconstruction algorithm uses PQ-trees [13] and is discussed in Chapter 2. We

can link reconstructed share orders across servers, and thereby align shares, by observing

that if a query issued to one data server requests the jth share, then the same query

must also request the jth share from every other server. If we use the share order to

61

discover secrets, we must make twice as many guesses, since we still only know the order

up to symmetry.

3.5 Attack Implementation and Experiments

We implemented our attack in Java, and ran each of our attack trials using

a single thread on a 2.4GHz Intel® Core�2 Quad CPU. All trials used less than 2GB

RAM. We used two datasets. The first consists of m = 1739 maximum salaries of

Riverside County (California, USA) government employees as of February, 2012 [2].

The second is a set of m = 105 salaries generated uniformly at random from the integer

range [0, 107).

3.5.1 Time Measurements

Our first set of experiments measures the time required to run the full attack as

described in Section 3.3. Each experiment varies the number of servers k or the number

of bits b in the hidden prime p. The total number of servers n has no effect on the

attack runtime, so we let n = k. All times are averaged over 10 independent trials, and

averages are rounded up to a 1ms minimum. In each trial, we divide out primes with

at most β = 16 bits (Section 3.3.2.3), and we successfully recover p, all k bases (`i(0)

values), and all m secrets.

Each plot gives the times spent by the client finding a random b-bit prime p and

creating k shares for each of the m secrets. We then plot the times spent by the colluding

servers recovering p and the k bases. We also give the time spent recovering all m secrets,

which is the same for the colluding servers as it is for the client. From Section 3.3.3, we

know that the time needed to recover p is in O(22kb2). Thus, incrementing k or log2 b

62

5 6 7 8 9 10 11 12 13
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Time Spent, 1739 Secrets, Fixed k = 8

log
2
 b

T
im
e
 (
s
e
c
o
n
d
s
)

Choose Prime

Create Shares

Recover Prime

Recover Bases

Recover Secrets

Student Version of MATLAB

Figure 3.3: Riverside dataset times, var-
ied b

5 6 7 8 9 10 11 12 13
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Time Spent, 1739 Secrets, Fixed b = 2
8

k

T
im
e
 (
s
e
c
o
n
d
s
)

Choose Prime

Create Shares

Recover Prime

Recover Bases

Recover Secrets

Student Version of MATLAB

Figure 3.4: Riverside dataset times, var-
ied k

increases prime recovery time by a factor of 4. Since k and log2 b have similar effects on

prime recovery time, we plot against log2 b instead of b on the x axis.

Figures 3.3 and 3.4 plot times using the Riverside dataset with fixed k = 8

and b = 28, respectively. Figures 3.5 and 3.6 give corresponding times for the random

dataset. Times to create shares and recover secrets are proportional to m, and so are

higher for the larger, random dataset. Times to generate p, recover p, and recover bases

depend only on b and k, and so are dataset-independent.

Figures 3.3 and 3.5 show that when k is held constant, increasing b costs

the client more than it costs the colluding servers. Both prime recovery and modular

multiplication take time proportional to b2, so prime recovery time is a constant factor

of share generation time. Further, the time to choose a random b-bit prime using the

Miller-Rabin primality test is in O(b3) [67], so as b grows past 212, the cost to generate

p quickly outstrips the cost to recover it. Thus it is entirely impractical to thwart our

attack by increasing b.

63

5 6 7 8 9 10 11 12 13
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Time Spent, 10
5
 Secrets, Fixed k = 8

log
2
 b

T
im
e
 (
s
e
c
o
n
d
s
)

Choose Prime

Create Shares

Recover Prime

Recover Bases

Recover Secrets

Student Version of MATLAB

Figure 3.5: Synthetic dataset times, var-
ied b

5 6 7 8 9 10 11 12 13
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Time Spent, 10
5
 Secrets, Fixed b = 2

8

k

T
im
e
 (
s
e
c
o
n
d
s
)

Choose Prime

Create Shares

Recover Prime

Recover Bases

Recover Secrets

Student Version of MATLAB

Figure 3.6: Synthetic dataset times, var-
ied k

In the TSWZ scheme [80], the measured time to recover a prime with less than

25 bits was over 1500 seconds. In contrast, our method recovers primes with 213 bits in

under 500 seconds on comparable hardware, for k = 8. As long as k � b, as is likely in

practice, our method is far faster.

Figures 3.4 and 3.6 show that when b is fixed, most times are in O(k), with the

exception of prime recovery time, which is in O(22k). Thus, by increasing k, the attack

can be made arbitrarily expensive at a relatively small cost to the client. However, as

we discuss in Section 3.6, even k = 10 may be impractical.

3.5.2 Failure Rate Measurements

Since we only factor out small primes with at most β bits (Section 3.3.2.3),

our attack fails if δ1, δ2 share any prime factor, other than p, that has more than β bits.

Thus, our attack’s failure rate rf is the probability that δ1/p, δ2/p share a prime with

more than β bits. Since δ1, δ2 are not independent random numbers, it is difficult to

64

compute rf analytically, so we measure it empirically. The results of our experiment are

shown in Figure 3.7.

We found that rf is largely independent of b, but depends heavily on k and β.

To measure rf , we conducted several trials in which we generated a prime p of b = 32

bits, and ran our attack using k + 2 randomly generated secrets. For k = 2, we ran

106 trials, and were able to get meaningful failure rates up through β ≈ 16. Trials with

larger k were much more expensive, so we only ran 103 trials for k = 6 and k = 10, and

the results are accurate only through β ≈ 10.

From our results, we derived the approximate expression rf ≈ 2(k−2)/4

2β+1 k. We

then plotted this estimated rf in Figure 3.7, denoted by est. The approximation is

adequate for the range of β we’re considering. The dependence of rf on 2−(β+1) is

expected, as the probability that a factor of β + 1 bits found in one random d-bit

number is found in another random d-bit number is roughly 2d−(β+1)

2d
= 2−(β+1). The

nature of the dependence on k is unclear, but it may be related to the fact that k of the

k + 1 equations used to compute δ1 are also used to compute δ2.

0 2 4 6 8 10 12 14 16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fraction of Attacks with Failed Prime Recovery, Fixed b = 2
5

β (Bits in Largest Prime Divided Out)

F
a
ilu

re
 R

a
te

k = 13 (est)

k = 10

k = 10 (est)

k = 6

k = 6 (est)

k = 2

k = 2 (est)

Student Version of MATLAB

Figure 3.7: Attack failure rates for varied k and β

65

Using our approximation for rf , we estimate the worst-case failure rate for our

timing experiments, where β = 16 and k = 13, to be rf ≈ 2(13−2)/4

216+1 13 = 2−14.2513 ≈

6.67× 10−4. If necessary, we can lower rf further by increasing β.

3.6 Attack Mitigations

We now discuss possible modifications a client can make to the HAT schemes

that may improve security. In order to mitigate our attack, a modification must cause

at least one of the attack assumptions listed in Section 3.3 to be violated.

Assumption: At Least k Servers Collude. The simplest way to thwart our at-

tack is to ensure that no more than k − 1 servers are able to collude. Only in such

cases can secret sharing schemes hope to achieve perfect, information-theoretic security.

However, if the number of colluding servers must be limited, secret sharing schemes can-

not be applied to the honest-but-curious server threat model commonly used for data

outsourcing [8, 40, 47, 60, 77].

Assumption: b, k Modest. In Section 3.5, we showed that increasing b costs the

client more than it costs the colluding servers, so a large b is impractical. With limited

resources, we successfully mounted attacks for k = 13 in under 500 seconds, so k must be

substantially larger (k > 20) to achieve security in practice. For each server, the client

pays a storage cost equal to that of storing his data in plaintext. If k ≥ 10, the combined

storage cost exceeds that of many encryption-based private query techniques [8, 60, 77],

so increasing k is also impractical.

Assumption: Same ~X, p for Each Secret. Storing a distinct ~X or prime p on the

client for each secret is at least as expensive as storing the secret itself. An alternative is

66

to use a strong, keyed hash hj to generate a distinct vector ~X ′ = hj(~X) for each secret

sj . Using this method, each secret requires different basis polynomials for interpolation,

so mounting an attack would be much harder. Unfortunately, it also eliminates additive

homomorphism, removing support for server-side aggregation, which is cited as a reason

for adopting secret sharing.

Assumption: Corresponding Shares can be Aligned. Hiding share order from

data servers as in [41] can hinder share alignment, but if the scheme supports range or

point queries, share alignment can eventually be inferred (Section 3.4.3). Schemes could

use re-encryption or shuffling to obscure order as in [77], but the cost of such techniques

outweighs the performance advantages of secret sharing.

Assumption: k + 2 Known Secrets. It is difficult to keep all secrets hidden from

an attacker. Known plaintext/ciphertext attacks for small amounts of data are always

a threat, and if we known the real-world distribution of the secrets, we can guess them

efficiently (Section 3.4.2). The client could encrypt secrets before sharing, but doing so

adds substantial cost and eliminates additive homomorphism.

3.7 Related Work

Privacy-preserving data outsourcing was first formalized in [40] with the in-

troduction of the Database As a Service model. Since then, many techniques have

been proposed to support private querying [8, 23, 60, 62, 77], most based on specialized

encryption techniques. For example, order-preserving encryption [8] supports efficient

range queries, while [60] supports server-side aggregation through additively homomor-

67

phic encryption. Other schemes are based on fragmentation, where only links between

sensitive and identifying data are encrypted [23, 62].

As far as we know, the schemes we discuss in this paper [6, 7, 41, 80] are the

first to use secret sharing to support private data outsourcing, though secret sharing

has been used for related problems, such as cooperative query processing [31]. Prior

works, such as [47], have addressed various security issues surrounding data outsourcing

schemes, but as far as we know, ours is the first to reveal the specific limitations of

schemes based on secret sharing.

3.8 Conclusion

Private data outsourcing schemes based on secret sharing have been advo-

cated because of their slight advantages over existing encryption-based schemes. Such

advantages include security, speed, and support for server-side aggregation. All three

outsourcing schemes based on secret sharing [6, 41, 80] claim that security is maintained

even when k or more servers collude. To the contrary, we have shown that all three

schemes are highly insecure when k or more servers collude, regardless of whether ~X

and p are kept secret.

We described and implemented an attack that reconstructs all secret data when

only k + 2 secrets are known initially. In less than 500 seconds, our attack recovers a

hidden 256-bit prime for k ≤ 13 servers, or an 8192-bit prime for k ≤ 8. We dis-

cussed possible modifications to mitigate our attack and improve security, but any such

modifications sacrifice generality, performance, or functionality.

We conclude that secret sharing outsourcing schemes are not simultaneously

secure and practical in the honest-but-curious server model, where servers are not trusted

68

to keep data private. Such schemes should only be used when the client is absolutely

confident that at most k − 1 servers can collude.

69

Chapter 4

Burst ORAM: Minimizing

ORAM Response Times for

Bursty Access Patterns

4.1 Introduction

Cloud computing allows customers to outsource the burden of data manage-

ment and benefit from economy of scale, but privacy concerns hinder its growth [20].

It is well-understood that encryption alone is insufficient to ensure privacy in storage

outsourcing applications. Information about the contents of encrypted records may still

be leaked, especially via data access patterns. Existing work has shown that access

patterns on an encrypted email repository may leak sensitive keyword queries [44], and

that access patterns on encrypted database tuples may reveal ordering information [28].

Oblivious RAM (ORAM), first proposed by Goldreich and Ostrovsky [37], is a

cryptographic protocol that allows a client to provably hide access patterns from an un-

70

trusted storage server. Recently, the research community has focused on making ORAM

schemes practical for real-world applications [22, 35, 39, 73, 77, 78, 83]. Unfortunately,

even with some of the recent improvements [39, 73, 76, 77, 78, 83], ORAMs still incur

substantial bandwidth and response time costs.

Most prior works on ORAM focus on minimizing bandwidth consumption.

Several recent works on cloud-based ORAMs have shown how to achieve relatively low

bandwidth costs given a reasonable amount of client-side storage [39, 76, 77]. Others

rely on expensive primitives like PIR [58] or additional assumptions such as trusted

hardware [54] or non-colluding servers [75] to reduce client bandwidth costs.

While bandwidth consumption is an important metric for characterizing ORAM

costs, to be practical ORAM must also minimize the response time observed by clients for

each request. We propose Burst ORAM, a novel ORAM scheme based on the ObliviStore

ORAM [76] that dramatically reduces ORAM’s response times for realistic workloads

with bursty characteristics.

Burst ORAM employs novel techniques, also applicable to other ORAMs, for

minimizing the online work of serving requests and for delaying the offline work of

block shuffling until idle periods. Thus we can drastically reduce response times to

nearly those of an unprotected block store without ORAM while maintaining security

and incurring total bandwidth costs close to those of ObliviStore. Existing works exhibit

response times on the order of seconds or higher, due to high bandwidth [39, 76, 78, 87]

or computation [58] requirements.

Burst ORAM detects and optimizes for bursts automatically. During long

bursts, Burst ORAM’s behavior gracefully degrades to be similar to that of ObliviStore.

Thus, in a worst-case workload, Burst ORAM’s response times and bandwidth costs

are competitive with those of existing ORAMs. However, under realistic bursty traffic,

71

Burst ORAM achieves orders of magnitude shorter response times than existing ORAMs,

while incurring only 50% higher overall bandwidth costs.

We use a real-world corporate data access workload (7,500 clients and 15 days)

to demonstrate that Burst ORAM can be used practically in a corporate cloud storage

environment. We compare against an insecure baseline block store without ORAM and

show that when baseline response times are low, Burst ORAM response times are also

low. In a 32TB ORAM with 50ms network latency and sufficient bandwidth capacity to

ensure 90% of requests have baseline response times under 53ms, 90% of Burst ORAM

requests have response times under 63ms. Similarly, with sufficient bandwidths to ensure

99.9% of requests have baseline responses under 70ms, 99.9% of Burst ORAM requests

have response times under 76ms. More results are presented in Section 4.9.5. To our

knowledge, our work is the first to evaluate ORAM response times on a realistic, bursty

workload.

Non-goals As in previous ORAM schemes, we do not seek to hide the timing of data

requests. Thus, we assume that block request start times and durations are known.

Maintaining security To ensure security in Burst ORAM, we do not allow the IO

scheduler to make use of the data access sequence, or any other sensitive information.

In this way, the security of Burst ORAM reduces to that the underlying ORAM Oblivi-

Store [76].

4.1.1 Burst ORAM Contributions

Burst ORAM introduces several techniques for reducing response times and

keeping bandwidth costs low that distinguish it from ObliviStore and other predecessors.

72

Novel scheduling policies Burst ORAM prioritizes the online work that must be

complete before requests are satisfied. If possible, our scheduler delays shuffle work

until off-peak times. Delaying shuffle work consumes client-side storage, so if a burst is

sufficiently long, client space will fill, forcing shuffling to resume. By this time, there

are typically multiple shuffle jobs pending. We could schedule jobs in order to minimize

overall bandwidth consumption or to minimize response times.

We use a greedy strategy that prioritizes those jobs that free up the most

client-side space per unit of shuffling bandwidth consumed. This strategy allows us to

sustain lower response times for longer during an extended burst, and incurs under 50%

additional bandwidth in practice.

Reducing online bandwidth cost We propose a new XOR technique that reduces

the online bandwidth cost from O(logN) blocks per request in ObliviStore to nearly

1, where N is the outsourced block count. The XOR technique can also be applied to

other ORAM implementations such as SR-ORAM [86] (see Section 4.10).

Level caching We propose a new technique for using additional available client space

to store small levels from each partition. By caching these levels on the client, we are

able to reduce total bandwidth cost substantially.

Outline Section 4.3 defines terminology and reviews ObliviStore. Section 4.4 provides

an overview of our techniques. Section 4.5 discusses prioritizing and reducing online IO,

and Section 4.6 covers scheduling and techniques for reducing shuffle IO. Section 4.7

details our system design, and Section 4.9 presents our experimental results.

73

4.2 Related Work

Oblivious RAM was first proposed in a seminal work by Goldreich and Os-

trovsky [37]. Since then, a fair amount of theoretic work has focused on improving its

asymptotic performance [11, 25, 38, 38, 39, 49, 64, 65, 73, 77, 83, 84, 85]. Recently, there

has been much work toward designing and optimizing ORAM for a cloud-based storage

outsourcing setting, as mentioned below. Different ORAMs provide varying tradeoffs

between bandwidth cost, client/server storage, round complexity, and in some cases

server computation.

ORAM has been shown to be feasible for secure (co-) processor prototypes

which prevent information leakage due to physical tampering [34, 54, 55, 68]. In this

context, since on-chip trusted cache is expensive, an ORAM scheme with constant or

logarithmic client-side storage is needed, such as the binary-tree ORAM [73] and its

variants [21, 35, 58, 78].

In cloud-based ORAMs, the client typically has more space, capable of storing

O(
√
N) blocks or a small amount of per-block metadata [38, 76, 77, 87] that can be

used to further reduce ORAM bandwidth requirements. Burst ORAM also makes such

client space assumptions.

Online and offline costs for ORAM were first made explicit by Boneh et al. [11]

They propose a construction that has O(1) online but O(
√
N) overall bandwidth cost.

The recent Path-PIR work by Mayberry et al. [58] mixes ORAM and PIR to achieve

O(1) online bandwidth cost with a modest overall bandwidth cost of O(log2N) with

constant client memory. Unfortunately, the PIR is still computationally expensive, so

their scheme requires more than 40 seconds for a read from a terabyte-sized database

74

[58]. Burst ORAM has O(1) online and O(logN) overall bandwidth cost, without the

added overhead of PIR.

Other ORAMs that do not rely on trusted hardware or non-colluding servers

have Ω(log n) online bandwidth cost, including works by Williams, Sion, and others [83,

85, 87]; by Goodrich, Mitzenmacher, Ohrimenko, and Tamassia [38, 39]; by Kushilevitz

et al. [49]; and by Stefonov, Shi, and others [73, 76, 77, 78]. In comparison, Burst ORAM

handles bursts much better by reducing the online cost to nearly 1 block transfer per

block requested during a burst, substantially reducing response times.

4.3 Preliminaries

4.3.1 Bandwidth Costs

Bandwidth consumption is the primary cost in many modern ORAMs, so it

is important to define how we measure different aspects of bandwidth cost. We say

that each block transferred between the client and the server is a single unit of IO. We

assume that blocks are large in practice (at least 4KB), so in most cases the meta-data

exchanged (e.g. block IDs) have negligible size.

Definition 15. The bandwidth cost of a storage scheme is given by the average number

of blocks transferred in order to read or write a single block.

We identify bandwidth costs by appending X to the number. A bandwidth

cost of 2X indicates two blocks fetched per block requested, double that required by an

unprotected scheme. We consider online, offline, effective, and overall IO and bandwidth

costs, where each cost is given by the average amount of the corresponding type of IO.

Online IO consists of the block transfers needed before a request can be safely

marked as satisfied, assuming the scheme starts with no pending IO. The online band-

75

width cost of a storage scheme without ORAM is just 1X — the IO cost of downloading

the desired block. In ORAMs it may be higher, as additional blocks may be downloaded

to hide the requested block’s identity.

Offline IO consists of transfers needed to prepare for subsequent requests,

but which may be performed after the request is satisfied. Without ORAM, the offline

bandwidth cost is 0X. In ORAMs it is generally higher, as additional shuffle IO is needed

to obliviously permute blocks on the server in order to guarantee access pattern privacy

for future requests.

Overall IO / bandwidth cost is just the sum of the online and offline IO /

bandwidth costs, respectively.

Effective IO consists of all online IO plus any pending offline IO from previous

requests that must be issued before this request can be satisfied. Without ORAM,

the effective IO and online IO are equal. In traditional ORAMs, offline IO is issued

immediately after each request’s online IO, so effective and overall IO are equal. In

Burst ORAM, we delay some of the offline IO, reducing the effective IO of each request,

as illustrated in Figure 4.1. Smaller effective costs mean less IO between requests, and

ultimately shorter response times.

In ORAM, by definition, read and write operations are indistinguishable, so

bandwidth costs of an ORAM read are the same as those of an ORAM write.

4.3.2 Response Time

The response time of a block request (ORAM read/write operation) is defined

as the lapse of wall-clock time between when the request is first issued by the client and

when the client receives a response. The minimum response time is just the time needed

76

R1
Satisfied

Time

Request R1:

Legend

Online IO

Offline IO

Request R2:

Request R3:

R2
Satisfied

R3
Satisfied

R1 R2

Effective IO

R3

Figure 4.1: Effective IO. Simplified scheme with sequential IO and contrived capacity
for delaying offline IO. Three requests require same online IO (2), offline IO (5), and
overall IO (7). Online IO for R1 can be handled immediately, so R1’s effective IO is
only 2. R2 must wait for 2 units of offline IO from R1, so its effective IO is 4. R3 must
wait for the rest of R1’s offline IO, plus one unit of R2’s offline IO, so its effective IO is
6.

to perform all online IO for the request. Response times may increase when offline IO

is performed between requests, increasing each request’s effective IO, or when requests

are issued rapidly in a burst, delaying later requests.

4.3.3 ObliviStore ORAM

At IEEE S&P 2013, Stefanov and Shi introduced a cloud-based oblivious stor-

age system named ObliviStore [76]. Burst ORAM builds on ObliviStore, so we give an

overview of the scheme here. A full description of the ObliviStore system and its ORAM

algorithm spans about 55 pages [76, 77], so we describe it at a high level, focusing only

on components relevant to Burst ORAM.

Partitions and levels ObliviStore stores N logical data blocks. Each block is en-

crypted using a standard symmetric key encryption scheme before it is stored on the

77

server. Every time a block is uploaded by the client, it is re-encrypted using a new nonce

to prevent linking.

ObliviStore securely splits blocks into O(
√
N) partitions of O(

√
N) blocks each.

Each partition is itself a fully functioning ORAM consisting of O(logN) levels with

{2, 4, 8, 16, 32, . . . , O(
√
N)} blocks each. When a level is created, it is filled half with

real encrypted blocks and half with dummy encrypted blocks, randomly permuted so

that real and dummy blocks are indistinguishable to the server. Each level is occupied

only half the time on average. The client has space to store O(
√
N) blocks and the

locations of all N blocks.

Requests When the client makes a block request via the ORAM, whether a read or

write, the block must first be downloaded from the appropriate server partition. To

maintain obliviousness, ObliviStore must fetch one block from every non-empty level

in the target partition (O(logN) blocks of online IO). Only one fetched block is real,

and the remaining are dummy blocks, except in the case of early shuffle reads described

below. Once a dummy block is fetched, it is discarded, and new dummies are created

later as necessary. ObliviStore securely processes multiple requests in parallel, enabling

full utilization of available bandwidth capacity.

Eviction Once the real block is fetched from the server, it is updated or returned to

the client as necessary, then assigned to a new random partition p. The block is not

immediately uploaded to the server. Instead, it is scheduled for eviction to p and stored

in a client-side data cache. An independent eviction process later obliviously evicts the

block from the cache to p such that the server does not know which blocks were evicted

78

to which partitions. The eviction triggers a write operation on p’s ORAM, which creates

or enlarges a shuffling job for p.

Shuffling Jobs Each partition p has at most one pending shuffle job. A job consists

of downloading up to O(
√
N) blocks from p, shuffling them locally, and uploading them

back to the server along with recently evicted blocks and new dummy blocks. Shuffle

jobs incur offline IO, and vary in size (amount of IO) from O(1) to O(
√
N). Intuitively,

to guarantee that each non-empty level has at least one dummy block remaining, we

must re-shuffle a level once half its blocks have been removed. Since larger levels need

shuffling less often, larger jobs occur less frequently than small ones, keeping the offline

bandwidth cost at O(logN) on average.

Shuffle IO scheduling In ObliviStore, a fixed amount of O(logN) shuffle IO is per-

formed after each request in order to amortize the work required for large shuffle jobs.

The IO for shuffle jobs from multiple partitions may be executed in parallel: while wait-

ing on reads to complete for one partition, we may issue reads or writes for another.

Jobs are chosen in the order they are created, regardless of size.

Early shuffle reads Early shuffle reads, referred to as early cache-ins or real cache-

ins in ObliviStore, occur when a request needs to fetch a block from a level, but at least

half the level’s original blocks have already been removed. Since half the blocks have

been removed, we cannot guarantee that additional dummies are present. Thus, early

shuffle reads must be treated as real blocks and stored separately by the client until

they are returned to the server as part of a shuffle job. We call such reads early shuffle

reads as the blocks would have eventually been read during a shuffle job. Early shuffle

79

Burst 1
Start

Online IO
Complete

Burst 2
Start

Online IO
Complete

Long response
times

Long response
times Burst 1

Start
Online IO
Complete

Short response times Short response times

Time Time

Concurrent
IO

ObliviStore Burst ORAM
Legend

Online IO

Offline IO

Offline IO (shuffling) is delayed
until idle time between bursts

Less online IO
More offline IO

Burst 2
Start

Online IO
Complete

Figure 4.2: Reducing response time. Because Burst ORAM (right) does much less
online IO than ObliviStore (left) and delays offline IO, it is able to respond to ORAM
requests much faster. In this (overfly simplified) illustration, the bandwidth capacity is
enough to transfer 4 blocks concurrently. Both ORAM systems do the same amount of
IO.

reads are possible since ObliviStore performs requests while shuffling is in progress, but

fortunately they are infrequent.

Level compression ObliviStore uses a technique called level compression [77] to com-

press blocks uploaded during shuffling. Level compression allows the client to upload k

real and k dummy blocks to the server using only k blocks of bandwidth without re-

vealing which k are dummies. Level compression reduces only the offline shuffling cost,

while the online cost remains the same.

4.4 Overview of our Approach

Traditional ORAMs, such as ObliviStore, focus on reducing average and worst-

case overall bandwidth costs. That is, they seek to minimize the overall IO needed to

satisfy each ORAM request. However, even the most bandwidth-efficient schemes still

suffer from a 20X to 35X bandwidth cost [76, 77].

In this paper, we take a different approach. We focus on reducing effective IO

by reducing online IO and delaying offline IO. We can then satisfy bursts of ORAM

80

requests quickly, delaying most IO until idle times between bursts. Figure 4.2 illustrates

this concept.

Our approach is so successful that many bursts can be satisfied with an effective

bandwidth cost of nearly 1X, using little more IO than a storage scheme without ORAM.

That is, during the burst, we transfer just over one block on average for every block

requested. After the burst we do extra IO to catch up on shuffling and prepare for future

requests. Our approach maintains an overall bandwidth cost competitive with [76, 77],

less than 50% higher in practice (see Figure 4.12 in Section 4.9).

Bursts Intuitively, a burst is a period of frequent block requests from the client pre-

ceded and followed by relatively idle periods. Many real-world workloads exhibit bursty

patterns (e.g. [18, 50]). Often, bursts are not discrete events, such as when multiple

users of a network file system are operating concurrently. Thus we treat periods of time

as more or less bursty: the more requests issued at a given time, the more Burst ORAM

tries to delay offline IO until idle periods.

Challenges We are faced with two key challenges when building a burst-friendly

ORAM system that reduces online IO and delays offline IO. The first is ensuring that

we maintain security. A naive approach to reducing online IO may mark requests as

satisfied before enough blocks are read from the server, leaking information about the

requested block’s identity.

The second challenge is ensuring that we maximally utilize client memory and

available bandwidth while avoiding deadlock. An excessively aggressive strategy, that

delays too much offline IO too long, may use so much client space that we run out

of room to shuffle. It may also under-utilize available bandwidth, causing increased

81

response times. On the other hand, an overly conservative strategy may under-utilize

client space or perform shuffling too early, delaying online IO and causing unnecessary

increases in response times.

Techniques and Outline In Burst ORAM, we address the challenges described above

by combining several novel techniques. In Section 4.5 we introduce our XOR technique

for reducing the online bandwidth to nearly 1X. We also describe our techniques for

prioritizing online IO and delaying offline/shuffle IO until client memory is nearly full.

In Section 4.6 we show how Burst ORAM prioritizes efficient shuffle jobs in order to delay

the bulk of the shuffle IO even further, ensuring that we minimize effective IO during

long bursts. We then introduce a technique for using available client space to cache

small levels locally in order to reduce shuffle IO in both Burst ORAM and ObliviStore.

In Section 4.7 we discuss the system-level techniques required to construct

Burst ORAM, and present its design in more detail. In Section 4.9, we evaluate Burst

ORAM’s performance through micro-benchmarks and extensive simulations on a large

corporate file system trace.

4.5 Prioritizing and Reducing Online IO

Existing ORAM schemes tend to require high online and offline bandwidth

costs in order to obscure access patterns. For example, to satisfy each request Oblivi-

Store must fetch one block from every level in a partition (see Section 4.3.3), requiring

O(logN) online IO per request. The left side of Figure 4.3 illustrates this behavior.

After each request, ObliviStore also requires O(logN) offline/shuffle IO to prepare for

future requests. Since ObliviStore must issue online and offline IO before satisfying the

next request, its effective IO is high, leading to large response times during long bursts.

82

Client Client

ObliviStore Burst ORAM

XOR

Server Server

O(log N)
blocks 1 block

Figure 4.3: Reducing online cost. In ObliviStore (left) the online bandwidth cost is
O(logN) blocks of IO on average. In Burst ORAM (right), we reduce online IO to only
one block, improving handling of bursty traffic.

Other ORAM schemes work differently, such as Path ORAM [78] which organizes data

as a tree instead of a level hierarchy, but still have high effective bandwidth costs.

We now show how Burst ORAM achieves lower effective bandwidth costs and

lower response times than ObliviStore without compromising security.

4.5.1 Prioritizing Online IO

One way we achieve low response times in Burst ORAM is by prioritizing online

IO over shuffle IO. That is, we suppress shuffle IO during bursts, delaying it until the idle

time between bursts. Requests are satisfied once their online IO finishes,1 so prioritizing

online IO allows us to satisfy all requests before any shuffle IO starts, keeping response

times low even for later requests during a burst. Figure 4.2 illustrates this behavior.

During the burst, we continue processing requests by fetching blocks from the

server, but since shuffling is suppressed, no blocks are stored back to the server. Thus,

we must resume shuffling once client storage fills. Section 4.6.2 discusses how we can

delay the bulk of the shuffle IO even further. Prioritizing online IO requires fundamental

1Each client write also incurs a read, so writes still incur online IO.

83

changes from the ObliviStore design in order to avoid deadlock while fully utilizing client

space. Details are given in Section 4.7.

When available bandwidths are large and bursts are short, the response time

saved by prioritizing online IO is limited, as most IO needed for the burst can be issued

in parallel. However, when bandwidth is limited or bursts are long, the savings can be

substantial. With shuffle IO delayed until idle times, online IO dominates the effective

IO, becoming the bottleneck during bursts. Thus we can further reduce response times

by reducing online IO.

4.5.2 XOR Technique: Reducing Online IO

We introduce a new mechanism called the XOR technique that allows the Burst

ORAM server to combine the O(logN) blocks fetched during a request into a single block

that is returned to the client (Figure 4.3 right), reducing the online bandwidth cost to

O(1). If we fetched only the desired block, we would reveal its identity to the server.

Instead, we XOR all the blocks together and return the result. Since there is at most

one real block among the O(logN) returned, the client can locally derive the dummy

block values and XOR them with the returned block to recover the encrypted real block.

Of course, we must ensure that the dummy block contents are entirely predictable by

the client. The basic steps of the XOR technique are shown in Figure 4.4.

4.5.2.1 XOR Technique Details

In Burst ORAM, as in ObliviStore, each request needs to retrieve a block from

a single partition, which is a simplified hierarchical ORAM resembling those originally

proposed by Goldreich and Ostrovsky [37]. The hierarchy contains L ≈ 1
2 log2N levels

of capacity 1, 2, 4, 8, . . . , 2L−1 respectively.

84

1. Client issues block requests to server, one from each level
2. Server, to satisfy request

(a) Retrieves all blocks from disk and returns early shuffle reads
(b) XORs remaining blocks together into single compressed block and return it

3. Client, while waiting for response
(a) Looks up level-specific nonce for each (non-early-shuffle-read) dummy block
(b) Hashes each dummy block’s nonce with its level position to reconstruct con-

tents
(c) XORs all dummy blocks together into subtraction block

4. Client receives compressed block from client and XORs with subtraction block to
get requested block

5. Client decrypts requested block

Figure 4.4: XOR Technique Steps

To retrieve a desired block from the partition, the client needs to fetch exactly

one block at a pseudorandom location from each of the L levels. To use the XOR

technique, we must ensure that the client can reconstruct dummy blocks, while ensuring

that dummy blocks are indistinguishable from real blocks to the server. We achieve this

property by encrypting a real block b residing in partition p, level `, and offset off as

AESskp,`(off||B). We encrypt a dummy block residing in partition p, level `, and offset

off as AESskp,`(off). The key skp,` is specific to partition p and level `, and is randomized

every time ` is rebuilt.

For simplicity, we start by considering the case without early shuffle reads. In

this case, exactly one of the L blocks requested is the encryption of a real block, and the

rest are encryptions of dummy blocks. The server XORs all L encrypted blocks together

into a single block XQ that it returns to the client. The client knows which blocks are

dummies, and knows p, `, off for each block, so it reconstructs all the encrypted dummy

blocks and XORs them with XQ to obtain the encrypted requested/real block.

85

4.5.2.2 Handling early shuffle reads

An early shuffle read occurs when we need to read from a level with no more

than half its original blocks remaining. Since such early shuffle reads may be real blocks,

they cannot be included in the XOR. Fortunately, the number of blocks in a level is

public, so the server already knows which levels will cause early shuffle reads. Thus, the

server simply returns early shuffle reads individually, then XORs the remaining blocks

together and returns them to the client, and no information is leaked about the access

sequence.

Since each early shuffle read block must be transferred individually, early shuffle

reads increase online IO. Fortunately, early shuffle reads are relatively uncommon, even

while shuffling is suppressed during bursts, so the online bandwidth cost stays under 2X

and close to 1X in most cases (see Figure 4.7 in Section 4.9).

4.5.2.3 Comparison with ObliviStore

ObliviStore uses level compression to reduce shuffle IO. When the client uploads

a level to the server during shuffling, it first compresses the level down to just over the

combined size of the level’s real blocks. Since half the blocks are dummies, nearly half

of the upload shuffle IO is eliminated. For details on level compression, including an

explanation for why it is secure, see [76].

Unfortunately, Burst ORAM’s XOR technique is incompatible with level com-

pression due to discrepancies in the ways dummy blocks must be formed. The XOR

technique requires that the client be able to reconstruct dummy blocks locally in order

to XOR them out of the returned block, so in Burst ORAM, each dummy block’s po-

sition determines its contents. In level compression, each level’s dummy block contents

86

must be a function of the level’s real block contents. Since the client cannot know the

contents of all real blocks in the level, it cannot reconstruct the dummy blocks locally.

Level compression and the XOR technique yield comparable overall IO reduc-

tions, though level compression performs slightly better. For example, the experiment in

Figure 4.8 incurs roughly 23X and 26X overall bandwidth cost using level compression

and the XOR technique respectively. However, the XOR technique reduces online IO,

while level compression reduces offline IO. In Burst ORAM, online IO is the bottleneck,

since offline IO can be delayed, so the XOR technique is far more effective at reducing

response times during bursts.

4.6 Scheduling and Reducing Shuffle IO

In Section 4.5, we showed how Burst ORAM prioritizes and reduces online IO,

keeping effective bandwidth costs low during short bursts by delaying shuffling. Once

client space fills, we must start shuffling in order to return blocks to the server and

continue the burst. However, if we are not careful about shuffle IO scheduling, we may

immediately start doing large amounts of IO, dramatically increasing response times.

In this section, we show how Burst ORAM schedules shuffle IO such that jobs

that free the most client space using the least shuffle IO are prioritized. Thus, at all

times, Burst ORAM issues only the minimum amount of effective IO needed to continue

the burst, keeping response times lower for longer. We also show how to reduce overall

IO by locally caching the smallest levels from each partition. We start with a definition

of shuffle jobs.

87

4.6.1 Shuffle Jobs

In Burst ORAM, as in ObliviStore, shuffle IO is divided into per-partition

shuffle jobs. Each job represents the work needed to shuffle a partition and return, from

client to server, all blocks previously evicted to that partition. A shuffle job is defined

by five entities:

• A partition p

• Blocks evicted to but not yet returned to p

• Levels to read blocks from

• Levels to write blocks to

• Blocks already read from p (early shuffle reads)

Each shuffle job moves through three phases:

Creation A shuffle job for p is created when a block is evicted to p after some request.

Every shuffle job starts out inactive, meaning Burst ORAM is not yet working on it.

When another block is evicted to p, we update the sets of eviction blocks and read/write

levels in p’s inactive shuffle job.

When Burst ORAM activates a shuffle job, it marks the job active and moves

it to the Read Phase, freezing the eviction blocks and read/write levels. Subsequent

evictions to p will create a new inactive shuffle job. At any time, there is at most one

active and one inactive shuffle job for each partition.

Read Phase Once a shuffle job is activated and moved to the Read Phase, Burst

ORAM begins fetching all blocks still on the server that need to be shuffled. That is, all

previously unread blocks from all the job’s read levels. Once all such blocks are fetched,

they are shuffled with all blocks evicted to p and any early shuffle reads from the read

88

levels. Shuffling consists of adding/removing dummies, pseudo-randomly permuting the

blocks, and then re-encrypting each block. Once shuffling completes, the job moves to

the Write Phase.

Write Phase Once a job is shuffled and moved to the Write Phase, Burst ORAM

begins storing all shuffled blocks to the job’s write levels on the server. Once all the

writes finish, the job is complete, and Burst ORAM is free to activate p’s inactive job,

if any.

4.6.2 Prioritizing Efficient Jobs

In Burst ORAM, when client space fills, we are forced to start shuffling in order

to continue handling requests. Since executing shuffle IO delays the online IO needed

to satisfy requests, we can reduce response times by always doing as little shuffling as

is needed to free up space. The hope is that we can delay the bulk of the shuffling until

an idle period, so that it does not interfere with pending requests.

By the time client space fills, there will be many partitions with inactive shuffle

jobs. Since we can choose jobs in any order, we can minimize the up-front shuffling work

by prioritizing the most efficient shuffle jobs: those that free up the most client space

per unit of shuffle IO. The space freed by completing a job for partition p is the number

of blocks evicted to p plus the number of early shuffle reads from the job’s read levels.

Thus, we can define shuffle job efficiency as follows:

Job Efficiency =
Evictions + # Early Shuffle Reads

Blocks to Read + # Blocks to Write

Job efficiencies vary substantially. For example, most jobs start out with 1

eviction and 0 early shuffle reads, so their relative efficiencies are determined strictly by

IO, which is in turn determined by the sizes of the job’s read and write levels. If the

89

partition’s bottom level is empty, no levels need be read, and only the bottom must be

written, for an overall IO of 2 an an efficiency of 0.5. If instead the bottom 4 levels are

occupied, all 4 levels must be read, and the 5th level written, for an total of roughly 15

reads and 32 writes, yielding a much lower efficiency of just over 0.02. Both jobs free

equal amounts of space, but the higher-efficiency job uses less IO.

Since small levels are written more often than large ones, efficient jobs are

common. Further, by delaying an unusually inefficient job, we give it time to accumulate

more evictions. While such a job will also accumulate more IO, the added write levels are

generally small, so the job’s efficiency tends to improve with time. Thus, by prioritizing

efficient jobs, we reduce the shuffle IO needed during the burst, thereby reducing effective

IO and ultimately response times.

Unlike Burst ORAM, ObliviStore does not use client space to delay shuffling,

so there are fewer shuffle jobs to choose from at any one time. Thus, job scheduling

is less important and jobs are chosen in creation order. Since ObliviStore is concerned

with throughput, not response times, it has no incentive to prioritize efficient jobs.

4.6.3 Reducing Shuffle IO via Level Caching

We have shown how Burst ORAM uses client space to delay shuffling during

bursts, reducing response times. We now show how we could instead use that same

space to reduce shuffle IO.

Since small, efficient shuffle jobs are common, Burst ORAM spends a lot of

time accessing small levels. If we use client space to locally cache the smallest levels

of each partition, we can eliminate the shuffle IO associated with those levels entirely.

Since levels are shuffled with a frequency inversely proportional to their size, each is

responsible for roughly the same fraction of shuffle IO. Thus, even if we can cache only

90

a few levels from each partition, shuffle IO savings can be substantial. Further, since

caching a level eliminates its early shuffle reads, and early shuffle reads are common for

small levels, caching the smallest levels can also reduce online IO.

We are therefore faced with a tradeoff between using space to store requested

blocks, which reduces response times for short bursts, and using it for local level caching,

which reduces overall bandwidth cost.

4.6.3.1 Level Caching in Burst ORAM

In Burst ORAM, we take a conservative approach, and cache only as many

levels as are guaranteed to fit in the worst case. More precisely, we identify the maximum

number λ such that the client could store all real blocks from the smallest λ levels of

every partition even if all were full simultaneously. We cache levels by only updating

an inactive job when the number of evictions is such that all the job’s write levels have

index at least λ.

Since each level is only occupied half the time, caching λ levels consumes at

most half of the client’s space on average, leaving the other half for storing blocks

downloaded by online requests. As we show experimentally in Section 4.9, level caching

substantially reduces overall bandwidth cost. Further, in most cases, response times are

actually lower with level caching than without it, due to fewer early shuffle reads.

4.7 Detailed Burst ORAM Design

The Burst ORAM design is based on ObliviStore, but incorporates many fun-

damental functional and system-level changes. For example, Burst ORAM replaces or

revises all the semaphores used in ObliviStore to achieve our distinct goal of online

91

Shuffler

Requester

Server Storage

ORAM Main

Online IO Reduction
Via XOR Technique

Online IO Prioritization and IO Rate Limiting
Using Concurrent IO and Local Space Semaphores

Efficient Job First
Shuffle Prioritization

Local Level Caching

Deadlock Avoidance Via
Shuffle Buffer Semaphore

Requests &
Responses

Online IO

Shuffle IO

Figure 4.5: Burst ORAM Architecture. Solid boxes represent key system com-
ponents, while dashed boxes represent functionality and the effects of the system on
IO.

IO prioritization while maintaining security and avoiding deadlock. Burst ORAM also

maximizes client space utilization, implements the XOR technique to reduce online IO,

revises the shuffler to schedule efficient jobs first, and implements level caching to re-

duce overall IO. We describe the Burst ORAM design in detail below, comparing and

contrasting with ObliviStore where appropriate.

4.7.1 Overall Architecture

Figure 4.5 presents the basic architecture of Burst ORAM, highlighting key

components and functionality. Burst ORAM consists of two primary components, the

online Requester and the offline Shuffler, which are controlled by the main event loop

ORAM Main. Client-side memory allocation is shown in Figure 4.6.

92

Position Map

< 3N1/2 Blocks

~ N log2 N bits

Expands to

fill remaining

client space

Overflow Space

Local Space

Level Cache
Shuffle Buffer

~ 3N1/2 Blocks

Figure 4.6: Burst ORAM Client Space Allocation. Fixed client space is reserved
for the position map and shuffle buffer. A small amount of overflow space is needed for
blocks assigned but not yet evicted to partitions (data cache in [77]). Remaining client
space is managed by Local Space semaphore and contains evictions, early shuffle reads,
and the level cache.

ORAM Main accepts new block requests (reads and writes) from the user,

and adds them to a Request Queue. On each iteration, ORAM Main tries to advance

the Requester first, only advancing the Shuffler if the Requester has no IO to perform,

thereby prioritizing online IO over shuffle IO. The Requester and Shuffler utilize shared

semaphores (Section 4.7.2) that regulate access to network bandwidth and client space.

The Requester reads each request from the Request Queue, identifies the de-

sired block’s partition, and fetches it along with any necessary dummy blocks: one

block from each level in the partition. To ensure oblivious behavior, the Requester must

wait until all dummy blocks have been fetched before marking the request satisfied. It

then updates the desired block (for writes) or returns it to the user (for reads). All IO

initiated by the requester is considered online IO.

The Shuffler ensures that each block fetched by the Requester is re-encrypted,

shuffled with other blocks from its target partition, and returned to the server. The

Shuffler is responsible for managing shuffle jobs, including prioritizing efficient jobs and

implementing level caching. All IO initiated by the shuffler is considered offline or

shuffle IO.

93

4.7.2 Semaphores

Resources in Burst ORAM are managed via semaphores, as in ObliviStore.

Semaphores are updated using only server-visible information, so ORAM can safely base

its behavior on semaphores without revealing new information. Since Burst ORAM

gives online IO strict priority over shuffle IO, our use of semaphores is substantially

different than ObliviStore’s, which tries to issue the same amount of IO after each

request. ObliviStore uses four semaphores: Shuffling Buffer, Early Cache-ins, Eviction,

and Shuffling IO. In Burst ORAM, we use three:

• Shuffle Buffer manages the client space reserved for blocks from active shuffle jobs,

and differs from ObliviStore’s Shuffling Buffer semaphore only in initial value.

• Local Space manages all remaining space, combining ObliviStore’s Early Cache-in

and Eviction semaphores.

• Concurrent IO manages concurrent block transfers based on network link capacity,

preventing the Shuffler from starving the Requester. It differs fundamentally from

ObliviStore’s Shuffling IO semaphore, which manages per-request shuffle IO.

Shuffle Buffer semaphore The Shuffle Buffer semaphore gives the number of blocks

that may be added to the client’s shuffle buffer. We initialize it to double the maximum

partition size (under 2.4
√
N total for N > 210), to ensure that the shuffle buffer is large

enough to store at least two in-progress shuffle jobs. When Shuffle Buffer reaches 0, the

Shuffler may not issue additional reads.

Local Space semaphore The Local Space semaphore gives the number of blocks that

may still be stored in remaining client space (space not reserved for the position map

or shuffle buffer). If Local Space is 0, the Requester may not fetch more blocks. Blocks

94

fetched by the Requester count toward Local Space until their partition’s shuffle job is

activated and they are absorbed into Shuffle Buffer . Once a block moves from Local

Space to Shuffle Buffer , it is considered free from the client, and more requests may

be issued. The more client space, the higher Local Space’s initial value, and the better

burst and long-term performance.

Concurrent IO semaphore The Concurrent IO semaphore is initialized to the net-

work link’s block capacity. Every time a block transfer is queued, Concurrent IO is

decremented. Every time a transfer completes, Concurrent IO is incremented. The

Shuffler may only initiate a transfer if Concurrent IO > 0. However, the Requester may

continue to initiate transfers and decrement Concurrent IO even if it is negative. This

mechanism ensures that no new shuffle IO can start while there is a sufficient amount

of online IO to keep the link fully utilized. If no new online IO is started, Concurrent

IO eventually becomes positive, and shuffle IO resumes, ensuring full link utilization.

4.7.3 Detailed System Behavior

We now describe the interaction between ORAM Main, the Requester, the

Shuffler, and the semaphores in detail. Accompanying pseudocode can be found in

Section 4.8.

ORAM Main (Algorithm 2) Incoming read and write requests are asynchronously

added to the Request Queue. During each iteration, ORAM Main first tries to advance

the Requester, which attempts to satisfy the next request from the Request Queue. If

the queue is empty, or Local Space too low, ORAM Main advances the Shuffler instead.

This mechanism suppresses new shuffle IO during a new burst of requests until the

Requester has fetched as many blocks as possible.

95

For each request, we evict ε blocks to randomly chosen partitions, where ε is

the eviction rate, set to 1.3 as in ObliviStore [76]. When evicting, if the Requester has

previously assigned a block to be evicted to partition p, then we evict that block. If

there are no assigned blocks, then to maintain obliviousness we evict a new dummy

block instead. Eviction does not send a block to the server immediately. It merely

informs the Shuffler that the block is ready to be shuffled into p.

Requester (Algorithm 3) To service a request, the Requester first identifies the

partition and level containing the desired block. It then determines which levels require

early shuffle reads, and which need only standard reads. If the Local Space semaphore is

large enough to accommodate the retrieved blocks, the requester issues an asynchronous

request for the necessary blocks from each level. Else, control returns to ORAM Main,

giving the Shuffler a chance to free space.

The server asynchronously returns the early shuffle read blocks and a single

subtraction block obtained from all standard-read blocks using the XOR technique (Sec-

tion 4.5). The Requester extracts the desired block from the subtraction block or from

an early shuffle read block, then updates the block (write) or returns it to the client

(read). The Requester then assigns the desired block for eviction to a randomly chosen

partition.

Shuffler (Algorithm 4) The Shuffler may only proceed if Concurrent IO > 0. Oth-

erwise, there is pending online IO, which takes priority over shuffle IO, so control returns

to ORAM Main without any shuffling.

The Shuffler places shuffle jobs into three queues based on phase. The New Job

Queue holds inactive jobs, prioritized by efficiency. The Read Job Queue holds active

96

jobs for which some reads have been issued, but not all reads are complete. The Write

Job Queue holds active jobs for which all reads, not writes, are complete.

If all reads have been issued for all jobs in the Read Job Queue, the Shuffler

activates the most efficient job from the New Job Queue, if any. Activating a job moves

it to the Read Job Queue and freezes its read/write levels, preventing it from being

updated by subsequent evictions. It also moves the job’s eviction and early shuffle

read blocks from Local Space to Shuffle Buffer , freeing up Local Space to handle online

requests. By ensuring that all reads for all active jobs are issued before activating new

jobs, we prevent the Scheduler from hastily activating inefficient jobs.

The shuffler then tries to decrement Shuffle Buffer to determine whether a

shuffle read may be issued. If so, the Shuffler asynchronously fetches a block for a job

in the Read Job Queue. If not, the Shuffler asynchronously writes a block from a job

in the Write Job Queue instead. Unlike reads, writes do not require Shuffle Buffer

space, so they can always be issued. The Shuffler prioritizes reads since they are critical

prerequisites to activating new jobs and freeing up Local Space. The equally costly

writes can be delayed until Shuffle Buffer space runs out.

Once all reads for a job complete, the job is shuffled : dummy blocks are added

as necessary, then all blocks are re-encrypted and permuted. The shuffler then moves

the job to the Write Job Queue. When all writes for a job finish, the job is marked

complete and removed from the Write Job Queue.

97

Table 4.1: Algorithm Notation

ε Eviction rate: blocks evicted per request

λ Number of levels cached locally

p A partition

Vp # blocks evicted to p since last shuffle of p finished

Cp State of p after last shuffle (total shuffled evictions)

b Block ID

D(b) Plaintext contents of b

E(b) Encrypted contents of b

S(b) Server address/ID of b

P (b) Partition containing b, or random partition if none

L(b) Level containing b, or ⊥ if none

Q IDs of standard-read blocks to fetch

C IDs of early shuffle read blocks to fetch

XQ Subtraction block (XOR of blocks in Q)

Jp Shuffle job for p

VJp Number of evicted blocks Jp will shuffle

EJp Efficiency of Jp
AJp Number of early shuffle reads for Jp
RJp Total blocks remaining to be read for Jp
WJp Total blocks to write for Jp
NJQ New Job Queue

RJQ Read Job Queue

WJQ Write Job Queue

4.8 Pseudocode

Algorithms 2–5 give pseudocode for Burst ORAM, using the notation summa-

rized in Table 4.1. The algorithms are described in detail in Section 4.7, but we clarify

some of the code and notation below.

The efficiency of shuffle job Jp is given by:

EJp =
VJp +AJp
RJp +WJp

. (4.1)

Cp represents the state of partition p at the time p’s last shuffle job completed,

and determines the current set of occupied levels in p. Vp represents the number of blocks

that have been evicted to p, since p’s last shuffle job completed. Cp + Vp determines

which levels would be occupied if p were to be completely shuffled.

98

Algorithm 2 Pseudocode for Client and ORAM Main

1: function ClientRead(b)
2: Append b to RequestQueue
3: On RequestCallback(D(b)), return D(b)

4: procedure Write(b, d)
5: Append b to RequestQueue
6: On RequestCallback(D(b)), write d to D(b)

7: procedure ORAM Main
8: RequestMade ← false
9: if RequestQueue 6= ∅ then

10: b← Peek(RequestQueue)
11: if Fetch(b) then . Request Successfully Issued
12: RequestMade ← true
13: Pop(RequestQueue)
14: MakeEvictions()

15: if RequestMade = false then
16: TryShuffleWork()

17: procedure MakeEvictions
18: PendingEvictions = PendingEvictions + ε
19: while PendingEvictions ≥ 1 do
20: p← random partition
21: Evict new dummy or assigned real block to p
22: Vp = Vp + 1
23: if shuffling p would only write levels ≥ λ then
24: Jp ← p’s inactive job . Create if necessary
25: VJp ← Vp
26: if p has no active job then
27: NJQ = NJQ ∪ Jp
28: PendingEvictions = PendingEvictions− 1

VJp represents the number of evicted blocks that will be shuffled into p by job

Jp. Thus, Cp and VJp together determine the levels that will be read and written when

Jp is shuffled.

If Jp is inactive, it is updated whenever Vp changes, setting VJp ← Vp (Algo-

rithm 2, Line 25). However, we implement level caching by skipping those updates to Jp

that would cause Jp to write to levels with indexes less than λ (Algorithm 2, Line 23).

Once Jp is activated, VJp is no longer updated. When Jp completes, p’s state is updated

to reflect the blocks shuffled in by Jp, setting Cp ← Cp + VJp (Algorithm 4, Line 37).

99

If p has no inactive shuffle job, the job is created after the first eviction to p

that permits updating (Algorithm 2, Line 24). If p has no active job, the inactive job

moves to the New Job Queue (NJQ) as soon as the job is created (Algorithm 2, Line

27), where it stays until the job is activated. If p does have an active shuffle job, the

inactive job is not added to NJQ until the active job completes (Algorithm 4, Line 38).

Thus, NJQ contains only inactive shuffle jobs for those partitions with no

active job, ensuring that any job in NJQ may be activated. NJQ is a priority queue

serving the most efficient jobs first. Job efficiency may change while the job is in NJQ,

since VJp can still be updated.

4.9 Evaluation

We ran simulations to compare Burst ORAM’s response times and bandwidth

costs with those of ObliviStore and an insecure baseline without ORAM using real and

synthetic workloads.

4.9.1 Methodology

4.9.1.1 Baselines

We compare Burst ORAM and its variants against two baselines. The first is

the ObliviStore ORAM described in [76], including its level compression optimization.

For fairness, we allow ObliviStore to use extra client space to locally cache the smallest

levels in each partition.

The second baseline is an insecure scheme without ORAM in which blocks

are encrypted, but access patterns are not hidden. This scheme transfers exactly one

100

Algorithm 3 Pseudocode for Requester

1: function Fetch(b)
2: P (b), L(b)← position map lookup on b
3: Q = ∅, C = ∅
4: for level ` ∈ P (b) do
5: if ` is non-empty then
6: b` ← b if ` = L(b)
7: b` ← ID of next dummy in ` if ` 6= L(b)
8: if ` more than half full then
9: Q← Q ∪ S(b`) . Standard read

10: else
11: C ← C ∪ S(b`) . Early shuffle read (rare)

12: Ret← |C|+ Max(|Q|, 1) . Num. blocks to return
13: if Not TryDec(Local Space, Ret) then
14: return false . Not enough space for blocks

15: Dec(Concurrent IO , Ret)
16: Issue asynch. request for (C,Q) to server
17: When done, server calls:
18: FetchCallback(early shuffle reads, XOR block)
19: return true
20: procedure FetchCallback({E(ci)}, XQ)
21: Inc(Concurrent IO , 1)
22: if b ∈ Q then
23: X ′Q ← ⊕{E(qi) | S(qi) ∈ Q, qi 6= b}
24: . Subtraction block, computed locally
25: E(b)← XQ ⊕X ′Q
26: if b ∈ C then
27: E(b)← E(ci) where ci = b

28: D(b)← decrypt E(b)
29: Assign b for eviction to random partition
30: RequestCallback(D(b))

block per request. We did not include results from Path-PIR [58] because it requires

substantially larger block sizes to be efficient, and its response times are dominated by

the orthogonal consideration of PIR computation. Path-PIR reports response times in

the 40–50 second range for comparably-sized databases.

4.9.1.2 Metrics

We evaluate Burst ORAM and our baselines using response time and bandwidth

cost as metrics (see Section 4.3). We measure average, maximum, and p-percentile

101

Algorithm 4 Pseudocode for Shuffler

1: procedure TryShuffleWork
2: if Not TryDec(Concurrent IO , 1) then
3: return
4: ReadIssued,WriteIssued← false
5: if All reads for all jobs in RJQ have been issued then
6: TryActivate() . Try to add job to RJQ

7: if Jp ∈ RJQ has not issued read bR then
8: if TryDec(Shuffle Buffer , 1) then
9: Issue asynch. request for S(bR) from server

10: When done, call ReadCallback(E(bR))
11: ReadIssued← true
12: if !ReadIssued and Jp ∈WJQ has write bW then
13: Write E(bW) to server
14: When done, call WriteCallback(S(bW))
15: WriteIssued← true
16: if Not ReadIssued and Not WriteIssued then
17: Inc(Concurrent IO , 1) . No shuffle work needed

18: procedure TryActivate
19: if NJQ 6= ∅ then
20: Jp ← Peek(NJQ) . Most efficient job
21: if TryDec(Shuffle Buffer , VJp +AJp) then
22: Mark Jp active . VJp will no longer change
23: Inc(Local Space, VJp +AJp)
24: Move Jp from NJQ to RJQ

25: procedure ReadCallback(E(bR))
26: Inc(Concurrent IO , 1)
27: Decrypt E(bR), place D(bR) in Shuffle Buffer
28: if all reads in Jp have finished then
29: Create dummy blocks to get WJp blocks total
30: Permute and re-encrypt the blocks
31: Move Jp from RJQ to WJQ

32: procedure WriteCallback(S(bW))
33: Inc(Concurrent IO , 1)
34: if all writes in Jp have finished then
35: Mark Jp complete
36: Remove Jp from WJQ
37: Update Cp ← Cp + VJp , Vp ← Vp − VJp
38: Add p’s inactive job, if any, to NJQ

response times for various p. A p-percentile response time of t indicates that p-percent

of the requests have response times under t seconds.

We explicitly measure the online, effective, and overall bandwidth costs. In

the insecure baseline, all three costs are 1X, so response times are minimal. However, if

102

Algorithm 5 Pseudocode for semaphores

1: procedure Dec(Semaphore,Quantity)
2: Semaphore← Semaphore−Quantity
3: procedure Inc(Semaphore,Quantity)
4: Semaphore← Semaphore+Quantity

5: function TryDec(Semaphore,Quantity)
6: if Semaphore ≥ Quantity then
7: Dec(Semaphore,Quantity)
8: return true
9: return false

a burst has high enough frequency to saturate available bandwidth, requests may still

pile up, leading to response times longer than the round-trip latency.

4.9.1.3 Workloads

We use three workloads. The first consists of an endless burst of requests all

issued at once, and compares changes in bandwidth costs of each scheme as a function of

burst length. The second consists of two identical bursts with equally-spaced requests,

separated by an idle period. It shows how response times change in each scheme before

and after the idle period.

The third workload is based on the NetApp Dataset [18, 50], a corporate work-

load containing file system accesses from over 5000 corporate clients and 2500 engineering

clients during 100 days. The file system uses 22TB of its 31TB of available space. More

details about the workload are provided in the work by Leung et al. [50].

Our NetApp workload uses a 15 day period (Sept. 25 through Oct. 9) during

which corporate and engineering clients were active. Requested chunk sizes range from

a few bits to 64KB, with most at least 4KB [50]. Thus, we chose a 4KB block size. In

total, 312GB of data were requested using 8.8 · 107 4KB queries.

We configure the NetApp workload ORAM with a 32TB capacity, and allow

100GB of client space, for a usable storage increase of 328 times. For Burst ORAM and

103

ObliviStore, at least 33GB is consumed by the position map, and only 64GB is used for

local block storage. The total block count is N = 233. Blocks are divided into b217/3c

partitions to maximize server space utilization, each with an upper-bound partition size

of 218 blocks.

4.9.2 Simulator

We evaluated Burst ORAM’s bandwidth costs and response times using a de-

tailed simulator written in Java. The simulator creates an asynchronous event for each

block to be transferred. We calculate the transfer’s expected end time from the network

latency, the network bandwidth, and the number of pending transfers.

Our simulator also measures results for ObliviStore and the insecure baseline.

In all schemes, block requests are time-stamped as soon as they arrive, and serviced as

soon as possible. Requests pile up indefinitely if they arrive more frequently than the

scheme can handle them.

Burst ORAM’s behavior is driven by semaphores and appears data-independent

to the server. Each request reads from a partition that appears to be chosen uniformly

at random, so bandwidth costs and response times depend only on request arrival times,

not on requested block IDs or contents. Thus, the simulator need only store counters

representing the number of remaining blocks in each level of each partition, and can

avoid storing block IDs and contents explicitly.

Since the simulator need not represent blocks individually, it does not measure

the costs of encryption/decryption, permuting blocks, looking up block IDs, or perform-

ing disk reads for blocks. Thus, measured bandwidth costs and response times depend

entirely on network latency, available bandwidth, request arrival times, and the scheme

itself. While most of these ignored costs are negligible, server-side disk accesses do have

104

0X

1X

2X

3X

4X

5X

6X

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

O
n

lin
e

 B
an

d
w

id
th

 C
o

st

Request Index

Burst ORAM
ObliviStore
Burst ORAM No Job Prioritization
Burst ORAM No Level Caching

Endless Burst - Online Bandwidth Cost
(32 TB ORAM, 100 GB client storage)

overhead peaks from extra
early cache-ins when most

shuffling jobs delayed

Figure 4.7: Online bandwidth costs as a burst lengthens. Burst ORAM maintains low
online cost regardless of burst length, unlike ObliviStore.

the potential to become a substantial cost, especially on slow networks [76]. For now,

we assume that blocks are distributed across enough fast disks that block transfers over

the network are the bottleneck.

4.9.3 Endless Burst Experiments

For the endless burst experiments, we use a 32TB ORAM with N = 233 4KB

blocks and 100GB client space. We issue 233 requests at once, then start satisfying

requests in order using each scheme. We record the bandwidth costs of each request,

averaged over requests with similar indexes and over three trials. Figures 4.7 and 4.8

show online and effective costs, respectively. The insecure baseline is not shown, since

its online, effective, and overall bandwidth costs are all 1.

Figure 4.7 shows that Burst ORAM maintains 5X–6X lower online cost than

ObliviStore for bursts of all lengths. When Burst ORAM starts to delay shuffling, it

incurs more early shuffle reads, increasing online cost, but it still stays well under 2X

on average.

105

0X
5X

10X
15X
20X
25X
30X
35X
40X

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

Ef
fe

ct
iv

e
 B

an
d

w
id

th
 C

o
st

Request Index

Burst ORAM
ObliviStore
Burst ORAM No Job Prioritization
Burst ORAM No Level Caching

Endless Burst - Effective Bandwidth Cost
(32 TB ORAM, 100 GB client storage)

prioritizing efficient
jobs defers shuffling

client space full,
shuffling begins

effective cost
converges to
overall cost

Figure 4.8: Effective bandwidth costs as a burst lengthens. Burst ORAM can handle
most bursts with ∼1X effective cost. Each scheme’s effective cost converges to its overall
cost for long bursts.

Burst ORAM defers shuffling, so its effective cost stays close to its online cost

until client space fills, while ObliviStore starts shuffling immediately, so its effective cost

stays constant (Figure 4.8). Thus, response times for short bursts will be substantially

lower in Burst ORAM than in ObliviStore.

Eventually, client space fills completely, and even Burst ORAM must shuffle

continuously to keep up with incoming requests. This behavior is seen at the far right

of Figure 4.8, where each scheme’s effective cost converges to its overall cost. Burst

ORAM’s XOR technique results in slightly higher overall cost than ObliviStore’s level

compression, so Burst ORAM is slightly less efficient for very long bursts. Without

local level caching, Burst ORAM spends much more time shuffling the smallest levels,

yielding the poor performance of Burst ORAM No Level Caching.

If shuffle jobs are started in arbitrary order, as for Burst ORAM No Prioritiza-

tion, the amount of shuffling per request quickly increases, pushing effective cost toward

overall cost. However, by prioritizing efficient shuffle jobs as in Burst ORAM proper,

more shuffling can be deferred, keeping effective costs lower for longer, and maintaining

shorter response times.

106

4.9.4 Two-Burst Experiments

Our Two-Burst experiments show how each scheme responds to idle time be-

tween bursts. We show that Burst ORAM uses the idle time effectively, freeing up as

much client space as possible. The longer the gap between bursts, the longer Burst

ORAM maintains low effective costs during Burst 2.

Figure 4.9 shows response times during two closely-spaced bursts, each of ∼ 227

requests spread evenly over 72 seconds. The ORAM holds N = 225 blocks, and the client

has space for 218 blocks. Since we must also store early shuffle reads and reserve space

for the shuffle buffer, the client space is not quite enough to accommodate a single burst

entirely. We simulate a 100Mbps network connection with 50ms latency.

All ORAMs start with low response times during Burst 1. ObliviStore response

times quickly increase due to fixed shuffle work between successive requests. Burst

ORAMs delay shuffle work, so response times stay low until client space fills. Without

level caching, additional early shuffle reads cause early shuffling and thus pre-mature

spikes in response times.

When Burst 1 ends, the ORAMs continue working, satisfying pending requests

and catching up on shuffling during the idle period. Longer idle times allow more

shuffling and lower response times at the start of Burst 2. None of the ORAMs have

time to fully catch up, so response times increase sooner during Burst 2. ObliviStore

cannot even satisfy all Burst 1 requests before Burst 2 starts, so response times start

high on Burst 2. Burst ORAM does satisfy all Burst 1 requests, so it uses freed client

space to efficiently handle early Burst 2 requests.

Clearly, Burst ORAM performs better with shuffle prioritization, as it allows

more shuffling to be delayed to the idle period, satisfying more requests quickly in both

107

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 50 100 150 200 250

R
e

q
u

e
st

 R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time Request Issued (seconds from start)

Two-Burst Response Times

Burst ORAM

ObliviStore

Burst ORAM No Job Prioritization

Burst ORAM No Level Caching

80s Split

Burst 2 Burst 1 Gap

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 50 100 150 200 250

R
e

q
u

e
st

 R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time Request Issued (seconds from start)

100s Split

Burst 2 Burst 1 Gap

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 50 100 150 200 250

R
e

q
u

e
st

 R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time Request Issued (seconds from start)

200s Split

Burst ORAM response
times low until client

space fills again

Burst 2 Burst 1 Gap

Figure 4.9: Response times during two same-size bursts of just over 217 requests spread
evenly over 72 seconds. Client has space for at most 218 blocks. No level caching causes
early spikes due to extra early shuffle reads.

108

bursts. Burst ORAM also does better with local level caching. Without level caching,

we start with more available client space, but the extra server levels yield more early

shuffle reads to store, filling client space sooner.

4.9.5 NetApp Workload Experiments

The NetApp experiments show how each scheme performs on a realistic, bursty

workload. Burst ORAM exploits the bursty request patterns, minimizing online IO and

delaying shuffle IO to achieve near-optimal response times far lower than ObliviStore’s.

Level caching keeps Burst ORAM’s overall bandwidth costs low.

Figure 4.10 shows 99.9-percentile response times for several schemes running

the 15-day NetApp workload for varying bandwidths. All experiments assume a 50ms

network latency. For most bandwidths, Burst ORAM response times are orders of

magnitude lower than those of ObliviStore and comparable to those of the insecure

baseline. Shuffle prioritization and level caching noticeably reduce response times for

bandwidths under 1Gbps.

Figure 4.11 compares p-percentile response times for p values of 90%, 99%,

and 99.9%. It gives absolute p-percentile response times for the insecure baseline, and

differences between the insecure baseline and Burst ORAM p-percentile response times

(Burst ORAM overhead). When baseline response times are low, Burst ORAM response

times are also low across multiple p.

The NetApp dataset descriptions [18, 50] do not specify the total available

network bandwidth, but since it was likely sufficient to allow decent performance, we

expect from Figure 4.10 that it was at least between 200Mbps and 400Mbps. Figure

4.12 compares the overall bandwidth costs incurred by each scheme running the NetApp

109

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

0 1 2 3 4 5 6 7 8 9

9
9

.9
%

 R
e

sp
o

n
se

 T
im

e

(m

s)

Available Bandwidth (Gpbs)

Burst ORAM

ObliviStore

Burst ORAM No Job Prioritization

Burst ORAM No Level Caching

Without ORAM (Optimal)

99.9% Reponse Time Comparison on NetApp Trace
(50ms network latency, 32 TB ORAM, 100 GB client storage)

60

70

80

90

100

110

120

130

140

(Enlarged Sub-region)

40

50

60

70

80

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.10: (Top) Burst ORAM achieves short response times in bandwidth-constrained
settings. Since ObliviStore has high effective cost, it requires more available client-server
bandwidth to achieve short response times. (Bottom) Burst ORAM response times are
comparable to those of the insecure (without ORAM) scheme.

workload at 400Mbps. Costs for other bandwidths are similar. Burst ORAM clearly

achieves an online cost several times lower than ObliviStore’s.

Level caching reduces Burst ORAM’s overall cost from 42X to 29X. Burst

ORAM’s higher cost is due to a combination of factors needed to achieve short re-

sponse times. First, Burst ORAM uses the XOR technique, which is less efficient overall

than ObliviStore’s mutually exclusive level compression. Second, Burst ORAM han-

dles smaller jobs first. Such jobs are more efficient in the short-term, but since they

frequently write blocks to small levels, they create more future shuffle work. In ObliviS-

110

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Available Bandwidth (Gpbs)

90%
99%
99.9%
50ms Network Latency

Baseline Percentile Reponse Times, NetApp Trace

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

R
e

sp
o

n
se

 O
ve

rh
e

ad
 (

m
s)

Available Bandwidth (Gpbs)

90%
99%
99.90%
50ms Network Latency

Percentile Burst ORAM Overhead, NetApp Trace

Highest
Bandwidths
with Baseline
over 100ms

Corresponding
ORAM Overheads
under 100ms

Figure 4.11: (Top) Insecure baseline (no ORAM) p-percentile response times for various
p. (Bottom) Overhead (difference) between insecure baseline and Burst ORAM’s p-
percentile response times. Marked nodes show that when baseline p-percentile response
times are < 100ms, Burst ORAM overhead is also < 100ms.

tore, such jobs are often delayed during a large job, so fewer levels are created, reducing

overall cost.

4.10 Reducing Online Bandwidth Costs of SR-ORAM

SR-ORAM [86] is not part of our proposed Burst ORAM, but we briefly de-

scribe how it can benefit from our XOR block compression technique. Like ObliviStore,

SR-ORAM requires only a single round-trip to satisfy a block request, and has online

111

0X

10X

20X

30X

40X

ObliviStore Burst ORAM
without Job

Prioritization

Burst ORAM Burst ORAM
without Level

Caching

Without
ORAM

(Optimal)

B
an

d
w

id
th

 C
o

st

Offline Cost
Online Cost

NetApp Trace Bandwidth Costs
(50ms network latency, 32 TB ORAM, 100 GB client storage, 400Mbps bandwidth)

Figure 4.12: To achieve shorter response times, Burst ORAM incurs higher overall
bandwidth cost than ObliviStore, most of which is consumed during idle periods. Level
caching keeps bandwidth costs in check. Job prioritization does not affect overall cost,
but does reduce effective costs and response times (Figures 4.8, 4.10).

IO bandwidth cost O(logN). SR-ORAM uses an encrypted Bloom filter to allow the

server to obliviously check whether each level contains the requested block. Thus, the

server retrieves the requested block from its level, and retrieves client-selected dummy

blocks from all other levels. Since at most one block is real, the server can XOR all the

blocks together and return a single compressed block, as in Burst ORAM.

One difference in SR-ORAM is that the client does not know a priori which

level contains the requested block. Thus, the SR-ORAM must be modified to include

the level-index of each retrieved block in its response. To allow the client to easily

reconstruct dummy blocks, we must also change SR-ORAM to generate the contents of

each dummy block using a pesudo-random function combining the block’s index with a

level-specific nonce. Since the client knows the indexes of the dummy blocks it requested

from each level, it can infer the real block’s level from the server’s response. The client

then reconstructs the contents of the dummy blocks returned from all other levels, and

XORs them with the compressed block to obtain the requested block, as in Burst ORAM.

112

SR-ORAM is a synchronous protocol, so it has no notion equivalent to early

shuffle reads. Thus block compression reduces SR-ORAM’s online bandwidth cost from

O(logN) to 1. The resulting reduction in overall cost is negligible, as SR-ORAM has an

offline bandwidth cost of O(log2N log logN). SR-ORAM contains only one hierarchy

of O(logN) levels, so block compression incurs only O(logN) extra storage cost for the

level-specific nonces, fitting into SR-ORAM’s logarithmic client storage.

4.11 Conclusion

We have presented Burst ORAM, an novel Oblivious RAM scheme based on

ObliviStore and tuned for practical response times on bursty workloads. We presented a

novel ORAM architecture for prioritizing online IO, and introduced the XOR technique

for reducing online IO. We also introduced a novel scheduling mechanism for delaying

shuffle IO, and described a level caching mechanism that uses extra client space to

reduce overall IO. We simulated Burst ORAM on a real-world workload and showed

that it incurs low online and effective bandwidth costs during bursts. Burst ORAM

achieved near-optimal response times that were orders of magnitude lower than existing

ORAM schemes.

113

Chapter 5

Combining ORAM with PIR to

Minimize Bandwidth Costs

5.1 Introduction

Cloud computing allows customers to outsource the burden of data manage-

ment and benefit from economy of scale, but privacy concerns limit its reach. Even if

data blocks are encrypted by the client before being stored on the server, data access

patterns may still leak valuable information [28, 44, 45]. Private Information Retrieval

(PIR) [19] and Oblivious RAM (ORAM) [37] techniques both offer provable access pat-

tern privacy for outsourced data, each with their own advantages and disadvantages. In

this work, we combine the strengths of existing ORAM and PIR constructs to create a

new ORAM with reduced bandwidth costs.

In PIR, data on the server may be encrypted or unencrypted, and the client

issues an encrypted query for a particular bit or block of B bits. The server evaluates

each query homomorphically (without decryption), returning the desired block without

learning which block was requested. In order to achieve this degree of security, the server

114

must evaluate each query over all bits in the database, making PIR computationally

prohibitive for most applications [74].

In ORAM, blocks of data are always encrypted by the client before being

stored on the server. Informally, the ORAM defines a protocol that dictates how the

client should fetch, permute (shuffle), re-encrypt, and store blocks from and to the

server in order to prevent the server from learning any information about the pattern of

plaintext block requests. The ORAM protocol guarantees that for any two same-length

sequences of plaintext block requests, the resulting patterns of encrypted block accesses

are computationally indistinguishable to all observers other than the client. ORAM

requires negligible computation, but may incur substantial bandwidth or client/server

storage overheads.

Definition 16. The bandwidth cost W of an ORAM or PIR technique is the number

of blocks transferred for every block requested. Equivalently, it is the total number of

bits transferred in order to retrieve B bits, where B is the size of a single block. If we

upload and download 3 blocks to satisfy each request, we get W = 6X.

Bandwidth cost is particularly important when applying ORAM to mobile de-

vices, where bandwidth costs are substantial. Existing ORAMs have bandwidth costs

polylogarithmic in the total number of blocks N [35, 37, 39, 49, 76, 78, 87]. The Oblivi-

Store ORAM [76] has the lowest bandwidth cost of any single-server ORAM proposed

to date. ObliviStore’s bandwidth cost is roughly (log2N)X, with no hidden constants,

though it requires extensive client storage. Other ORAMs require less storage [49, 58, 78]

or emphasize reduced response times [11, 29, 86], but all incur higher total bandwidth

costs.

115

5.1.1 Our Contributions

In this work, we show how to drastically reduce ObliviStore’s bandwidth costs

by combining it with PIR. The combination yields a new ORAM that we call OS+PIR

that offers reduced bandwidth costs and permits tradeoffs between bandwidth cost,

client/server storage, and computation. Combining ORAM and PIR was previously

proposed in [58], but their scheme uses a different ORAM [73] and emphasizes constant

client storage, while OS+PIR seeks to minimize bandwidth costs. OS+PIR treats its

PIR component largely as a black box, so any efficient PIR technique may be used. For

our experiments, we use the simple and efficient Trostle-Parrish PIR [81] that was also

used in [57] and [58].

For each request in ObliviStore, the client retrieves and decrypts one block

from each of O(logN) levels. At most one of the decrypted blocks is real and all the

others are dummies which can be discarded. We use PIR to retrieve only the real block

without revealing which block was accessed. Since we use PIR for only a small number

(O(logN)) of blocks, it is computationally feasible.

We divide OS+PIR’s total bandwidth cost W into an ORAM component WO

and a PIR component WP , where W = WO + WP . WO depends on the ORAM’s

behavior, and WP depends on the specific PIR and parameters such as block size. Using

2MiB blocks, the PIR in [81] yields WP between 3X and 5X.

Applying PIR reduces ObliviStore’s WO by roughly 30%. We show how to

amplify this reduction by altering the number and relative sizes of partition levels,

balancing the reduced bandwidth cost with the resulting increases in PIR computation

and server storage.

116

Increasing level sizes exacerbates a previously undiscovered issue of unused

dummy blocks in ObliviStore. Unused dummies occur because ObliviStore makes more

evictions than requests, as dictated by the eviction rate, which causes unnecessary block

downloads. We mitigate this issue by securely altering OS+PIR’s eviction pattern and

creating fewer dummy blocks.

We also analyze two previously proposed techniques that use available client

space to reduce bandwidth cost — reducing the eviction rate [76] and applying level

caching [29] — and show how to strike a reasonable balance between the two. For

systems with 220 to 230 blocks of 2MiB each, OS+PIR reduces the total bandwidth cost

from ObliviStore’s 18X–26X to only 11X–13X, 3X–4X of which is due to the PIR.

5.2 Related Work

Oblivious RAM was first proposed in [37] and required a bandwidth cost of

O(log3N)X blocks transferred per block requested, where N is the number of data blocks

in the ORAM. Subsequent works have reduced the bandwidth cost toO(log2N/ log logN)X

using constant client-side storage [49]. While constant client-side storage is desirable,

it is not always necessary in practical settings. Recent works have reduced bandwidth

costs to O(logN)X by allowing additional client storage, specifically: O(BNv) client

storage for constant v > 0 in [39], O(B logN) for large B ∈ O(log2N) in [78], and

O(N logN +B
√
N) in [29, 76, 77].

Not all ORAMs that achieve O(logN)X bandwidth cost are equally practical.

For block sizes on the order of kilobytes or larger, the ObliviStore family of ORAMs

[29, 76, 77] has the lowest practical bandwidth cost of any single-server ORAM proposed

to date. ObliviStore’s bandwidth cost is roughly (log2N)X, with no hidden constants,

117

though it requires extensive client storage. In contrast, Path ORAM [78] requires closer

to (8 log2N)X, and more if client space is reduced using recursion. The scheme in [39]

requires roughly log2N round-trips per request, but each trip may include several block

transfers, making the total bandwidth cost at least 3 to 4 times that of ObliviStore.

Since ObliviStore has the lowest bandwidth cost, we compare with it when evaluating

OS+PIR.

Prior work [58] combined PIR with the tree-based ORAM of [73]. While their

construction achieves the desirable property of constant client memory, it still requires

O(log2N)X bandwidth cost. In contrast, OS+PIR combines PIR with the partition-

based ObliviStore ORAM [76] to achieve less than (1/2)(log2N)X bandwidth cost in

practice. Multi-cloud oblivious storage [75] achieves very low bandwidth cost (under

3X), but makes the strong assumption of multiple non-colluding servers not required by

OS+PIR.

5.3 Preliminaries

Key notation used throughout the paper is shown in Table 5.1.

5.3.1 Private Information Retrieval (PIR)

Private Information Retrieval (PIR) was first proposed in [19]. PIR allows a

client to retrieve specific bits from a server without revealing any information to the

server, or any other observer, about which bits were accessed. In this work, we are

primarily interested in PIR schemes in which each query returns a block of data, also

known as Private Block Retrieval (PBR) schemes, but we will use the term PIR generally

to include PBR.

118

Table 5.1: Notation

N Total number of real (data) blocks in an ORAM

B Size of each data block (in bits)

b A specific plaintext data block

W Total bandwidth cost

WO ORAM component of total bandwidth cost W

WP PIR component of total bandwidth cost W

ε Eviction rate

p A partition used in ObliviStore or OS+PIR

pr Request partition

pa Assignment partition

pe Eviction partition

k Level size factor

K Level configuration consisting of level size factors

r Number of real blocks in a sub-level

LM Total number of main levels in a single partition

LS Total number of sub-levels in a single partition

Di Maximum number of dummies in main level i

s Number of noise bits in PIR

PIR may be used to privately retrieve select plaintext data from a public server,

such as to allow a patient to look up information about specific symptoms without

disclosing the symptoms of interest. In this work, we use PIR to allow a client to

retrieve specific blocks of his own encrypted, outsourced data without revealing which

blocks are being accessed.

PIR comes in two flavors: computational and information theoretic. Compu-

tational PIR schemes are based on a hardness assumption, such that to retrieve infor-

mation about a query, the adversary would need to solve a problem that is considered

intractable. Information-theoretic PIR guarantees that query information remains se-

cret, regardless of the adversary’s computational resources, but generally requires an

assumption of non-colluding servers [19]. The non-colluding server assumption is im-

practical when servers are untrusted, so we use computational PIR here.

Each PIR query is encrypted by the client, sent to the server, and evaluated

homomorphically (under encryption) by the server. The server returns the requested

119

bits but learns neither the plaintext contents of the query nor which bits were returned.

PIR must perform a computational operation over every bit in the PIR database in order

to achieve its strong privacy guarantees, so the entire database must be loaded from disk

for each query. Authors in [74] argue that computational PIR is more expensive than

the trivial PIR of downloading the entire database for each query. While subsequent

PIR developments challenge this conclusion [63], PIR is still considered prohibitively

expensive for many applications.

Instead of using PIR for the entire database, we use it to reduce the bandwidth

cost required to retrieve one of a small number of blocks that would otherwise all be

returned. In this scenario, the PIR database is small, and the block size relatively

large, so the substantial bandwidth cost reduction can outweigh the small increase in

computation, given an appropriate PIR scheme. We discuss our use of PIR in more

detail in Section 5.4.

5.3.2 Oblivious RAM (ORAM)

Oblivious RAM (ORAM) was first proposed in [37]. Like PIR, ORAM may

be used to retrieve data from a server without revealing which data were accessed. In

ORAM, unlike PIR, every block must be encrypted by the client before being stored

to the server. Most ORAMs allow block contents to be updated, while standard PIR

techniques are read-only.

Instead of evaluating queries homomorphically, ORAM defines a protocol for

transferring and manipulating encrypted blocks such that the underlying plaintext block

accessed by one query cannot be linked to any other query’s block. ORAMs download

encrypted blocks from the server to the trusted local client space, decrypt them, return

the desired information, then re-encrypt the blocks using a semantically secure encryp-

120

tion scheme to break correlations with previous encrypted contents. The ORAM then

randomly permutes the blocks to break correlations with the previous block position,

a process referred to as oblivious shuffling. Some ORAMs also create dummy blocks,

which are indistinguishable from real blocks but contain random or generated data, and

download extra blocks, in order to break correlations.

ORAM security is defined as follows. For any two sequences of block requests

of the same length, the resulting patterns of encrypted block accesses must be compu-

tationally indistinguishable to all observers other than the client [77]. Equivalently, the

output of a simulator that has no access to any of the secret information (block contents

and requested block addresses) should be able to produce a sequence of encrypted block

transfers that is indistinguishable from that of the actual ORAM [49].

5.3.3 ObliviStore

OS+PIR builds on the ObliviStore ORAM [76]. A full description of ObliviS-

tore and its underlying ORAM [77] is too extensive to include here, but we review the

aspects most relevant to OS+PIR. See [76, 77] for a more comprehensive discussion. For

N blocks of B bits each, ObliviStore uses a relatively large amount of client storage,

O(B
√
N +N logN) bits with small constants, in order to achieve a low bandwidth cost

of (log2N)X.

5.3.3.1 Partition and Level Structure

In ObliviStore, blocks stored on the server are arranged logically into O(
√
N)

partitions, each of which contains O(
√
N) blocks. Each partition is a simplified hierar-

chical ORAM, similar to those of [37], with roughly log2

√
N levels. The lowest level

in each partition (level 0) holds 1 real and 1 dummy block. Successive levels double in

121

size, so level i has real-block capacity ri = 2i and starts with 2i dummy blocks. At any

given time, each level may be occupied or empty, and only half the levels are occupied

on average.

5.3.3.2 Requests and Evictions

Each block request involves three steps:

1) Partition Request When the client issues a request for block b, we direct

the request to the partition pr containing b. The choice of pr is deterministic, but

appears random to an observer since b was previously assigned to a randomly chosen

partition. We then download exactly one block from every non-empty level in p. We

fetch b from whichever level contains it, and fetch a dummy block from every other level.

Since levels were previously randomized, each fetched block appears randomly chosen

from its level. After downloading the blocks, we discard all dummies, return b to the

client, update b if necessary, and assign it to a new partition.

2) Assignment: After downloading and updating b, we encrypt it and assign

it to a partition pa chosen uniformly at random. Each pa maintains a local, hidden

eviction queue of blocks assigned to pa but not yet evicted to the server. We assign b to

pa by adding it to the end of pa’s eviction queue, but do not immediately evict it.

3) Eviction: After assigning b to pa, we independently choose at least one

partition pe and evict the next block from its eviction queue, or a dummy block if

the queue is empty. We perform ε evictions after each request, where ε is the real-

valued eviction rate.1 If ε exceeds 1.0, we add the fractional component ε − 1.0 into a

global accumulator. When the accumulator reaches 1.0, we make another eviction and

1ObliviStore uses slightly different notation, where v is the background eviction rate, equal to 1 − ε.

122

decrement the accumulator. Eviction partitions (pe) may be chosen deterministically or

randomly, as long as the choice is independent of pa [77].

Choosing pa randomly guarantees that future requests for b will appear to

access a random partition. Choosing pe independently of pa prevents an observer from

learning pe and thus from tracking b between partitions. Thus, the independence of pa

and pe is critical to ObliviStore’s security.

Since pa and pe are chosen independently, blocks blocks may accumulate in

eviction queues. ObliviStore calls the space needed to store these blocks the eviction

cache. Revealing the size of the eviction cache (number of assigned but not yet evicted

blocks) may leak information about prior choices of pa, so a fixed amount of space

sufficient for the eviction cache is reserved up-front. Statistically, the higher ε, the less

space is required for the eviction cache.

5.3.3.3 Shuffling

Let level i in partition p initially contain ri real and ri dummy blocks. Once

ri evictions have been made to p since i was created, i is scheduled to be re-shuffled.

Informally, shuffling i consists of:

1. Downloading all blocks left in level i

2. Removing any remaining dummies

3. Inserting any evicted blocks

4. Generating any additional dummies

5. Randomly permuting and re-encrypting all blocks

6. Uploading all blocks to a new level with 2ri real and 2ri dummy blocks

When two levels i and i−1 are both ready to be re-shuffled, the shuffle cascades

upward. In fact, since level sizes increase by factors of 2, every time a level i is ready to

123

Half-empty
Levels 0-2
shuffled together
into level 3

Server

Client
Eviction
Block

Figure 5.1: In ObliviStore, when shuffles cascade upward, all levels ready to be re-
shuffled are downloaded at once, shuffled together with eviction blocks, and uploaded
to a higher level.

be re-shuffled, all lower levels are necessarily also ready to be re-shuffled. When shuffling

all levels up to i, we download all remaining blocks from levels 0–i and upload blocks to

level i+ 1 with 2r real blocks, leaving levels 0–i empty to accommodate future evictions

(see Figure 5.1).

5.3.3.4 Early Shuffle Reads

If level i has more than half of its original 2r blocks remaining, then there is at

least one dummy block in i to return. If instead i has at most r blocks remaining, it is

possible that all the blocks are real, so to maintain obliviousness we must always treat

such blocks as real. We call such blocks early shuffle reads, since they would eventually

be downloaded as part of the upcoming shuffle. ObliviStore refers to such blocks as

either early cache-ins or real cache-ins depending on the context.

124

Early shuffle reads are relatively rare, and are caused by delayed shuffles in

ObliviStore. Since ObliviStore performs a constant amount of shuffle work per request,

some of the levels to shuffle may have not yet been downloaded when a subsequent

request arrives, causing the early shuffle read. Other than early shuffle reads, all but one

of the downloaded blocks are guaranteed dummies. Early shuffle reads are downloaded

separately and stored.

5.3.3.5 Level Compression

ObliviStore’s level compression algorithm, described in [77], allows the client

to send k real and k dummy blocks to the server using only kB bits. The technique

uses a pre-shared Vandermonde matrix M2k×k to encode the k real blocks and their

positions into a “compressed” stream of kB bits. The server decompresses the stream

to get 2k blocks, including k encrypted real blocks and k dummies containing random

data derived from the decompression. The dummy and real blocks are indistinguishable

and intermixed.

We can alter the number of dummy blocks generated by changing the number

of rows in the matrix M from 2k to the desired total number of blocks. This flexibility

becomes important in Sections 5.5 and 5.6 where we use it to reduce OS+PIR’s total

bandwidth cost.

5.3.3.6 Bandwidth Costs

In ObliviStore, the client has enough space to store all
√
N blocks from any

given partition, and to store the location of all N blocks. Since every partition fits

entirely in client memory, re-shuffling requires that each block be downloaded and up-

loaded only once. (If client space were smaller, we would need a more expensive oblivious

125

shuffling algorithm.) Thus, to shuffle r real blocks, we need only transfer 3r blocks: r

real downloads, r dummy downloads, and r uploads for level compression.

The total bandwidth cost W of ObliviStore is determined by the number of

times each block must be re-shuffled per request. Each partition has roughly (log2

√
N)/2 =

(log2N)/4 occupied levels at any given time. Each of the
√
N real blocks is re-shuffled

once per occupied level per
√
N evictions, for a total of (3/4) log2N block transfers per

eviction. Since ε gives the number of evictions per request, we get an expected cost for

ObliviStore of roughly:

W ≈ 3ε

4
log2N (5.1)

ObliviStore reports an actual cost W ≈ log2N for ε = 1.3 [76]. The slight discrepancy

with Equation 5.1 can be accounted for by the problem of unused dummies that we

address in Section 5.6.

5.4 Integrating PIR

In ObliviStore, each request fetches one block from each level in a partition, at

most one of which is real. At most one of the blocks fetched is real and all others are

dummies, except in the case of early shuffle reads, which are always returned individually.

Since the client discards returned dummies, they are only transferred to mask the real

block’s identity. We would like to retrieve the real block and hide its identity without

paying to transfer dummies.

The recently-proposed Burst ORAM [29] combines these fetched blocks using

XOR and returns a single combined block. The client then reconstructs the dummy

blocks from a pseudo-random function and subtracts them out of the combined block

to recover the real block. Unfortunately, the XOR optimization is incompatible with

126

D

D

D D R

D

D R

D D

D R

D R D D R R R D

D R D D R R R D

R

R R

D R R

D

R D

D R D R R R D

D R D R R D

D R D R R R

D R D R R D

R

D

Remove 1 block

from each non-

empty (sub-) level

Request

PIR gives

near-constant

response size

PIR

Client

Shuffle

Upload using level

compression (pay

to transfer reals)

Server

Download

remaining blocks

(mostly real)

R

R R D D

R

R

D

D

Figure 5.2: In an OS+PIR request, since only one removed block is real, PIR reduces
the response cost for each request to a constant or near-constant size. During shuffling,
only blocks remaining in each level (most of which are real) need to be downloaded.
Because of level compression, we need only transfer data of size equivalent to the real
blocks being uploaded. In all, dummy transfers in OS+PIR are “free” — we effectively
pay only to transfer real blocks.

ObliviStore’s level compression, since level compression derives dummies from real blocks

during decompression, but the XOR requires that dummies be generated from a pseudo-

random function. Thus, Burst ORAM avoids paying to download dummies, but any

savings in total bandwidth cost is negated by the lack of level compression, which avoids

paying to upload dummies.

In OS+PIR, we instead use PIR to retrieve the real block. Since PIR makes no

stipulations on dummy block content, it can be used with level compression. PIR itself

incurs a bandwidth cost WP determined by the block size B, number of blocks (levels)

over which it queries, and the specific PIR scheme used. Other than WP , transfers of

dummy blocks are essentially free (see Figure 5.2), reducing WO by roughly 30% up-front

and enabling additional modifications that further reduce cost (see Section 5.5).

127

5.4.1 Choosing a PIR Technique

In OS+PIR, we execute the PIR protocol once per block request. Each PIR

instance operates over a PIR database of LS ∈ O(logN) blocks, one from each level,

and returns a single block. Since we query over only O(logN) blocks, PIR is far more

computationally feasible than when used to query over all N blocks.

PIR schemes often measure bandwidth in terms of the cost of returning the

full PIR database. To remain consistent with Definition 16, we instead measure PIR

bandwidth cost as WP : the total amount of data transferred during each PIR operation,

divided by B. We want a PIR scheme with low WP , as near the optimal 1X as possible.

Since ObliviStore’s bandwidth cost is already low, even a WP as large as 10X could easily

negate any advantages of using PIR. Ideally, WP should be constant: independent of LS

and B. In practice, we can use any PIR that offers low, nearly-constant WP for small

LS and large B.

One candidate is the Gentry-Ramzan PIR [36], which offers a constant WP with

a theoretic minimum of 2X, closer to 4X in practice due to the Coppersmith attack [24],

but incurs substantial computation costs. Another option is the more computationally-

efficient Trostle-Parrish PIR [81], which offers low, but not constant, WP when B � LS .

OS+PIR treats its PIR as a black box, so any PIR that meets our criteria can easily be

swapped in. For now, we will use the Trostle-Parrish PIR [81], also used in [57, 58], due

to its simplicity and low communication and computation complexity.

5.4.2 Trostle-Parrish PIR

We now briefly describe the trapdoor group Trostle-Parrish PIR that we use in

our experiments. A more detailed explanation can be found in [81]. The PIR database

128

of n bits is divided into a square matrix of
√
n by

√
n bits. The client generates an

initial hidden large prime modulus q and a secret value β ∈ Zq.

The client generates
√
n query elements c1, . . . , c√n for each query. Each ci

encodes a low-order bit that is 1 if row i should be retrieved from the matrix, and 0 if

not. The client may request up to ρ rows at once by including ρ such bits in each query

element, where at most one bit per element is set, and each bit is set by at most one

element. The higher-order bits are filled in with s bits of random noise. The client then

encrypts each query element as β ·ci mod q, and sends the vector of encrypted elements

to the server.

The server applies a linear transform on the query vector, taking its dot product

with each column in the matrix, and returns the resulting vector to the client. The client

then multiplies the ith response by β−1 mod q to recover the ith plaintext sum, from

which he can extract the ρ bits from the ith column.

When we use Trostle-Parrish to recover one of LS blocks of B bits, we optimize

bandwidth cost by choosing a modulus of s +
√
B/LS bits. The PIR then incurs a

bandwidth cost of approximately 2+2s
√
LS/B, and requires an average of n/2 additions

over Zq. We assume s = 29 bits of noise, guaranteeing a prime modulus at least as large

as those used in [81]. Thus, for a 2MiB block size B, we can support LS = 26 blocks at

WP = 4X.

5.5 Altering Level Size Factors

Combining PIR with ObliviStore’s level compression technique effectively gives

OS+PIR free dummy block downloads and uploads, aside from PIR computation and

bandwidth WP costs. As noted in Section 5.3.3.5, we can modify level compression to

129

produce additional dummy blocks at no extra cost. Similarly, given near-constant WP ,

we can query over any number of additional levels at no extra bandwidth cost. We now

show how to use these properties to reduce OS+PIR’s bandwidth cost by increasing

level sizes.

In ObliviStore, successive levels increase in size by a factor of 2, yielding

log2

√
N levels per partition. In OS+PIR, we allow successive levels to increase by

any integer factor. Let ki be the level size factor of main level i, which defines the

sub-level real-block capacity ratio ri/ri−1. We must allow up to ki − 1 instances or

sub-levels of main level i, which when shuffled together with all lower levels become a

single sub-level of main level i + 1. The real-block capacity of a sub-level in level i is

given by ri =
∏i−1
j=0 kj .

To simplify the presentation of ideas throughout this Section, we assume that

OS+PIR uses ε = 1.0 (exactly one eviction per request). We address larger eviction

rates in Sections 5.6 and 5.7.

5.5.1 Effects of Increasing Level Size Factors

We simplify our discussion of the high-level effects of increasing level size factors

(ki values), by assuming ki = k for all i, where k = 2 in ObliviStore. Figure 5.3 shows

two level configurations (k = 2 and k = 4) for a partition with 15 real blocks. We discuss

non-uniform level size factors and special handling of the top level later in this Section.

Increasing k has the following effects:

It increases the total number of sub-levels LS. For a partition of
√
N

blocks we need LM = logk
√
N main levels. With k − 1 sub-levels per main level, the

total number of sub-levels is given by LS = (k − 1) logk
√
N , which increases almost

130

D R

R D R

D R D D R R

D

R D

D R D D R R R D

D R D D R R R D

D R D D R D

D D D R R D

D R

D R D

D D R D

D D

D D

D R D R

D

D

D R R D

D

D

D R D R

D R R D

k = 2 k = 4

Main

Levels
4 2

Sub-

Levels
4 6

Dummies

per

Real
1 1-3

Figure 5.3: Level configurations with size factors k = 2 and k = 4, both with a 15
real-block capacity. When shuffling, all sub-levels in a main level are combined to form
one new sub-level in the next largest main level. The k = 4 configuration has fewer main
levels, and thus lower shuffling costs. The k = 2 has fewer dummies and sub-levels, and
thus lower disk and PIR costs.

linearly with k. To maintain obliviousness, we must fetch one block from every sub-level

during each request. Thus, without PIR, the bandwidth cost W would increase almost

linearly with k, which is why ObliviStore uses only k = 2. With near-constant WP , the

effect on W is negligible. Even with PIR, the number of blocks that must be read from

disk to satisfy a request increases with k.

It increases level and sub-level lifetimes. The ith main level holds k − 1

sub-levels containing ki real blocks each, and is re-shuffled after every ki+1 requests.

Once the ith level is shuffled into a higher level, it stays empty for ki requests before its

first new sub-level is created. The first sub-level must live through (k−1)ki requests and

still have ki blocks left over to avoid early cache-ins. Thus we need (k − 1)ki dummies

in addition to the ki reals, for a total of ki+1 blocks. The second sub-level lives for ki

fewer requests, so it needs only (k − 2)ki dummies, and so on. The increased number

of dummies also increases server storage to a factor of roughly k, which we address in

Section 5.5.2.

131

It decreases the ORAM component bandwidth cost WO. Between every

shuffle (ki+1 requests), the ith level receives ki+1(k−1)/2 dummy blocks and (k−1)ki real

blocks in all. The number of shuffle downloads per request is only ((k − 1)/k) logk
√
N ,

since we only pay to download the remaining (k−1)ki blocks from each sub-level. With

level compression, the number of shuffle uploads per request is the same, giving:

WO ≈ 2
k − 1

k
(logk

√
N)X (5.2)

Thus, for OS+PIR with N = 232 real blocks and ε = 1.0, increasing k from 2 to either

4, 16, or 64 should reduce WO from approximately 16X to either 12X, 7.5X, or 5.25X,

respectively.

5.5.2 Non-Uniform Level Size Factors

A major limitation of using a large fixed level size factor k is that it increases

server storage cost. The ith level stores a total of ki+1 blocks, only ki of which are real,

for a server storage factor of roughly k. However, the bulk of the extra dummy blocks,

at least k−1 of each k, are stored in the largest level. With varying ki, level i ≥ 1 stores

Di dummy blocks in the worst case, given by:

Di ≈
(
ki
2

)2

·
i−1∏
j=0

kj (5.3)

By allowing level size factors to differ, specifically using smaller ki for larger

levels and larger ki for smaller levels, we can mitigate the storage cost increase but still

keep the number of levels small.

For example, consider the two configurations K1 : (k0 = 25, k1 = 25, k2 = 25)

and K2 : (k0 = 27, k1 = 25, k2 = 23). For both, the real-block capacity is roughly∏2
j=0 kj = 215. However, for K1 we get D0 + D1 + D2 = 28 + 213 + 218 ≈ 218 dummy

132

blocks total, while K2 gives D0 + D1 + D2 = 212 + 215 + 216 ≈ 216 dummies total,

reducing the server storage factor from 8X to 2X.

Asymptotically, by increasing level factors doubly-exponentially, we can reduce

the number of main levels to LM ≈ log2 log2

√
N for a partition with

√
N real blocks,

while incurring only a LM server storage cost factor. Consider the configuration:

K : (k0 = 2(log2

√
N)/2, k1 = 2(log2

√
N)/4,

k3 = 2(log2

√
N)/8, . . . , kLM−3 = 28

kLM−2 = 24, kLM−1 = 22, kLM = 21).

Since the level factor exponents in K grow exponentially from 1 to (log2

√
N)/2, we

have LM ≈ log2 log2

√
N , and thus WO ≈ (2 log2 log2

√
N)X. Applying Equation 5.3,

we see that Di ≈
√
N for all i. Since the real-block capacity is

√
N , the server storage

overhead is just (log2 log2

√
N)X.

5.5.2.1 Practical Limits on Level Size Factor Growth

Unfortunately, increasing or skewing the level size factors also increases the

maximum total number of sub-levels LS given by:

LS ≤
∑
i

(ki − 1). (5.4)

For every request, we must fetch LS blocks from disk and perform PIR over LS blocks.

Thus, disk read and PIR computation costs are at least proportional to the largest ki,

limiting growth in practice.

In the simple example above, K2 suffers from LS ≈ 165, while K1 has only

LS ≈ 93. For such small skews, the difference is not dramatic, but in a comparable

configuration with all ki = 2, we have only LS ≈ 15. In the double-exponential growth

example, k0 = 2(log2

√
N/2) = N1/4. For large databases with N ≥ 232, we end up with

133

LS ≥ k0 ≥ 28. Such large LS values could easily make the disk and PIR costs outweigh

any benefit of reduced bandwidth cost in practice.

A more practical approach is to follow the double-exponential growth only up

to a maximum level factor determined by a fixed acceptable value of LS that can be

accommodated by the disk array and PIR computation hardware. In Section 5.8.4 we

empirically evaluate the impact of different level size configurations on LS .

5.6 Eliminating Unused Dummies

We have so far assumed that exactly one block is evicted to partition p for

each request from p. However, in both ObliviStore and OS+PIR, the ratio of evictions

to requests for a given partition can vary over time. We will now describe the problem

of unused dummies, which occurs when p sees more evictions than requests.

5.6.1 Causes of Eviction/Request Difference

The variance in number of evictions and requests to a partition comes from the

eviction rate ε and the independent selection of the request pr and eviction pe partitions.

Recall from Section 5.3.3.2 that ε determines the number of evictions per request and

is set greater than 1.0 to reduce the eviction cache size. Even with ε = 1.0, since pr

and pe are chosen independently at random, it is possible that in the short term a given

partition will receive more evictions than requests, or vice-versa.

5.6.2 Source of Unused Dummies

In ObliviStore, and in OS+PIR as described so far, each level is created with

one dummy block for each eviction that will occur before the level is re-shuffled. How-

ever, we actually remove one block per request, not per eviction. Thus, if we have fewer

134

than one request per eviction, some extra dummy blocks will be left in the level when it

is ready to be shuffled. These extra dummy blocks serve no purpose, so we call them un-

used dummies. The shuffler must download these unused dummies in order to re-shuffle

the level, incurring unnecessary bandwidth cost.

We can estimate the added bandwidth cost due to unused dummies as follows.

We temporarily ignore partition selection independence, as it primarily impacts small

levels. Let ε be the eviction rate, ki the size factor of level i, and ri the number of real

blocks in each sub-level of i. For the jth sub-level, we create ri(ki−1− j) dummies, but

expect only ri(ki − 1 − j)/ε requests before it must be re-shuffled. We therefore have

ri(ki − 1− j)(1− 1/ε) unused dummies. Since the sub-level already incurs a minimum

of 2ri block transfers, the fractional increase in bandwidth cost is:

∆i,j ≈
1

2
(ki − 1− j)

(
1− 1

ε

)
. (5.5)

For ObliviStore, with ε = 1.3 and ki = 2, ∆i,0 is only 11.5%. For OS+PIR with ki = 64,

the increase due to the top sub-level (j = 0) is far larger: ∆i,0 = 738%. ∆i,0 over-

estimates the total impact, since sub-levels j > 0 have smaller ∆i,j , but the problem is

clearly exacerbated by OS+PIR’s larger ki.

5.6.3 Proposed Mitigations

In OS+PIR, we eliminate most of the unused dummies by simply generating

fewer dummies for each level. Recall from Section 5.3.3.5 that ObliviStore’s level com-

pression lets us generate any number of dummies. We expect only ri(ki − 1 − j)/ε

requests before i is re-shuffled, so we compensate for ε by generating only ri(ki−1−j)/ε

dummy blocks when creating sub-level j.

135

Since pr and pe are chosen independently, we may still have more or fewer

requests than expected. If the number of requests is large, we get early shuffle reads,

and if small, we get unused dummies, both of which increase bandwidth cost.

In OS+PIR, we resolve this issue by choosing the eviction partition to be the

request partition (pr ≡ pe). More precisely, after we request a block b from pr, we assign

it to a randomly chosen partition pa as before, but perform ε evictions on the request

partition pr. We add any fractional component of ε to an accumulator specific to pr.

Whenever pr’s accumulator exceeds 1.0, we evict another block to pr and decrement its

accumulator.

Our strategy for choosing pe guarantees that the number of requests differs

by at most one from the expected number, eliminating the remaining unused dummies.

The change also slightly increases eviction cache space, since assigned blocks wait longer

to be evicted initially.

To clarify, we are not altering the method for selecting the assignment partition

pa, nor are we suggesting that b be re-assigned to pr. It is critical for security that pa

be chosen randomly, secretly, and independently of pr and pe, so that the server cannot

track blocks between partitions. However, the choice of pe need not be random as long

as it is independent of secret client information like pa [77]. Since the choice of pr is

already public, choosing pr ≡ pe does not affect security.

5.7 Bandwidth Cost Enhancements

We now present three enhancements to OS+PIR that use available client space

to further reduce the ORAM component bandwidth cost WO. We then show how to

balance the client space allocated to each enhancement in order to minimize WO.

136

5.7.1 Enhancement Techniques

Reduce Eviction Rate: Our first enhancement reduces the eviction rate ε,

as suggested in [77]. Increasing ε increases the number of shuffles per request, and thus

WO. Reducing ε grows the client’s eviction cache. The minimum ε is 1.0, but ObliviStore

uses ε = 1.3 to keep the eviction cache small.

Cache Small Levels: Our second enhancement caches the smallest levels of

each partition on the client, as proposed by Burst ORAM [29]. Since each main level

contributes equally to WO (roughly 2X each), storing small levels locally avoids their

bandwidth cost entirely while using only a small amount of space. Unlike lowering ε,

level caching consumes publicly visible space on the client and does not grow the eviction

cache. As in [29], to prevent deadlock, we cache only as many levels as will fit in client

space even if all were full simultaneously across all partitions. As a rule of thumb, we

set k0 so that all sub-levels in the lowest main level are cached.

Shuffle Largest Jobs First: The third enhancement adapts Burst ORAM’s

technique of shuffling efficient partitions first to instead shuffle partitions with the largest

minimum write level first. ObliviStore chooses partitions to shuffle using a FIFO ap-

proach. Our approach lets us delay shuffling when it would write small levels to the

server, in hopes that after some time, the partition will receive more evictions and by-

pass filling in the small levels. The intent is similar to level caching in that if we avoid

writing the lowest levels to the server, we never incur their associated bandwidth costs.

5.7.2 Effects and Tradeoffs

Caching levels and reducing ε both require extra client space. Savings due

to level caching increase only logarithmically with additional space, and savings from

137

reducing ε also suffer from diminishing returns. To minimize bandwidth costs we must

carefully allocate space to each enhancement. The best allocation depends on available

client space and the level configuration K. We measure bandwidth costs for different

values of ε in Section 5.8.5.

5.8 Experiments

We ran simulations to compare OS+PIR with the original ObliviStore [76] and

a modified ObliviStore equipped with the enhancements discussed in Sections 5.6 and

5.7: eliminating unused dummies, reducing eviction rate, etc. In all our experiments,

we assume a 2MiB block size (B = 224 bits). The large block size is needed primarily

to keep PIR bandwidth cost WP low when using the Trostle-Parrish PIR. Changing

the block size has little effect on the ORAM component bandwidth cost WO. For the

unmodified ObliviStore, we use ε = 1.3 as in [76], and use ε = 1.1 for OS+PIR. We

discuss our choice of eviction rate in Section 5.8.5.

5.8.1 Simulators and Implementations

5.8.1.1 ORAM Simulator

We evaluated bandwidth costs for OS+PIR and ObliviStore using a simulator

written in Java. Since ORAM behavior is oblivious, performance is independent of the

specific sequence of blocks requested. Thus, for efficiency, the simulator uses counters

to represent the number of remaining blocks in each level of each partition, and avoids

storing block IDs and contents explicitly. Since we are primarily interested in bandwidth

and computation costs, the simulator does not explicitly measure the costs of permuting

138

blocks, looking up IDs, or performing disk reads. Block encryption costs are also not

logged, as they are dominated by PIR costs.

Each experiment includes a run-up and evaluation phase of 4N requests each.

We count the total number of blocks transferred (uploads plus downloads) during the

evaluation phase, and divide by 4N to get WO. For OS+PIR we also record the number

of sub-levels LS accessed during each request. LS varies across requests depending on

the number of empty sub-levels in each partition.

5.8.1.2 PIR Implementation

We implemented the Trostle-Parrish PIR [81], as described in Section 5.4, using

Java. Our implementation caches partial sums to avoid redundant computations, but is

otherwise unoptimized. For all our experiments, we used s = 29 bits of extra noise in

the PIR as noted in Section 5.4.2. Server computation is trivially parallelizable.

We measure wall-clock times running PIR on a single thread of a third gen-

eration Amazon Web Services (AWS) Elastic Compute Cloud [3] instance (half of a

c3.large instance), equivalent to 3.5 AWS ECUs. As of May 2014, the cost for run-

ning the full c3.large instance was $0.105/hour, giving an approximate PIR cost of

$1.46× 10−5/second on a single thread. Figure 5.4 gives PIR time and bandwidth costs

for LS up to 28, with a maximum server time under 160s, equivalent to $0.0023 per

2MiB block request.

5.8.2 Evaluating OS+PIR for Mobile Devices

We start by evaluating OS+PIR on parameters suitable to current mobile

devices. We consider an OS+PIR with N = 222 of our 2MiB blocks, giving a server

storage capacity of 1TiB. We allocate 64GiB total client storage, such that the ORAM

139

0X

1X

2X

3X

4X

5X

6X

7X

8X

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

P
IR

 B
an

d
w

id
th

 C
o

st

P
IR

 C
o

m
p

u
ta

ti
o

n
 (S

e
co

n
d

s)

Sub-Levels LS (# PIR Blocks)

PIR Cost Evaluation

Server Time Client Time Bandwidth Cost

Figure 5.4: Timing and bandwidth costs of Trostle-Parrish PIR implementation for
varying numbers of blocks in PIR database, using s = 512 bits noise and 2MiB block
size.

increases effective storage capacity by a factor of 16. We can increase this factor by

increasing N (see Section 5.8.3).

Table 5.2 shows our results. Comparing the modified and unmodified versions

of ObliviStore, we see that our enhancements offer a slight improvement on their own,

reducing total bandwidth cost W from 21.4X to 18.2X. Adding PIR offers another slight

improvement, bringing W down to 16.2X. Finally, increasing the level factors reduces

W to as little as 11.2X, but increases server storage and PIR computation costs.

We also give per-request costs in US cents (¢) for each scheme for two bench-

mark bandwidth costs. On one extreme we have the AWS [3] bandwidth cost of $0.12

per GB for the first 10TiB per month, for a cost of 0.025¢ per 2MiB block. On the

other we have cellular data, which may cost as much as $10 per GB, for a cost of 2.10¢

per 2MiB block. At $0.012/GB, OS+PIR roughly breaks even, with its added PIR

computation cost canceling out the reduced bandwidth costs. At $10/GB, OS+PIR is

a clear win, as the bandwidth cost savings far outweigh the PIR cost, cutting total cost

140

Table 5.2: Comparison of different bandwidth-efficient protocols given parameters tuned
for current mobile devices with at least 64GiB storage. Common parameters: N = 222

data blocks, 2MiB block size, 64GiB total client storage.
PIR Computation
per Request

Bandwidth Cost
per Request (X)

Total Cost
per Request

Protocol ε Level Factors
Svr.
Stor.
Fact.

Server
Time
(s)

Server
Cost
(¢)

Client
Time
(s)

WP WO W

In ¢

at
12¢/
GB

In ¢

at
$10/
GB

ObliviStore 1.3 (2, . . . , 2) 3.2 — — — — 21.4 21.4 0.054 44.9
ObliviStore
Modified

1.1 (2, . . . , 2) 2.9 — — — — 18.2 18.2 0.046 38.2

OS+PIR 1.1 (2, . . . , 2) 2.9 6.04 0.009 0.78 2.6 13.6 16.2 0.050 34.0
OS+PIR 1.1 (4, 32, 16, 2, 2) 4.5 20.55 0.030 0.92 3.2 8.5 11.7 0.059 24.6
OS+PIR 1.1 (4, 64, 16, 2) 6.4 31.62 0.046 0.99 3.6 7.6 11.2 0.074 23.5

down to nearly half that of ObliviStore. OS+PIR is clearly most cost-effective when

bandwidth costs dominate, as would be the case for mobile devices.

5.8.3 Varying Block Count N

Table 5.3 shows client/server space consumption and total bandwidth cost

W as N increases. We show results for the unmodified ObliviStore, OS+PIR with

K = (2, . . . , 2), and a custom K chosen to minimize LM while keeping server storage

costs low. Required client storage scales with
√
N , and for each N it is nearly the same

for all three schemes. As N grows, the capacity/client space ratio grows as well, from

68 for N = 220 to 2189 for N = 230. For a large 2PiB database, the client needs 1TiB

storage, and OS+PIR reduces W from 26.4X to 13.0X.

The bandwidth cost savings of OS+PIR depend on reducing the number of

main levels LM = |K|. However, to keep server storage costs low, we must use small

level factors for the highest levels, which limits our savings when N is small. However,

as N grows, our advantage increases, as LM grows more slowly in OS+PIR than in

ObliviStore due to OS+PIR’s larger level factors.

141

Table 5.3: Effect of increasing N on client/server storage and bandwidth cost, with
ε = 1.1 for OS+PIR, ε = 1.3 for ObliviStore.

ObliviStore OS+PIR K=(2, . . . , 2) OS+PIR Custom K

N
Capac.
(TiB)

Client
(GiB)

Server
(TiB)

W
(X)

Client
(GiB)

Server
(TiB)

W
(X)

K
Client
(GiB)

Server
(TiB)

W
(X)

220 2 30 6.2 18.2 30 5.9 14.3 (4, 64, 8, 2) 31 11.2 10.9
222 8 60 24.8 19.8 61 23.4 15.3 (4, 16, 16, 4, 2) 62 31.6 11.4
224 32 119 99.2 21.4 122 93.3 16.5 (4, 32, 16, 4, 2) 123 127.6 12.0
226 128 239 396.2 23.1 244 373.0 17.6 (4, 64, 16, 4, 2) 245 522.4 12.5
228 512 478 1584.6 24.7 488 1491.4 18.7 (4, 64, 32, 4, 2) 491 2452.4 12.7
230 2048 958 6335.8 26.4 980 5962.9 19.8 (4, 64, 32, 8, 2) 990 9756.0 13.0

Table 5.4: Effects of changing the level configuration K for N = 228 block count, 512TiB
capacity, 512GiB total client storage. Product of all level size factors for each K is 216.

K
Server
Storage
Factor

WO
Avg
LS

Max
LS

WP

(2, . . . , 2) 2.9 16.1X 6.7 14 2.7X
(4, . . . , 4, 2, 2) 3.1 13.1X 9.5 20 2.8X
(4, 8, 8, 8, 8, 2, 2) 3.5 11.2X 14.5 30 3.0X
(4, 16, 8, 8, 4, 2, 2) 3.2 11.3X 16.5 34 3.0X
(4, 16, 16, 16, 2, 2) 4.3 9.9X 23.0 47 3.2X
(4, 32, 16, 16, 2) 5.8 9.1X 30.5 62 3.4X
(4, 128, 16, 4, 2) 4.3 9.1X 72.5 146 4.1X
(4, 128, 64, 2) 15.7 7.6X 95.0 191 4.4X

5.8.4 Varying Level Size Configuration K

Table 5.4 shows the results of running OS + PIR for various K given a fixed

N = 228 and 512GiB of client storage. We use the same maximum real-block partition

capacity for all K, so the product of all level factors in each K is fixed (216). As predicted

in Section 5.5.2.1, using larger level factors, and thus fewer main levels LM = |K|, greatly

reduces ORAM bandwidth cost WO, but also increases LS , which in turn increases PIR

and disk access costs. Server storage costs increase substantially when level factors

for the highest levels are increased, even when bandwidth costs remain the same (see

K = (4, 32, 16, 16, 2) and K = (4, 128, 16, 4, 2)).

5.8.5 Varying Eviction Rate

Table 5.5 shows the effects on WO of using different ε for N = 228 with K =

(2, . . . , 2) and 1TiB of client storage. As predicted in Section 5.7.2, smaller ε reduce

bandwidth cost but grow the eviction cache, leaving less space available for level caching.

142

Table 5.5: Effects of changing the eviction rate ε for OS+PIR with N = 228, 512TiB
capacity, given a fixed total client storage of roughly 1TiB. Client space insufficient to
support ε = 1.0.

Eviction Rate ε
Eviction Cache
Space Required

WO

1.0 10.39TiB —

1.05 0.43TiB 13.5X

1.1 0.23TiB 13.2X

1.2 0.12TiB 14.3X

1.3 0.08TiB 15.3X

1.5 0.06TiB 17.4X

2.0 0.03TiB 22.8X

Total client storage is large enough to accommodate ε = 1.05, but not ε = 1.0. WO

generally decreases with decreasing ε, but the large eviction cache needed for ε = 1.05

leaves so little space for level caching that WO is actually smaller for ε = 1.1 than

ε = 1.05. The optimal choice of ε depends on N , available client storage, and level

configuration K. We chose ε = 1.1 as it offers a good compromise when client space is

generous, but not extreme.

5.8.6 Evaluating Individual Enhancements

In Table 5.6 we compare the effectiveness of each of our enhancements to

OS+PIR from Sections 5.6 and 5.7. We use N = 228 blocks with a level configuration

of K = (4, 64, 32, 4, 2). The first column gives the bandwidth cost of starting with no

enhancements, then adding each one individually. The second columns gives costs start-

ing with all enhancements, then removing each one individually. Since the interplay

between enhancements in each pair makes them hard to evaluate in isolation, we com-

bined Generate Fewer Dummies with Evict to Request Partition, and Cache Smallest

Levels with Shuffle Largest Jobs First.

143

Table 5.6: Effects of selectively applying/excluding enhancements to/from OS+PIR.
Common parameters: N = 228, ε = 1.3 base and 1.1 reduced, K = (4, 64, 32, 4, 2),
479–491GiB total client storage.

Enhancement
WO with Only
Specified
Enhancement

WO with All
Except Specified
Enhancement

Generate Fewer Dummies and Evict
to Request Partition

11.6X 14.2X

ε = 1.1 14.7X 10.1X
Cache Smallest Levels and Shuffle
Largest Jobs First

23.9X 9.7X

None/All 25.5X 9.0X

Table 5.6 shows that WO varies from 25.5X with no enhancements down to

9.0X with all enhancements. Since the level size factors in K are large, the Generate

Fewer Dummies and Evict to Request Partition enhancements make a large impact.

The remaining enhancements make smaller but still significant contributions.

5.9 Conclusion

We have presented OS+PIR, a new ORAM that combines the bandwidth-

efficient ObliviStore ORAM [76] with PIR techniques in order to minimize total band-

width costs. We have shown how to re-engineer ObliviStore to accommodate levels

of varying relative sizes in order to fully exploit PIR, exposing a tradeoff between

bandwidth cost, server computation, and server storage. OS+PIR also includes sev-

eral enhancements that further reduce costs, including mechanisms for eliminating the

unnecessary dummy blocks introduced in ObliviStore.

In all, OS+PIR achieves bandwidth costs at least 2 times lower than those

of ObliviStore, making it especially advantageous for mobile devices, where bandwidth

costs dominate. In other settings, OS+PIR’s cost-effectiveness is limited by its PIR

144

computation cost, but its current PIR can be easily replaced by any future PIR schemes

that prove more efficient.

145

Chapter 6

Tunably-Oblivious Memory:

Generalizing ORAM to Enable

Privacy-Efficiency Tradeoffs

6.1 Introduction

It has become common for resource-constrained clients to outsource data stor-

age and management to cloud servers lying beyond their administrative control. Such

outsourcing, however, raises data privacy concerns. Unfortunately, merely encrypting

data does not ensure privacy. Much information is leaked even by access patterns on

encrypted data [28, 44].

Oblivious RAM (ORAM) protocols [37] can guarantee full access pattern pri-

vacy in an outsourced block store. ORAM protocols use dummy block reads and peri-

odic oblivious data block re-shufflings to guarantee that any two access patterns of the

same length are computationally indistinguishable to any outside observer, including

146

the server itself. ORAM costs are generally dominated by bandwidth cost, which we

measure as the number of actual block transfers needed to satisfy a single block access

(read or write).

ORAM bandwidth costs range from O(
√
N logN) [11] to O(logN) [39, 76, 77],

where N is the ORAM block capacity. Recently, there has been a push to make ORAM

practically, as well as asymptotically, efficient [54, 76, 78, 87]. The most bandwidth-

efficient ORAM construction known to date [76, 77] still incurs a bandwidth cost of

roughly log2N . Other protocols [35, 49, 58, 78, 87] use less client space than [76, 77],

but incur higher bandwidth costs.

This log2N cost is particularly disappointing for multi-block read-only queries,

where we might expect better performance. To achieve full access pattern indistinguisha-

bility, ORAMs must ensure that all queries generate public access patterns of roughly

the same length, regardless of access locality or ORAM state. As a result, all queries

must incur the same, worst-case cost.

We avoid this limitation by building special-purpose ORAM-like protocols that

leak a strictly bounded amount of access pattern information in order to obtain a band-

width cost under log2N for large queries. Existing schemes that partially protect access

patterns (e.g. [30, 61]) start with unprotected protocols and add obfuscation mechanisms

to quantifiably limit the adversary’s ability to make certain inferences. However, they

do not consider all possible inferences, and thus cannot assess total information leak-

age. In contrast, we start with a fully protected protocol (ORAM) and carefully relax

its privacy requirements in order to tightly bound the total access pattern information

leaked.

147

6.1.1 Our Contributions

We propose Tunably-Oblivious Memory (TOM), a new model that relaxes

and generalizes the traditional ORAM model, allowing controlled tradeoffs between

efficiency and information leakage. TOM permits variable-length public access patterns,

allowing properties such as locality to be exploited to improve efficiency. Queries are

distinguishable by access pattern length, so for each query λ-TOM generates an access

pattern with one of λ pre-determined lengths, limiting information leaked per query to

log2 λ bits. λ-TOM protocols with large λ are more flexible and efficient, but leak more

information. Protocols with small λ are more rigid, but offer better privacy. 1-TOM

leaks no information, and has security equivalent to a traditional ORAM.

TOM can directly improve efficiency for queries showing locality by simply

enhancing ORAM with a local block cache. However, we address the more challenging

problem of building a TOM that efficiently handles workloads that are not cache-friendly.

To this end, we propose a novel, special-purpose TOM called Staggered-Bin TOM (SBT).

We prove that SBT achieves bandwidth cost O(logN/ log logN) for large queries with

blocks chosen uniformly at random, but has worst-case cost O(
√
N).

We also propose three read-only SBT variants, culminating in the Multi-SBT,

which combines the SBT with a traditional ORAM, storing three copies of each block.

The Multi-SBT achieves bandwidth cost O(1) for large uniform random block queries,

and O(logN) in the worst case, while leaking only O(log log logN) bits per query. Thus,

Multi-SBT can satisfy any `-block uniform random block query using only O(`+ logN)

block transfers.

We developed a simulator to evaluate SBT and its variants, and compare prac-

tical costs of the Multi-SBT with the ORAM in [77]. We show that Multi-SBT maintains

148

Table 6.1: Comparison of [77] with results based on our proposed Multi-SBT using the
ORAM component from [77], with the parameterizations and costs given below and in
[77], with 64 KB block size. Multi-SBT average cost is for uniform random queries of
length ` = 4

√
N,λ = 8. Max. cost is three times ceiling of ORAM cost.

ORAM [77] Multi-SBT using ORAM from [77]

N

ORAM
Ca-
pacity

Client
Store

Server
Store

Cost
Client
Store

Server
Store

Avg.
Cost

Cost
Upper-
Bound

Leaked
Bits/
Ac-
cess

220 64GB 204MB 205GB 22.5X 604MB 333GB 5.4X 69X 3·2−12

222 256GB 415MB 819GB 24.1X 1.2GB 1.3TB 6.0X 75X 3·2−13

224 1TB 858MB 3.2TB 25.9X 2.6GB 5.2TB 6.3X 78X 3·2−14

228 16TB 4.2GB 51TB 29.5X 13.6GB 83TB 5.8X 90X 3·2−16

a practical bandwidth cost of roughly 6X for queries of 4
√
N blocks, while [77] has sub-

stantially larger costs ranging from 22X to 29X for similar parameterizations (see Table

6.1).

Section 6.2 covers related work in protecting access pattern privacy. Section 6.3

presents the TOM model and its security definition. We describe the SBT in Section 6.4

and its variants in Section 6.5, with detailed performance analyses in Section 6.6. Section

6.7 gives experimental results from our simulator comparing SBT and its variants.

6.2 Related Work

6.2.1 ORAM Protocols

We focus on showing that the Multi-SBT outperforms the practical ORAM in

[76, 77] because it remains the most bandwidth-efficient single-server ORAM, and incurs

a similar client space cost (O(N) with low constant). ORAMs that emphasize reduced

client space incur even higher bandwidth cost. Assuming 64KB blocks, practical ORAM

[76, 77] requires log2N bandwidth cost. Path ORAM [78] requires closer to 8 log2N ,

and more if client space is reduced using recursion. The ORAMs in [49] and [35] both

149

have asymptotic bandwidth cost O(log2N/ log logN), and are outperformed in practice

by Path ORAM [78]. Multi-cloud oblivious storage [75] achieves very low bandwidth

cost (under 3X), but makes the strong assumption of multiple non-colluding servers.

6.2.2 Partial Access Pattern Protection

Several efficient protocols have been proposed that partially protect access

patterns. One example is the Shuffle Index [30], which uses an unchained B+ tree to

store encrypted blocks. Cover searches provide access pattern privacy by making dummy

block requests to obscure the true request. The authors quantify the adversary’s ability

to recognize that two given accesses correspond to the same block, but ignore other

information leaks. For example, the protocol may run indefinitely without retrieving

certain blocks. Since the adversary knows that such blocks are rarely requested, he can

use their eventual request pattern to make additional inferences. In contrast, TOM’s

bounds on total information leakage hold for all inferences. Shuffle Index bandwidth

cost is 16X, but drops to 4X with enough client space to store pointers to each block.

The protocol in [61] reads two blocks for every one requested, does no oblivious

shuffling, and achieves a bandwidth cost as low as 4X even with limited client space.

Like the Shuffle Index it bounds the adversary’s ability to correlate two accesses, but it

leaks even more unquantified information via access patterns of rarely requested blocks

than does the Shuffle Index.

Like TOM, the private computation protocol of [89] uses an ORAM and allows

a bounded amount of access pattern information to leak in order to improve efficiency.

However, the notions are otherwise fundamentally different. The protocol in [89] accesses

main memory from trusted hardware via a black-box ORAM, using the additional space

to enable more elaborate computations. Applications vary in the number of required

150

ORAM fetches per computation. Leakage comes through each application’s one-time

maximum fetch rate choice. In contrast, TOM allows fetch counts to vary dynamically,

letting the ORAM adjust fetch counts to match workloads, leaking information per

query instead of per application setup. Thus, TOMs see efficiency improvements when

the average number of fetches is small, even if the worst-case number is large.

6.3 Tunably-Oblivious Memory

6.3.1 ORAM Review

Oblivious RAM (ORAM) techniques [37] provide a mechanism for outsourcing

encrypted data while ensuring that all possible access patterns are computationally

indistinguishable to all observers other than the client, including the server itself. In an

ORAM protocol, the client arranges his data in N fixed-size blocks of B bits each. Each

block has a unique address a ∈ {0, 1, . . . , N − 1}. Each of the N blocks is encrypted

using a semantically secure encryption scheme and then stored on the server. Every time

a block a is written to the server, it is re-encrypted using a different nonce, and assigned

a new server-side ID, preventing it from being directly linked to previous encrypted

versions of a.

The goal of ORAM is to define an efficient protocol that re-shuffles and re-

encrypts blocks to ensure that no information is leaked about the address or contents

of each block, how frequently a given block is accessed, and whether the access is a read

or write. The protocol may incorporate dummy blocks, which contain no data but are

indistinguishable from encrypted data blocks.

151

Trusted (Client-Side)

Client

TOM (ORAM)
Protocol

Read /
Write

Server
Fetch / Store

Un-trusted (Server-Side)

Known to Adversary

Query
Length

Step
Count

Grouped by Step

Grouped
by Query

Figure 6.1: Client issues secret accesses (reads/writes) to the ORAM/TOM protocol,
which translates them to a sequence of public accesses (stores/fetches) to the untrusted
server.

A client interacts with the ORAM protocol as with a trusted block store (Figure

6.1), issuing a secret access pattern ~S = (s1, . . . , s|~S|) of block requests. Each secret

access s is a triple (type, a, data), where type is the access type (read or write), a is the

local address of the block to access, and data is the plaintext data to be written to block

a, if any.

The ORAM translates ~S into a public access pattern P (~S) = (p1, . . . , p|P (~S)|)

that is generally much longer than ~S. Each public access p is also a triple (type, id, edata),

where type denotes the access type (store or fetch), id denotes the server-side ID of the

accessed block, and edata denotes the encrypted block data to be stored, if any. A fetch

optionally removes the block from the server.

The term access pattern has been used in the literature ambiguously to refer

to either ~S or P (~S). We disambiguate by calling ~S the secret access pattern and P (~S)

the public access pattern. We now give the standard ORAM security definition of [77]

in terms of our notation:

152

Definition 17. A protocol satisfies ORAM security if for every pair of secret access pat-

terns ~S1 and ~S2 of the same length (| ~S1| = | ~S2|), P (~S1) and P (~S2) are computationally

indistinguishable (to every observer other than the client).

If the ORAM block sizeB is reasonably large (B � log2N), the communication

cost is dominated by block transfers. The ORAM makes |P (~S)| block transfers to satisfy

~S, while an unprotected protocol needs only |~S| transfers. Thus the bandwidth cost of

using ORAM to obscure an access pattern is given by |P (~S)|
|~S|

. The more efficient an

ORAM, the lower its bandwidth cost.

6.3.2 TOM Model: Trading Off Obliviousness for Efficiency

We introduce the term step to refer to a discrete unit of work performed by an

ORAM or TOM. Informally, each step retrieves a single encrypted target block from the

server. Each step may also fetch and store other blocks in order to obscure the target

block’s identity or prepare for future requests (e.g. shuffling).

In a traditional ORAM, each secret access yields exactly one such step, and

the target block is simply the block associated with the secret access. Each ORAM step

is powerful in that it can obliviously retrieve any given target block from the server, but

this power also makes each step expensive. The step count must match the number of

secret accesses in order to satisfy ORAM’s perfect privacy guarantee, so such powerful,

expensive steps are mandatory.

In contrast, the TOM generalization allows the step count to vary, creating

the possibility for more efficient but less powerful steps, and thus for more efficient

protocols. For example, the Staggered Bin TOM (Section 6.4) partitions the blocks on

the server into k bins (Figure 6.2). Each step may only retrieve a target block from a

single, pre-determined bin. Each such step is thus less powerful than an ORAM step,

153

but it is also more efficient. In the worst case, k steps are needed to satisfy a single secret

access, but by carefully scheduling secret accesses from the same multi-block query, we

can obtain lower overall bandwidth cost than a comparable ORAM. Allowing the step

count to vary inevitably leaks some access pattern information. We show how to tightly

bound such information in Sections 6.3.4 and 6.3.5.

We now define the TOM model more precisely. For each secret access pattern

~S, a TOM generates a public access pattern P (~S) divided into a sequence σ(~S) of discrete

steps. We use |σ(~S)| to denote the step count of P (~S).

Definition 18. Each step is a series of stores and fetches used by the TOM protocol

to retrieve a single target block from a subset of the blocks on the server. A step is

complete when the TOM is ready to retrieve another target block.

Traditional ORAMs are special cases of TOM in which each secret access gen-

erates exactly one step (|σ(~S)| = |~S|). Thus ORAM does not distinguish between secret

access and step, necessitating our new terminology for TOM. In ORAM, the block sub-

set accessible during a step includes all blocks on the server, while in Staggered Bin

TOM (Section 6.4) it only includes blocks from one bin.

We say ~S is satisfied once all the steps in σ(~S) are complete. As in ORAM, if the

TOM is stateful, some blocks updated by ~S may not be stored to the server immediately.

Instead, even after the step completes, they are held locally as dirty blocks until they

are written back to the server during a subsequent step.

Definition 19. A query is a secret access pattern ~S composed of a batch of secret

accesses that may be satisfied in any order.

154

A TOM receives multi-block queries from the client. Queries are handled

sequentially relative to each other, but accesses within a query may be processed in any

order. For security, query and secret access pattern are interchangeable.

TOM decouples steps from secret accesses, allowing query length |~S| to differ

from step count |σ(~S)|. This approach offers better efficiency than ORAM for two

reasons. First, TOM need not generate steps for accesses to cached blocks. In ORAM, a

repeat access to a recently cached block must still incur the overhead of a step, else the

reduced step count would reveal the repeated access. Second, TOM need not require

that each step be capable of accessing any block. By reducing the power of each step,

TOM makes steps more efficient, potentially reducing a query’s total bandwidth cost,

even though the step count may increase. The SBT and its variants (Sections 6.4 and

6.5) exploit this second advantage.

6.3.3 TOM Security Definition

As in ORAM, we assume that query length |~S| is public. We also make the

worst-case assumption that the adversary can observe precisely when each query starts

and ends, and thus knows the exact step count |σ(~S)| of each query.

In ORAM, |σ(~S)| = |~S|, so |σ(~S)| reveals nothing new to the adversary. In

TOM, |~S| and |σ(~S)|may differ, so |σ(~S)|may leak information. For example, if |σ(~S)| <

|~S|, the adversary may infer that ~S contains repeated accesses. We limit such leakage

by forcing |σ(~S)| to assume one of λ milestone values taken from a predefined setM|~S|.

More milestones improve flexibility in generating σ(~S) and thus improve efficiency, but

also leak more information about ~S.

M|~S| is defined up-front for each value of |~S|, so the milestones themselves do

not leak information. Since the adversary knows |~S|, he already knows that |σ(~S)| will

155

be one of the λ milestones. Thus, he only learns information through the specific choice

of milestone used for |σ(~S)|. Equivalently, he learns which of λ equivalence classes ~S

belongs to, limiting information leakage by the size of λ.

We now define security for λ-TOM, which translates a secret access pattern ~S

into a public access pattern with one of λ milestone step counts.

Definition 20. A protocol satisfies λ-TOM security if both of the following conditions

hold for every possible pair of secret access patterns ~S1 and ~S2:

1. Let ` = | ~S1|. If | ~S1| = | ~S2| then |σ(~S1)|, |σ(~S2)| ∈ M`, where M` is a set of

milestones of cardinality at most λ.

2. If |σ(~S1)| = |σ(~S2)|, then P (~S1) and P (~S2) are computationally indistinguishable

(to every observer other than the client).

By ensuring that any two public access patterns with the same step count

are indistinguishable, we guarantee that information about ~S only leaks through the

observation of the step count |σ(~S)|, which is in turn limited to one of λ milestones. We

can bound the information leakage Iλ of a λ-TOM protocol by assuming the worst case,

in which all milestones are equi-probable, giving:

Definition 21. A λ-TOM protocol leaks at most Iλ ≤ log2 λ bits per query.

When λ = 1, the leakage is Iλ = 0, which indicates that 1-TOM is as strong

as ORAM. In fact, for λ = 1, we have by Condition 1 of Definition 20 that | ~S1| = | ~S2|

implies |σ(~S1)| = |σ(~S2)|, and thus by Condition 2 that | ~S1| = | ~S2| implies P (~S1) and

P (~S2) are indistinguishable. Therefore any 1-TOM protocol satisfies ORAM security

(Definition 17). The reverse is also true for any ORAM with a notion of steps. In any

case, we make no claim that 1-TOM is substantively more secure than ORAM, so we

treat 1-TOM and ORAM as equivalent.

156

Since each query leaks at most Iλ bits, larger queries leak less information

per access. Combining small, independent queries would reduce leakage, but may also

increase latency. It is critical that no query results be released to the client until the

entire query is satisfied. If the client used partial results, the partial completion time

might leak, revealing additional information. Thus, query size is limited by the size of

the results cache allocated to the TOM, and excessively large queries may need to be

broken up. In standard ORAM, Iλ = 0, so there is no motivation to make queries larger

than a single block access.

What the adversary gains from leaked access pattern information depends

heavily on what other information the adversary holds. Other schemes that obscure ac-

cess patterns (e.g. [30]) focus on quantifying the adversary’s inability to make particular

inferences, but do not assess holistic information loss. In contrast, we upper-bound the

total access pattern information leakage, and leave it to the client to decide how much

leakage is acceptable given the application.

6.3.4 Paddable TOM Protocols

We now show how to construct a λ-TOM for any given λ from a paddable TOM.

Intuitively, we start by choosing λ milestones, then delay each query’s completion by

silently padding it with dummy steps until its step count reaches a milestone. We use

SMax to denote the worst-case per-access step count.

Definition 22. A protocol is a Paddable TOM if it satisfies the following:

1. Condition 2 of Definition 20 (indistinguishable public access patterns)

2. It has finite upper bound ` · SMax on step count |σ(~S)| generated from any secret

access pattern of length ` = |~S|.

157

3. Any P (~S) may be padded by adding any number of dummy steps, increasing |σ(~S)|

by any amount.

We can coerce any paddable TOM into satisfying λ-TOM for any given λ.

We first define appropriate milestones for M`, then instruct the protocol to pad every

public access pattern with dummy steps, increasing |σ(~S)| to the smallest milestone in

M` greater than or equal to the original step count. If we trivially setM` = {` ·SMax},

and translate every secret access pattern of length `, with padding, into a public access

pattern with step count ` · SMax, we satisfy 1-TOM and thus ORAM security.

Efficient paddable protocols will often generate step counts much smaller than

` ·SMax, so the padding required to reach ` ·SMax may incur substantial bandwidth cost.

Increasing λ (adding milestones) can reduce cost, but also reduces privacy. To make the

best possible tradeoffs, our strategy for choosing milestones should minimize cost due

to padding for any given λ.

6.3.5 Log-Spacing Strategy for Paddable Protocols

Let m = |σ(~S)| be the original step count generated from query ~S of length

` = |~S|. We may have m < ` if most queried blocks are cached, but such cases are too

rare to merit dedicated milestones, so we assume ` ≤ m ≤ ` · SMax.

Let m′ be the smallest milestone in M` such that m′ ≥ m. In a paddable

TOM, the fractional increase in step count, and thus bandwidth cost, is given by the

padding factor m′/m. Let δ be the maximum padding factor (maximum possible value

of m′/m). Given λ, we propose to minimize δ by log-spacing milestones as multiples of

` over [`, U(`)]:

M` =
{⌈
` (SMax)i/λ

⌉
| i ∈ Z, 1 ≤ i ≤ λ

}
. (6.1)

158

This spacing strategy minimizes the maximum padding factor δ, ensuring:

δ ≤
⌈
(SMax)1/λ

⌉
. (6.2)

To minimize λ for given δ, we solve (SMax)1/λ≤ δ for λ:

λ ≥ logSMax

log δ
= logδ SMax. (6.3)

These expressions reveal a clear tradeoff between privacy (λ) and efficiency (δ).

Smaller SMax can improve privacy and efficiency, which is unsurprising since ORAMs

fix privacy at λ = 1 and seek to reduce the worst-case per-access cost.

6.4 Staggered-Bin TOM

Here we present a novel λ-TOM protocol, called Staggered-Bin TOM (SBT),

that reduces costs even for large queries that are not cache-friendly. In Section 6.5 we

propose three read-only variants of SBT that store multiple copies of each block and

reduce costs by choosing the most convenient copy to fetch. Table 6.2 gives some key

notation, and Table 6.3 compares performance of SBT variants.

As noted in Section 6.3.3, an ORAM is simply a 1-TOM. TOM allows us to

decouple steps from secret accesses, so we could improve on ORAM performance by

simply increasing λ and adding a local block cache. We could then satisfy most cached

block accesses without stepping the λ-TOM (without block transfers), while leaking only

log2 λ bits per multi-block query. However, caching only improves performance when

secret access patterns exhibit temporal locality.

159

6.4.1 SBT Architecture

An SBT contains N blocks of B bits each placed in n + 1 logical bins, each

with a maximum capacity of n blocks. We initialize the SBT by filling the bins with

n, n − 1, . . . , 1, 0 blocks, respectively, and storing them on the server. The SBT always

keeps n more blocks locally, for N = n(n+ 3)/2 blocks total (Figure 6.2).

We choose n to be the smallest integer such that N ≤ n(n+ 3)/2, and add up

to n extra data blocks to increase SBT capacity N to exactly n(n+ 3)/2. No unusable

dummy blocks of any kind are added, keeping server storage overhead minimal. Bins

are purely logical structures, so the server is free to use any physical configuration for

storing blocks.

The SBT needs local (client-side) storage space for three purposes. First, it

requires Bn bits for the n blocks always stored locally. Second, it needs B` bits to cache

the results of an `-block query, so that all ` blocks can be simultaneously released to

the client. Finally, as in [77], the SBT needs a small amount of space for each of the

N blocks to record its server ID, containing bin’s index, and a list of block addresses in

each bin, for a total of roughly 2 log2N bits per block.

In all, approximately B(n+ `) + 2N log2N bits of client storage are required.

Though these storage requirements may seem high, [77] and [76] note that B is large

enough in practice that the space needed to store n ≈
√

2N blocks is comparable to the

Table 6.2: SBT and TOM Notation

δ Maximum padding factor (cost increase due to padding)

H Maximum fetch queue length, before padding

All queries, strict upper bound:

SMax Worst-case per-access step count, before padding

CMax Worst-case (per-access) bandwidth cost, after padding

Large uniform random block queries, high prob. upper bound:

CHP High-probability (per-access) bandwidth cost, after padding

160

Table 6.3: Comparison of our λ − TOM protocols, block size B. Numbers are ap-
proximate; estimated average costs taken from Figures 6.4–6.6. Smaller CMax improves
privacy/efficiency tradeoff. λ set to log of SMax to keep δ constant. lg ≡ log2

Protocol
Worst-
Case
CMax

Uniform
Rand. Block
CHP for
` ≈ 4

√
N

Bits
Leaked
Per `-Block
Query

Effi-
cient
Write

Server
Storage
(Bits)

Client Storage (Bits)

Unprotected 1 1 ` lgN Yes NB O(1)
ORAM [77] lgN lgN 0 Yes ≤ 4NB 3B

√
N + 1.25N lgN

SBT 2
√

2N O
(

logN
log logN

)
lg lg(

√
2N) Yes NB (`+

√
2N)B+2N lgN

2-Choice SBT 4
√
N O(1), ≈ (3–5) lg lg(2

√
N) No 2NB (`+2

√
N)B+4N lgN

SBT+ORAM 3 lgN O(log logN) lg lg(3 lgN) No ≤ 5NB (`+
√

2N+3
√
N)B+

3.25N lgN
Multi-SBT 3 lgN O(1), ≈ (4–7) lg lg(3 lgN) No ≤ 6NB (`+ 5

√
N)B + 5.25N lgN

space needed for the meta-data of all N blocks. For example, with N = 230 blocks, and

block size B = 64KB, we need under 8GB for the meta-data, and up to 8GB local block

storage for queries of ` = 3
√
N blocks.

6.4.2 SBT Operation

Each step in the SBT fetches one block from and stores one block to the server.

SBT operation is best described in terms of passes of n steps each. A pass fetches and

removes one block from each of the n non-empty bins in order, and stores n blocks to

the previously empty bin. After each pass, the bin load pattern rotates by 1 bin, and

fetches continue round-robin (Figure 6.3). After each pass, the SBT re-encrypts the n

fetched blocks, randomly permutes them, assigns them to the empty bin, and generates

new server-side IDs to prevent linking to old copies.

Each query consists of ` secret accesses for distinct block addresses. A query

may begin or end at any point during a pass. The SBT cannot change the one-per-

bin round-robin fetch pattern, but may choose which block to fetch from each bin.

Thus, a single-block query can always be satisfied in n steps, since we fetch at least one

block from every non-empty bin. Similarly, any `-block query takes at most `n steps

161

Client

T

Server

S

R

Q

P

E

D

C

B

A

I

H

G

F

L

K

J

N

M

O

n+1 Bins

Incoming Outgoing

n Blocks

Incoming

Figure 6.2: The SBT in its initial state, with n = 5 blocks on the client, and n(n+ 1)/2
on the server. The empty server-side incoming bin will be filled in, one block at a time,
by the n blocks from the client.

Client

T

Server

S

P

Q

R

D

F

L

E

C

B

A

I

H

G

K

J

N

M

O

n+1 Bins

Incoming Outgoing

n Blocks

Incoming

Figure 6.3: SBT after 3 steps. Server bins are accessed in a round-robin fashion. Blocks
L,F,D have been fetched to the client-side incoming bin, and blocks R,Q, P stored to
server-side incoming bin.

(SMax = n), since we always retrieve at least one target block per pass, even if all `

blocks are in one bin.

The SBT maintains a fetch queue for each bin. To start a query, we identify

the bin containing each block to be accessed, and add an appropriate fetch to that bin’s

fetch queue. When the SBT is ready to issue a fetch for bin i, it first checks i’s fetch

queue. If the queue is non-empty, the next fetch is dequeued and dispatched to the

server. Otherwise, a dummy fetch is generated for a randomly chosen block from the

bin. Once all fetch queues are empty and all outstanding fetches finish, the query is

satisfied and results are released to the client.

162

All fetches must proceed in order, as must all stores. Further, to maintain n

blocks on the client, a given step’s store cannot begin until its fetch completes. However,

stores may trail their corresponding fetches as much as necessary to ensure full network

bandwidth utilization. That is, we may initially let fetches get several steps ahead of

stores, so that many stores and fetches run concurrently.

6.4.3 SBT Security

We now show that SBT meets the Paddable TOM criteria in Definition 22.

We have shown that SBT has a finite step count upper bound `n, so it remains to show

that public access patterns with the same step count are indistinguishable (Condition 2

of Definition 20), and that public access patterns may be padded.

Theorem 7. In the SBT, for any two public access patterns P (~S1), P (~S2), if |σ(~S1)| =

|σ(~S2)|, then P (~S1) and P (~S2) are computationally indistinguishable.

Proof. First, the order in which the SBT fetches from and stores to bins is fixed. Hence,

any two public access patterns with the same step count must make fetches and stores

to and from exactly the same sequence of bins.

Store Patterns: After each pass, the locally-stored bin of blocks to be sent to

the server is randomly permuted and re-encrypted using a semantically secure encryp-

tion scheme and a fresh nonce. Blocks are then stored to the server in their permuted

order. Re-encryption ensures that the server cannot distinguish the blocks. Random

permutation ensures that blocks are always stored in a uniformly random order, in-

dependent of their fetch order. Thus any two store patterns of the same length are

computationally indistinguishable.

163

Fetch Patterns: Since the blocks within each bin were randomly permuted,

each block’s location in the bin is independent of its data and any prior accesses. Thus

each fetch is indistinguishable from a uniformly random choice from the bin’s remaining

blocks, and any two fetches from one bin are indistinguishable. Thus any two fetch

patterns of the same length are indistinguishable.

Thus, since P (~S1) and P (~S2) have the same step count, and there is exactly one

fetch and store per step, their fetch and store patterns each have the same length and are

indistinguishable. Since both fetches and stores are indistinguishable, and the pattern

of when to issue fetches and stores is predetermined, P (~S1) and P (~S2) are themselves

computationally indistinguishable.

Theorem 8. Any public access pattern generated by SBT may be padded by adding any

number of dummy steps.

Proof. We can pad any public access pattern in SBT with any number d of additional

steps by issuing d dummy fetches for randomly chosen blocks from each of the next d

bins, along with their corresponding stores.

Theorems 7 and 8 establish that SBT is a Paddable TOM, as per Definition

22. Thus we can coerce SBT into satisfying λ−TOM for any λ. In particular, we apply

the log-spacing strategy of Section 6.3.5 to choose the λ milestones inM`. The smaller

our choice of λ, the greater our privacy but the poorer our performance. By Equation

6.2, for a given λ, we have a maximum padding factor:

δ ≤
⌈
(SMax)1/λ

⌉
=
⌈
n1/λ

⌉
≤ (2N)1/2λ. (6.4)

Similarly, by Equation 6.3, for a δ, we get a minimum milestone count λ given by:

λ ≥ logδ SMax = logδ n. (6.5)

164

6.4.4 SBT Performance

The upper-bound on the SBT’s per-access step count is given by SMax = n, so

the upper-bound bandwidth cost is given by CMax = 2n ≤ 2
√

2N . We now determine

the bandwidth cost CHP that holds with high probability for large, uniform random

block queries, which are queries composed of ` block addresses chosen uniformly at

random, without replacement.

The size of each fetch queue decreases by at most one during a given pass,

so the number of passes needed to satisfy a query depends on the initial length of the

longest fetch queue. We use H to denote the maximum length of the longest fetch queue.

The query generates step count roughly nH without padding. In the best case, each

fetch queue is nearly the same length, and in the worst case all fetches are in the same

queue, so we know that d`/ne ≤ H ≤ `.

Theorem 9. Let ` ≥ n (large queries). With high probability for the SBT with uniform

random block queries, we have:

H ∈ O
(
`

n

log n

log logn

)
.

We prove this theorem in Section 6.6, using the observation that we can bound

H by bounding the maximum urn height in the well-known balls and urns problem

[46, 66], where balls are thrown into urns uniformly at random, with replacement. Thus,

for uniform random block queries with ` ≥ n, the bandwidth cost, with high probability,

is given by:

CHP ∈ O
(
δ
n

`

`

n

log n

log log n

)
⊆ O

(
δ logN

log logN

)
, (6.6)

with constant δ for at least λ ∈ Ω(logN) milestones. Thus SBT is able to satisfy large

queries that are not cache-friendly with a lower asymptotic cost than the best existing

165

ORAM protocols (cost O(logN)) while leaking only Iλ ∈ O(log logN) bits per `-block

query.

Since our focus is on queries that are not cache-friendly, SBT’s effectiveness

is limited when queries are cache-friendly (query blocks repeat frequently). When a

large query is satisfied, most fetched blocks will be stored in only H bins. If the same

query repeats before bins disperse, the new query will have maximum queue length at

least `/H. Thus, the better the original query’s performance, the poorer the repeat’s

performance. Fortunately, caching mitigates such disadvantages.

6.5 SBT Variants

We now propose three read-only SBT variants: 2-Choice SBT, SBT+ORAM,

and Multi-SBT (a combination of 2-Choice SBT and SBT+ORAM). These variants

store multiple copies of each block and fetch the most convenient copy available, reducing

bandwidth cost to as little as CMax = 3 log2N in the worst case, and CHP ∈ O(1) for

large uniform random block queries (see Table 6.3).

Read-only means that the client cannot update the contents of any of his blocks.

However, blocks must still be re-encrypted and stored back to the server to preserve

privacy. Writes can be supported, but would require all copies of a block to be updated,

making writes substantially more expensive than reads.

6.5.1 The 2-Choice SBT Variant

We construct the 2-Choice SBT by creating two copies of each of the N data

blocks, and adding them all to a single SBT with capacity 2N , which treats both copies as

independent blocks. The key difference from SBT is that when the 2-Choice SBT needs

166

to read block a, it may choose to fetch the block from either of 2 bins. It is possible that

both copies of a will be in the same bin, but this state is rare and transient, persisting

only until either copy is fetched.

For a given query, each of the ` secret block accesses yields a fetch that is

assigned to one of two bins’ fetch queues. We want to optimize the assignment of fetches

to bins, reducing the maximum queue length H. Since we know the entire query and

the block-bin mapping, the optimization resembles the optimal multi-choice allocation

[15], and offline Cuckoo hashing [59] problems.

6.5.1.1 Random Round Robin Algorithm

We optimize fetch assignments using the iterative Random Round Robin (RRR)

algorithm proposed in [15]. We describe RRR briefly, replacing balls with block fetches

and bins with fetch queues.

We first guess a target maximum queue length H ′, starting with the minimum

H ′ = d`/ne. We then run RRR to try to find an assignment of fetches to queues with

actual H ≤ H ′. If the attempt fails, we increment H ′ and repeat. In practice, we rarely

expect more than two iterations [15], so we fix a maximum iteration count r = 5, after

which we return the best available result. The iterative RRR runs efficiently, requiring

time and space in O(r(n+ `)).

For each RRR iteration, each fetch starts out uncommitted : assigned to the

queues of both bins containing its block. When we commit a fetch to a queue, we

irreversibly remove it from its other queue. We identify any queue q with length at most

H ′, and commit to q all its uncommitted fetches. The intuition is that since q’s length

is at most H ′ and cannot increase, it should accept its current assignment, freeing as

167

many fetches as possible from other queues. Any time we remove a fetch from a queue,

we repeat this check.

We continue by stepping through all remaining queues with uncommitted

fetches, for each queue randomly choosing one uncommitted fetch to commit to the

queue, followed by the length check. We continue stepping through queues until all

fetches are committed. If any queues are left with more than H ′ fetches, the RRR

iteration is declared a failure.

6.5.1.2 2-Choice SBT Security

To an observer, the 2-Choice SBT behaves just like the SBT, except for its

higher capacity. Thus, 2-Choice SBT’s security follows from the arguments for SBT

security in Section 6.4.3. In particular, 2-Choice SBT meets the criteria of Definition 22

for a Paddable TOM Protocol with worst-case per-access step count SMax = n ≤ 2
√
N .

Thus, it can be coerced to λ − TOM using the log-spacing strategy. By Equation 6.2,

the maximum padding factor δ is given by δ ≤
⌈
n1/λ

⌉
≤ (4N)1/(2λ). For a given δ,

Equation 6.3 gives λ ≥ logδ n.

6.5.1.3 2-Choice SBT Performance

Since SMax ≤ 2
√
N , we have CMax ≤ 4

√
N .

Conjecture 10. With high probability, the 2-Choice SBT with uniform random block

queries gives H ∈ O(`/n+ 1).

For a related balls and urns problem, the authors in [15] show empirically that

RRR yields maximum urn height in O(`/n+ 1), with performance nearly indistinguish-

able from the more complex Selfless Algorithm, which is proven to have maximum height

O(`/n+1) with high probability. While we cannot provide a formal proof of Conjecture

168

10, we give a detailed argument supporting it in Section 6.6, and show in Section 6.7

that it is borne out by our experiments.

Assuming Conjecture 10, the bandwidth cost of the 2-Choice SBT used on

uniform random block queries with ` ≥ n is, with high probability:

CHP ∈ O
(
δ
n

`

(
`

n
+ 1

))
⊆ O(δ), (6.7)

with constant δ for λ ∈ Ω(logN). Thus, for large uniform random block queries, the

2-Choice SBT is highly efficient, and leaks only Iλ ∈ O(log logN) bits/query.

Relative to SBT, the 2-Choice SBT doubles the storage space required for the

server (2N), and increases required client block storage from
√

2N to 2
√
N blocks and

client index space from about 2N log2N to nearly 4N log2N bits.

6.5.2 The SBT+ORAM Variant

We construct the SBT+ORAM by merging a SBT with any efficient ORAM.

We store one copy of each block in the SBT and in the ORAM, and run both protocols

in parallel. To read a block, we either fetch it using the SBT, or read it using a single

ORAM step. For now we use the practical ORAM of [77] due to its low bandwidth cost

of roughly log2N block transfers per secret access.

For each query, we first assign all fetches to the SBT component’s fetch queues

and let it run normally. After every log2N SBT steps, we remove one fetch from the

current longest fetch queue and re-assign it to the ORAM.

6.5.2.1 SBT+ORAM Security

The ORAM component advances one step for every log2N SBT steps. Thus, in

the worst case where we rely strictly on the ORAM, we need `(1 + log2N) total steps to

satisfy a query of length `, so the per-access step count is bounded by SMax = 1+log2N .

169

We now show that SBT+ORAM satisfies the indistinguishability and paddability con-

ditions of a Paddable TOM.

Theorem 11. In SBT+ORAM, for any public access patterns P (~S1), P (~S2), if |σ(~S1)| =

|σ(~S2)|, then P (~S1) and P (~S2) are computationally indistinguishable.

Proof. Since ORAM uses exactly one step per secret access, two public access patterns

with the same step count have the same secret access pattern length. Thus, by Definition

17, any two public access patterns with the same step count generated by the ORAM

are indistinguishable. By Theorem 2, any two public access patterns with the same step

count generated by the SBT are also indistinguishable. Since the public access patterns

generated by both protocols are indistinguishable, and the pattern of when to issue

fetches from the SBT and the ORAM is predetermined, the SBT+ORAM’s combined

public access patterns P (~S1) and P (~S2) are indistinguishable.

Using the log-spacing strategy gives δ ≤ d(SMax)1/λe = d(1 + log2N)1/λe and

λ ≥ logδ SMax = logδ(1 + log2N) (Equations 6.2, 6.3). Since SMax is smaller for

SBT+ORAM than SBT, the privacy/efficiency tradeoff is more favorable. In partic-

ular, to limit padding to δ = 2, we need only λ ≈ log2 log2N milestones.

6.5.2.2 SBT+ORAM Performance

We incur log2N block transfers for each ORAM step and 2 transfers for each

SBT step. In the worst-case, we make ` ORAM steps and ` log2N SBT steps for an

`-block query, giving CMax ≤ 3 log2N .

We know from Theorem 9 that for large uniform random block queries, the

SBT has maximum fetch queue length in O(` logN/n log logN). However, the expected

queue length is only `/n, so we rightly expect that relatively few queues have such

170

large lengths. Though the ORAM runs slowly, focusing it on the largest queues first

asymptotically reduces the final maximum queue length H.

Theorem 12. Let ` ≥ n and N ≥ 32. With high probability for the SBT+ORAM with

uniform random block queries we have H ∈ O((`/n) log logN).

In Section 6.6, we present a proof for Theorem 12 based on a novel balls and

urns analysis. Thus, the bandwidth cost of the SBT+ORAM used on uniform random

block queries with ` ≥ n,N ≥ 32 is, with high probability:

CHP ∈ O
(
δ
n

`

`

n
log logN

)
⊆ O (δ log logN) , (6.8)

with constant δ for only λ ∈ Ω(log logN) milestones. Thus, for large uniform random

block queries, the SBT+ORAM is more efficient than the SBT. At the same time, it

leaks only Iλ ∈ O(log log logN) bits per query, yielding better privacy than 2-Choice

SBT, but slightly higher CHP.

The server storage costs of [77] are reported at roughly 4BN bits, and we

estimate that client storage is 1.25 log2N + 3B
√
N bits, based on results in Table 2 of

[77]. Thus, the SBT+ORAM has a total server storage cost of roughly 5BN , and client

storage (`+
√

2N + 3
√
N)B + 3.25N log2N bits.

6.5.3 The Multi-SBT Variant

The Multi-SBT replaces the SBT in a SBT+ORAM with a 2-Choice SBT.

Thus, the Multi-SBT stores a total of three copies of each block. Its security follows

directly from the security of 2-Choice SBT and SBT+ORAM.

The Multi-SBT inherits SBT+ORAM’s excellent worst-case per-access step

count SMax = 1 + log2N and bandwidth cost CMax = 3 log2N . For large random block

queries, it also inherits 2-Choice SBT’s high-probability bandwidth cost:

171

CHP ∈ O(δ), (6.9)

while requiring only λ ∈ Ω(log logN) milestones for constant δ, and leaking only Iλ ∈

O(log log logN) bits per query. Thus, for uniform random block queries of any size, the

Multi-SBT requires only O(`+ log2N) block transfers!

Multi-SBT combines the best performance and privacy characteristics of 2-

Choice SBT and SBT+ORAM, and can easily outperform both. Even in worst cases,

the Multi-SBT incurs at most 3 times the bandwidth cost of SBT+ORAM, or 1.5 times

the cost of SBT. Multi-SBT requires total server storage of roughly 6BN , and client

storage of roughly B
√
N(3 +

√
2) + 5.25N log2N bits.

6.6 Performance Analyses and Proofs

Here we prove Theorems 9 and 12, and argue for Conjecture 10. In each case,

our goal is to upper-bound the maximum fetch queue length H — the maximum number

of blocks that must be fetched from any one bin by the SBT component to satisfy a

query. Equivalently, H is the maximum number of SBT passes needed to satisfy a query.

For simplicity, we assume the SBT is at the start of a pass, so we are given

n bins filled with 1, 2, . . . , n blocks each.1 Each query requests ` distinct blocks chosen

uniformly at random, without replacement, from the set of all N blocks. We call such

queries uniform random block queries. Every block has a unique location. Of the N =

n(n+ 3)/2 blocks, n are located somewhere in the local cache, and the remaining n(n+

1)/2 are located somewhere in one of the n bins. Requests for cached blocks are satisfied

instantly.

1We can force the SBT to the start of a pass for each query, which increases H by at most 1 and
thus does not affect our asymptotic analysis.

172

We assign each queried block a unique index i between 1 and `. Let PrB(i, j)

be the maximum probability that block i will be in bin j, given any possible arrangement

of the remaining queried blocks. The maximum PrB(i, j) occurs when j is the n-block

bin, and the other ` − 1 blocks are located in bins other than j. In this case, i has

N − `+ 1 possible locations, n of which are in bin j, giving:

PrB(i, j) ≤ n

N − `+ 1
≤ n

N − `
. (6.10)

A great deal of work has been done on the closely-related balls and urns prob-

lem (e.g. [46, 66]), in which balls are thrown independently into one of several urns

chosen uniformly at random (with replacement).2 There are well-known bounds on the

resulting maximum urn occupancy. To use these bounds, we first reduce our blocks and

bins problem to a larger balls and urns problem.

6.6.1 Problem Transformation

Consider the balls and urns problem with 3` balls, where 3 distinct balls are

given each index 1 ≤ i ≤ `. We throw these 3` balls independently and uniformly at

random into n urns. Let PrU (i, j) be the probability that at least one ball with label i

will appear in urn j, which is given by:

PrU (i, j) = 1−
(
n− 1

n

)3

=
3n2 − 3n+ 1

n3
(6.11)

Intuitively, if PrB(i, j) ≤ PrU (i, j), then a ball labeled i is at least as likely

to be placed in urn j as block i is to be located in bin j, and so the number of blocks

found in bin j should be no larger than the number of balls in urn j. If we can show

that PrB(i, j) ≤ PrU (i, j) for every i, j, then any upper-bound on the maximum urn

2Such problems are commonly referred to as balls and bins problems, but since we use bin in our
SBT construction, we use urn here for clarity.

173

occupancy in the balls and bins problem should hold for the maximum queue length H

in the blocks and bins problem.

Lemma 13. PrB(i, j) ≤ PrU (i, j) holds for all ` ≤ n2/6.

Proof. Substituting N = n(n+ 3)/2, we get:

PrB(i, j) ≤ n

N − `
=

2

n+ 3− 2`/n
.

Thus we have

PrB(i, j) ≤ PrU (i, j) ⇐=
2

n+ 3− 2`/n
≤ 3n2 − 3n+ 1

n3

⇐⇒ 2n3 ≤ 3n3 + 6n2 − 8n+ 3− `(6n− 6 + 2/n)

⇐⇒ ` (6n− 6 + 2/n) ≤ n3 + 6n2 − 4n+ 3

⇐= ` ≤ n2/6

6.6.2 SBT Analysis

We are now ready to prove Theorem 9.

Theorem 9. Let ` ≥ n (large queries). With high probability for the SBT with uniform

random block queries, we have:

H ∈ O
(
`

n

log n

log logn

)
.

Proof. It is well known (e.g. [66]) that if we throw n balls independently and uni-

formly at random into n urns, we get a maximum urn occupancy in O(log n/ log logn)

with high probability. Thus, if we throw m ≥ n balls, we get a maximum height

O((m log n)/n log log n). By Lemma 13, when ` ≤ n2/6, an upper-bound on the maxi-

mum urn occupancy for m = 3` balls and n urns applies to H, giving:

H ∈ O
(

3` log n

n log logn

)
⊆ O

(
`

n

log n

log logn

)
, for

n

3
≤ ` ≤ n2

6

174

Further, since H ≤ n, for ` > n2/6 we have trivially that: H ∈ O
(
`
n

)
⊆ O

(
`
n

logn
log logn

)
.

6.6.3 2-Choice SBT Analysis

Recall Conjecture 10 from Section 6.5.1.3:

Conjecture 10. With high probability for the 2-Choice SBT with uniform random

block queries, we have:

H ∈ O (`/n+ 1) .

Authors in [15] analyze the Selfless Algorithm for allocating m balls to n urns,

where each ball may be placed in either of two urns chosen uniformly at random. They

show, analytically, that the Selfless Algorithm yields a maximum final urn occupancy

U ′ ∈ O(dm/ne) ⊆ O(m/n + 1) with high probability. They also show empirically that

the simpler Random Round Robin algorithm, which we use for the 2-Choice SBT, has

nearly equivalent performance.

As we did for SBT, we can think of the 2-Choice SBT’s blocks and bins problem

as a balls and urns problem where we throw m = 3` balls into n urns. However, since

each block now belongs to two bins, and can thus be added to either of two fetch queues,

the corresponding ball may be placed in either of two urns, but need not be placed in

both. Though Lemma 13 no longer holds, we appeal to the intuition that a bound on

the maximum urn occupancy H ′ is likely to hold for the maximum fetch queue height

H as well.

We therefore contend that H ≈ U ′ ∈ O(m/n+ 1) ⊆ O(`/n+ 1). Clearly, this

argument is far from a proof, both because Random Round Robin has not been fully

analyzed, and because of the different models used for the two-choice blocks and bins

175

and two-choice balls and urns problems. However, we observe empirically that 2-Choice

SBT does in fact appear to follow H ∈ O(`/n + 1), as evidenced by Figure 6.13 in

Section 6.7.

6.6.4 SBT+ORAM Analysis

In SBT+ORAM, the ORAM component assists the SBT by removing one

block from the longest fetch queue after every log2N SBT steps, potentially reducing

the required number of passes H. We can transform the problem into a balls and urns

problem with m = 3` balls and n urns, where we remove `/(log2N + 1) balls from the

highest occupancy urns. As far as we know, we are the first to consider this problem, as

prior work has only analyzed problems in which balls are removed randomly (e.g. [46]).

6.6.4.1 Balls and Urns Problem

We first consider the balls and urns problem of throwing m balls independently

and uniformly at random into n urns, then deterministically removing ρm/ log2N balls.

Removals take place by repeatedly removing a ball from the highest occupancy urn.

Let Ui be a random variable representing the original occupancy of a given

urn i. That is, the number of balls in urn i before removals. Each Ui has the binomial

distribution Bin(m, 1/n). Let U be the maximum occupancy across all bins before

removals, and U ′ the maximum occupancy after removals. We ultimately seek an upper-

bound on U ′.

Let Bi,k be the number of balls originally in urn i in excess of k − 1. That is,

if urn i starts with d balls, then Bi,k = d − k + 1 if d ≥ k, and Bi,k = 0 if d < k. Let

Bk =
∑n

j=1Bi,k. Intuitively, Bk is the minimum number of balls (minimum ρm/ log2N)

we must remove to get U ′ < k.

176

Outline: Our goal is to find an upper-bound on Bk such that for some

k ∈ O(log log n), Bk ≤ ρm/ log2N with high probability, giving U ′ ∈ O(log logN)

with high probability. We first define the binomial tail probability S(m,n, k) and

its Chernoff upper bound. We then define a function f(m,n, k) and express upper-

bounds on E[Bk] and V ar[Bk] in terms of f(m,n, k). We then apply Chebyshev’s

inequality to upper-bound the probability that Bk ≥ ρm/ log2N . We then choose

k∗ = (em/n) log2 log2N+2, and give the resulting upper-bound on f(m,n, k∗). Finally,

we show that for our chosen k∗, Bk∗ ≤ ρm/ log2N with high probability for ρ ≥ 1,

giving U ′ < k∗ ∈ O((m/n) log logN) for m ≥ n,N ≥ 32.

Let S(m,n, k) be the binomial tail probability given by:

S(m,n, k) = Pr

(
Bin

(
m,

1

n

)
≥ k

)
=

m∑
j=k

(
m

j

)(
1

n

)j (
1− 1

n

)m−j
.

We can upper bound S(m,n, k) by applying Chernoff bounds (Equation 9 in

[42]), giving:

S(m,n, k) ≤ e−(m/n)
(em
nk

)k
, 1 < k < m, k ≥ m/n. (6.12)

We now define f(m,n, k), to be used in bounds below:

f(m,n, k) =
m

n
e−(m−2)/n

(
em

n(k − 2)

)k−2

. (6.13)

We now establish the following upper-bound on E[Bk].

Lemma 14. For e+ 1 < k ≤ m, k ≥ m/n+ 1, we have that E[Bk] ≤ m
n · f(m,n, k).

177

Proof.

E[Bk] = E

[
n∑
i=1

Bi,k

]
= nE[Bi,k]

= n

m∑
j=k

(j − k + 1) Pr(Hi = j)

≤ n
m∑
j=k

j Pr(Hi = j) for k ≥ 1

= n
m∑
j=k

j

(
m

j

)(
1

n

)j (n− 1

n

)m−j

= n
m−1∑
j=k−1

(j + 1)

(
m

j + 1

)(
1

n

)j+1(n− 1

n

)m−(j+1)

= n

m−1∑
j=k−1

m

(
m− 1

j

)(
1

n

)(
1

n

)j (n− 1

n

)(m−1)−j

= mS(m− 1, k − 1, n)

≤ me−(m−1)/n

(
e(m− 1)

n(k − 1)

)k−1

≤ mf(m,n, k) (for e+ 1 < k ≤ m, k ≥ m/n+ 1).

We now upper-bound the variance V ar[Bk].

Lemma 15. For e+ 1 < k ≤ m, k ≥ m/n+ 2, we have that

V ar[Bk] ≤ 2mf(m,n, k).

Proof. We first observe that the variables Bi,k, Bj,k for any two bins i 6= j are negatively

correlated. That is, increasing Bi,k tends to decrease Bj,k, and vice-versa, so their

covariances Cov(Bi,k, Bj,k), Cov(Bj,k, Bi,k) are always negative, giving:

178

V ar[Bk] =
n∑
i=1

V ar(Bi,k) +
n∑

i,j,i6=j
Cov(Bi,k, Bj,k)

≤ nV ar(Bi,k) + 0 ≤ nE[B2
i,k]

= n
m∑
j=k

(j − k + 1)2 Pr(Hi = j)

≤ n
m∑
j=k

j2

(
m

j

)(
1

n

)j (n− 1

n

)m−j
for k ≥ 1

= m
m∑
j=k

j

(
m− 1

j − 1

)(
1

n

)j−1(n− 1

n

)m−j
= mS(m− 1, k − 1, n) +m

m− 1

n
S(m− 2, k − 2, n)

≤ me−((m−1)/n)

(
e(m− 1)

n(k − 1)

)k−1

+
m2

n
e−((m−2)/n)

(
e(m− 2)

n(k − 2)

)k−2

≤ 2mf(m,n, k) (for e+ 1 < k ≤ m, k ≥ m/n+ 2).

Lemma 16. For e+ 1 < k ≤ m, k ≥ m/n+ 2, we have that:

Pr

(
Bk ≥

ρm

log2N

)
≤ 1

m

2f(m,n, k) log2
2N

(ρ− f(m,n, k) log2N)2

Proof. We apply Chebyshev’s inequality to bound the probability that Bk is at least

ρm/ log2N , giving:

Pr

(
Bk ≥

ρm

log2N

)
= Pr

(
Bk − E[Bk] ≥

ρm

log2N
− E[Bk]

)
≤ Pr

(
|Bk − E[Bk]| ≥ t

√
V ar[Bk]

)
,

t =

ρm
log2N

− E[Bk]√
V ar[Bk]

≤ 1

t2
= V ar[Bk]

(
1

ρm
log2N

− E[Bk]

)2

.

179

Applying the results of Lemmas 14 and 15 gives:

Pr

(
Bk ≥

ρm

log2N

)
≤ 2mf(m,n, k)(

ρm

log2N
−mf(m,n, k)

)2

=
1

m

2f(m,n, k) log2
2N

(ρ− f(m,n, k) log2N)2 .

We now choose k∗ = (em/n)(log2 log2N) + 2.

Lemma 17. For m ≥ n, N ≥ 32, and k∗ ≤ m, we have:

f(m,n, k∗) ≤
(

1

log2N

)3

(6.14)

Proof. Given k = k∗, we get:

f(m,n, k∗) =
m

n
e−(m−2)/n

(
1

log2 log2N

)(em/n)(log2 log2N)

Taking the log of both sides gives:

log2 f(m,n, k∗) =

(
log2

m

n
− m− 2

n
log2 e

)
− em

n
(log2 log2N)(log2 log2 log2N)

≤ −em
n

(log2 log2N)(log2 log2 log2N)

(for N ≥ 32,m ≥ n).

Thus we have:

f(m,n, k∗) ≤
(

2− log2 log2N
)(em/n) log2 log2 log2N

≤
(

1

log2N

)(em/n) log2 log2 log2N

≤
(

1

log2N

)3

(for N ≥ 32).

Lemma 18. With high probability, removing ρm/ log2N balls yields U ′ ∈ O((m/n) log logN)

for m ≥ n,N ≥ 32, ρ ≥ 1, k∗ ≤ m.

180

Proof. By Lemmas 16 and 17, we have that for k∗ ≤ m:

Pr

(
Bk∗ ≥

ρm

log2N

)
≤ 1

m

2 1
log3

2N
log2

2N(
ρ− 1

log3
2N

log2N

)2

(for m ≥ n,N ≥ 32)

≤ 1

m

2

log2N

1(
ρ− 1

log2
2N

)2

=
1

m

2 log3
2N

ρ2 log4
2N − 2ρ log2

2N + 1

≤ 1

m
(for ρ ≥ 1).

Thus, with high probability (at least 1− 1/m ≥ 1− 1/n), we have that Bk∗ <

ρm/ log2N . So, with high probability U ′ < k∗, and thus U ′ ∈ O((m/n) log logN).

6.6.4.2 Blocks and Bins Problem

We are now ready to prove Theorem 12 using our results from the balls and

urns problem.

Theorem 12. Let ` ≥ n and N ≥ 32. With high probability for the SBT+ORAM with

uniform random block queries, we have H ∈ O ((`/n) log logN).

Proof. After s steps by the SBT+ORAM, the ORAM component will have removed

s/(log2N + 1) blocks from the longest fetch queues. We consider three cases.

Case 1: s < 3`(log2N + 1)/ log2N . In this case:

H ≤ s

n
<

3`

n

(
1+

1

log2N

)
∈ O

(
`

n

)
⊆ O

(
`

n
log logN

)
Case 2: s ≥ 3`(log2N + 1)/ log2N, ` ≤ n2/6. In this case, we make at least

3`/ log2N removals. We can transform our problem to the balls and urns problem with

m = 3` balls and n urns, where we remove 3`/ log2N balls from the tallest urns. By

Lemma 18, the resulting maximum urn occupancy U ′ is in O((`/n) log logN).

181

By Lemma 13, a given ball is at least as likely to appear in a given urn as the

corresponding block is to be found in the corresponding bin. Since we remove the same

number of balls from urns as we do blocks from fetch queues, the occupancy of each

urn should be at least the length of its corresponding fetch queue, giving H ≤ U ′ ∈

O((`/n) log logN) with high probability.

Case 3: ` ≥ n2/6. We know that H ≤ n, so for ` ≥ n2/6 we have that

H ∈ O(`/n) ⊆ O((`/n) log logN).

6.7 Evaluation

We implemented prototypes for SBT and its variants to estimate actual band-

width costs for various query types. The prototypes simulate secure transfers of blocks

between the client and server, tracking each block’s location at all times.

6.7.1 Bandwidth Cost Experiments

Figures 6.4–6.12 give our experimental results measuring bandwidth cost for

three types of queries and varying three parameters (N, `, λ). Recall that bandwidth cost

is given by the total number of block transfers (fetches and stores counted individually),

divided by the number of secret accesses (reads or writes) `.

All the experiments used a 64KB block size and allow 8GB of client space,

which includes the SBT’s block-ID map, space for recently fetched blocks, and space for

the ORAM component, if any. Any leftover client space is used as a local block cache.

Different block sizes alter storage capacity and client space, but leave bandwidth costs

182

largely unchanged. During a trial, we run 4N/` queries of fixed length `, requesting

each stored block four times on average.

Each experiment varies one of: block count N (Figures 6.4, 6.7, 6.10), query

length ` (Figures 6.5, 6.8, 6.11), or milestone count λ (Figures 6.6, 6.9, 6.12). Our

default block count N = 224 yields a 1TB TOM storage capacity. Our default query

length ` = 4
√
N represents a 214 block (1GB) query for the default N . Our default

milestone count λ = 8 leaks at most Iλ = 3 bits per `-block query.

6.7.1.1 Uniform Random Block Queries (Figures 6.4–6.6)

The Uniform Random Block queries are the best suited to the SBT protocols.

For each query, we choose ` distinct blocks uniformly at random from all N blocks. We

used the same type of query to derive our analytic bandwidth cost predictions. All SBT

variants outperform ORAM for large uniform random block queries, with costs as low

as 5X for the Multi-SBT (Figure 6.5).

6.7.1.2 Uniform/Zipf Fixed Sequence Queries (Figures 6.7–6.12)

For fixed sequence queries, we divide theN blocks into s = N/` non-overlapping

fixed sequences of ` distinct blocks each before permuting the blocks and storing them

on the server. Each query consists of exactly one of these fixed sequences, simulating a

file system in which each query requests an entire file. Uniform fixed sequence experi-

ments choose sequences uniformly at random, while Zipf experiments choose sequences

from a power law distribution in which the ith most common sequence is chosen with

probability Hs/i, where Hs is the sth harmonic number.

There are few (N/`) possible distinct fixed sequence queries, compared to the

many (N choose `) uniform random block queries. As a result, fixed sequence queries

183

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Uniform Random Blocks
4N1/2 Blocks/Query, λ = 8

Total Block Count (N)

ORAM
SBT
SBT+ORAM

2−Choice SBT

Multi−SBT

Student Version of MATLAB
Figure 6.4: Uniform ran-
dom block queries, vary-
ing N

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Uniform Random Blocks
N = 224 Blocks, λ = 8

Query Length

Student Version of MATLAB
Figure 6.5: Uniform ran-
dom block queries, vary-
ing `

10
0

10
1

10
2

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Uniform Random Blocks
N = 224 Blocks, 214 Query Size

Milestone Count (λ)

Student Version of MATLAB
Figure 6.6: Uniform ran-
dom block queries, vary-
ing λ

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Uniform Fixed Sequences
4N1/2 Blocks/Query, λ = 8

Total Block Count (N)

Student Version of MATLAB
Figure 6.7: Uniform fixed
sequence queries, varying
N

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Uniform Fixed Sequences
N = 224 Blocks, λ = 8

Query Length

Student Version of MATLAB
Figure 6.8: Uniform fixed
sequence queries, varying
`

10
0

10
1

10
2

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Uniform Fixed Sequences
N = 224 Blocks, 214 Query Size

Milestone Count (λ)

Student Version of MATLAB
Figure 6.9: Uniform fixed
sequence queries, varying
λ

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Zipf Fixed Sequences
4N1/2 Blocks/Query, λ = 8

Total Block Count (N)

Student Version of MATLAB
Figure 6.10: Zipf fixed se-
quence queries, varying N

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Zipf Fixed Sequences
N = 224 Blocks, λ = 8

Query Length

Student Version of MATLAB
Figure 6.11: Zipf fixed se-
quence queries, varying `

10
0

10
1

10
2

10
0

10
1

10
2

10
3

B
an

dw
id

th
 C

os
t

Zipf Fixed Sequences
N = 224 Blocks, 214 Query Size

Milestone Count (λ)

Student Version of MATLAB
Figure 6.12: Zipf fixed se-
quence queries, varying λ

are far more likely to repeat, leading to poor SBT performance (Section 6.4.4). Zipf

fixed sequence queries repeat frequently, so that ORAM nearly always outperforms the

SBT variants (Figures 6.10–6.12). Uniform fixed sequence queries repeated less often,

so several variants still outperform ORAM (Figures 6.7–6.9). We reiterate that SBT

is a special-purpose TOM protocol. The more varied the query block distribution, the

better SBT performs.

184

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

H
ig

he
st

 O
bs

er
ve

d
H

Query Length

Uniform Random Blocks
N = 224 Blocks, No Padding

SBT
µ ln N / ln ln N + 4

Student Version of MATLAB

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

H
ig

he
st

 O
bs

er
ve

d
H

Query Length

Uniform Random Blocks
N = 224 Blocks, No Padding

2−Choice SBT
µ + 1

Student Version of MATLAB

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

H
ig

he
st

 O
bs

er
ve

d
H

Query Length

Uniform Random Blocks
N = 224 Blocks, No Padding

SBT+ORAM
µ ln ln N + 1

Student Version of MATLABFigure 6.13: Confirmation of analysis. Maximum observed H asymptotically dominated
by analytically predicted values. µ = `/n

6.7.1.3 Other Observations

For small queries, SBTs with ORAMs converge to a worst-case cost 3 log2N ,

while others converge to a much larger cost of n (Figures 6.5, 6.8, 6.11). Figures 6.6, 6.9,

6.12 show that we can improve performance by leaking more information (increasing λ)

up to λ ≈ 32 (Iλ = 5 bits). At this point padding costs become negligible, leaving the

raw cost of the protocol. Since protocols with ORAM components have smaller worst-

case costs, the milestones are packed more tightly, so padding effects become negligible

sooner (λ ≈ 8).

6.7.2 Maximum Queue Length Measurements

Theorems 9, 12 and Conjecture 10 give high-probability asymptotic bounds

on H for large, uniform random block queries. We validated these bounds by running

simulations for the corresponding SBT variants without padding, and measuring the

highest observed H over 4N/` queries for various `. Our results are shown in Figure

6.13 along with plots of concrete functions consistent with our bounds.

185

6.7.3 Simulator Details

We implemented our simulator in Java, fully modeling SBT behavior. The

simulator properly accommodates padding, waiting to release query results until the step

count reaches one of the milestones. Our simulator is synchronous, since asynchronous

behavior is not needed to measure bandwidth cost.

On a single thread, the simulator requires 0.5 to 1.5µs per simulated block

transfer, depending on the specific protocol and number of blocks. For the sake of speed,

we do not manipulate actual block contents. Thus, we’re able to efficiently evaluate SBT

bandwidth costs for larger block counts and longer runs without the expense of actually

performing network transfers, disk IO, and encryption.

We assume a fully de-amortized black-box ORAM with log2N bandwidth cost

per step, based on the ORAM in [77]. When simulating the protocols with ORAM

components, we step the SBT component log2N times, then step the ORAM once,

retrieving the previous step’s result.

6.8 Conclusion

We presented a novel ORAM generalization called Tunably-Oblivious Memory

(λ-TOM), which permits a privacy/efficiency tradeoff controlled via milestone count

λ. We introduced the log-spacing strategy for choosing milestones to minimize padding

costs, and strictly bounded the information leaked by each λ-TOM query. We also devel-

oped the special-purpose Staggered-Bin TOM protocol, and several read-only variants,

including the Multi-SBT. We showed analytically and empirically that the Multi-SBT is

highly efficient for large queries that are not cache-friendly, achieving bandwidth costs

as low as 6X compared to the 22X-29X costs of the best existing ORAM protocols, while

186

leaking at most 3 bits per query. We believe that the TOM model can be used in future

work to build other highly secure special-purpose protocols, like SBT, that outperform

current ORAM techniques on a variety of workloads.

187

Chapter 7

Conclusion

In Chapters 2 and 3 we presented two novel attacks that motivate data out-

sourcing protocols that protect access pattern privacy. We then introduced two new

practical and efficient Oblivious RAM (ORAM) protocols, Burst ORAM and OS+PIR,

in Chapters 4 and 5, respectively.

Burst ORAM allows large bursts of requests to be satisfied efficiently using

minimal bandwidth. We introduced the XOR technique to reduce the number of online

block transfers, and proposed a novel architecture that prioritizes online transfers, de-

laying shuffling until idle periods. We evaluated Burst ORAM on a real-world network

application workload and showed that it achieved near-optimal response times that were

orders of magnitude lower than those of existing ORAM protocols.

OS+PIR reduces total bandwidth costs by using PIR to enable efficient level

configurations in ORAM partitions. We also introduce several enhancements that allow

OS+PIR to achieve bandwidth costs as low as 11X–13X, outperforming the best existing

protocols by a factor of 2. OS+PIR is particularly appealing as a practical ORAM

solution for mobile devices, where bandwidth costs dominate.

188

In Chapter 6, we explored other mechanisms for reducing bandwidth costs,

including exchanging a bounded amount of information leakage for improved efficiency,

and employing special-purpose and read-only protocols. We proposed the Tunably-

Oblivious Memory (TOM) privacy model, as well as several concrete TOM instantiations

including SBT and the read-only Multi-SBT. We showed that the Multi-SBT is highly

efficient for large queries that are not cache-friendly, and can achieve bandwidth costs

as low as 6X while leaking at most 3 bits per query.

The advances in Oblivious RAM protocols made during the last few years have

transformed it from a largely theoretic notion into a viable solution to the private data

outsourcing problem. While ORAM users can still expect to pay several times the cost

of an unprotected protocol, the costs continue to be driven down by developments such

as those presented here, making ORAM feasible for a wider range of applications. Given

the rapid pace of ORAM research, it would not be surprising to see ORAM primitives

packaged into secure data outsourcing services in the near future.

189

Bibliography

[1] Salaries of federal employees located in the District of Columbia. Available:
http://php.app.com/fed_employees11/search.php, 2011. Source: U.S. Office
of Personnel Management.

[2] County of riverside class and salary listing. http://www.rc-hr.com/

HRDivisions/Classification/tabid/200/ItemId/2628/Default.aspx, Febru-
ary 2012.

[3] Amazon web services. http://aws.amazon.com, June 2014.

[4] Google cloud platform. http://cloud.google.com, June 2014.

[5] Microsoft azure. http://azure.microsoft.com, June 2014.

[6] D. Agrawal, A. Abbadi, F. Emekci, A. Metwally, and S. Wang. Secure data man-
agement service on cloud computing infrastructures. New Frontiers in Information
and Software as Services, pages 57–80, 2011.

[7] D. Agrawal, A. El Abbadi, F. Emekci, and A. Metwally. Database management as
a service: Challenges and opportunities. In Proc. ICDE, pages 1709–1716, 2009.

[8] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order
preserving encryption for numeric data. In Proc. ACM SIGMOD, pages 563–574,
2004.

[9] Christoph Bandt and Bernd Pompe. Permutation entropy: A natural complexity
measure for time series. Phys. Rev. Lett., 88:174102, Apr 2002.

[10] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In Proc. EUROCRYPT, pages 224–241, 2009.

[11] Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote oblivious stor-
age: Making oblivious RAM practical. Manuscript, http://dspace.mit.edu/

bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf, 2011.

[12] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Proc. TCC, pages 535–554, 2007.

[13] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System
Sci., 13(3):335–379, 1976.

[14] B. Buchberger and F. Winkler. Gröbner bases and applications. Cambridge Univ
Pr, 1998.

190

[15] Julie Anne Cain, Peter Sanders, and Nick Wormald. The random graph thresh-
old for k-orientiability and a fast algorithm for optimal multiple-choice allocation.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 469–476. Society for Industrial and Applied Mathematics, 2007.

[16] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. Modeling and assessing inference
exposure in encrypted databases. ACM Trans. Inf. Syst. Secur., 8(1):119–152,
2005.

[17] K. Chen, R. Kavuluru, and S. Guo. RASP: efficient multidimensional range query
on attack-resilient encrypted databases. In Proc. ACM CODASPY, pages 249–260,
2011.

[18] Yanpei Chen, Kiran Srinivasan, Garth Goodson, and Randy Katz. Design im-
plications for enterprise storage systems via multi-dimensional trace analysis. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples, SOSP ’11, pages 43–56, New York, NY, USA, 2011. ACM.

[19] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private infor-
mation retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[20] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon,
Ryusuke Masuoka, and Jesus Molina. Controlling data in the cloud: outsourcing
computation without outsourcing control. In Proc. ACM CCSW, pages 85–90, 2009.

[21] Kai-Min Chung, Zhenmin Liu, and Rafael Pass. Statistically-secure oram with
Õ(log2 n) overhead. http://arxiv.org/abs/1307.3699, 2013.

[22] Kai-Min Chung and Rafael Pass. A simple oram. https://eprint.iacr.org/

2013/243.pdf, 2013.

[23] V. Ciriani, S. De Capitani Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Keep a few: Outsourcing data while maintaining confidentiality. Proc.
ESORICS, pages 440–455, 2009.

[24] Don Coppersmith. Finding a small root of a bivariate integer equation; factoring
with high bits known. In EUROCRYPT, pages 178–189. Springer, 1996.

[25] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure obliv-
ious RAM without random oracles. In TCC, pages 144–163, 2011.

[26] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano Para-
boschi, and Pierangela Samarati. Balancing confidentiality and efficiency in un-
trusted relational DBMSs. In Proc. ACM CCS, pages 93–102, 2003.

[27] J. Dautrich and C. Ravishankar. Security limitations of using secret sharing for
data outsourcing. In Proc. DBSec, 2012.

[28] J. Dautrich and C. Ravishankar. Compromising privacy in precise query protocols.
In Proc. EDBT, 2013.

[29] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing
ORAM response times for bursty access patterns. In USENIX Security, 2014.

191

[30] Sabrina De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Sama-
rati. Efficient and private access to outsourced data. In Proc. ICDCS, 2011.

[31] F. Emekci, D. Agrawal, A.E. Abbadi, and A. Gulbeden. Privacy preserving query
processing using third parties. In Proc. ICDE, pages 27–27. IEEE, 2006.

[32] B. Faaland. Solution of the value-independent knapsack problem by partitioning.
Operations Research, 21(1):332–337, 1973.

[33] X.G. Fang and G. Havas. On the worst-case complexity of integer gaussian elimina-
tion. In Proceedings of the 1997 international symposium on symbolic and algebraic
computation, pages 28–31. ACM, 1997.

[34] Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. Secure processor
architecture for encrypted computation on untrusted programs. In Proc. ACM
CCS Workshop on Scalable Trusted Computing, pages 3–8, 2012.

[35] Craig Gentry, Kenny Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova, and
Daniel Wichs. Optimizing ORAM and using it efficiently for secure computation.
In PETS, 2013.

[36] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval
with constant communication rate. In Automata, Languages and Programming,
pages 803–815. Springer, 2005.

[37] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

[38] M. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data
via oblivious RAM simulation. Automata, Languages and Programming, pages 576–
587, 2011.

[39] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamas-
sia. Privacy-preserving group data access via stateless oblivious RAM simulation.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 157–167. SIAM, 2012.

[40] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing SQL over
encrypted data in the database-service-provider model. In Proc. ACM SIGMOD,
pages 216–227, 2002.

[41] M.A. Hadavi and R. Jalili. Secure data outsourcing based on threshold secret
sharing; towards a more practical solution. In Proc. VLDB PhD Workshop, pages
54–59, 2010.

[42] Torben Hagerup and Christine Rüb. A guided tour of chernoff bounds. Information
processing letters, 33(6):305–308, 1990.

[43] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimensional
range queries over outsourced data. The VLDB Journal, pages 1–26, 2011.

[44] M Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In Network and Dis-
tributed System Security Symposium (NDSS), 2012.

192

[45] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Inference attack
against encrypted range queries on outsourced databases. In Proceedings of the 4th
ACM conference on Data and application security and privacy, pages 235–246.
ACM, 2014.

[46] Norman Lloyd Johnson and Samuel Kotz. Urn models and their application: an
approach to modern discrete probability theory. Wiley New York, 1977.

[47] M. Kantarcıoglu and C. Clifton. Security issues in querying encrypted data. In
Proc. DBSec, pages 325–337, 2005.

[48] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Proc. EUROCRYPT,
pages 146–162, 2008.

[49] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based
oblivious RAM and a new balancing scheme. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 143–156. SIAM,
2012.

[50] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L. Miller. Mea-
surement and analysis of large-scale network file system workloads. In USENIX
2008 Annual Technical Conference on Annual Technical Conference, ATC’08, pages
213–226, Berkeley, CA, USA, 2008. USENIX Association.

[51] Jun Li and Edward Omiecinski. Efficiency and security trade-off in supporting
range queries on encrypted databases. In Proc. DBSec, pages 69–83, 2005.

[52] M. Li, S. Yu, N. Cao, and W. Lou. Authorized private keyword search over en-
crypted personal health records in cloud computing. In Proc. ICDCS, 2011.

[53] P. Lin and K.S. Candan. Hiding tree structured data and queries from untrusted
data stores. Information Systems Security, 14(4):10, 2005.

[54] Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and Joshua
Schiffman. Shroud: Ensuring private access to large-scale data in the data center.
FAST, pages 199–213, 2013.

[55] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. PHANTOM: Practical oblivious computation
in a secure processor. In ACM CCS, 2013.

[56] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. ACM TKDD, 1(1):3–es, 2007.

[57] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Pirmap: Efficient private
information retrieval for mapreduce. In Financial Cryptography and Data Security,
pages 371–385. Springer, 2013.

[58] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private file
retrieval by combining ORAM and PIR. In NDSS, 2014.

[59] Michael Mitzenmacher. Some open questions related to cuckoo hashing. In
Algorithms-ESA 2009, pages 1–10. Springer, 2009.

193

[60] Einar Mykletun and Gene Tsudik. Aggregation queries in the database-as-a-service
model. In Proc. DBSec, pages 89–103, 2006.

[61] Yuto Nakano, Carlos Cid, Shinsaku Kiyomoto, and Yutaka Miyake. Memory access
pattern protection for resource-constrained devices. In Smart Card Research and
Advanced Applications, pages 188–202. Springer, 2013.

[62] A. Nergiz and C. Clifton. Query processing in private data outsourcing using
anonymization. In Proc. DBSec, pages 138–153, 2011.

[63] F. Olumofin and I. Goldberg. Revisiting the computational practicality of private
information retrieval. In Proc. FC, 2011.

[64] Rafail Ostrovsky and Victor Shoup. Private information storage (extended ab-
stract). In STOC, pages 294–303, 1997.

[65] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In CRYPTO, 2010.

[66] Martin Raab and Angelika Steger. Balls into bins – a simple and tight analysis.
In Randomization and Approximation Techniques in Computer Science, pages 159–
170. Springer, 1998.

[67] M.O. Rabin. Probabilistic algorithm for testing primality. Journal of number theory,
12(1):128–138, 1980.

[68] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas
Devadas. Design space exploration and optimization of path oblivious RAM in
secure processors. In Proceedings of the 40th International Symposium on Computer
Architecture (ISCA). 2013.

[69] Pierangela Samarati and Sabrina De Capitani di Vimercati. Data protection in
outsourcing scenarios: issues and directions. In Proc. ASIACCS, pages 1–14, 2010.

[70] A. Shamir. How to share a secret. Communications of the ACM, pages 612–613,
1979.

[71] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.
In Proc. TCC, pages 457–473, 2009.

[72] E. Shi, J. Bethencourt, T.-H.H. Chan, Dawn Song, and A. Perrig. Multi-
dimensional range query over encrypted data. In Proc. IEEE S&P, pages 350–364,
2007.

[73] E. Shi, H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((logN)3) worst-
case cost. In Proc. ASIACRYPT, 2011.

[74] Radu Sion. On the computational practicality of private information retrieval. In
Proc. NDSS, 2007.

[75] Emil Stefanov and Elaine Shi. Multi-Cloud Oblivious Storage. In CCS, 2013.

[76] Emil Stefanov and Elaine Shi. ObliviStore: High performance oblivious cloud stor-
age. In IEEE Symposium on Security and Privacy, 2013.

194

[77] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM.
NDSS, 2012.

[78] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. Path ORAM: An extremely simple oblivious
RAM protocol. In ACM CCS, 2013.

[79] J. Stein. Computational problems associated with racah algebra. Journal of Com-
putational Physics, 1(3):397–405, 1967.

[80] X.X. Tian, C.F. Sha, X.L. Wang, and A.Y. Zhou. Privacy preserving query process-
ing on secret share based data storage. In Proc. DASFAA, pages 108–122. Springer,
2011.

[81] Jonathan Trostle and Andy Parrish. Efficient computationally private information
retrieval from anonymity or trapdoor groups. In Information Security, pages 114–
128. Springer, 2011.

[82] Jieping Wang and Xiaoyong Du. A secure multi-dimensional partition based index
in DAS. In Proc. APWeb, pages 319–330, 2008.

[83] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: practical
access pattern privacy and correctness on untrusted storage. In Proc. ACM CCS,
pages 139–148, 2008.

[84] Peter Williams and Radu Sion. Usable PIR. In NDSS, 2008.

[85] Peter Williams and Radu Sion. Round-optimal access privacy on outsourced stor-
age. In CCS, 2012.

[86] Peter Williams and Radu Sion. Sr-oram: Single round-trip oblivious ram. ACNS,
industrial track, pages 19–33, 2012.

[87] Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: A parallel oblivious file
system. In CCS, 2012.

[88] Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. Privacy-preserving queries
on encrypted data. In Proc. ESORICS, pages 479–495, 2006.

[89] Xiangyao Yu, Christopher W Fletcher, Ling Ren, Marten van Dijk, and Srinivas
Devadas. Generalized external interaction with tamper-resistant hardware with
bounded information leakage. In Proc. ACM CCSW, pages 23–34. ACM, 2013.

195

