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ABSTRACT OF THE DISSERTATION 

Nucleation and Cross-slip of Partial Dislocations in FCC Metals  

by 

Gang Liu 

Doctor of Philosophy, Graduate Program in Mechanical Engineering 

University of California, Riverside, December 2009 

Dr. Guanshui Xu, Chairperson 

 

 

Nucleation of partial dislocations at a crack and cross-slip of partial dislocations 

under general loading in FCC metals are analyzed based on a multiscale model which 

incorporates atomic information into continuum-mechanics approach. In both analyses, 

the crack and the slip planes are modeled as surfaces of displacement discontinuities 

embedded in elastic media. The atomic potentials between the adjacent atomic layers 

along the slip planes are assumed to be the generalized stacking fault energies, which are 

obtained based on atomic calculations. The relative displacements along the slip planes, 

corresponding to the configurations of partial dislocations and stacking faults, are solved 

through the variational boundary integral method. The energetics of partial dislocation 

nucleation at the crack and cross-slip in FCC metals Al and Cu are comparatively studied 

for their distinctive difference in the intrinsic stacking fault energy.  

For the analysis of nucleation of partial dislocations at a crack, several new features 

have emerged compared with nucleation of perfect dislocations in previous studies. 

Among them, the critical stress and activation energy for nucleation of partial 

dislocations are markedly lowered. Depending on the value of stacking fault energy and 

crack configuration, the saddle-point configurations of partial dislocations can be vastly 
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different in terms of the nucleation sequence and the size of the stacking fault. The 

implications of these new findings on mechanical behavior of nanostructured crystalline 

materials are elaborated. 

For the analysis of cross-slip of partial dislocations, the conclusion from previous 

studies that cross-slip in FCC metals can be influenced by intrinsic stacking fault energy 

is confirmed. Furthermore, it is found that in Al, the preference of the gliding plane 

depends on the competition between the two resolved shear stresses on the slip planes. In 

Cu, the most preferred loading condition for cross-slip is that a lager compressing Escaig 

shear stress on the primary slip plane is accompanied with stretching Escaig shear stress 

on the cross-slip plane. The analysis of activation energy indicates that thermal motion 

plays an important role in cross-slip in FCC metals. 
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Chapter 1 Introduction 

1.1 Introduction to Dislocations 

Dislocations in crystals are linear defects around which some of the atoms of the 

crystal lattice are misaligned. Fig. 1-1 shows a typical edge type dislocation which can be 

visualized as being caused by the termination of a plane of atoms in the middle of a 

crystal. The edge dislocation was proposed by Orowan, Polany, and Taylor in 1934 to 

explain the discrepancy between the theoretical shear stress and the experimental yield 

stress. In 1939 Burgers advanced the description of the screw dislocation. It was not until 

the 1950s, however, that the existence of dislocations was established by direct 

observation with experimental techniques such as electron microscopes (Dash, 1957; 

Schoeck and Puschl, 1991). It is well recognized that dislocations play a central role in 

plastic deformation in crystalline solids and are largely responsible for the internal 

stresses caused by plastic deformation.  

 

Figure 1-1. An edge dislocation in a simple cubic crystal. 
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In most previous analysis of dislocation nucleation problems (e.g. Xu and Argon, 

2000; Xu and Zhang, 2003; Li and Xu, 2006), the dislocations are regarded as perfect 

dislocations. However, in FCC metals, due to the existence of the intrinsic stacking fault 

which is related to a closed-packed layer distortion from the stable “ABCABC” 

configuration to the metastable “ABC|BCA” configuration, the perfect dislocation tend to 

dissociate into partial dislocations with each partial connecting a perfect crystal lattice at 

one side and an intrinsic stacking fault at the other side. Fig. 1-2. shows the dissociation 

of a perfect dislocation into two Shockley partials (Heidenreich and Shockley, 1948) with 

relative slip vector of 1/6<112> on the {111} slip plane because the dissociated 

configuration reduces the elastic strain energy according to Frank criterion (Hirth and 

Lothe, 1982; Frank, 1949). Therefore, the partial dislocations are more common in the  

 

Figure 1-2. Illustration of dissociation of a perfect dislocation into Shockley partials. 
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FCC metals. In additional to providing the regular mechanism for plastic deformation as 

the perfect dislocation, the partial dislocations play special and unique roles in twinning 

reactions, in phase transformations, and in the formation of dislocation barriers by 

intersecting dislocations (Hirth and Lothe, 1982). The intrinsic stacking faults, always 

companied with the partial dislocations, are also important barriers to dislocation motion. 

For example, the fatigue properties of microcrystalline metals can be influenced by the 

possibility of restricted cross-slip of dissociated screw dislocations which have large 

intrinsic stacking fault areas (Kumar, et al., 2003; Feltner and Laird, 1967). Among these 

phenomena related to the partial dislocations, two interesting ones are selected to analyze: 

nucleation of partial dislocations at a crack and cross-slip of dislocations in FACC metals.  

Dislocation nucleation at cracks has significant implications on brittle versus ductile 

behavior of crystalline materials (Rice and Thomson, 1974; Argon, 1987; Schoeck and 

Puschl, 1991; Rice, 1992; Rice and Beltz, 1994; Xu, et al., 1995, 1997; Kysar, 2003; Zhu, 

et al., 2004). When an atomically sharp crack in a perfect crystal is subjected to an 

increasing loading, the stress concentration at the crack tip can eventually initiate either 

Griffith cleavage fracture between atomic layers or dislocation nucleation induced plastic 

deformation. The competition between these two deformation modes plays an important 

role in determining whether the crystal is intrinsically ductile or brittle. In another aspect, 

many recent studies of nanostructured metals appear to indicate that certain mechanical 

behavior of nanostructured metals such as the limit strength and the strong strain rate 

sensitivity may be controlled by nucleation of partial dislocations at stress concentration 

sites on grain boundaries and their subsequent generation of stacking faults across nano-
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sized grains (Asaro and Suresh, 2005). The crack configuration can be chosen to 

characterize stress concentration. It needs to be emphasized that the nucleation of partial 

dislocation has its particularity when compared to the nucleation of perfect dislocation. 

For the nucleation of partials, the leading partial is nucleated first and leaves an intrinsic 

stacking fault. The critical condition for nucleation of the trailing partial is then 

influenced by the stacking fault and the position of the leading partial. In either case, the 

energetics of dislocation nucleation at cracks is of great importance for understanding the 

source of dislocations and its influences on mechanical behavior of crystalline materials. 

Dislocation cross-slip is as an essential mechanism in plastic deformation with 

implications for strain rate, dynamic recovery, hardening, and pattern formation. In FCC 

metals, the dislocation cross-slip is accomplished through dislocation dissociation and 

cross-slip of partial dislocations. The stress-strain diagram of a typical FCC metal 

oriented for single slip (Fig. 1-3) is a classical example of the role of cross-slip in plastic 

deformation (Puschl, 2002). When the critical resolved shear stress has been reached, 

macroscopic plastic deformation in the most favorable slip system begins. At first the 

motion of dislocations is nearly not obstructed, represented as the “easy glide” stage I in 

the stress-strain diagram. When more dislocations are nucleated, they begin to pile up at 

obstacles. Along with the internal stress accumulating, eventually secondary slip systems 

are triggered. The interaction of the primary and secondary slip systems with themselves 

and with one another requires larger the stress to produce additional plastic deformation. 

So at this stage II, hardening effects show up. Finally, internal stress levels become high 

enough so that the cross-slip occurs. By cross-slip, dislocations can escape from their 
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locked positions behind various obstacles and screw dislocations of opposite sign meet 

and annihilate, reducing dislocation density and relaxing internal stress. The hardening 

effect is therefore counteracted, and the slope of the stress–strain diagram is 

progressively reduced. Dynamic recovery by cross-slip is the characterization of stage III. 

Although cross-slip is usually thought to work as an important recovery and softening 

mechanism in stage III (Berner, 1960; Haasen, 1967), it has been observed to occur also 

in stages I and II, in which situation cross-slip can increase the dislocation density and 

therefore it acts as an indirect hardening mechanism. Therefore, the critical conditions for 

the occurrence of dislocation cross-slip are important to determine its role either as 

softening mechanism or hardening mechanism. 

 

Figure 1-3. Schematic stress-strain diagram in FCC metals deformed in a tensile test 

oriented for single glide. Resolved shear stress is plotted as a function of 

strain. Stage I: easy glide; stage II: linear hardening; stage III: dynamic 

recovery. 
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1.2 Present Stage of Knowledge and Objectives 

 

In general, two conditions are of particular interest for understanding both 

nucleation and cross-slip behaviors of dislocations. One is the critical stress for athermal 

triggering the nucleation or cross-slip, which occurs instantaneously at absolute zero 

temperature. The other is the activation energy required for thermally assisted nucleation 

or cross-slip at a stress level below the critical stress for athermal triggering. The 

activation energy is essential for the study because both of dislocation nucleation and 

cross-slip are rate-controlling processes (Bonneville, et al., 1988; Asaro and Suresh, 2005) 

and temperature can influence nucleation and cross-slip behavior. These two critical 

conditions can be effectively studied by the Peierls-Nabarro dislocation model (Peierls, 

1941; Nabarro, 1947; Hirth and Lothe, 1982), in which a dislocation is represented as the 

relative displacement between two adjacent atomic layers along the slip plane and the 

surrounding crystals as the linear elastic continuum. Because this model allows for 

incorporation of atomic information into continuum mechanics based method, it has the 

advantage to not only treat well with the elastic singularity core which is be excluded 

from considerations by an internal cut-off radius r0 in the continuum elastic model, but 

also incorporate the precise elastic far field and loading conditions which is difficult to be 

done in atomistic simulations.  

The critical conditions for nucleation of perfect dislocations in various 

configurations, including cracks, have been extensively studied based on the Peierls-

Nabarro dislocation model (e.g., Schoeck and Puschl, 1991; Rice, 1992; Rice and Beltz, 
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1994; Xu, et al., 1997; Xu and Argon, 2000; Xu and Zhang, 2003; Li and Xu, 2006). 

These analyses generally adopted the constrained path assumption, i.e., the slip between 

the adjacent atomic layers is assumed to be always constrained in the Burgers vector 

direction, so in these analyses the interlayer atomistic interaction can be simplified as a 

function of only one slip component. However, when complex configurations including 

the partial dislocations and stacking faults are proposed, the constrained path is not 

suitable anymore, because it may cause significant errors especially for a pair of curved 

partial dislocation configurations when significant slip involved in the configuration does 

not strictly follow the partial Burgers vector direction. The elimination of the constrained 

path assumption needs the extension of the one dimensional interlayer atomistic 

interaction into the generalized stacking faults energy, or so called γ-sruface (Vitek, 

1968), in which general slip vector is represented by two components. Therefore, one 

objective of this research is to calculate the generalized stacking faults energy for various 

metals by atomistic simulation such as embedded atom method (Daw, 1983; 1984). The 

incorporation of the generalized stacking faults energy effectively removes constrained 

path assumption, therefore allowing for the study partial dislocation configurations. 

Also using the Peierls-Nabarro model, Lu, et al. (2002, 2004) studied the cross-slip 

by assuming that the dislocation remains to be straight during the cross-slip. They found 

that cross-slip in FCC metals is influenced by the intrinsic stacking fault energy γsf. The 

critical stress and the energy barrier per unit length determined in their work is only for 

the loading condition that the external stresses are applied on the primary slip plane. 

Since the loading direction and the ratio of the shear stresses on both slip planes affect the 
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critical conditions the goal of our study is to determine the critical conditions for cross 

slip under general loading. Moreover, more realistic dislocation cross slip process 

involves dislocation bowing-out to take minimum energy path. The analysis of the more 

realistic curved dislocation cross-slip process is conducted using the fully three-

dimensional boundary integral formulation (Xu and Ortiz, 1993). 

Using Cu and Al as an example, our analysis is focused on delineating the influence 

of the intrinsic stacking fault energy on dislocation nucleation and cross-slip. The effects 

on the critical configurations and conditions are ascertained. 

The thesis is structured as follows. In Chapter 2, the methodology based on the 

Peierls-Nabarro dislocation framework for both the dislocation nucleation and cross-slip 

is summarized, and the atomistic simulation for the generalized stacking fault energy is 

described in details. At the end of Chapter 2, comparison of the widths of the dissociated 

dislocation in Al, Ni, and Cu is made as an example of the application of the method. In 

Chapter 3, the energetics of partial dislocation nucleation at the crack in FCC metals Al 

and Cu are comparatively studied. In Chapter 4, the energetics of partial dislocation 

cross-slip in FCC metals Al and Cu are comparatively studied. 
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Chapter 2 Methodology 

2.1 Introduction 

Our analysis of dislocation nucleation and cross slip builds on a variational 

boundary integral formulation of the Peierls-Nabarro dislocation model. In this model the 

structure of a dislocation is modeled as the relative displacement between two adjacent 

atomic layers along the slip plane and the surrounding crystals as the linear elastic 

continuum. The continuum mechanics based boundary integral formulation, which was 

originally developed for the analysis of three-dimensional cracks of arbitrary geometry is 

solids (Xu and Ortiz 1993), allows for convenient incorporation of various types of 

interatomic potentials to account for the local non-linear effect. The generalized stacking 

fault energy, or the so called γ-surface (Vitek, 1968), obtained by atomistic simulation 

such as ab initio calculation or embedded atom method (EAM), is regarded as the best 

choice for its fidelity to the properties between interatomic planes. Although this method 

is not as direct as atomic simulation in terms of determining the nucleation or cross-slip 

process path, its continuum mechanics based approach possesses advantages in obtaining 

the stress-dependent saddle-point configurations and the associated activation energies 

under precisely described external loading conditions. As a complement to the atomic 

simulation, this method has proved to be a valuable tool in probing the activation 

parameters in many dislocation mechanisms (e.g., Xu and Zhang 2003; Segall, Li, Xu, 

2006; Li and Xu, 2006).   
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2.2 Formulation of Boundary Integral Equations 

Let  xu  denote displacement discontinuities along the crack and the slip planes. 

The total energy can be expressed by 

           xuxuxuxu PVWΠ                                    (2-1) 

where W is the elastic strain energy caused by these displacement discontinuities, V is the 

interatomic layer potential energy, and P is the work of the external forces. By modeling 

the relative displacement discontinuities  xu  as continuous distribution of infinitesimal 

dislocation loops and using a known expression of interaction energy between two 

dislocation loops (Lothe, 1982), 

           
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the elastic energy for general displacement discontinuities in general anisotropic solids 

can be obtained (Xu 2000) as 

  
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e
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exu (2-3) 

where C1 and C2 represents two general dislocation loops with the Burgers vector b1 and 

b2 respectively; R is the distance between two points; z is a unit vector perpendicular to R, 

and   is the angle between z and an arbitrary chosen reference z0; S represents the slip 

plane surface; (,)1 and (,)2 denote two different points on the surfaces; ei, i = 1, 2, 3, are 

Cartesian basis vectors; n is the normal vector on the surface S. The components of the 
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second-rank tensor in the notation (a,b) are defined as (a,b)jk = aicijklbl, where cijkl are 

elastic constants.  

 

Figure 2-1. Interaction of two straight dislocation segments in coplanar dislocation loops. 

The interaction energy varies finitely as the distance between them changes 

from R1 to R2. 

For the case that dislocations can treated as straight lines, Eq. (2-3) can be simplified 

from  surface integral to line  integral through following steps. First, the interaction 

energy between two parallel straight dislocations in anisotropic media is derived. As 

illustrated in the Fig. 2-1, a straight dislocation can be considered to be one side of a large 

closed rectangle loop with other three sides far away from simulation domain. For the 

interaction energy of two parallel straight dislocations, contained in the rectangle loops, 

only the two close segments (A1-A2) contribute appreciably to Eq. (2-2) and the other 

interaction terms (B1-B2, A1-B2, …), called end effects, have a negligible effect producing 

at most small constant terms on the interaction energy (Hirth and Lothe, 1982). Using 

Eq. (2-2) and only counting the interaction between A1 and A2, when the lengths of the 

segments A1 and A2 are both 2L and the distance between them is R, the interaction 

energy per unit length can be written as 
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where  

           
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dE bzξzzzzzξzξzξb              (2-5) 

is the energy factor as a function of only θ because z is dependent on θ; ξ is the common  

sense of two dislocation lines; and the definition of θ is shown in the Fig. 2-1. Eq. (2-4)  

does not converge but trends to infinity as L trends to infinity. However, the energy 

variation as the changing of R is finite. Considering the distance between the pair of 

parallel straight dislocations increasing from R1 to R2 as shown in the Fig. 2-1, the energy 

variation can be obtained from Eq. (2-4) as: 
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where tan/'  Rll  and l  is an existing number in the interval  12 /,/ RLRL  

according to the mean value theorem of integrals. As L trends to infinity, l  trends to 

infinity and the angle θ trends to π / 2. Thus the energy factor becomes 

  210
4

1
2/ bBb 


EE  where 

         



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2

0

1
,,,,

2

1
zξzzzzzξzξzξB .                    (2-7) 
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In Eq. (2-7), z is constrained in the plane perpendicular to the dislocation sense vector ξ. 

Here B is a positive-definite symmetric matrix that depends only on the direction of the 

dislocation sense ξ. Note that the matrix B is coincident as in the energy per unit length of 

a single straight dislocation  aRRW /ln
4

1
bBb 


 and for isotropic solids, B takes the 

diagonal form     1/2211 BB , 33B . By selecting the energy original point at a 

distance of r0 between the pair of parallel dislocations, when the distance between them is 

R, the interaction energy per unit length can be expressed as 

 RrW /ln
2

1
021int bBb 


.                                          (2-8) 

Second, following the same approach to obtain the integral equation method for an 

arbitrary three-dimensional crack in an anisotropic elastic media, the elastic strain energy 

of the solid with two dimensional penetrating cracks can be expressed from Eq. (2-8). As 

illustrated in Fig. 2-2, let L represent the two-dimensional crack which penetrates the 

solid media along the perpendicular direction (ξ). It can be divided into n segments, each 

of which can be regarded as a straight dislocation (straight line in Fig. 2-2) with the sense  

 

Figure 2-2. Discretization of a penetrating 2D crack. 
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along ξ direction. The Burgers vector of each straight dislocation equals to the differential 

of the displacement discontinuities at the end points of each segment as: 

i
i L

L

u
eub 




                                                 (2-9) 

where ΔL is the length of each segment and ei is the Cartesian basis. Invoking the 

principle of superposition and using the Eq. (2-8), the elastic strain energy per unit length 

of the cracked solid follows as 
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bBbxu  (2-10) 

The factor 1/2 in Eq. (2-10) compensates for the fact that the double sum accounts for the 

interaction energy between each pair of straight dislocations twice. The computation of 

the elastic strain energy is complete by passing to the limit of 0L . To this end, the 

Burgers vector in Eq. (2-9) becomes    dLudLLub iii τ / where τ is the tangent 

direction along L satisfying nξτ  and n is unit normal vector to the crack surface. 

Finally, for the two dimensional case, the Eq. (2-3) can be simplified to 

          
L L

jiji dLdLRruBuW 21021
/ln

4

1
ττxu


                  (2-11) 

where W now represents elastic energy per unit length; (,)1 and (,)2 denote two different 

points on L; R is the distance between two points; τ is the tangent direction along L; r0 is 

the reference radius, the section of which has no influence on the variation of the energy; 

Bij is the energy factor matrix defined in Eq. (2-7). The use of Eq. (2-11) over (2-3) 

reduces the surface integration to the line integration, which improves not only the 

efficiency but also the accuracy of the integration. Note that the singular integral kernels 
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of the type 1 / R can be accurately treated following the approach given by Xu and Ortiz 

(1993). 

The work of the external force   xuP  in Eq. (2-1) is defined as 

     
S

dSP xuσxu                                             (2-12) 

where σ is the surface traction, which can be related to the remote stress by invoking the 

principle of superposition.  

The interatomic layer potential energy   xuV  in Eq. (2-1) is given by 

      S
dSΦV xuxu                                             (2-13) 

where   xuΦ  is the interatomic layer potential energy per unit area, which may be 

defined as the energy variation as two blocks of crystals move uniformly against each 

other. Ignoring the coupling effect of normal stress across the atomic plane, this energy 

variation, termed the generalized stacking fault energy or the so called γ-surface (Vitek, 

1968), can be reliably obtained from various atomistic calculations. The details about the 

energy   xuΦ  are described in the next section 2.3. 

The displacements are discretized through the standard finite elements. The resulting 

nonlinear equations are solved by Newton-Raphson iterations. The possible saddle-point 

configurations of dislocations are solved by recourse to displacement control through 

Lagrange multiplier method. The details of these numerical treatments are referred to Xu 

and Ortiz (1993) and Xu, et al (1995). 
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2.3  Generalized Stacking Fault Energy (γ-surface) 

The energy   xuΦ  in Eq. (2-13), resulting from the interaction of the atoms on the 

adjacent layers along the slip plane, is expressed as a 1D sinusoid function in the original 

Peierls-Nabarro Model. In 2D this energy can be termed as the generalized stacking fault 

energy or the so called γ-surface (Vitek, 1968), without taking into account of the 

coupling effect of normal stress across the atomic plane. Consider a perfect crystal which 

is cut along a plane (Fig. 2-3). The two half crystals are displaced against each other and 

then reconnected, resulting in a uniform relative slip displacement u across cut plane. The 

generalized stacking fault energy is defined as the energy variation per unit area due to 

this relative slip. 

 

Figure 2-3. Two half crystal blocks have a relative displacement u across cut plane which 

results in an energy increment defined as generalized staking fault energy (γ-

surface). 

The generalized stacking fault energy can be obtained by atomic calculations based 

on the embedded atom method (EAM) or first-principles density function theory method 
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(DFT).To this end, we set up a uniform slip configuration (Segall, 2006) of crystal blocks 

represented by certain supercells with the lattice vectors of R1 as the Burgers vector and 

R3 as the normal vector of the slip planes. For example, FCC metals have the favorable 

{111} slip planes so that the lattice vectors of the suppercells are 

  baR  01 011
2

1
ax ,   02 211

2

1
ay  aR ,    03 1114 aR              (2-14) 

The supercells contain 8-12 layers atoms on the slip plane and are applied periodic 

boundary condition along all three lattice vectors direction. The uniform slip 

configuration with a slip vector u ([ux, uy]) is achieved by modifying the lattice vector R3 

to  zyyxx RRuRRuR 32313 ,,   while keeping the atoms’ absolute positions (not lattice 

coordinates) in the suppercell (Fig. 2-4). For every step corresponding to the slip vector u,  

ux uxux

 

Figure 2-4. Simulate a uniform slip by [ux, uy] of crystal blocks by lattice vector 

transformation (R3 → [ zyyxx RRuRRuR 32313 ,,  ]). 
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the atoms in the supercells are relaxed along the direction perpendicular to the slip plane 

while not relaxing lattice vectors under dilation to obtain a relaxed total energy. The 

generalized stacking fault energy due to the slip vector u is just the variation of the total 

energy per unit area as  

 
   

A

EE 0u
u tottot 
                                             (2-15) 

where A is the area of the cell surface parallel to the slip plane and Etot means the total 

potentials all of the atoms in one supercell.  

Both embedded atom method and first principles density function theory have been 

used to obtain the potentials between the atomic layers. We select embedded atom 

method for its computational simplicity. The semi-empirical embedded atom method is 

currently the method of choice for doing calculations in close-packed metals; it combines 

the computational simplicity needed for larger systems with a physical picture that 

includes many-atom effects and avoids some of the problems of the pair-potential 

scheme (Daw, 1983; Daw, 1984). In the embedded atom method, by viewing each atom 

as embed in a host electron gas created by its neighboring atoms, the total energy of the 

system of atoms can be represented as 

    
i

i

ji

ij FrE 
,

tot
2

1
                                        (2-16) 

where  ijr  is the pair potential as a function of the distance rij between atoms i and j, 

and F is the “embedding energy” as a function of the host “density” i  induced at site of 
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the atom i by all other atoms in the system. The embedding energy can be viewed as the 

interaction of the atom in the background electron gas. The host density i  is given by 

 



ij

iji r                                                    (2-17) 

where ρ(rij) is the “atomic density” function resulting from adjacent atom electron gas. 

These potentials are expressed in terms of parameterized functions, with the values of the 

parameters being defined through a fitting procedure based on the requirement that the 

potential reproduces a given set of experimentally known properties. The 

implementations of the EAM potential can be various in the choice of the functional 

forms and in the physical interpretation of the quantities. Basically, the equilibrium 

parameter a0, the cohesive energy E0, the vacancy formation energy f

vE , and the elastic 

moduli (C11, C12, and C44) are used as the fitting properties. 

A very simple empirical “N-body” potential form for seven BCC transition metals 

was proposed by Finnis and Sinclair (1984) as 
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   AF  ,                                                 (2-19) 
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where the parameters c0, c1, c2, c, A and d were fitting by certain experimental physical 

values a0, E0, C11, C12, C14, and f

vE ; the parameter β was chosen to introduce a maximum 

in ρ within the first-neighbor distance and could be a plausible arbitrary value.  

Chantasiriwan and Milstein (1998) proposed a parameterization scheme with other 

more physical experimental properties such as higher order elastic moduli (C111, C112, 

C123, C144, C166, and C456). In their potential formula for 12 cubic metals (Ag, Al, Au, Cu, 

Fe, K, Li, Mo, Na, Nb, Ni, and Rb): 
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
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rbrb
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sincos1 21 
                                     (2-22) 

the parameters A and di are determined from empirical values of the atomic volume V0 at 

zero pressure, the unrelaxed vacancy formation energy f

vE , and the combinations of 

elastic moduli C11 – C12, C44, C111 – 3C112 + 2C123, C144 – C166, and C456; b1 and b2 are 

fitting parameters that are chosen to satisfy the expressions for the elastic-moduli ratios 

(C12 – C44) / (C144 – C456) and (C12 – C44) / (2C144 + C112 – C166 – C123 – C456). As to the 

embedding function F(ρ), it was determined by the Rose’s universal equation of status 

(Rose, 1984) following the suggestion of  Foiles, et al. (1986) as 

     
ji

ijEOS raEF
,2

1
*  .                                      (2-23) 

For a cubic crystal with the lattice parameter a, the Rose’s equation of status (EOS) is 
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    *3

cohEOS **1* aekaaEaE                                    (2-24) 

with   00 /* aaaa   and  0coh 9/ VE . The constants a0, Ecoh, V0, and κ are the 

lattice parameter, magnitude of cohesive energy, volume per atom, and bulk modulus, 

respectively, at the unstressed reference state. 

Table 2-1. The physical constants used for CM EAM model construction 

 Al Ni Cu Fe Mo Li Au 

a0 (Å) 4.03 3.52 3.60 2.87 3.15 3.49 4.09 

C11 (Mbar) 1.143 2.508 1.762 2.26 4.696 0.148 1.929 

C12 (Mbar) 0.6192 1.500 1.2494 1.40 1.676 0.125 1.638 

C44 (Mbar) 0.3162 1.235 0.8177 1.16 1.068 0.108 0.415 

 

In order to improve the accuracy and reliability, the development of a potential form 

can also be based on the data of both experimental results and a large set of energies 

generated by ab initio calculations.  Mishin and Mehl etc. (1999) proposed the potential 

functions for Al and Ni in terms of cubic splines through given sets of {ri, i }, {ri, ρi}, 

and {ρi, Fi} points. The cubic splines coefficient sets are fitting to equilibrium lattice 

parameter a0, the cohesive energy E0, bulk modulus κ, the elastic moduli C11, and C12; 

phonon frequencies at the zone edge point X; unrelaxed values of the vacancy formation 

energy f

vE , the vacancy migration energy m

vE , the intrinsic stacking fault energy γsf, the 

surface energy γs(100), γs(110), and γs(111); an empirical EOS for any given set of lattice 

parameters; and the ab initio energies of several alternative structures (HCP, BCC and 

diamond structure) with the same first-neighbor distance as that in the equilibrium FCC 

phase (R0). For the metal Cu, the potential functions are in the form of formula with the 
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similar parameterization process based on the same data set of the experimental values 

and the ab initio energies as (Y. Mishion, 2001) 
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where 

       000 exp22exp,, rrrrrrM                          (2-26) 

is a Morse function, H(x) is a unit step function,  x  is defined as 
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The intrinsic stacking fault energy γsf used in the fitting process is actually one 

special point on the generalized stacking fault energy surface corresponding to a stacking 

fault structure ABC|BCABC for FCC metals. These potential functions from the work of 

Mishion etc. (1999; 2001) are selected in the γ-surface calculation for the metals Cu, Ni, 

and Al since the functional parameters already include certain γ-surface information and 

has better coherence to the experiment results on intrinsic stacking fault energy than the 
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Chantasiriwan-Milstein potential (CM). Due to the lack of better formula for other metals 

(Fe, Mo, etc.), the CM potentials are chosen for qualitative study.  

Table 2-2. The physical constants used for MI EAM model construction 

 Al Ni Cu 

a0 (Å) 4.05 3.52 3.615 

C11 (Mbar) 1.14 2.47 1.699 

C12 (Mbar) 0.616 1.48 1.226 

C44 (Mbar) 0.316 1.25 0.762 

 

Following the approach described above, the values of stacking fault energies 

corresponding to 1000 various slip vectors [ux, uy] have been obtained and the contour 

plots of the γ-surfaces on the slip plane for several metals are shown in Fig. 2-5. The 

γ-surfaces for the FCC metals Al, Ni and Cu have the similar style in Fig. 2-5 due to their 
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Figure 2-5. Contour plot of the γ-surfaces for FCC metals: (1) Al, (2) Ni and (3) Cu. 
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same lattice type. However one significant discrepancy among these metals is their 

various second lowest energies or the intrinsic stacking fault energy γSF (marked as ISF in 

Fig. 2-5) corresponding to the intrinsic stacking fault configuration which can be formed 

by a uniform slip of the upper crystal block with the slip vector 21 6/12/1 RRu  or 

23/1 Ru  , resulting in the stacking sequences as ABC|BCABC. Thus it gives the 

intrinsic stacking fault energy on the generalized stacking fault energy surface as γsf  = 

γ[R1 / 2, -R2 / 6] = γ[0, R2 / 3]. It must be realized that the intrinsic stalking fault energies 

for these three metals are distinguished from each other a lot which gives metals various 

properties by affecting the width of the intrinsic stacking fault area when a full 

dislocation dissociates. The various intrinsic stacking fault energies γsf obtained from 

EAM for the typical FCC metals Al, Ni, and Cu are summarized in Table 2-3 with 

comparison with the experimental values. We also listed the energy γsf calculated from 

CM potential in Table 2-3 as another comparison. The values obtained from Mishion 

potentials are in good agreement with the experiment measurements listed in the 

reference. And for metal Cu, CM potential gives a wrong negative γsf; thus it should be 

noted that the CM potentials tend not to be suited for the study of plasticity in some FCC 

metals, since they would fail in the description of the dislocation structure. 

Table 2-3. Intrinsic stacking fault energy γsf (mJ/m
2
) for FCC metals Al, Ni and Cu 

 Al Ni Cu 

EAM (Mishion etc.) 156.2 127.0 44.45 

EAM (Chantasiriwan etc.) 90 9 -5 

Experiment 166 125 45 
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Taking into account of the symmetry of the crystal slip plane, the γ-surface can be 

expressed in the Fourier expansion (Schoeck, 1999; 2001) corresponding to reciprocal 

lattice vectors, i.e., 

   








nm

nmi

mneC
,

21 GGu
u                                           (2-30) 

where G1 and G2 are the reciprocal vectors defined by ijji 2RG ; m, n are integers. 

Let 21 RRu yx uu  , where xu  and yu  are normalized relative displacements, the 

Fourier expansion of the γ-surface becomes 
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where the Fourier expansion coefficients can be determined by the integral 
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from which Cmn can be calculated from the numerical integral based on the sample values 

of  yx uu ,  obtained from atomic calculations such as embedded atom method (EAM) or 

density functional method. Considering  yx uu ,  is an even function to xu , an equivalent 

Fourier expansion of γ-surface in terms of triangle functions is 

   





0,

2sin2cos2cos,
nm

ymnymnxyx unbunaumuu  .                 (2-33) 

These coefficients amn and bmn used to determine the interatomic energy in the 

Peierls-Nabarro model can also be obtained by numerical integral of EAM calculating 
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 yx uu ,  points. The coefficients of the {111} slip plane γ-surface for Cu are summarized 

in Table 2-4. More γ-surface coefficients can be referred to the appendix. 

Table 2-4 Fourier coefficients of the {111} slip plane γ-surface for Cu (in unit of mJ/m
2
) 

 
m 

n 
0 1 2 3 4 5 

amn 

0 358.2286 0 -97.40841 0 4.48977 0 

1 0 -194.8168 0 -48.42981 0 -3.07021 

2 -24.2149 0 8.97953 0 -3.07021 0 

3 0 -3.07021 0 1.35728 0 0.37411 

4 -0.2277 0 0.37411 0 -0.12366 0 

5 0 0.03028 0 0.07362 0 -0.03780 

bmn 

0 0 0 152.31662 0 9.76717 0 

1 0 -304.6332 0 0 0 5.66783 

2 0 0 -19.53435 0 -5.66783 0 

3 0 -5.6678 0 0.51707 0 -0.13598 

4 0 0 -0.13598 0 -0.49043 0 

5 0 -0.1943 0 0.07380 0 0.12863 

 

These coefficients amn and bmn are not independent to each other since the three fold 

rotational symmetry is not introduced in above Fourier expansion. If the rotational 

symmetry is considered and set xux 2  and yuy 2 , the expansion for FCC metals 

should be  
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(2-34) 

(Schoeck, 2003; 2005) and thus the coefficients amn and  bmn have the relation of amn = 

bmn = 0 (m + n is odd), amm = 2a0(2m), bmm = −2b0(2m) a13 = 2a20, a31 = a24 = a15, b31 = b24 = 

−b15… Nevertheless these relations are automatically satisfied in Eq. (2-34) since the 
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sample points used for numerical integration are already rotational symmetric. Therefore, 

we can conveniently use the general expansion form for both BCC and FCC metals 

without regarding the different rotational symmetries. 

2.4 Example Studies 

The incorporation of the generalized stacking fault energy (γ-surface) into the 

Peierls-Nabarro model allows for dealing with dislocations with mixed screw and edge 

components. One application of this extended Peierls-Nabarro model is to determine the 

core structure of a dissociated dislocation consisting of two Shockley partials connected 

by the intrinsic stacking fault in FCC metals. Because of the various intrinsic stacking 

fault energies (γsf), the widths of the dissociated dislocations, defined by the separation 

distance between the consisting two Shockley partials, are various for different FCC 

metals. The width of the straight dissociated dislocation is important for determining the 

presence of the intrinsic stacking faults. The width may be estimated by the continuum 

theory. The Shockley partials in a dissociated dislocation repel each another by a force 

that varies as r2/21 bBb  , where r is the separation between the partials; B is the 

energy factor as in Eq. (2-8); and b1, b2 are the Burgers vectors of the partials. The 

formation of the stacking fault between the partials produces an increase in energy per 

unit length; this energy leads to an attractive force per unit length between partials by γsf. 

At the equilibrium separation re, the attractive force is equal and opposite to the repulsive 

elastic force. Thus, if the coordinator system is setting as x2 = n, x3 = ξ where n is the 
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normal direction of the slip plane and ξ is the sense of the dislocation, the equilibrium 

separation can be given by  

   
3

2cos2

γ8

33113311

sf





BBBBb

b

re 
                            (2-35) 

where b is the total Burgers vector of the dissociated dislocation (b = b1 + b2); β is the 

angle between the total Burgers vector and the sense of the dislocation ( ξb cos ). 

The total dislocation is a screw one when  0  and it is an edge dislocation when 

 90 . The tensor Bij also depends on the angle β. However, the term B13 always equals 

to zero when the slip plane is {111} plane because of the symmetry of the material 

constants tensor Cijkl in the cubic lattice crystal. For the angle  0 , the tensor B can be 

analytically integrated as (Hirth and Lothe, 1982) 
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According to Eq. (2-35), normally the FCC metal with lower γsf has larger separation 

distance e.g. Cu (γsf = 0.0032μb) and Al (γsf = 0.0185μb) is on the contrary. Therefore, 

three metals Al, Ni and Cu are selected to analysis due to their various γsf.  

 

Figure 2-6. Dissociation of a perfect dislocation into Shockley partials. 

The configuration of the simulation is set up as in Fig. 2-6. The slip plane is 

generally selected as (111) plane. The coordinator system is setting as x1 = n × ξ, x2 = n, 

x3 = ξ where n is the normal direction of the slip plane and ξ is the sense of the 

dislocation. The mixed perfect dislocation is inclined at an angle β to its Burgers vector. 

The partials  1216/11 b  and  1126/12 b  are inclined at 30 . The displacement 

discontinuities can always be decomposed into two components: one along the total 

Burgers vector direction ( ]011[u ) and the other along the perpendicular direction ( ]211[u ) 

no matter at what angle the dislocation is inclined. The dislocations are considered to be 

straight so that 2D simplification can be performed by Eq. (2-11). The simulation is 

initialized by introducing a complete idealistic intrinsic stacking fault with (2L) the width 

estimated by Eq. (2-35). Setting    2/1

011 bLxLu  ,    6/31

211 bLxLu  , 
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   bLxu 1

011 and other displacement discontinuities to be 0, the relaxation by 

Newton-Raphson iteration leads to the dissociated core structure. This core structure is 

actually independent on the initial width of the intrinsic stacking fault. Fig. 2-7 shows the 

core structure profiles of Al, Ni and Cu respectively under different inclined angles β.  
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Figure 2-7. Core structure profiles of dissociated dislocations for different inclined angles: 

(a) Al, (b) Ni and (c) (d) Cu. 
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It shows that the intrinsic stacking fault can span more widely in the edge dissociated 

dislocation than the screw dislocation for all the three metals. The simulation also 

indicates that the intrinsic stacking fault is obvious in Cu and is not clear in Al, which 

agrees well with the experiment observation. The separation distance between the two 

dissociated partials can be measured from the profiles. The positions of the partials can 

be defined as the points at which the displacement continuities component ]011[u  becomes 

equal to b / 4 or 3b / 4. The separation distances for FCC metals Al, Ni and Cu as a 

function of the inclined angle β are plotted in Fig. 2-8 along with the estimated values by 

Eq. (2-35). The discrepancy between the simulation results and the estimates comes from 

the fact that the area between the partials is not an idealistic intrinsic stacking fault 

according to the core structure profiles in Fig. 2-7. The discrepancy is relatively small 

when the intrinsic stacking fault is wide and trends to be more idealistic. It will be  
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Figure 2-8. Widths of dissociated dislocations as a function of the inclined angle β in the 

FCC metals of Al, Ni and Cu. 
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discussed in later chapters about how the width affects the dislocation behavior in the 

FCC metals. 

Without taking the straight dislocation simplification, a dissociated dislocation loop 

can be simulated using the general 3D integral formulas e.g. Eq. (2-3). Then the effects of 

the curved dislocation line to the width can be analyzed. In the homogenous media, a 

dislocation loop is a saddle-point configuration once it is nucleated, and it can expand 

assisted by a decreasing external shear stress (Xu, 2000). In this part, because we mainly 

concern about the width of dissociated dislocation loop, the nucleation process of the 

dislocation loop is not involved. Selecting the coordinator system as ]011[2/11 x , 

]111[3/12 x  ,  and ]211[6/13 x , and applying the external stress only along 1x  

direction, one possible dislocation loop configuration in Al is calculated using the similar 

approach for the straight dislocations. Fig. 3-9 shows the contour plot of the displacement 

continuities field and two components along ]011[  and ]211[  direction are plotted 

separately. The applied shear stress for this configuration is determined as 0.028C44. At 

this stress level, the radius of the dislocation loop is about 16b along the ]011[  direction 

and 11b along the ]211[  direction. The shape is consistent with expectation based on 

anisotropic line tension. The width of the dissociated dislocation loop is measured as 

3.16b for the edge segments and 2.13b for the screw segments.  
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Figure 2-9. Contour plot of the displacement continuities profile of a dissociated 

dislocation loop: (a) the ]011[u  components, and (b) the ]211[u  components. 

Overall, by incorporating the generalized stacking fault energy, the variational 

boundary integral formulation based on the Peierls-Nabarro dislocation frame work is a 

powerful and reliable method to simulate the dissociated dislocation consisted by partial 

dislocations and intrinsic stacking faults in FCC metals. This method can be further used 

to analyze the partial dislocation behaviors, e.g. nucleation of partial dislocations at a 

crack and the cross-slip of a partial dislocation, which are important phenomena to affect 

the behavior of the FCC metals. 
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Chapter 3 Nucleation of Partial Dislocations at a Crack 

3.1 Introduction 

Dislocation nucleation at cracks has been of considerable interest because of its 

significant implications on brittle versus ductile behavior of crystalline materials (Rice 

and Thomson, 1974; Argon, 1987; Schoeck and Puschl, 1991; Rice, 1992; Rice and Beltz, 

1994; Xu, et al., 1995, 1997; Kysar, 2003; Zhu, et al., 2004). When an atomically sharp 

crack in a perfect crystal is subjected to an increasing loading, the stress concentration at 

the crack tip can eventually initiate either Griffith cleavage fracture between atomic 

layers or dislocation nucleation induced plastic deformation. The competition between 

these two deformation modes plays an important role in determining whether the crystal 

is intrinsically ductile or brittle. Temperature and loading rate may also influence such 

competition because dislocation nucleation is a rate controlling process, although the 

activation energy required for thermally assisted dislocation nucleation at the crack 

appears to be too high for such a process to occur at the stress level markedly below the 

critical stress for athermal dislocation nucleation (Xu, et al., 1995; 1997). For the well 

known rapid brittle to ductile transition phenomena in a number of intrinsically brittle 

crystals such as silicon, tungsten, and iron, one should note the distinction that the 

process could be controlled by either the competition between cleavage fracture and 

dislocation nucleation at the crack or cleavage fracture and the motion and multiplication 

of shielding dislocations in the crack tip region. The study by Xu, et al. (1997) has shown 

that brittle to ductile transition in certain metals such as iron could be nucleation 
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controlled because of their high dislocation mobility while other studies indicate that such 

a transition in tungsten and silicon with relatively low dislocation mobility is more likely 

influenced by dislocation motion (Hartmaier and Gumbsch, 2002, 2005). In either case, 

the energetics of dislocation nucleation at cracks is of great importance for understanding 

the source of dislocations and its influences on mechanical behavior of crystalline 

materials.  

The energetics of dislocation nucleation at cracks has been previously analyzed 

through the incorporation of the Peierls-Nabarro dislocation model (Peierls, 1941; 

Nabarro, 1947; Hirth and Lothe, 1982) along the slip planes at the cracks (Schoeck and 

Puschl, 1991; Rice, 1992; Rice and Beltz, 1994; Xu, et al., 1995, 1997). These analyses 

generally adopted the constrained path assumption, i.e., the slip between the adjacent 

atomic layers is assumed to be in the Burgers vector direction, which is not applicable to 

complex nucleation configurations that include partial dislocations and stacking faults. 

Many recent studies of nanostructured metals appear to indicate that certain mechanical 

behavior of nanostructured metals such as the limit strength and the strong strain rate 

sensitivity may be controlled by nucleation of partial dislocations at stress concentration 

sites on grain boundaries and their subsequent generation of stacking faults across nano-

sized grains (Asaro and Suresh, 2005). A preliminary analysis using continuum elastic 

dislocation theory is insightful but needs the incorporation of sufficient atomic 

information to delineate the influence of various atomic configurations and parameters on 

the nucleation process. It is this problem that motivated us to study partial dislocation 

nucleation at a crack using the relatively more definitive Peierls-Nabarro dislocation 
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model. The model allows for incorporation of atomic information into continuum 

mechanics based method to more faithfully account for dislocation core structure. We 

choose the crack configuration because of its generic interest as well as its well 

characterized stress concentration. One should bear in mind that dislocation nucleation is 

largely a high stress driven process. In nanostructured metals, it is most likely to occur at 

heterogeneities on grain boundaries or surfaces where high stress concentrations exist.   

In general, two conditions are of particular interest for understanding dislocation 

nucleation behavior. One is the critical stress for athermal nucleation, which occurs 

instantaneously at absolute zero temperature. The other is the activation energy required 

for thermally assisted nucleation at a stress level below the critical stress for athermal 

nucleation. The critical conditions for nucleation of full dislocations in various 

configurations, including cracks, have been extensively studied in the literature (e.g., 

Rice, 1992; Rice and Beltz, 1994; Xu, et al., 1997; Xu and Argon, 2000; Xu and Zhang, 

2003; Li and Xu, 2006). Because of the formation of intrinsic stacking faults during the 

nucleation process, nucleation of a pair of partial dislocations accompanied by a stacking 

fault, however, appears to be different from nucleation of a full dislocation in many 

aspects. Specifically, the leading partial is nucleated first and leaves an intrinsic stacking 

fault connected to the crack front. The critical condition for nucleation of the trailing 

partial is then influenced by the stacking fault and the position of the leading partial. 

Depending on the critical conditions for both partial nucleation processes, nucleation of 

the trailing partial could occur either simultaneously with the leading partial or after the 

leading partial is driven far away from the crack front under increasing loading.  
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Nucleation of partial dislocations from a crack in a two dimensional configuration 

has been first analyzed by Rice (1992). The critical stresses required for nucleation of the 

leading and trailing partials are obtained by applying the constrained path assumption 

separately to each partial. The constrained path assumption may cause significant errors 

especially for a pair of curved partial dislocation configurations when significant slip 

involved in the configuration does not strictly follow the partial Burgers vector direction. 

By incorporating the generalized stacking fault energy into the fully three dimensional 

boundary integral formulation of the Peierls-Nabarro dislocation model, slip is allowed in 

all directions along the slip plane and constrained path assumption is no longer necessary. 

The generalized stacking fault energy is obtained based on direct atomistic calculations 

so that the influence of atomic parameters on dislocation nucleation can be most 

faithfully accounted. The unstable saddle-point configurations of embryonic dislocations 

in general three dimensional configurations are solved by controlling slip through the 

Lagrange multiplier method in the continuum mechanics based variational boundary 

integral method. The critical conditions for nucleation of both leading and trailing partial 

dislocations at the crack in Al and Cu are determined. 

3.2 Modeling 

We consider the configuration of an atomically sharp as shown in Fig. 3-1. The slip 

plane is along the extension of the crack. Between adjacent atomic layers along the slip 

plane is incorporated with the nonlinear interatomic layer potential. The crack is 

subjected to shear loading characterized by the standard K-field with the stress intensity  
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Figure 3-1. Configuration of a semi-infinite crack in an anisotropic crystal. 
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Figure 3-2. Dependence of the energy release rate on crack front orientation on {111} 

crack surface in Al and Cu. The preferred crack front direction is 110  for 

both Al and Cu. 
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factors IIK  and IIIK . For convenience, we represent cosII KK   and sinIII KK  , 

where K  is a single combined stress intensity factor and   is the arctangent of the ratio 

KIII / KII, which is aligned with the shearing direction at the crack front. As the shear 

loading increases from zero, the stress concentration at the crack front induces slip, i.e., a 

relative displacement between the adjacent atomic planes along the slip plane, which 

eventually leads to the formation of a dislocation emanating from the crack front. We 

select FCC metals Al and Cu for the following comparative studies for their distinctive 

difference in the intrinsic stacking fault energy and its potential influence on the 

formation of the stacking fault at the crack front. The slip plane in both metals is the {111} 

plane. The preferred crack front direction is chosen by following the approach presented 

in Xu, et al. (1997) in which the variation of the energy release rate of a tensile crack as a 

function of the crack front orientation is calculated. The orientation with the minimum 

energy release rate is the most favored crack front orientation. Results as shown in 

Fig. 3-2 suggest that the preferred crack front orientation of cleavage fracture on the {111} 

plane in both Al and Cu is parallel to the <110> direction, although Cu appears to be far 

more anisotropic than Al. For this crack front orientation, a full dislocation can be 

nucleated along six possible <110> directions, which can be split into six groups of 

Burgers vectors for corresponding leading and trailing partials as shown in Fig. 3-1. Note 

that there are only three possible Burgers vectors Lb  for the leading partials: ]121[6/1 , 

]211[6/1  and ]112[6/1 . Denote the angle between the crack front normal direction and 

the Burgers vector of the leading partial as  ; the possible Burgers vectors of the leading 

partials are along  0 , 120 , and  120 . The choice of the direction is 
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determined by the shear loading angle  : for  6060  , 1]2[161/L b ,  0 ; for 

 18060  , ]211[6/1Lb , 120 ; and for  60180  , ]112[6/1Lb , 

 120 . The anisotropic material constants are used in the calculations unless the 

isotropic material constants are specified. The anisotropic material constants are chosen 

to be consistent with the atomic potentials used for the calculations of the generalized 

stacking fault energies.  

Following the methodology described in Chapter 2, the solution of  xu , both the 

crack opening displacements and displacement discontinuities along the slip planes, can 

be obtained by the minimization of the total energy 

           xuxuxuxu PVWΠ                                     (3-1) 

where W is the elastic strain energy, V is the interatomic layer potential energy, and P is 

the work of the external force. The expression for these three terms can be referred to Eq. 

(2-3), Eq. (2-13) and Eq. (2-14) in Chapter 2. For the semi-infinite crack, in order to 

reduce the computation on the finite domain, a mathematical treatment can be 

manipulated following the procedure introduced by Xu et al. (1995) and Xu and Ortiz 

(1993). The reduction can be achieved by writing the opening displacement of the crack 

surface and displacement discontinuities along the slip planes as 

δuu                                                          (3-2) 

where u  represents the standard K displacement field for a reference semi-infinite crack 

and can be expressed as 0u   for 01 x  and  

2
4 11 x

KBu jiji





                                                (3-3) 
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for 01 x . Note that in this notation the stress intensity factor component 1K , 2K , and 

3K  represents IIK , IIIK , and IK , respectively. The expression for B is identical to the 

pre-logarithmic energy factor of the interaction energy of parallel straight dislocations in 

Eq. (2-8) and B depends only on the direction of the dislocation of the crack front. The 

term u  matches the behavior of the opening displacements far away from the tip. 

Consequently, the remaining term δ , which is the primary unknown in the  calculations, 

decays rapidly to zero with the distance away from the crack tip. In this manner, δ  can 

be restricted to a finite domain SC
ˆˆ SS  , where CŜ  lies on the crack surface and SŜ  on the 

slip plane. Then, the potential energy of the crack and slip plane system can be written as 

             δuδδuδδuδu ,2WVWWVW                    (3-4) 

where  uW  is identified as the self energy of the loaded elastic solid according to the 

conventional solution in which δ  is constrained to be zero;    δδ VW   is the self energy 

of the system of the modifications consisting of the distributed dislocations and the 

interlayer interaction energy on the slip plane; and  δu,2W  is the interaction of the initial 

unmodified standard K-field with the second system of modifications. Hence,  δW  can 

be expressed according to Eq. (2-3) on the domain of  SC
ˆˆ SS   ;  δV  can be expressed 

according to Eq. (2-13) on the domain of SŜ ; and  δu,2W  can be expressed as 

   
s

ˆ2 ,
S

dSW δσnδu                                             (3-5) 

where σ  is the stress of the standard K-field on the extended slip plane of the crack 

surface and for the semi-infinite crack surface referred in Fig. 3-1, σ  can be expressed as 
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1

3
2 x

Ki
i


  , 0122211   .                                    (3-6) 

The minimization of the potential energy  δu   with respect to the displacement δ  

leads to nonlinear integral equations. The displacements are discretized through the 

standard finite elements. The resulting nonlinear equations are solved by 

Newton-Raphson iterations. The saddle-point configurations of dislocations in the 

nucleation process are solved by recourse to displacement control through Lagrange 

multiplier method. The details of these numerical treatments refer to Xu and Ortiz (1993) 

and Xu, et al. (1995).  

3.3 Nucleation of Straight Partial Dislocations 

We begin by considering nucleation of a straight dislocation parallel to the crack 

front. For this two dimensional case the elastic energy equation can be simplified to 

Eq. (2-11). It reduces the surface integration to the line integration, which improves not 

only the efficiency but also the accuracy of the integration. Therefore, the potential 

energy in Eq. (3-4) can be simplified to  
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δδ     (3-7) 

where 0W  is the elastic energy per unit length of the standard K-field and independent on 

δ; and x ,  'x  is the short for 1x  and '1x  respectively. In the numerical analysis of the 

crack and slip plane that are co-planar, the integration in Eq. (3-7) can be further reduced 

on the domain of the slip plane using the condition that the crack surface is traction free. 
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First, consider a dislocation on the extended slip plane with a distance of ρ from the crack 

front and its profile can be presented by   ii bx   0 and   0  xi  as 

illustrated in Fig. 3-3. In anisotropic solids, the stresses on the slip plane of a dislocation 

with the Burgers vector of b can be written as 

r

bB jij

i



2

3                                                       (3-8) 

where r is the distance from the dislocation on the slip plane. Invoking the principle of 

superposition, the free traction condition on the crack surface can then be expressed as  

 
)0(,0'
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.                      (3-9) 

Because the matrix Bij is positive-definite symmetric, the solution of   dxxd i /  in 

Eq. (3-9) can be calculated by the inverse Hilbert transformation as 

 
)0(,

1
'

''

'1 0

2



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
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   x
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x

b

xx
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xdx

xd iii 
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
.           (3-10) 

 

Figure 3-3. Illustration of a dislocation in a semi-infinite crack. 
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Invoking the principle of superposition, the crack opening displacements can be 

expressed as a function of the displacement continuities on the extended slip plane as 

   
)0(,'

'

'

1

'

'1

0



 
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xdx
x

x

xxdx

xd

dx

xd ii 




.                        (3-11) 

Then, for 0x , the integration of   dxxd i /  on the crack surface can be expressed as 

integration only on the domain of the slip plane: 
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Therefore, the second term in Eq. (3-7), representing the self elastic energy of the 

displacements modification, can be written as 
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Finally, the integral formulas only on the domain of the slip plane is 
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The final integration is mathematically equivalent to Eq. (8) in Rice (1992) if the material 

is assumed to be isotropic. 
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3.3.1 Nucleation of leading partial dislocations 

Consider the configuration as shown in Fig. 3-1. As the shear loading increases from 

zero, the stress concentration on the slip plane near the crack induces stable slip until the 

shear loading reaches the critical value at which the slip becomes unstable, forming a 

leading partial dislocation emanating from the crack. The critical stress intensity factor 

for nucleation of the leading partial varies with the orientation angle   (the angle 

between the Burgers vector of the leading partial and crack front) and the shearing angle 

 . Using J-integral, Rice gave a nucleation criterion for isotropic solids as 

   us

22

IIIII sin1cos
1

2
sincos 




 


 KK                    (3-15) 

where usγ , defined as the unstable stacking fault energy, is the maximum value of γ  

along the constrained slip path in the Burgers vector direction. For anisotropic solids, the 

energy release rate is jiji KBKG 1

2

1   where ijB  is the same variable as in Eq. (3-3). The 

corresponding nucleation criterion for the leading partial dislocation is given by 

  pKK usIIIII γsincos                                       (3-16) 

where     2sinsincos2 13

2

33

2

11 BBBp  . Using the combined stress intensity 

factor K, the nucleation criterion can be re-casted as 
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where )1/(γ2 us

Ref  CK  is the critical value for nucleation in the Voigt averaged 

isotropic solid when 0 and 0 ; 11B , 33B  are the normalized material constants 
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given by    /1 ijij BB . This equation suggests that the normalized critical stress 

intensity factor is linearly dependent on )cos(/1    with various slopes as a function of 

 . 
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 (a) (b) 

Figure 3-4. Sequence of the leading partial configurations at various loading levels for Cu 

(  120  ,90  ). The configuration is represented by the shearing 

displacement components in ]112[  (parallel to the partial Burgers vector) and 

]110[  (perpendicular to the partial Burgers vector) directions. The solid lines 

represent the stable configurations while the dashed lines represent the 

saddle-point configurations. The relative critical loading for nucleation of the 

leading partial is 89.0L

C K . 

For the configuration as shown in Fig. 3-1, the possible slip angle   are 0°, 120°, 

and –120°. The corresponding shearing angle θ ranges from 60  to 60 . Since the 

slip systems associated with 120 and  120  are symmetric, only two sets of 

calculations are performed for various shearing angle θ from –180° to 60° with a 10° 

interval. Using the case of  90  and 120  in Cu as an example, the relative 
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displacement components at the crack tip, both parallel and perpendicular to the Burgers 

vector direction, are plotted in Fig. 3-4 for various loading levels. All length parameters 

are normalized. The parameter b  is the magnitude of the Burgers vector of the full 

dislocation. It can be seen from Fig. 3-4(b) that considerable lateral slip is involved, in 

contrast with zero lateral slip assumed in the constrained path assumption. The actual slip 

paths at the crack tip for various loading configurations on the background of the contour 

plot of the generalized stacking fault energy are plotted in Fig. 3-5. The dashed line 

represents the constrained path in the Burgers vector direction. Note that the actual slip 

paths in the figure represent the whole nucleation process, including both leading and 

trailing partials. At this stage the discussion is focused only on the first halves of the 

paths, which correspond to the nucleation processes of the leading partials. The figure 

shows that the slip path at the crack tip progressively deviates from the constrained path 

as the shear loading direction progressively deviates from the Burgers vector direction of 

the leading partial. The curved slip paths are influenced by material, loading 

configuration, and the landscape of the generalized stacking fault energy surface, as 

evidenced in the figures for both Al and Cu. For Cu with relatively low intrinsic stacking 

fault energy, most paths go through the area near the intrinsic stacking fault energy, 

which means the intrinsic stacking fault prevails in Cu under most shear conditions. On 

the contrary, for Al with relatively high intrinsic stacking fault energy, the fact that most 

paths do not go through the area near the intrinsic stacking fault energy means distinctive 

intrinsic stacking faults are rare, indicating that the trailing partial is most likely to follow 

the leading partial closely in the nucleation process. Along each path, the peak value of 
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Figure 3-5. The slip paths at the crack tip for various loading directions. (a) Al,  0 ;  

(b) Cu,  0 ; (c) Al, 120 ; (d) Cu, 120 ;  The dashed lines 

represent the constrained paths in the Burgers vector directions of partial 

dislocations. 
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the generalized stacking fault energy still represents the stage at which the partial can be 

fully formed, as the J-integral approach used for obtaining the nucleation criterion based 

on the constrained path assumption is still valid. However, an analytical solution for the 

criterion is hard to obtain because the slip path cannot be determined analytically 

anymore. Therefore, we plot numerical results of the critical loading for nucleation of the 

leading partial as a function of shearing angle   in Fig. 3-6 for various  . The Rice 

results based on the constrained path assumption is also plotted as a comparison. It is 

interesting to note that even the constrained path assumption becomes increasingly 

invalid as the shearing direction deviates from the Burgers vector direction, the analytical 

results nevertheless remain to be good approximations to the large extent. 
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Figure 3-6. Critical loading for nucleation of the leading partial as a function of loading 

direction for (a) Al and (b) Cu. 
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3.3.2 Nucleation of trailing partial dislocations 

When an embryonic full dislocation reaches its unstable configuration at the critical 

loading, it would emanate from the crack dynamically if the loading is maintained. 

Theoretically the dislocation may also emanate from the crack steadily at the decreasing 

loading as long as the loading is balanced unstably by the image stress, which attracts the 

dislocation back to the crack. Here the lattice resistance is negligible compared with other 

stresses in the crack tip region. The energy difference between the unstable and stable 

equilibrium configurations at the same loading level is the activation energy required for 

thermally assisted dislocation nucleation at that stress level, assuming that the change of 

the entropy of the system is negligible. Because the image stress of the embryonic 

dislocation keeps decreasing faster than the loading stress as the dislocation moves away 

from the crack ( r/1  versus r/1 , r  is the distance of the dislocation position to the 

crack tip), the fully nucleated dislocation at certain stress level keeps moving away from 

the crack till it is hindered by other obstacles or trapped by lattice resistance at far 

distance to the crack tip. 

Compared with nucleation of the full dislocation, the nucleation process of a pair of 

partial dislocations is rather different. When the leading partial reaches its unstable 

configuration and moves away from the crack, it does not leave behind the perfect lattice 

structure but rather an intrinsic stacking fault of energy sfγ . The leading partial always 

impedes nucleation of the trailing partial while the stacking fault facilitates it. The 

formation of the stacking fault also exerts a constant attraction force to the leading partial 



  51 

as it moves away from the crack. All these factors have rather complicated influence on 

nucleation of the trailing partial. For example, for materials with relatively high stacking 

fault energy such as Al, the trailing partial may be nucleated instantaneously after the 

leading partial. On the other hand, for materials with relatively low stacking fault energy 

such as Cu, the leading partial has to be driven relatively far away from the crack before 

the trailing partial can be nucleated. Because of the low attracting force to facilitate 

nucleation of the trailing partial, additional loading may be required for its nucleation. 

To illustrate the difference between nucleation of partials in Al and Cu, we consider 

a special loading configuration  90  under which a dissociated screw dislocation is 

nucleated with the leading partial in the direction 120 . Note that in this special case 

the resolved shear stress components on both leading and trailing partials are the same. 

Both stable and unstable configurations are solved by controlling slip through the 

Lagrange multiplier method. The calculations are carried out till the trailing partial 

dislocation is fully formed for both Al and Cu.  

Fig. 3-7 shows the sequence of the stable and unstable configurations of the 

dissociated dislocation at various loading levels for both Al and Cu. Only the slip 

component in ]011[  direction is plotted. The solid lines represent stable configurations 

while the dashed lines unstable ones. Note the scale difference in the horizointal axes of 

Fig. 3-7 (a) and (b). For Al, the trailing dislocation is nucleated almost immediately after 

nucleation of the leading partial. For Cu, the trailing partial is not nucleated until the the 

leading partial is moved away from the crack (the nucleation configurations for the  
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Figure 3-7. Sequence of the embryonic configurations of the dissociated dislocation 

(  120 ,90  ) at various loading levels. (a) For Al, the trailing partial is 

nucleated almost immediately after nucleation of the leading partial; (b) For 

Cu, the trailing partial is nucleated only after the leading partial is moved 

relatively far away from the crack. 
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Figure 3-8. The equilibrium loading as a function of leading partial position for (a) Al 

and (b) Cu. 
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leading partial are omitted in Fig. 3-7(b) for better visualization). This difference may be 

better understood from Fig. 3-8, which plots the equilibrium loading level versus the 

position of the leading partial for both Al and Cu. The peaks denoted by L

CK  and T

CK  

represent the critical loading for nucleation of the leading and trailing partials, 

respectively. The local minimum value TL

min

K  denotes the transition from the unstable to 

stable loading as the leading partial moves away from the crack. For Al, there is no peak 

value T

CK . The trailing partial is nucleated almost immediately after the leading partial is 

nucleated. For Cu, nucleation of the trailing partial can only occur after the leading partial 

is moved relatively far away from the crack. The existence of TL

min

K  indicates that the 

loading needs to be increased to the new peak value T

CK  in order for nucleation of the 

trailing partial to occur. It should be noted that even T

CK  is lower than L

CK , nucleation of 

the trailing partial cannot occur simultaneously because the critical loading for nucleation 

of the trailing partial would be significantly higher if the leading partial is still at the 

vicinity of the crack to impede nucleation. This phenomenon has significant implication 

on the formation of stacking faults. Although the width of the equilibrium stacking fault 

of a dissociated screw dislocation in Cu is only about 5b, the stacking fault formed during 

the nucleation process has to be significantly larger before the trailing partial can be 

nucleated. It is very likely that, for example, in a nano-grained crystal the leading partial 

is moved across the grain and pinned or absorbed by the grain boundary before the 

trailing partial is nucleated, resulting in a relatively large stable stacking fault across the 
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grain. Many atomistic simulations of the deformation process of Cu appear to confirm 

this phenomenon (Kumar, et al., 2003; Yamakov, et al., 2003). 
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Figure 3-9. The enegery release rate is always equal to the generalized stacking fault 

energy at the crack tip during the nucleation process. The local maxium value 

represents the critical loading required for athermal nucleation of the leading 

or trailing partials. 

It is interesting to note that the energy release rate is always equal to the generalized 

stacking fault energy at the crack tip during the nucleation process according to J-integral 

as shown in Fig. 3-9, which plots both of them versus the relative slip along the 

]011[ direction. The local maximum value along the slip path of the crack tip therefore 

represents the critical loading for athermal nucleation of the leading or trailing partial. 

Since the slip path of the crack tip as shown in Fig. 3-5 is influenced by many factors, it 

is difficult to obtain simple formula to describe the criterion for partial dislocation 

nucleation. Using the constrained path assumption and J-integral to the entire dissociated 

dislocation, including the leading partial dislocation, the associated stacking fault zone, 
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and the incipient trailing partial dislocation, Rice (1992) gave a nucleation criterion of the 

trailing partial as 

    

   Tsfus

TL13TL33TL11

L

L
TIIITII

γγ

sinsinsincoscosB
2

sincos








p

BB
r

b
KK




 (3-18) 

where L  and T  are the angles between the crack front and the Burgers vector of the 

leading and the trailing partial, respectively; Lb is the Burgers vector length of the leading 

partial and Lr  is the equilibrium position of the leading partial, which can be obtained by 

the balance of all the forces (applied K-field, image force due to the stress-free crack 

surface, and the force sfγ  to annihilate the stacking fault) exerted on it through 

     
 L

Lsf

2

LIIILIILIIILII

L

L
γsincossincos

22 



 p

pKKKK

r

b 
     (3-19) 

Using the combined stress intensity factor K ( cosII KK  , sinIII KK  ) and 

substituting Eq. (3-19) into Eq. (3-18), the criterion for nucleation of the second partial 

may be written as 

            TsfusLsf

2

L

2

LT

*

T γγcoscoscos  ppKKK        

(3-20) 

where 

    LTL13TL33TL11 /sinsinsincoscosB2  pBB  .           (3-21) 

For most cases, *

TK  increases as K increases, so that when K reaches a critical value of 

T

CK , the criterion is satisfied and then the trailing partial is nucleated. By moving the first 
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term of Eq. (3-20) to the right side and making both sides squared, the critical value T

CK  

can be obtained by solving the quadratic equation 

      02 2

2

22

121

22

1

2

2  CCKaCKaa                               (3-22) 

where  L1 cos  a ,   1T2 cos aa   ,    Tsfus1 γγ pC  , and 

 Lsf2 γ pC  . The root of the critical stress intensity factor T

CK  should satisfy two 

requirements: (1) the term under the square root on the left side in Eq. (3-20) should be 

positive, i.e.,    LLsf

T

C cos/γ   pK , which comes from the fact that T

CK  needs to 

exceed TL

min

K  to have a physical meaning and (2) the first term in Eq. (3-20) should be 

less than the right side due to the positive value of the square 

root,    Lfus

T

C2 γγ pKa s . It is also possible that both roots do not satisfy these two 

requirements or there is no real root, which suggests that for every 

   LLsf cos/γ   pK , the condition    Tsfus

*

T γγ pK   is always satisfied, 

leading to the case that the trailing partial is simultaneously nucleated after nucleation of 

the leading partial. Fig. 3-10 plots the numerical results of the critical loading for 

nucleation of the trailing partial dislocation as a function of shearing angle   for the 

leading partial with 120 , together with Rice analytical results based on the 

constrained path assumption. For the references, the numerical and Rice results of the 

critical loading for nucleation of the leading partial are also plotted in Fig. 3-10. 

According to the relationship between L

CK  and T

CK , the plots in Fig. 3-10 can be divided 

into several zones: (1) L

C

T

C KK  ; (2) L

C

T

C KK  ; (3) there is no critical stress for the 
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nucleation of the trailing partial. Once more, it is interesting to note that even the 

constrained slip path assumption appears to be increasingly invalid as the shearing 

direction deviates from the Burgers vector direction, the analytical results based on the 

constrained path assumption are still reasonably good approximation for nucleation of 

trailing partials for most configurations. However, for Al, the division of the loading 

zones for different nucleation mechanisms based on numerical results is quite different 

from the Rice analysis. This is probably because in Al the closer interaction between the 

leading and trailing partial causes their configurations to deviate more from the standard 

dislocation configuration of linear elastic dislocation theory on which Rice analysis is 

based.  
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Figure 3-10. Critical loading for nucleation of the trailing partial as a function of loading 

direction for (a) Al and (b) Cu. According to the relationship between L

CK  

and T

CK , the plots can be divided into three zones: (1) L

C

T

C KK  ; (2) 
L

C

T

C KK  ; (3) there is no critical stress for the nucleation of the trailing 

partial. 
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Figure 3-11. The equilibrium loading versus the position of the leading partial pinned 

down at various distance. The peak values at A, B, …, G represent the critical 

loading required for nucleation of the trailing partial. 
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Figure 3-12. The equilibrium loading versus the position of the leading partial for vaious 

loading directions. 
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To further reveal how various factors influence nucleation of the trailing partial, we 

first consider how the position of the leading partial affects the critical loading T

CK  for 

nucleation of the trailing partial for the considered configuration in Cu. Assume there 

exists an obstacle in front of the crack to pin down the leading partial. The critical 

loading for nucleation of the trailing partial T

CK  varies with distance of the obstacle to the 

crack. The equilibrium loading versus the position of the leading partial for various 

positions of the obstacle during the nucleation process is plotted in Fig. 3-11. For each 

curve, the first peak value (note that all the first peaks coincide) represents the critical 

loading for nucleation of the leading partial while the second peak value represents the 

critical loading for nucleation of the trailing partial. When the obstacle is located 

relatively far from the crack, no more additional loading is required for nucleation of the 

trailing partial because the second peak value is less than the first peak value. Larger than 

L

CK  loading is required for nucleation of the trailing partial if the leading partial is pinned 

down by the obstacle at the position closer than about 15 Burgers vectors to the crack. 

For the configuration we have considered in Al, the position of the leading partial 

becomes a lesser issue since the trailing partial is nucleated almost immediately after 

nucleation of the leading partial. Instead, we focus on understanding how the loading 

direction affects the critical loading T

CK  for nucleation of the trailing partial for 

120L . Fig. 3-12 plots the equilibrium loading versus the position of the leading 

partial for various loading directions during the nucleation process. Together with the 

curves in Fig. 10(a), the results may be summarized as three cases:  
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(1)  0~15~  , L

C

T

C KK  ; (2)  25~15~  , L

C

T

C KK  ; and (3) 

 25~60  ,  no critical stress for nucleation of the trailing partial. For case (2) 

and (3), the trailing partial can be considered to be simultaneously nucleated as the 

leading partial is being developed. We shall note that for all geometrical and loading 

conditions there seldom exist large intrinsic stacking faults in Al. The intrinsic stacking 

fault formed in the nucleation process has a size of about 3b, which is similar to the 

intrinsic stacking fault size of the final dissociated full dislocation in a perfect crystal. By 

contrast, the intrinsic stacking faults in Cu prevail and have much larger size than the size 

of the dissociated full dislocation in a perfect crystal.  

3.3.3 Activation energy 

The difference of the nucleation process in Al and Cu is also reflected in the 

activation energy required for thermally assisted nucleation. Taking the example 

configuration of  90  and 120 , the relative total energy per unit Burgers vector 

length for different dislocation configurations under various stress levels for Al and Cu,  

respectively, is plotted in Fig. 3-13(a) and (b). For Al, since the leading and trailing 

partials are nucleated almost simultaneously and there is only one critical stress as shown 

in Fig. 3-8(a), the activation energy analysis is similar to that of a single full dislocation. 

Note that at the stress level near the critical stress, the activation energy is regarded as the 

activation energy required to activate the leading partial. The trailing partial is formed 

immediately after the leading partial emanates from the crack. At the relatively low stress 

level, significant energy is required for nucleation of the fully dissociated dislocation at  
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Figure 3-13. Dependence of the total energy and activation energy on loading (  90 , 

120 ): (a) and (c) Al; (b) and (d) Cu. 
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the crack. For Cu, the total energy variation is divided into four segments related to the 

loading process: (1) stable equilibrium loading till the leading partial is nucleated at L

CK , 

(2) unstable equilibrium loading till the conversion from unstable to stable configuration 

at loading TL

min

K , (3) stable equilibrium loading till the trailing partial is nucleated at T

CK , 

(4) unstable equilibrium loading as the fully formed dissociated dislocation moves away 

from the crack. Several activation energies may be identified as shown in Fig. 3-13(d): (1) 

the energy differences between the unstable and stable configuration for each leading and 

trailing partial nucleation, marked as L

actE  and T

actE ; (2) the energy difference between 

the stable configuration of the leading partial and the final saddle-point configuration of 

the combined leading and trailing partials, marked as C

actE . At the loading level between 

T

CK  and L

CK , L

actE is the activation energy required for thermally assisted nucleation of 

the leading partial. Once the leading partial is nucleated at this loading level, the trailing 

partial is subsequently nucleated, leading to fully formed dissociated dislocation with a 

stacking fault as the leading partial moves away from the crack. At the loading level 

between TL

min

K  and L

CK , L

actE is still the activation energy required for thermally assisted 

nucleation of the leading partial first. Once the unstable configuration of the leading 

partial is formed, it moves naturally to the stable configuration with the incipient trailing 

partial because the energy of this state is lower than that of the unstable configuration as 

shown in Fig. 3-13(b). T

actE is then the required energy to activate this stable 

configuration with the leading partial and the stacking fault to the unstable configuration 

of the full formed dissociated dislocation. Once the dissociated dislocation is fully 
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formed, it moves away from the crack while the stacking fault eventually shrinks to the 

normal equilibrium spacing. Finally, at the loading level below TL

min

K , C

actE  is required 

for thermally assisted nucleation of the fully formed dissociated dislocation, which in 

general is an unlikely event because of extremely high energy barrier.  

3.4 Nucleation of Curved Partial Dislocations 

The above energetic analysis of idealistic nucleation of straight dislocations in the 

two dimensional configuration provides a good insight on the complex nucleation process 

of partial dislocations at the crack. The realistic situation is nucleation of a curved 

dislocation as a consequence of a localized outward protrusion of slip into an unstable 

saddle-point configuration from the stable configuration. To carry out the analysis of 

nucleation of curved dislocations, we consider a symmetric configuration of a slit crack 

of the length 2a instead of using the semi-infinite crack configuration. The crack length 

2a is purposely set to be large enough (e.g., 2000b) compared to the size of the 

dislocation nucleation configuration so that the standard K-field characterized by the 

stress intensity factor K  can still be used to characterize the loading. The selection of the 

slit crack configuration is purely a choice for convenience because it is relatively more 

direct to carry out the following computation using Eq. (3-1) as compared with the 

previous selection of a semi-infinite crack for which we need to perform the rather 

tedious mathematical manipulation in order to reduce the computation on the finite 

domain (Xu and Ortiz, 1993; Xu, et al, 1995). Both treatments lead to the same result as 
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long as the length of the crack is sufficient larger than the size of the dislocation 

nucleation configuration. Similar to the previous analysis, the periodic boundary 

condition is implemented along the crack front direction. The period of the domain is 

selected to be 100b so that it is sufficient to reduce the interaction between the dislocation 

configurations in each period. Because the dislocation configurations act like a dipole in 

the crack front direction, the interaction between them drops quickly as the period 

increases. The geometric angles   and   defined in Fig. 3-1 are selected as  90  and 

120 (mode III loading).  A tiny perturbation at each side of the domain along the 

crack front is introduced to naturally activate the saddle point configuration of the curved 

leading partial ( ]112[6/1b ) in computation as the loading approaches the critical value. 

For Al, similar to nucleation of the straight partials, the trailing partial ( ]211[6/1b ) is 

nucleated simultaneously after the leading partial, resulting in a fully dissociated 

dislocation configuration combined with two partials and an enclosed intrinsic stacking 

fault. Fig. 3-14(a) shows the typical saddle-point configuration of a curved dissociated 

dislocation at the crack in Al at the loading level CKK 627.0  , while Fig. 3-14(b) shows 

a curved leading partial in Cu at the loading level of CKK 600.0 . The contour plots 

represent two slip components of the partials. For Cu, the stacking fault area is enclosed 

by the crack front and the leading partial. The profile of the partial is very similar to those 

perfect dislocations obtained before (Xu, et al., 1997), except that there are now two slip 

components. The elliptical shape of the emitting intrinsic stacking fault is in contrast with 

the circular shape assumed in the analysis of this problem based on continuum elastic  
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Figure 3-14. Saddle-point configurations of the partial dislocation loops at the crack 

(  90 , 120  ): (a) Al; (b) Cu. 
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dislocation theory (Asaro and Suresh, 2005). For Al, after the dissociated dislocation is 

fully formed, the relatively small stacking fault is enclosed by the leading and trailing 

partials. For given the mesh size, the curved leading partial has to be driven beyond the 

periodic boundary before the curved trailing partial can be nucleated for Cu. Hence the 

curved full dissociated dislocation configuration for Cu cannot be obtained because of the 

limitation of the mesh. Nevertheless, the basic feature that large stacking faults tend to 

form in Cu before nucleation of the trailing partial obtained in the two dimensional 

configuration remains intact. 

Fig. 3-15 shows the dependence of the activation energy on loading for nucleation of 

the curved partial dislocations. As a comparison, the dependence of the activation energy 

on loading for nucleation of the perfect dislocation ]011[2/1b  is also obtained using 

the constrained path assumption. For Al, the critical loading for nucleation of the partial 

is considerably lower than for nucleation of the perfect dislocation. At relatively low 

stress level the activation energy is asymptotically close to that of the full dislocation 

since the stacking fault area between the two partials are very small and the dissociated 

dislocation has similar structure to that of the full dislocation. For Cu, we note that both 

critical loading and activation energy for nucleation of the leading partial are markedly 

lower than those for the full dislocation. The much lower activation energy for nucleation 

of the partials may be one of the major sources for the high strain rate sensitivity of nano-

grained metals. Unlike coarse-grained metals, where there are abundant dislocation 

generation mechanisms, there are limited sources for dislocations in nano-grained metals. 

Nucleation of partial dislocations at the heterogeneities of grain boundaries with high 
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stress concentration therefore may significantly contribute to mechanical behavior of 

nano-grained metals. 
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Figure 3-15. Activation energy for nucleation of partial dislocation loops at the crack tip 

(  120  ,90  ):  (a) Al; (b) Cu. 

3.5 Summary and Conclusion 

Nucleation of partial dislocations at a crack is analyzed based on a multiscale model 

that incorporates atomic information into continuum mechanics approach. The crack and 

the slip plane as the extension of the crack are modeled as a surface of displacement 

discontinuities embedded in an elastic medium. The atomic potential between the 

adjacent atomic layers along the slip plane is assumed to be the generalized stacking fault 

energy, which is obtained based on atomic calculations. The relative displacements along 

the slip plane, corresponding to the configurations of partial dislocations and stacking 

faults, are solved through the variational boundary integral method.  
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The energetics of partial dislocation nucleation at the crack in Al and Cu are 

comparatively studied for their distinctive difference in the stacking fault energy. Several 

new features have emerged compared with nucleation of perfect dislocations in previous 

studies. Among them, the critical stress and activation energy for nucleation of partial 

dislocations are significantly lowered. For metals with relatively high stacking fault 

energy such as Al, nucleation of trailing partials immediately follows nucleation of 

leading partials, seldom resulting in the formation of large stacking faults in most 

configurations. For metals with relatively low stacking fault energy such as Cu, 

nucleation of trailing partials only occurs after leading partials are moved relatively far 

away from the crack, commonly resulting in the formation of much larger stacking faults 

compared with the stacking faults in normally dissociated dislocations in perfect crystals. 

The activation energy for thermally assisted partial dislocation nucleation in Cu is also 

significantly lower compared with the one for assumed perfect dislocation nucleation.   

Our results may have significant implications for identifying the fundamental 

dislocation and grain boundary mediated deformation mechanisms in nanostructured 

metals. It has been well recognized that conventional collective dislocation interactive 

mechanisms become non-operable as the grain size reduces to sub 100 nanometers range. 

The limiting strength of nanostructured metals could be ultimately determined by the 

critical condition for partial dislocation nucleation at heterogeneities where large stress 

concentration exists. Here, we have specifically shown how intrinsic stacking fault 

energy influences the partial dislocation nucleation process. In general, low stacking fault 

energy shall facilitate nucleation and motion of partial dislocations. The formation of 
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large stacking faults across the grains in the metals with low stacking fault energy, 

however, may hinder dislocation nucleation and motion in other slip systems. Further 

studies are necessary for better understanding the combined effect. The much lower 

activation energy for partial dislocation nucleation in the metals with relatively low 

stacking fault energy could be the major source of high strain rate sensitivity in nano-

grained metals, although the concrete conclusion of this link also requires further 

analyses and experiments to delineate how the energetics of dislocation nucleation in 

various configurations collectively influence overall mechanical behavior of metals. On 

the other hand, for certain well defined nanoscale material structures such as thin film 

systems or nano-sized pillars, where dislocation nucleation configurations are relatively 

certain (Weigner, 1999; Gao, et al, 1999; Buehler, et al, 2003; Uchic, et al., 2004; Greer, 

et al, 2005), the link between partial dislocation nucleation and mechanical behavior of 

the structures can be probably more readily identified by directly comparing experiments 

with analyses. 
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Chapter 4 Cross Slip of Partial Dislocations 

4.1 Introduction 

Plastic deformation of crystals proceeds with not only the nucleation of dislocations 

but also the motion of dislocations. When a dislocation moves along a slip plane which is 

not necessarily the most favorable one in terms of local stress, it can move to the other 

one through cross-slip. This phenomenon has long been recognized as the most single 

important mechanism that accounts for the development of complex dislocation 

microstructure leading to pattern formation, strain hardening, and dynamic recovery 

(Puschl, 2002). Previous experimental and theoretical studies have indicated that cross-

slip is a rate controlling process which depends on temperature as well as stress 

(Bonneville, Escaig, Martin, 1988). Because cross-slip mechanisms are generally 

versatile, and controlled by a wide range of atomic parameters, the critical conditions for 

cross-slip for most crystals largely remain uncertain. As a consequence, their influence on 

plastic deformation, especially at the later hardening stages, still cannot be quantitatively 

characterized with certainty. 

A number of possible cross-slip configurations have been proposed in the past 

(Puschl, 2002; Hirth and Lothe 1982). Here we shall focus on the most common 

cross-slip mechanism found in FCC metals as shown in Fig. 4-1. In FCC metals, a screw 

dislocation normally dissociates into two Schockley partials bonding an intrinsic stacking 
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(a) 

 
(b)  

 
(c) 

Figure 4-1. Illustration of the physical process of the Friedel-Escaig (FE) cross-slip 

mechanism of a screw dislocation in a FCC crystal: (a) the dislocation 

dissociates into two partial dislocation (γB and Aγ) on )111(  plane; (b) the 

dislocation re-dissociates into two partials (δB and Aδ) on )111(  plane; (c) 

the dislocation finally cross-slips on (111) plane. 
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fault on the preferred {111} slip plane. When the dislocation is under external stress, the 

resolved shear stress along the edge components of the partial dislocations, defined as the 

Escaig stress, exerts equal but opposite forces on the two partials. When the Escaig stress 

compresses the stacking fault ribbon, the compressed portion of the dislocation may then 

bow out into the other {111} slip plane and re-dissociate. The bowing-out and re-

dissociating process can simultaneously occur in FCC metals and in some cases complete 

constriction does not appear to be necessary (Duesbery, 1998). This mechanism, first 

suggested by Friedel (1959), and later developed by Escaig (1968), has been identified 

through the experimental studies as a favored cross-slip mechanism (Bonneville, Escaig, 

Martin, 1988). A somewhat similar mechanism had also been envisioned by Fleischer 

(1959). It differs from Friedel-Escaig mechanism by suggesting that no complete 

constriction of the stacking fault ribbon should be necessary. Instead, the stacking fault 

folds over continuously from the primary slip plane into the cross-slip plane. At the 

intersection the geometric compatibility requires that the leading partial dislocation splits 

into a stationary stair rod dislocation and a Shockley partial in the cross-slip plane. An 

analysis taking into account of dislocation characters and line energies showed that in the 

overwhelming majority of cases it is much more expensive to generate the additional stair 

rod dislocation than to completely constrict the stacking fault (Puschl, 2002). Therefore, 

we mainly focus on the Friedel-Escaig cross-slip mechanism. 

Up to date three analytical approaches have been used for the study of the 

Friedel-Escaig cross-slip mechanism (Puschl, 2002). The first is based on the line tension 

approximation (Friedel, 1959; Escaig, 1968). Because this approach completely ignores 
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atomic interactions, it is not considered to be reliable in treating the constriction process. 

The second approach is based on large scale atomistic simulation (Rasmussen, et al., 

1997; Rao, et al, 1999; Wen, et al, 2004), which can be directly used to determine the 

cross-slip process path. The success of this method relies on suitable selection of 

interatomic potentials that can accurately reproduce some important second order effects 

such as stacking fault energy. It is generally difficult to incorporate the precise elastic far 

field so to determine the stress dependent activation energy for appropriate saddle point 

configurations for large atomic systems. The third approach is the linear elastic 

mechanics approach with the incorporation of the appropriate dislocation core model to 

account for nonlinear local interaction. This type of model is generally based on the 

Peierls-Nabarro framework in which the structure of a dislocation is modeled as the 

relative displacement between two adjacent atomic layers along the slip plane and the 

surrounding crystals as the linear elastic continuum. The continuum mechanics based 

boundary integral formulation allows for convenient incorporation of various types of 

interatomic layer potentials to account for the local non-linear effect. The generalized 

stacking fault energy, or the so called γ-surface (Vitek, 1968), obtained by atomistic 

simulation such as ab initio calculation or embedded atom method (EAM), is regarded as 

the best choice for its fidelity to the properties between interatomic planes. Although this 

method is not as direct as atomic simulation in terms of determining the cross-slip 

process path, its continuum mechanics based approach possesses advantages in obtaining 

the stress-dependent saddle-point configurations and the associated activation energies 

under precisely described external loading conditions. As a complement to the atomic 
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simulation, this method has proved to be a valuable tool in probing the activation 

parameters in many dislocation mechanisms (e.g., Xu, Zhang, 2003; Segall, Li Xu, 2006; 

Li, Xu, 2006).   

Lu, et al. (2002, 2004) studied the cross-slip using the third approach by assuming 

the dislocation remain to be straight during the cross slip. They found that cross-slip in 

metal such as Al with high intrinsic stacking fault energy sfγ  and thus narrow intrinsic 

stacking fault ribbon occurs spontaneously, while for metal such as Ag with lower sfγ   

the dislocation splits into partials and cannot cross-slip without being first constricted. 

Since the analysis based on the straight dislocation model can provide good insights in 

the critical stresses for the onset of cross slip, we also begin with the study of cross-slip 

by assuming the dislocation remains to be straight. Two metals Al and Cu are selected for 

their significant difference in intrinsic stacking fault energy. In addition to the work of Lu 

(2002, 2004) where only the Escaig stress on the primary slip plane is considered, cross-

slip under general loading is further studied. As a consequence, the Escaig stress is 

applied on both the primary slip plane and the cross-slip plane. The effects of the loading 

direction and the ratio of the shear stresses on both slip planes on the cross-slip are 

ascertained. Moreover, using the fully three-dimensional boundary integral formulation 

(Xu and Ortiz, 1993; Xu, Zhang, 2003; Segall, Li Xu, 2006; Li, Xu, 2006), we extend the 

analysis to the more realistic dislocation cross-slip process in which the dislocation does 

not remain straight but rather bows out on both primary and cross slip planes so to take 

minimum energy path. Our focus is to identify the critical energetic condition for the 



  75 

occurrence of cross-slip, with the emphasis placed on the effect of the intrinsic stacking 

fault energy on cross-slip behavior in FCC metals. 

4.2 Modeling 

Consider a configuration of two slip planes )111(  and )111(  intersecting along the 

line in the ]101[  direction, as shown in Fig. 4-2. The screw dislocation with a Burgers 

vector of ]101[2/1  can glide on both slip planes, and it is also possible for this crew 

dislocation to dissociate into two Shockley partial dislocations on both planes. The 

crystalline indices of the slip systems are summarized with the Thompson notation in 

Table 4-1. All displacement discontinuities are described in the local coordinate systems 

(oxyz) instead of the global coordinate systems (OXYZ) for their clarity in physical 

meanings. The origins of the local coordinators are located at the intersection. Note that 

the positive directions for the screw components on both slip planes are opposite, along 

AB direction for the slip plane (1) and along BA direction for the slip plane (2), 

respectively.  

Table 4-1. Slip systems of the dislocation cross slip 

 Slip plane Full dislocation Leading partial Trailing partial 
 n b b1 b2 

Slip plane (1) (c)  111  AB  1012/1  γB  2116/1  Aγ  1126/1  

Slip plane (2) (d)  111  AB  1012/1  δB  1126/1   Aδ  1216/1  
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(a) 

  
(b)                                                                  (c) 

Figure 4-2. Geometric and loading configuration of the cross-slip. Two slip planes 

)111(  and )111( intersect at the line ]101[ . 

For a general external loading represented by a stress tensor ij  in global 

coordinates, five components xy , yz  and x , y , zx  may result in resolved shear 

stresses on the two slip planes. The first two components xy  and yz  result in resolved 

shear stress ( s1  or s2 ) along the screw-components direction on each plane, producing 

Peach-Köhler forces only on the screw components of the partial dislocations which drive 
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the dislocation to glide into or away from the intersection of the two slip planes. The 

components x , y , and zx  result in the resolved shear stresses ( e1  or e2 ) along the 

edge-components direction, also called the Escaig stress, producing Peach-Köhler forces 

only on the edge components to change the area of the intrinsic stacking fault area 

between two Shockley partial dislocations. Although the components x , y , and zx  

also result in normal stress across each slip plane, the effect of the resolved normal stress 

is generally negligible because of its relative weak influence on the opening 

displacements and the γ-surface. Based on the different effects of these two groups of 

stress components, we propose two independent elementary loading modes: (1) pure 

gliding shearing stress s  on the plane with the tilt angle s  to the XY plane as shown in 

Fig. 4-2(b); (2) loading on the XZ plane characterized by the principle stresses ( 1 , 2 ) 

with an angle e  between the principle direction and the X-direction as shown in 

Fig. 4-2(c). Let   2/12e   , representing the maximum resolved shear stress. The 

resolved shear stresses on the slip plane (1) can then be expressed as sss1 cos  , 

eee1 2sin    and on the slip plane (2)  sss2 cos   ,  eee2 2sin   , where 

 53.70  is the angle between two slip planes. The ratios of the resolved glide shear 

stresses and the ratio of the Escaig stresses on both slip planes can be expressed as 

 s

s
s2s1s

cos

cos
/







k  and 

 e

e
e2e1e

2sin

2sin
/







k                    (4-1) 

In this way, the general external loading is characterized by four parameters ess ,,  k , 

and ek , where s  and e  represent the loading magnitude, and sk  and ek  represent the 
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loading direction. The parameters s and e  distinctly account for the loading effects on 

screw and edge components of the partial dislocations.  

Following the methodology described in Chapter 2, let  xu  denote displacement 

discontinuities along both slip planes. The total energy of the system can be expressed by 

           xuxuxuxu PVWΠ                                        (4-2) 

where W  is the elastic strain energy caused by the displacement discontinuities, V  is the 

interatomic layer potential energy, and P  is the work of the external force. The 

expression for these three terms can be referred to Eq. (2-3), Eq. (2-13) and Eq. (2-14) in 

Chapter 2. The minimization of the total energy   xuΠ  with respect to the displacement 

 xu  leads to nonlinear integral equations. The displacements are discretized through the 

standard finite elements. The resulting nonlinear equations are solved by Newton-

Raphson iterations. The saddle-point configurations of dislocations in the nucleation 

process are solved by recourse to displacement control through the Lagrange multiplier 

method. For the convenience of the presentation, the screw or edge components of partial 

dislocations are denoted as s1u , s2u  or e1u , e2u  respectively. Because of the continuity, 

the relative displacements at the intersection must also satisfy the additional constraints 

        00000 2s2s1s1s   uuuu ,      00 1e1e uu  and      00 2e2e uu    (4-3) 

These constraints are enforced through Lagrange multiplier method. 
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4.3 Cross-slip of Straight Dislocations 

4.3.1 Cross-slip of a straight dislocation in Al 

We begin the analysis by introducing a screw dislocation at the intersection on the 

primary slip plane (1), specified by setting   byu  01s1  and other displacement 

discontinuities including those on the cross-slip plane to be 0. The configuration is then 

relaxed to minimize the total potential energy under no external loading. The core of the 

dislocation is found to spread out on both the primary and cross-slip plane. Its profile is 

plotted in Fig. 4-3, as compared with a screw dislocation profile with a planar core 

obtained by enforcing no displacement discontinuity on the cross-slip plane (2). Note that 

the vertical origin for the screw component on the upper-right part of the cross-slip 

plane (2) is translated up by a distance of b in order not to overlap with the plot of the 

edge component. The corresponding tick labels are listed at the upper-right corner. For 

the screw dislocation with the non-planar core, Fig. 4-3 shows that the screw components 

exist on both slip planes equivalently. The edge components, on the other hand, are not 

fully developed, indicating the nascent intrinsic stacking fault. Table 4-2 shows that the 

total energy of the non-planar core structure is lower than the planar core structure, 

confirming that the core of the screw dislocation in Al is most likely to spread out into 

two slip planes rather than one slip plane (Lu, et al., 2002; 2004). 
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Figure 4-3. The core of a screw dislocation in Al tends to spontaneously spread out into 

two slip planes. The figure shows two relative displacement components on 

(a) primary slip plane, (b) cross-slip plane, as compared with no-planar core 

structure. The vertical original plotting point for the screw components on the 

right part of the cross-slip plane (2) is moved up by a distance of b in order 

not to overlap with the edge components, and the tick labels for them are 

listed at the upper right corner accordingly. 

 

Table 4-2. Total energy comparison between planar and non-planer core in Al 

(μb
2
) EElastic EInteratomic ETotal ΔETotal 

Planar core –0.0705426 0.0792767 0.0372220 
–0.0288 

Non-planar core –0.0420547 0.0789694 0.0084268 
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We then consider the impacts of the external loading on the cross-slip of the screw 

dislocation with the spread-out core. The loading is characterized by four independent 

parameters ess ,,  k  and ek . During the simulation, each individual loading is simplified 

with constant sk  and ek , which represents only the loading magnitude changes with 

constant loading direction. Thus the discussion about the simulation results will be based 

on the various  es ,  conditions.  

4.3.1.1 Effects of the pure glide shear stress ( s ) 

Without the Escaig stress ( 0e  ), the screw dislocation at the intersection can glide 

onto both slip planes under the glide shear stress s . Two Peach-Köhler forces on the 

crew dislocation are resulted from the glide stress components ss1s cos   on the slip 
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Figure 4-4. The critical glide shear stress ( Crit

s ) is a function of the ratio of the resolved 

glide shear stress on each slip plane (ks). 
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plane (1) and  sss2 cos    on the slip plane (2). The Peach-Köhler force resulting 

from 1s  drives the screw dislocation to glide on the slip plane (1), while 2s  drives to 

glide on the slip plane (2). The preference of the gliding plane depends on the 

competition between the two resolved shear stresses on the slip planes, which can be 

characterized by parameter sk . In the case of dominant 1s , the screw dislocation glides 

on the plane (1) when 1s  reaches a critical value Crit

s1  which is a function of sk  due to 

the interference of 2s , as shown in Fig. 4-4. Note that the dashed line does not coincide 

with the solid line because they represent different shear angle s  even if sk  are the 

same. On the contrary when 2s  is dominant, the screw dislocation glides on the plane (2) 

when s2  reaches a critical value Crit

s2 . Note that    s

Crit

s1s

Crit

s2 /1 kk   , because of the 

rotational symmetry of the slip system and the spread-out core structure. The value of the 

critical glide stresses ranges from 0.018μ or 0.54GPa to 0.022μ or 0.65GPa depending on 

the shear loading angle characterized by sk . The shear modulus μ used as the 

normalization unit here is the Voigt averages 

5/44 hC   and 1112442 CCCh  .                                (4-4) 

It is as the same order to the value of 0.32GPa reported in Lu, et al. (2002, 2004) for pure 

shear on one slip plane, , as well as to the Peierls stress value of 0.008μ in the experiment 

(Bujard, et al., 1987). Assuming that the glide of the screw dislocation from the non-

planar core need a transition to planar core similarly as in the bcc metals (Li, Wang, et al., 

2004), which shares the same type of non-planar core structure, the energy of a planar 

core structure then represents the energy barrier for a screw dislocation with the spread-
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out core structure to complete the gliding process. As a consequence, the maximum 

activation energy for screw dislocation gliding and the corresponding cross-slip is the 

core energy variation between the non-planar structure and planar structure, i.e., 

0.0288μb
2
 or 0.118eV/b. Multiplying this value by 20b, the typical bow-out width in 

three dimensional configuration (Xu, Ortiz, Argon, 1997; Xu and Zhang, 2004; Li and 

Xu, 2006), gives the activation energy about 2eV, indicating that slip process may be a 

rate process, especially aided with stress. 

4.3.1.2 Effects of the pure Escaig stress ( e ) 

In the case when only Escaig stress e  is applied, the resolved Escaig stress is 

eee1 2sin    on the primary slip plane (1) and  ee2e 2sin    on the cross-slip 

plane (2). If the Escaig stress only appears on plane (1) with 02e  , as considered in Lu, 

et al. (2002, 2004), negative Escaig stresses e1  stretches the edge components of the 

partial dislocations and enlarges the intrinsic stacking fault area between the two partial 

dislocations on the primary slip plane (1), as shown in Fig. 4-5(a). Note that the sign 

definition of Escaig stresses here is contrary to Lu, et al. (2002, 2004). By contrast as 

shown in Fig. 4-5(b), positive Escaig stress e1  compresses the edge components and 

shrinks the intrinsic stacking fault area. The screw components on cross-slip plane (2) 

become larger because s1u  on the slip plane (1) is squeezed. Under general loading, the 

spread-out core structure of the screw dislocation is influenced by the ratios of the two 

Escaig stresses ( ek ). For the positive ek , the Escaig stresses on both slip planes stretches 
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Figure 4-5. In Al, Escaig stress ( 1e ) can break the four-fold symmetry of the balanced 

screw dislocation with no-planar core and further influnce the critcial glide 

shear stress ( Crit

s ). The screw and edge components are both plotted on the 

primary slip plane (left) and the cross-slip plane (right). Figure (a) and (b) 

show how the oposite Escaig stresses change the dislocation core structure on 

both slip planes. 
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or compresses the edge components simultaneously. Since the screw dislocation cannot 

be spread onto both slip planes, the preferred spread-out plane is determined by the 

competition between the two Escaig stresses. According to our calculation: (i) in the case 

of larger stretching Escaig stresses on the primary slip plane (1) or larger compressing 

Escaig stresses on the cross-slip plane (2),  the screw dislocation is maintained on the 

primary slip plane (1) as shown in Fig. 4-5(a); (ii) in the case of compressing Escaig 

stresses on the primary slip plane (1) or larger stretching Escaig stresses on the cross-slip 

plane (2), the screw dislocation spreads onto the cross-slip plane, regarded as the 

occurrence of cross-slip (Fig. 4-5(b)); (iii) In the case of negative ratio of ek , the 

influence of each Escaig stress is complementary to each other. With the stretching 

Escaig stress on one plane and the compressing Escaig stress on the other, the preferred 

slip plane is always the one applied by the negative Escaig stress.  

4.3.1.3 Effects of the Escaig stress on the critical glide shear stress 

Under the Escaig stress, the core of the screw dislocation becomes more planar on 

either the primary slip plane (1) or the cross-slip plane (2), depending on the value of ek .  

As a consequence, the critical glide shear stress to move the screw dislocation away from 

the intersection on the preferred plane decreases. For the case with no resolved Escaig 

stress on the cross-slip plane (2), the critical glide shear stress ( Crit

s ) as a function of the 

Escaig stress ( 1e ) on the primary plane is plotted in Fig. 4-6. The results show that the 

critical glide shear resistance can be significantly reduced by the stretching Escaig stress. 

The cross-slip of the screw dislocation may occur when the resistance for gliding a screw 



  86 

dislocation on the cross-slip plane becomes lower than the primary slip plane. This can be 

achieved under a loading condition resulting in either (i) the resolved glide shear stress on 

the cross-slip plane exceeds the primary slip plane, or (ii) the resolved Escaig stress ratio 

causes the core of the screw dislocation to spread out more preferably on the cross-slip 

plane. 
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Figure 4-6. The critical glide shear stress ( Crit

s ) is also a function of the Escaig stress ( e1 ) 

on the glide plane. Stretching Escaig Stress decreases the critical glide shear 

stress on the slip plane. 

4.3.1.4 Critical conditions for cross slip under combined s  and e  loading 

Under the general loading condition, we assume all the components in the external 

stress tensor vary proportionally during loading. As a consequence, the shear stresses s  

and e  also increase or decrease proportionally. Define 2

e

2

s

2    and es /tan   . 

Thus it gives  sins   and  cose  . Note that the physical meaning of τ and θ is 

clear if the glide shear stress s  is coplanar with e  (e.g.  45es  ) in which   is 
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regarded as the resultant of s  and e  while   is the angle between them. In simulation, 

the screw dislocation is initially introduced at the intersection and relaxed to the 

equilibrium state with non-planar core structure. The combined stress   is then increased 

from zero to drive the dislocation to glide on the four slip plane branches. For given sk  

and ek , the dislocation eventually only glide on two of the four branches and the choice 

of the two possible branches depends on the stress state. The possible gliding branches 

can be either from different slip planes, indicating occurrence of cross-slip (e.g. 3s k , 

3/1e k  as shown in Fig. 4-7a), or co-planar, indicating that no cross-slip (e.g. 3s k , 

7/9e k  as shown in Fig. 4-7b). Detailed characterization appears to be tedious. The 

essential features is then demonstrated in Fig. 4-8 which maps out the critical sk , ek  

conditions for cross-slip for the case of  45 . In Fig. 4-8, L denotes that the screw 

dislocation can glide on the branch 01 y , R the branch 01 y , D the branch 02 y , 

and U the branch 02 y . So the green zone denoted by either RL   or DU   

represents the sk , ek  conditions for no cross-slip while the other zone represents the 

occurrence of cross-slip along with the possible gliding slip planes. The contour plot 

levels in Fig. 4-8 represent the critical glide shear stress for the cross-slip. It indicates that 

the cross-slip for this particular case can only happen when the glide shear stresses on 

both slip planes are comparable. Although ek  is less important than sk  in determining the 

preference of the slip plane, it still significantly influence the critical shear stress required 

for cross-slip to occur. 
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(b) 

Figure 4-7. Depending ton the loading, the screw dislocation can glide on two of the four 

slip branches at  the intersection. (a) Dislocation glides on two different slip-

planes, and cross-slip occurs. (b) Dislocation glides on one slip plane and no 

cross-slip occurs. 
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Figure 4-8. The possible glide branches for various loading conditions presented by [ks, 

ke]. In the figure, L denotes that the screw dislocation can glide on the branch 

01 y ; R denotes the branch 01 y ; D denotes the branch 02 y ; U denotes 

the branch 02 y . Only the contour level of critical combined external 

loading stress is plotted for the case when cross-slip occurs. 
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4.3.2 Cross-slip of a straight dislocation in Cu 

In contrast with Al, the stacking fault energy for Cu is relatively lower which results 

in wider intrinsic stacking fault. The screw dislocation in Cu may have two possible 

equilibrium core structures, which can be obtained by relaxing from two different initial 

configurations. By introducing a non-dissociated full screw dislocation at the intersection 

of the two slip planes, specified by setting   byu  021s and other displacement 

discontinuities to be 0, a constricted core structure can be obtained after relaxation. Or in 

another way, the initial configuration is selected to be a dissociated screw dislocation, 

specified by a complete idealistic intrinsic stacking fault with the width (2L) estimated by 

elastic theory (Hirth and Lothe, 1982). Setting   bLyu 11s ,   2/11s bLyLu  , 

  6/311e bLyLu  and other displacement discontinuities to be 0, the relaxation 

leads to an dissociated quasi-planar core structure. Fig. 4-9 shows the profiles of these 

two core structures. The corresponding total energy of these two core structures are listed 

in Table 4-3. Again the pure planar core structure is used as a reference for comparison. 

The quasi-planar core structure appears to be the most stable configuration due to its 

lowest total energy. The constricted core structure is similar to the core structure in Al. It 

can be regarded as the intermediate state during cross-slip. The formation of the 

constriction needs to overcome the large intrinsic stacking fault area and thus requires 

additional energy. 
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Figure 4-9. In Cu, due to the lower intrinsic stacking fault energy and larger stacking 

fault zone, the core of a screw dislocation prefers to be quasi-planar and stays 

in the primary slip plane. The figure shows both screw and edge components 

on the primary slip plane (left) and the cross-slip plane (right), as compared 

with planar and constricted core structures 

 

Table 4-3. Total energy comparison of the possible core structure in Cu 

(μb
2
) EElastic EInteratomic ETotal ΔETotal 

Planar core –0.044942 0.061065 0.016123 0 

Quasi-planar core –0.051431 0.060890 0.009459 –0.0067 

Constriction –0.049983 0.060886 0.010903 –0.0052 

 



  92 

4.3.2.1 Critical glide shear stress 

Because of the quasi-planar core structure, the screw dislocation is more glissile in 

Cu. The critical glide shear stress in Cu is much lower than in Al. For the case of 1s k , 

the critical glide shear stress ( Crit

s ) is plotted as a function of sk  in Fig. 4-10. The values 

of Criti

s  ranging from 3.16×10
-3
μ to 3.19×10

-3
μ are not as sensitive to sk  as Al. Although 

Criti

s  is in the same order to 2.7×10
-3
μ from atomistic simulation (Duesbery, 1998) and 

1.2×10
-3
μ from internal friction experiments (Bujard, et al., 1987), it is still three orders 

larger than the value of 5×10
-6
μ measured in plastic deformation (Basinski, 1959). The 

larger value in our simulation may result from introducing the over-estimated spread-out 

screw components on the cross-slip plane. For the case that the critical shear stress is 

more dominant on the cross slip plane (2), the transition of the gliding process on the  
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Figure 4-10. The critical glide shear stress ( Crit

s ) as a function of the ratio of the resolved 

glide shear stress on each slip plane (ks). 
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primary slip plane to the cross slip plane involves the Fleischer cross-slip mechanism 

(Fleischer, 1959). The simulation requires the incorporation of normal opening 

displacement so to incorporate the “stair rod” dislocation. We leave the Fleischer cross-

slip mechanism for the future study after the opening displacements can be implemented 

by developing tension coupled γ-surface. 

4.3.2.2 Effects of the Escaig stresses ( e ) on cross-slip 

 We shall first focus on the case that the Escaig stress only exists on the primary slip 

plane. As the positive Escaig stress increasing from 0, it compresses the partial 

dislocations while reducing both the edge and screw components on the primary slip 

plane (1). This constriction process simultaneously stretches the core structure of the 

dislocation on the cross slip plane as both the associated edge and screw components 

increase. The process is stable until the resolved Escaig stress ( 1e ) reaches a critical 

value Crit

e  when the configuration becomes unstable. Further quasi-static constriction 

process would require a decreasing 1e , and eventually forming the constricted core when 

Escaig stress returns to 0. The cross-slip ends when the constricted core is spontaneously 

transferred to the quasi-planar core on the cross-slip plane by the repulsion force between 

the edge-components. The whole cross-slip process is depicted in Fig. 4-11(c). The 

energy variation during the cross slip is illustrated in Fig. 4-11(a). The balanced Escaig 

stress versus the partial dislocation separation is plotted in Fig. 4-11(b). It is also evident 

from the energy landscape that Escaig stress the constricted core structure is an unstable 

equilibrium configuration. 
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(c) 

Figure 4-11. In Cu cross-slip occurs when compressive Escaig stress is applied on the 

primary slip plane. (a) Schematic energy variation during the cross-slip.  (b) 

The resolved Escaig-stress vuses the partial dislocation separation. (c) The 

sequences of relative displacements during the cross-slip on the primary slip 

plane (left) and the cross-slip plane (right). 
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For the more general case with Escaig stress acting on both primary and cross-slip 

plane,   the occurrence of cross-slip is determined by the ratio of the Escaig stresses ( ek ).  

For the case of both compressing Escaig stresses with the larger one on the primary slip 

plane, 1e  dominates the slip system and the cross-slip occurs if Crit

ee1   , following the 

process described above. For the case of both compressive Escaig stresses with the larger 

one on the cross-slip plane, although 1e  can achieve positive value to shrink the intrinsic 

stacking fault zone on the primary plane (1), the same positive but larger 2e  prevents the 

separation of the partial dislocation on the cross-slip plane (2). Thus it is seldom for 

cross-slip to occur under this condition even a quite large external loading is applied. For 

the case of the opposite resolved Escaig stresses, no matter which one is larger, the 

negative 2e , which helps the formation of the embryonic partial dislocations on the 

cross-slip plane (2), always accompanies with the positive 1e , the cross-slip occurs if 

Crit

e1e   . The critical Escaig stress as a function of ek  is plotted in Fig. 4-12. For all the 

cases in which cross-slip can occur, the maximum activation energy at zero stress is 

always the energy variation between the quasi-planar core and constricted core, i.e. 

0.015μb
2 

or 0.064eV/b. 
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Figure 4-12. The critical Escaige stress as a function of ek . For the case of 10 e  k , 

cross-slip does not occur. 

4.4 Analysis of 3D Cross-slip Process in Cu 

The above analysis of the cross slip of idealistic straight dislocations under the plane 

strain condition provides good insights in the energetic of cross-slip process. The more 

realistic Friedel-Escaig cross-slip involves the curved partial dislocations on both primary 

and cross-slip plane as a consequence of a localized constriction and outward protrusion 

of slip into an unstable saddle-point configuration as the resolved Escaig stress reaches 

the critical value. To incorporate the three dimensional configuration, the periodic 

boundary condition is implemented along the intersection line direction. The period of 

the domain is selected to be 50b. As a demonstration for the cross-slip following the 

Friedel-Escaig mechanism, only Cu is used for calculation. The loading condition is 

selected so that only Escaig stresses are applied with the ratio 1ek , under which the 

opposite Escaig stress on the cross-slip plane favors for the occurrence of cross-slip, and 
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the dislocation configurations on the primary plane at e  is the same as on the cross-slip 

at e  due to the symmetric slip system. In the calculation, a tiny perturbation at the 

intersection is introduced to naturally activate the saddle-point configuration of the 

curved partial dislocations. The sequences of the displacement continuities on the slip 

plane (1) and (2) are plotted in Fig. 4-13. The contour plots represent two slip 

components of the partials. Fig. 4-13(a) shows the configuration of the initial dissociated 

dislocation on the primary slip plane. Under increasing compressing Escaig stress, the 

partial dislocations are constricted straightly. When e  reaches the critical value, the 

dislocations protrude partially into the cross-slip plane without fully constricted as a 

straight line. The joints of the four partial dislocations have the same configuration as an 

equilibrium constricted core (dash-dot line in Fig. 4-9). Fig. 4-13(b) shows the protrusion 

of the partial dislocations onto the cross-slip plane and the formation of the constriction 

joints. An unstable equilibrium can be formed when e  returns to zero (Fig. 13c). Two 

types of constriction joints have also been found in the intermediate of the cross-slip as in 

the atomistic simulation (Rao, et al. 1999; Wen, et al., 2004): edge-like (Joint B) and 

screw-like (Joint A) constrictions. Fig. 4-13(d) shows the expansion of the partial 

dislocations on the plane (2) with the motion of the constriction joints to the periodic 

boundary. Fig. 4-13(e) shows the final configuration of dissociated dislocation on the 

cross-slip plane. 
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Figure 4-13. The sequences of the displacement continuities on the intersecting two slip 

planes during dislocation cross-slip in Cu. (a) The configuration of the initial 

dissociated dislocation on the primary slip plane. (b) The protrusion of the 

partial dislocations onto the cross-slip plane and the formation of the 

constriction joints. (c) An unstable equilibrium can be formed when e returns 

to zero. (d) The expansion of the partial dislocations on the plane (2) with the 

motion of the constriction joints to the periodic boundary. (e) The final 

configuration of dissociated dislocation on the cross-slip plane. 
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Fig. 4-14 plots the dependence of the activation energy on loading for cross-slip of 

the screw dislocation involved with curved partial dislocations. The maximum activation 

energy at 0e   is determined as 1.45eV for Cu compared with the 2.7eV reported in 

atomistic simulation (Rasmussen, et al., 1997) and 1.15eV estimated by the experiments 

(Bonneville, Escaig, Martin, 1989). The activation energy is in the same order of 

magnitude in creep experiments (1.4eV) (Bonneville, Escaig, Martin, 1989), indicating 

that cross-slip could be a rate controlling process. Note that the maximum activation 

energy in the simulation would be influenced by the period length (Ly) of the domain. 

However, considering the activation energy is mainly determined by energy of the 

constrictions and the constriction profiles eventually kept invariant as the increased 

constrictions separation, so the activation energy converges quickly as the domain period 

(Ly) increases. 
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Figure 4-14. Activation energy of cross-slip of a dissociated dislocation. 
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4.5 Summary and Discussion 

We have analyzed the Friedel-Escaig cross-slip mechanisms in FCC metals using a 

multiscale model that incorporates atomic information into continuum-mechanics 

approach. The intersecting slip planes are modeled as surfaces of displacement 

discontinuities embedded in the linear elastic medium. The atomic potential between the 

adjacent atomic layers along the slip plane is assumed to be the generalized stacking fault 

energy, which is obtained based on atomic calculations. The relative displacements along 

the slip plane, corresponding to the configurations of partial dislocations and stacking 

faults, are solved through the variational boundary integral method. 

The cross-slip behaviors in Al and Cu are comparatively studied for their distinctive 

difference in the stacking fault energy. For metals with narrow intrinsic stacking fault due 

to the relatively high sfγ  such as Al, the dislocation core tends to spontaneously spread-

out on both primary and cross-slip planes. The spread-out core becomes an obstacle for 

dislocation gliding. Relatively large shear stress is required to drive the dislocation to 

glide during the cross-slip. Without Escaig stress, the preference of the gliding plane 

depends on the competition between the two resolved shear stresses on the slip planes. 

The energy barrier between the spreaded-out and planar core configurations appears to be 

in the range that the cross slip may occur under thermal motion with the aid of the 

preferable shear stress on the cross slip plane. On the other hand, Escaig stress plays 

almost an equally important role in cross-slip. It can either compress or stretch the 

stacking fault, which directly facilities or impedes the occurrence of the cross slip. It is 
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generally difficulty to characterize the critical conditions for cross-slip under general 

loading condition, for the reason that the cross slip not only depends only on the stress 

state but also on the energy associated with the configuration under the stress state. For 

metals with large intrinsic stacking fault due to the relatively low sfγ  such as Cu, the 

dislocation core prefers to be planar on the primary slip plane and thus it has much lower 

Peierls stress for dislocation to glide. Thus during the cross-slip, Escaig shear stresses 

need to be mainly applied to constrict the dissociated dislocation and force it protrude to 

the cross-slip plane. The preferred loading condition is that there is lager compressing 

Escaig shear stress on the primary slip plane accompanied with stretching Escaig shear 

stress on the cross slip plane. Although the mechanism of cross-slip is slightly different 

from Al, the calculated activation energy is also at about 2eV, the same range of Cu. This 

indicates that the cross-slip could be thermal activated as a common phenomenon in FCC 

metals. 

The unstable equilibrium core structure and the critical Escaig stress in Cu are 

similar features to the atomistic simulation study of cross-slip of iridium (Cawkwell, et 

al., 2007). The rate of cross-slip is high in both metals. However, it is more brittle for 

iridium than Cu. The phenomenon may result from that cross-slip can play different roles 

at the different stages of the plasticity deformation. Cross-slip at the early stage as a 

hardening mechanism may lead to intense forest hardening and increase in dislocation 

density so that brittle cleavage is a natural consequence (Puschl 2002; Cawkwell, et al., 

2007). At the contrary, cross-slip at the later stage as a softening mechanism may help 

dislocations escape from their locked positions and annihilate with others, reducing 
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dislocation density and relaxing internal stress (Puschl 2002). For Ir, the critical Escaig 

stress for cross-slip, calculated by atomistic simulation as 0.025C44, can be achieved at 

the stage II of the plasticity deformation when dislocations begin to pile up at obstacles 

(Cawkwell, et al., 2007). For Cu, because the maximum resolved shear stress was 

approximately 24MPa or 4.6×10
-4
μ up to the end of stage II at 473K (Bonneville, Escaig, 

Martin, 1988) and it is 2 orders lower than the calculated critical Escaig stress, the cross-

slip can only occur at Stage III of the plasticity deformation. 
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Appendix: Tables of Fourier coefficients of γ-surfaces 

The Fourier expansion of the generalized stacking fault energy (γ-surface) can be 

written as 
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The γ-surfaces for several metals have been calculated by atomistic simulation based on 

embedded atom method. The Fourier coefficients of γ-surface for these metals are listed 

in below tables. 
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Table A-1. Fourier coefficients of the {111} slip plane γ-surface for Al. 

 Al Slip Plane: {111} Minshion’s potential (1999) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 3.2747E-001 

 0.0000E+000 

-1.0021E-001 

 0.0000E+000 

 1.9781E-003 

 0.0000E+000 

 0.0000E+000 

-2.0043E-001 

 0.0000E+000 

-2.1902E-002 

 0.0000E+000 

 8.9746E-004 

-1.0951E-002 

 0.0000E+000 

 3.9562E-003 

 0.0000E+000 

 8.9746E-004 

 0.0000E+000 

 0.0000E+000 

 8.9746E-004 

 0.0000E+000 

-2.2031E-003 

 0.0000E+000 

 2.7860E-004 

-5.5327E-004 

 0.0000E+000 

 2.7859E-004 

 0.0000E+000 

 1.6427E-004 

 0.0000E+000 

 0.0000E+000 

 5.9628E-004 

 0.0000E+000 

 3.3920E-005 

 0.0000E+000 

 3.4860E-005 

 0.0000E+000 

 0.0000E+000 

 1.1688E-001 

 0.0000E+000 

 1.0308E-002 

 0.0000E+000 

 0.0000E+000 

-2.3375E-001 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 3.1685E-004 

 0.0000E+000 

 0.0000E+000 

-2.0617E-002 

 0.0000E+000 

-3.1686E-004 

 0.0000E+000 

 0.0000E+000 

-3.1686E-004 

 0.0000E+000 

 5.0470E-005 

 0.0000E+000 

 1.3392E-004 

 0.0000E+000 

 0.0000E+000 

 1.3392E-004 

 0.0000E+000 

-7.4270E-004 

 0.0000E+000 

 0.0000E+000 

 3.7857E-004 

 0.0000E+000 

 1.2713E-004 

 0.0000E+000 

 1.3249E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 
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Table A-2. Fourier coefficients of the {111} slip plane γ-surface for Ni.  

Ni Slip Plane: {111} Minshion’s potential (1999) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 6.9512E-001 

 0.0000E+000 

-1.8090E-001 

 0.0000E+000 

 3.2989E-003 

 0.0000E+000 

 0.0000E+000 

-3.6179E-001 

 0.0000E+000 

-1.0606E-001 

 0.0000E+000 

-3.6285E-003 

-5.3032E-002 

 0.0000E+000 

 6.5979E-003 

 0.0000E+000 

-3.6285E-003 

 0.0000E+000 

 0.0000E+000 

-3.6285E-003 

 0.0000E+000 

 6.2570E-004 

 0.0000E+000 

 2.5413E-003 

 1.3184E-003 

 0.0000E+000 

 2.5413E-003 

 0.0000E+000 

-8.1772E-004 

 0.0000E+000 

 0.0000E+000 

-1.9386E-003 

 0.0000E+000 

 3.0392E-004 

 0.0000E+000 

 6.7493E-004 

 0.0000E+000 

 0.0000E+000 

 2.7493E-001 

 0.0000E+000 

 1.7786E-002 

 0.0000E+000 

 0.0000E+000 

-5.4986E-001 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 4.6125E-003 

 0.0000E+000 

 0.0000E+000 

-3.5571E-002 

 0.0000E+000 

-4.6125E-003 

 0.0000E+000 

 0.0000E+000 

-4.6125E-003 

 0.0000E+000 

-1.6590E-003 

 0.0000E+000 

-1.2798E-003 

 0.0000E+000 

 0.0000E+000 

-1.2798E-003 

 0.0000E+000 

-3.0160E-003 

 0.0000E+000 

 0.0000E+000 

-2.5507E-003 

 0.0000E+000 

-1.3800E-004 

 0.0000E+000 

-1.0205E-003 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 
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Table A-3. Fourier coefficients of the {111} slip plane γ-surface for Cu. 

  Cu Slip Plane: {111} Minshion’s potential (2001) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 3.5809E-001 

 0.0000E+000 

-9.7408E-002 

 0.0000E+000 

 4.4898E-003 

 0.0000E+000 

 0.0000E+000 

-1.9482E-001 

 0.0000E+000 

-4.8430E-002 

 0.0000E+000 

-3.0702E-003 

-2.4215E-002 

 0.0000E+000 

 8.9795E-003 

 0.0000E+000 

-3.0702E-003 

 0.0000E+000 

 0.0000E+000 

-3.0702E-003 

 0.0000E+000 

 1.3573E-003 

 0.0000E+000 

 3.7411E-004 

-2.2766E-004 

 0.0000E+000 

 3.7411E-004 

 0.0000E+000 

-1.2366E-004 

 0.0000E+000 

 0.0000E+000 

 3.0280E-005 

 0.0000E+000 

 7.3620E-005 

 0.0000E+000 

-3.7800E-005 

 0.0000E+000 

 0.0000E+000 

 1.5232E-001 

 0.0000E+000 

 9.7672E-003 

 0.0000E+000 

 0.0000E+000 

-3.0463E-001 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 5.6678E-003 

 0.0000E+000 

 0.0000E+000 

-1.9534E-002 

 0.0000E+000 

-5.6678E-003 

 0.0000E+000 

 0.0000E+000 

-5.6678E-003 

 0.0000E+000 

 5.1707E-004 

 0.0000E+000 

-1.3598E-004 

 0.0000E+000 

 0.0000E+000 

-1.3598E-004 

 0.0000E+000 

-4.9043E-004 

 0.0000E+000 

 0.0000E+000 

-1.9430E-004 

 0.0000E+000 

 7.3800E-005 

 0.0000E+000 

 1.2863E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 
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Table A-4. Fourier coefficients of the {110} slip plane γ-surface for Fe. 

  Fe Slip Plane: {110} Chantasiriwan’s potential (1998) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 1.1368E+000 

 0.0000E+000 

 0.0000E+000 

-6.1309E-001 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

-6.1309E-001 

 1.9028E-001 

 0.0000E+000 

-5.6625E-002 

-4.5047E-002 

 0.0000E+000 

-4.5047E-002 

 1.6443E-002 

 0.0000E+000 

-1.8669E-002 

 1.1277E-002 

 8.2322E-003 

 0.0000E+000 

 0.0000E+000 

-2.0598E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

-1.3635E-003 

 1.1908E-003 

 0.0000E+000 

-7.7470E-004 

 1.1850E-003 

 0.0000E+000 

 4.4060E-005 

 4.9760E-005 

 0.0000E+000 

-4.7466E-004 

-1.0325E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 6.1309E-001 

 1.9028E-001 

 0.0000E+000 

 5.6625E-002 

-4.5047E-002 

 0.0000E+000 

-4.5047E-002 

-1.6443E-002 

 0.0000E+000 

-1.8669E-002 

-1.1276E-002 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

-1.4763E-003 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 1.3640E-003 

 1.1907E-003 

 0.0000E+000 

 7.7418E-004 

 1.1852E-003 

 0.0000E+000 

 4.2880E-005 

-5.0090E-005 

 0.0000E+000 

-4.7406E-004 

 1.0268E-004 

 



  114 

 

Table A-5. Fourier coefficients of the {112} slip plane γ-surface for Fe. 

  Fe Slip Plane: {112} Chantasiriwan’s potential (1998) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 2.3451E+000 

-1.4806E+000 

-3.6122E-001 

-7.2823E-002 

-6.1414E-003 

 6.6990E-005 

-2.7857E-001 

-1.1595E-001 

-2.4762E-002 

 1.1994E-002 

 2.9049E-003 

 3.4651E-003 

 5.3525E-003 

-2.3104E-002 

-2.4613E-003 

 2.6067E-003 

 2.2542E-003 

 5.2386E-004 

 5.4869E-003 

-6.4357E-003 

-7.6737E-003 

-5.0569E-003 

-2.8787E-004 

 5.4222E-004 

 2.5693E-003 

-9.0204E-004 

-2.8664E-003 

-8.1174E-004 

 6.1213E-004 

-1.7943E-004 

-8.6184E-004 

 7.0724E-004 

-6.7880E-005 

-2.2550E-005 

-2.0678E-004 

-7.0380E-005 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

3.2260E-001 

-1.3632E-001 

-1.1906E-001 

-2.2278E-002 

-1.2938E-002 

-5.6858E-003 

 2.9282E-002 

-7.9734E-003 

-1.8195E-002 

-1.3406E-002 

-3.0939E-003 

 3.7982E-003 

 1.6417E-003 

 1.7773E-003 

-3.7138E-003 

-1.2933E-003 

 1.5823E-003 

 3.9132E-004 

-3.2845E-003 

 2.4539E-003 

 1.8658E-003 

 6.8693E-004 

-8.0827E-004 

-8.0842E-004 

-1.9673E-003 

 8.9862E-004 

 1.3691E-003 

 2.2512E-004 

-3.7068E-004 

 3.3180E-005 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 
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Table A-6. Fourier coefficients of the {110} slip plane γ-surface for Ta. 

  Ta Slip Plane: {110} Finnis-Sinclair potential (1984) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 1.2444E+000 

-2.5230E-005 

 1.3880E-005 

-6.6165E-001 

 3.7140E-005 

-1.5200E-005 

-8.7400E-006 

-6.6169E-001 

 2.1866E-001 

-3.0040E-005 

-4.6152E-002 

-4.5416E-002 

-7.5100E-006 

-4.5439E-002 

-1.3437E-002 

-3.1690E-005 

-2.1688E-002 

 1.2754E-002 

 1.2574E-002 

-4.7310E-005 

 2.4120E-005 

-1.6502E-003 

 7.3760E-005 

-3.0080E-005 

-6.8500E-006 

-1.9250E-003 

 1.5513E-003 

-3.4190E-005 

-3.2443E-003 

 2.9838E-004 

-6.7700E-006 

-7.0871E-004 

 6.2264E-004 

-3.2770E-005 

-3.7606E-004 

-1.3816E-003 

 0.0000E+000 

-1.4580E-005 

-1.0320E-005 

-1.6910E-005 

-9.1300E-006 

 1.2850E-005 

 0.0000E+000 

-2.9710E-005 

-1.9670E-005 

-3.1110E-005 

-1.8560E-005 

 2.6550E-005 

 0.0000E+000 

-2.8740E-005 

-2.0250E-005 

-3.1470E-005 

-1.8560E-005 

 2.6220E-005 

 0.0000E+000 

-2.8760E-005 

-2.0490E-005 

-3.0970E-005 

-1.8590E-005 

 2.5800E-005 

 0.0000E+000 

-2.8240E-005 

-2.1890E-005 

-3.0820E-005 

-1.8440E-005 

 2.5690E-005 

 0.0000E+000 

-2.7860E-005 

-2.2180E-005 

-3.1160E-005 

-1.8620E-005 

 2.5480E-005 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 6.6164E-001 

 2.1864E-001 

 0.0000E+000 

 4.6224E-002 

-4.5388E-002 

 0.0000E+000 

-4.5386E-002 

 1.3466E-002 

 0.0000E+000 

-2.1765E-002 

-1.2785E-002 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 8.6584E-003 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 1.8746E-003 

 1.5228E-003 

 0.0000E+000 

 3.3196E-003 

 3.3146E-004 

 0.0000E+000 

-6.6557E-004 

-6.0093E-004 

 0.0000E+000 

-4.4668E-004 

 1.3509E-003 
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Table A-7. Fourier coefficients of the {112} slip plane γ-surface for Ta. 

  Ta Slip Plane: {112} Finnis-Sinclair potential (1984) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 3.1148E+000 

-1.7588E+000 

-5.4157E-001 

-1.4161E-001 

-2.5653E-002 

 4.4111E-003 

-3.6802E-001 

-1.7577E-001 

-7.7777E-002 

-1.0227E-002 

 2.2125E-002 

 1.2530E-002 

-8.9013E-003 

-3.5200E-002 

-2.5571E-002 

 4.7687E-003 

-9.0031E-003 

-6.8672E-003 

 2.0430E-002 

 5.4748E-004 

-6.4461E-003 

 1.5654E-003 

-2.4247E-003 

 4.0610E-004 

 4.3154E-003 

 1.6171E-003 

-3.9486E-003 

-3.6397E-003 

-3.9928E-003 

-1.4276E-003 

-1.1284E-003 

 1.0432E-004 

 1.2398E-004 

-8.6474E-004 

 2.6337E-004 

 5.1515E-004 

 0.0000E+000 

 1.7011E-004 

-3.7849E-004 

 3.3403E-004 

-3.8990E-004 

 4.2709E-004 

 0.0000E+000 

 2.9566E-004 

-5.9017E-004 

 4.8167E-004 

-5.4806E-004 

 6.0749E-004 

 0.0000E+000 

 1.6737E-004 

-3.6557E-004 

 1.5700E-004 

-1.6484E-004 

 2.1296E-004 

 0.0000E+000 

 1.1760E-004 

-2.7321E-004 

 2.5780E-005 

-2.9180E-005 

 5.9700E-005 

 0.0000E+000 

 1.1433E-004 

-2.7060E-004 

 2.7640E-005 

-2.5380E-005 

 8.0360E-005 

 0.0000E+000 

 1.1044E-004 

-2.6142E-004 

 1.3580E-005 

-1.3120E-005 

 6.4650E-005 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 4.7185E-001 

-1.1650E-001 

-2.0678E-001 

-6.4423E-002 

 1.2060E-003 

-2.1925E-002 

 2.1242E-002 

 8.2406E-003 

-1.4651E-002 

-4.5162E-004 

-7.1311E-003 

-1.6977E-002 

 5.2873E-003 

 7.5363E-003 

 2.8497E-004 

-6.1093E-003 

-4.2392E-003 

-4.0317E-003 

-4.2357E-003 

-5.0280E-004 

 3.4992E-003 

-1.5389E-003 

 2.1218E-003 

-5.6990E-005 

-2.8747E-003 

-1.0263E-003 

 3.2263E-003 

 1.7013E-003 

 2.4341E-003 

 2.3826E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 1.3635E-004 

-2.5782E-004 

 3.6501E-004 

-4.2229E-004 

 4.4234E-004 

 0.0000E+000 

 1.5027E-004 

-2.9031E-004 

 3.7993E-004 

-4.5647E-004 

 4.7401E-004 

 0.0000E+000 

 9.8420E-005 

-1.8332E-004 

 2.4887E-004 

-2.7770E-004 

 2.8594E-004 

 0.0000E+000 

 7.3970E-005 

-1.2691E-004 

 1.7903E-004 

-1.9799E-004 

 2.0176E-004 

 0.0000E+000 

 5.8290E-005 

-1.1431E-004 

 1.4725E-004 

-1.7835E-004 

 1.7526E-004 

 



  117 

 

Table A-8. Fourier coefficients of the {110} slip plane γ-surface for Li. 

  Li Slip Plane: {110} Chantasiriwan’s potential (1998) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 8.9360E-002 

 0.0000E+000 

 0.0000E+000 

-6.4839E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

-4.9090E-002 

 3.4090E-003 

 0.0000E+000 

-3.5030E-005 

-1.2720E-005 

 0.0000E+000 

 1.7248E-002 

-2.9017E-003 

 0.0000E+000 

-9.3800E-006 

 8.6000E-006 

-4.9090E-002 

 0.0000E+000 

 0.0000E+000 

-3.6918E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

-8.2177E-003 

-2.0751E-004 

 0.0000E+000 

-2.8320E-005 

 6.9200E-006 

 0.0000E+000 

 3.4090E-003 

 1.7422E-004 

 0.0000E+000 

 3.4970E-005 

-2.8000E-006 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

-4.9090E-002 

-3.4090E-003 

 0.0000E+000 

-3.5030E-005 

 1.2720E-005 

 0.0000E+000 

-1.7248E-002 

-2.9017E-003 

 0.0000E+000 

 9.3800E-006 

 8.6000E-006 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 2.0050E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

-8.2177E-003 

 2.0751E-004 

 0.0000E+000 

-2.8320E-005 

-6.9200E-006 

 0.0000E+000 

-3.4090E-003 

 1.7422E-004 

 0.0000E+000 

-3.4970E-005 

-2.8000E-006 
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Table A-9. Fourier coefficients of the {110} slip plane γ-surface for Mo. 

 Mo Slip Plane: {110} Finnis-Sinclair potential (1984) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 1.1474E+000 

-6.2100E-006 

 5.4660E-005 

-5.8816E-001 

 6.1200E-006 

-2.0840E-005 

 8.5640E-005 

-5.8813E-001 

 2.0387E-001 

-4.9380E-005 

-3.8302E-002 

-3.5751E-002 

 8.8930E-005 

-3.5722E-002 

-1.3628E-002 

-5.6000E-005 

-2.1844E-002 

 1.8215E-002 

-1.6550E-002 

 1.5700E-006 

 9.4570E-005 

-1.5895E-002 

 0.0000E+000 

-3.2550E-005 

 9.3260E-005 

 1.1694E-002 

-9.8645E-003 

-6.4910E-005 

-5.8711E-003 

-1.3571E-003 

 8.3160E-005 

-1.2651E-002 

 9.1089E-003 

-4.7060E-005 

-6.5799E-004 

 6.1343E-004 

 0.0000E+000 

 3.4950E-005 

 1.4640E-005 

 5.6560E-005 

-1.0020E-005 

 2.8930E-005 

 0.0000E+000 

 6.9840E-005 

 2.9350E-005 

 1.1350E-004 

-2.0160E-005 

 5.7900E-005 

 0.0000E+000 

 7.0040E-005 

 2.9190E-005 

 1.1350E-004 

-1.9960E-005 

 5.7790E-005 

 0.0000E+000 

 6.9960E-005 

 2.9240E-005 

 1.1364E-004 

-2.0030E-005 

 5.7830E-005 

 0.0000E+000 

 7.0090E-005 

 2.9140E-005 

 1.1355E-004 

-1.9920E-005 

 5.7720E-005 

 0.0000E+000 

 6.9850E-005 

 2.9350E-005 

 1.1357E-004 

-2.0100E-005 

 5.7890E-005 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 5.8814E-001 

 2.0378E-001 

 0.0000E+000 

 3.8300E-002 

-3.5719E-002 

 0.0000E+000 

-3.5718E-002 

 1.3728E-002 

 0.0000E+000 

-2.1846E-002 

-1.8248E-002 

 0.0000E+000 

 1.8900E-006 

 0.0000E+000 

 7.0795E-003 

 0.0000E+000 

 2.1500E-006 

 0.0000E+000 

-1.1707E-002 

-9.9714E-003 

 0.0000E+000 

 5.8819E-003 

-1.3154E-003 

 0.0000E+000 

-1.2654E-002 

-9.0128E-003 

 0.0000E+000 

-6.5383E-004 

-6.3728E-004 
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Table A-10. Fourier coefficients of the {112} slip plane γ-surface for Mo. 

 Mo Slip Plane: {112} Finnis-Sinclair potential (1984) 

(J/m
2
) amn bmn cmn dmn 

m = 0, n = 0 

m = 0, n = 1 

m = 0, n = 2 

m = 0, n = 3 

m = 0, n = 4 

m = 0, n = 5 

m = 1, n = 0 

m = 1, n = 1 

m = 1, n = 2 

m = 1, n = 3 

m = 1, n = 4 

m = 1, n = 5 

m = 2, n = 0 

m = 2, n = 1 

m = 2, n = 2 

m = 2, n = 3 

m = 2, n = 4 

m = 2, n = 5 

m = 3, n = 0 

m = 3, n = 1 

m = 3, n = 2 

m = 3, n = 3 

m = 3, n = 4 

m = 3, n = 5 

m = 4, n = 0 

m = 4, n = 1 

m = 4, n = 2 

m = 4, n = 3 

m = 4, n = 4 

m = 4, n = 5 

m = 5, n = 0 

m = 5, n = 1 

m = 5, n = 2 

m = 5, n = 3 

m = 5, n = 4 

m = 5, n = 5 

 3.0762E+000 

-1.6698E+000 

-5.0122E-001 

-1.5789E-001 

-4.1972E-002 

-1.2567E-002 

-3.3852E-001 

-1.2739E-001 

-6.2326E-002 

-2.2893E-002 

-5.0904E-003 

-4.1333E-003 

 3.3261E-003 

-2.9689E-002 

-2.5222E-002 

-1.7306E-003 

 2.3037E-003 

 5.0125E-003 

 1.9425E-002 

-1.0825E-002 

-1.3878E-002 

-7.8716E-003 

-3.8909E-003 

-4.8573E-003 

 1.3133E-002 

-2.5526E-003 

-6.6483E-003 

-5.9335E-003 

-4.2734E-003 

-2.8312E-003 

-5.4662E-003 

-3.9385E-004 

 1.6274E-003 

 3.6404E-004 

 5.6000E-004 

 5.7218E-004 

 0.0000E+000 

 2.9160E-004 

-3.0436E-004 

 4.2494E-004 

-3.4552E-004 

 5.0315E-004 

 0.0000E+000 

 5.0947E-004 

-4.5883E-004 

 6.5082E-004 

-4.5180E-004 

 7.5531E-004 

 0.0000E+000 

 3.8739E-004 

-2.2881E-004 

 3.3315E-004 

-7.8250E-005 

 3.6038E-004 

 0.0000E+000 

 3.4476E-004 

-1.4904E-004 

 2.2318E-004 

 4.6390E-005 

 2.3268E-004 

 0.0000E+000 

 3.4566E-004 

-1.5227E-004 

 2.3074E-004 

 3.4800E-005 

 2.5084E-004 

 0.0000E+000 

 3.2887E-004 

-1.2028E-004 

 1.8799E-004 

 8.1400E-005 

 2.0333E-004 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 4.9006E-001 

-7.4200E-002 

-1.6116E-001 

-8.2265E-002 

-3.1466E-002 

-1.3440E-002 

 3.1938E-002 

-1.0749E-003 

-2.5571E-002 

-1.7788E-002 

-1.4926E-002 

-1.1664E-002 

 4.9442E-003 

 7.3008E-003 

 2.4968E-003 

-2.6411E-003 

-7.7960E-005 

 3.5871E-003 

-1.9019E-002 

 6.3363E-003 

 1.1031E-002 

 4.6691E-003 

 5.9935E-003 

 4.8247E-003 

-1.0305E-002 

-1.5655E-003 

 5.4372E-003 

 3.3450E-003 

 3.0670E-003 

 1.6727E-003 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 0.0000E+000 

 1.4142E-004 

-2.6581E-004 

 3.6652E-004 

-4.2789E-004 

 4.4938E-004 

 0.0000E+000 

 1.5042E-004 

-2.8653E-004 

 3.8828E-004 

-4.5194E-004 

 4.6854E-004 

 0.0000E+000 

 1.0129E-004 

-1.9040E-004 

 2.5616E-004 

-2.9079E-004 

 2.9301E-004 

 0.0000E+000 

 8.7300E-005 

-1.6290E-004 

 2.1759E-004 

-2.4510E-004 

 2.4126E-004 

 0.0000E+000 

 9.1940E-005 

-1.7093E-004 

 2.2905E-004 

-2.5734E-004 

 2.5627E-004 

 




