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chapter, in full, has been submitted for publication as it may appear in SIAM

Journal of Control and Optimization, McEneaney, William; Deshpande, Ameet,

SIAM Press [MDb]. The dissertation author was the coauthor of these papers.

Chapter 6, in part, is currently being prepared for submission for publication

of the material. McEneaney, William; Deshpande, Ameet [MDa]. The dissertation

author was the coauthor of this paper.

xii



VITA

2002 B. Tech. in Mechanical Engineering, Indian Institute
of Technology, Mumbai, India

2002-2004 Edison and Control systems engineer, General Electric
Global Research, Bangalore, India

2004-2009 Graduate Research and Teaching Assistant, Univer-
sity of California, San Diego

2005 Summer Intern, General Electric Global Research,
Niskayuna, New York

2006 M. S. in Mechanical and Aerospace Engineering,
University of California, San Diego

2008 Summer Intern, Ford Research, Dearborn, Michigan

2009 Control systems engineer, Clipper windpower,
Carpinteria, California.

2009 Ph. D. in Engineering Sciences (Mechanical Engineer-
ing), University of California, San Diego

PUBLICATIONS

A.S. Deshpande, “ New fundamental solution for the differential Riccati equations
with time varying coefficients”, Submitted to Automatica.

W.M. McEneaney and A.S. Deshpande, “Payoff suboptimality in controls gener-
ated by approximation of the Hamiltonian in the HJB PDE”, Submitted to SIAM
Journal on Control and Optimization.

W.M. McEneaney and A.S. Deshpande, “A curse-of-dimensionality free numerical
method based on min-plus algebra for solution of certain HJB PDEs”, In
Preparation.

W.M. McEneaney and A.S. Deshpande, “Payoff suboptimality and errors in value
induced by approximation of the Hamiltonian”, In IEEE Conference on Decision
and Control (CDC), pages 3175–3180, Dec. 2008.

W.M. McEneaney, A.S. Deshpande, and S. Gaubert, “Curse-of-complexity atten-
uation in the curse-of-dimensionality-free method for HJB PDEs”, In American
Control Conference, 2008, pages 4684–4690, June 2008.

xiii



W.M. McEneaney and A.S. Deshpande, “Payoff Suboptimality in Controls Gener-
ated by Approximation of the Hamiltonian in the HJB PDE”, In International
Symposium on Mathematical Theory of Networks and Systems, (MTNS), July
2008.

xiv



ABSTRACT OF THE DISSERTATION

Efficient Idempotent Methods for Optimal Control

by

Ameet Shridhar Deshpande

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2009

Professor William McEneaney, Chair

Dynamic programming (DP) is a very powerful and robust tool for nonlinear

optimization. Nevertheless, the applications have been limited to discrete / low

dimensional systems due to the ubiquitous curse-of-dimensionality (CoD), which

increases computation cost exponentially with the dimensionality of the problem.

Application of DP to continuous-time and continuous-space systems gives rise to

Hamilton-Jacobi-Bellman (HJB) PDEs, which are nonlinear and can have non-

smooth solutions.

Recently, a CoD-free method was developed to solve certain nonlinear semi-

convex HJB PDEs. It is based on the linearity of the underlying semigroup on a

suitable idempotent algebra. The CoD is avoided as it is grid-less and the solution

is expressed as the maximum of quadratic functions. Moreover, the Hamiltonian

is approximated by the maximum of M linear-quadratic Hamiltonians, where M

is called the complexity. In process, the original problem is approximated by the

optimal switching problem between M linear systems. Unfortunately, although

the above method avoids the CoD, it suffers from a curse-of-complexity (CoC)

as the number of quadratic bases used to approximate the value function, grow

exponentially with the complexity.

In this thesis, through the use of semidefinite programming based pruning

techniques, this CoC has been partially abated. High dimensional, low complexity

problems have been solved, pushing the envelope of the applicability of DP. This

xv



thesis also carries out the analysis of the error in the solution due to the PDE

approximation and suboptimality of feedback control computed using it. This

thesis also extends the original method for semiconcave Hamiltonians arising in

cost minimization problems without nominal stability.

As a generalization of a sub-problem within the CoD-free method, this thesis

also develops the fundamental solution for the time-varying differential Riccati

Equation (DRE). This is the counterpart of the state transition matrix in time-

varying ODEs, and allows analytic computation of a general solution from a

particular solution. It is also shown that the semiconvex duality transforms one

DRE into another, and compatibility conditions are derived. In time-invariant

special case, efficient doubling algorithms and analytic solutions are proposed.

These show dramatic improvement over the time marching methods for long time

horizon evolution of stiff DREs.
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Chapter 1

Introduction

This thesis deals with a subclass of the optimal control problems in which

decisions are made in stages. The outcome of each decision is anticipated before

the next decision is made. The objective is to minimize a certain cost, or maximize

a certain payoff, mathematical expressions of what is considered an undesirable or

desirable outcome, respectively.

A key aspect of such situations is that decisions can not be made in isolation

since one must balance the desire for low present cost with the undesirability of high

future costs. The dynamic programming (DP) technique captures this tradeoff. At

each stage, it ranks decisions based on the sum of the present cost and the future

costs, assuming optimal decision making for subsequent stages. DP can find the

globally optimal solution for such a problem, despite the nonlinear dynamics and

various state and control constraints. Thus it is an extremely robust tool for solving

nonlinear optimal control problems.

There is a variety of practical problems that can be treated by dynamic

programming. Significant progress has been made especially in discrete systems.

Viterbi algorithm used in communications, algorithms for computer chess and

many shortest path and traveling salesman algorithms are the few stellar successes

of dynamic programming.

Primary motivation of this thesis is to solve the optimal control and estimation

problems arising in continuous-time, continuous-space nonlinear systems using

dynamic programming. Section 1.1 gives an overview of DP. A key concept is

1
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the value function, which is the optimal cost to go as a function of system state.

Barring a few technicalities, the optimal control in a feedback form can be derived

from the value function. Thus the goal of DP is to compute the value function.

The value function satisfies a functional equation known as the Dynamic

Programming Principle (DPP). Such DPP can be viewed as an operator mapping

the value function at one time to the value function at another time. For

deterministic, continuous-time and continuous-space problems, as this time interval

goes to zero, the DPP reduces to a Hamilton-Jacobi-Bellman partial differential

equation (HJB PDE), usually expressed in terms of a Hamiltonian. In general,

this is a fully nonlinear, first-order PDE and does not have a classical (smooth)

solution. Therefore several notions of generalized solutions have been developed.

One of them is the theory of viscosity solutions. (cf. [BCD97], [MCL87], [FS06]).

The value function has been shown to be the viscosity solution of the HJB PDE for

many problem classes. Moreover, it usually is the unique solution within a certain

class of functions.

Typical approach is to obtain the HJB PDE corresponding to the control

problem of interest, and then to apply a numerical method to solve it, thereby

obtaining the value function. The difficulty is that one must solve the HJB

PDE. Various approaches have been used to solve the HJB PDE. More common

methods are the grid-based methods (c.f., [SD02], [FF98]) which still suffer from

the curse-of-dimensionality , as the number of grid points and computations grow

exponentially with the space dimension.

However, in recent years, an entirely new class of numerical methods for HJB

PDEs have emerged (cf., [FM00], [McE03], [MAL04], [AGL08], [McE06]). These

methods work with the underlying DPP directly instead of the HJB PDE. For

the objective maximization problems, these methods exploit the linearity of the

associated semigroup under max-plus algebra. Similarly, the problems involving

objective minimization exploit the linearity under the min-plus algebra. Recall

that the max-plus algebra is a commutative semifield in which addition is the

ordinary maximum operation and multiplication is the ordinary addition operation.

Min-plus algebra is similarly defined. Both the maximum and the minimum are
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idempotent operations, which implies that operation on two equal elements gives

the same as a result. Hence these methods are called idempotent methods.

In particular, McEneaney (cf. [McE05], [McE06], [McE07]) proposed a new

method based on the above semigroup linearity for certain nonlinear HJB PDEs.

This method is free from the usually ubiquitous curse-of-dimensionality. Hence

it is known as the curse-of-dimensionality-free numerical method. In fact, the

computational growth in state-space dimension is cubic.

The PDEs considered in this method are the ones which can be approximated

by the pointwise maximum of linear-quadratic Hamiltonians. This spans a large

class of nonlinear PDES as any semiconvex PDE can be approximated by this

approach. Such an approximation is exact for the objective maximization problems

involving switched linear systems.

However, there is an exponential computational growth in a certain measure

of the complexity of the Hamiltonian. This phenomena is called the curse-of-

complexity. Under the above measure, the minimal complexity Hamiltonian is the

linear/quadratic Hamiltonian – corresponding to a solution by a Riccati equation.

If the Hamiltonian is given as the pointwise maximum of M linear/quadratic

Hamiltonians, then one could say the complexity of the Hamiltonian is M .

This thesis makes several theoretical and numerical advances to the curse-

of-dimensionality-free method described next. Pruning methods are developed

to attenuate the curse-of-complexity and make the technique more suitable for

practical problems. The curse-of-dimensionality-free method has been extended

to objective minimization problems without nominal stability, thus spanning the

class of semiconcave Hamiltonians. A new fundamental solution has also been

developed for time-varying Riccati equations and used in curse-of-dimensionality-

free methods for efficient time evolution of quadratic functions. Finally, theoretical

analysis of the error in the value function and the payoff induced by the

approximation of the Hamiltonian in the curse-of-dimensionality-free method has

been carried out.

The presentation in this chapter will be rather informal to point out the main

ideas, and emphasize the common theme in this thesis. First, we give an overview
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of the dynamic programming in section 1.1 and idempotent analysis in section 1.2.

In section 1.3, we describe the optimal control problems we plan to solve. We shall

survey existing methods and their limitations in 1.4. In the same section, we shall

introduce the idempotent methods designed to solve above problems and refer the

reader to subsequent chapters for detailed treatment.

Each of the other chapters is devoted to solve a specific subproblem, and is

loosely connected with one another. A brief overview of chapters follows. A

detailed overview of chapters in the context of idempotent methods is covered

in section 1.4.

Chapter 2, based on [Des], develops a new fundamental solution for the time

varying differential Riccati equation (DRE) by computing an analytic solution of

the max-plus kernel proposed earlier in [FM00]. This solution is the counterpart

of the state transition matrix in linear time varying systems, and enables us to

find a general solution from a particular solution of a certain bivariate DRE. This

max-plus kernel is quadratic and is useful for an efficient evolution of the DRE.

Variants of this kernel are used in later chapters in the curse-of-dimensionality-free

methods.

Chapter 3 gives an overview of the previous development on the curse-of-

dimensionality-free idempotent method by McEneaney based on max-plus algebra

(c.f. [McE07], [McE06], [McE09]), and suggests a modified algorithm based on

the fundamental solution derived in chapter 2. This method is designed to

solve the HJB PDEs which arise in the maximization problems with nominal

stability and which can be approximated as the max-plus sum of linear quadratic

Hamiltonians. The number of quadratics in the Hamiltonian approximation is

called the complexity. The value function is approximated by the maximum of

quadratic functions as well. Unfortunately, the number of quadratic functions used

in the value function approximation, increases exponentially with the complexity.

This is the curse-of-complexity reviewed earlier. But not all of the quadratic

functions contribute to the maximum, which is the value function.

Chapter 4, based on [MDG08], develops pruning methods which attenuate the

aforementioned curse-of-complexity, by efficiently pruning quadratics which do not
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contribute to the maximum. It also demonstrates the application of the curse-of-

dimensionality-free method on complex high dimensional problems, making them

solvable on desktop PC in a reasonable amount of time.

Chapter 5, based on [MDb], is devoted to the analysis of the value function error

and the payoff suboptimality incurred in the curse-of-dimensionality-free method

due to approximation of the Hamiltonian.

Finally, chapter 6, based on [MDa], extends the curse-of-dimensionality-

free method for minimization problems without nominal stability, for which

the Hamiltonian is approximated by the min-plus sum (pointwise minimum) of

quadratic functions.

1.1 Dynamic Programming: An Overview

Dynamic programming is applicable to a surprisingly general class of problems.

Here we use a model problem involving a time varying continuous-time, continuous-

state system and a finite horizon payoff optimization to present the method.

Consider the control system with state ξt governed by the state equation

ξ̇t = f(ξt, ut, t), ξs = x ∈ Rn. (1.1)

Here, the control ut is any measurable function of time t ∈ [s, T ] taking values in

U , the control space. Assume that the dynamics f : Rn × U × [s, T ]→ Rn is such

that, the state equation (1.1) has a unique solution in the interval [s, T ] for any

initial positions x ∈ Rn and control u.

The payoff functional to be maximized with respect to control u, is additive

over time, hence expressed as the sum of the terminal payoff at time T , φ and an

integral of the running payoff, l. Such maximum is termed as the value function

defined as below.

V (x, s) = sup
u∈U

J(x, u, s)
.
= sup

u∈U

∫ T

s

l(ξt, ut, t) dt+ φ(ξT ) (1.2)

Here t ∈ [s, T ] and ξt = x. U denotes the set of all square integrable measurable

functions u : [s, T ] → U . We assume that V exists and is finite for now. For

specific problems in the subsequent chapters this will be rigorously proved.
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Following DPP holds true. Let s ≤ t1 ≤ t2 ≤ T , then V satisfies

V (x, t1) = sup
u∈U

{∫ t2

t1

l(ξτ , uτ , τ)) dτ + V (ξt2 , t2)

}
(1.3)

Above DPP links the value functions at different times together. When the time

interval gets smaller, assuming smoothness, V satisfies an infinitesimal version of

DPP, called the Hamilton-Jacobi-Bellman partial differential equation (HJB PDE).

V then satisfies the following HJB PDE with the boundary condition, V (T, x) =

φ(x) for all x ∈ Rn.

0 = −∇tV (x, t)− sup
u∈U
{f(x, u, t) · ∇xV (x, t) + l(x, u, t)}

.
= −∇tV (x, t)−H(x,∇xV (x, t))

(1.4)

Here H(x, t, p) is referred to as the Hamiltonian. Given the value function V ,

both (1.3) and (1.4) contain all the relevant information to generate the optimal

feedback control when one exists, which achieves the maximum in (1.3) and (1.4).

Computing the optimal feedback from the value function is termed the synthesis

procedure. Verification that a particular feedback control is optimal is known as

the verification procedure.

HJB is a fully nonlinear, first-order PDE. Consequently, the classical (smooth)

solutions may not exist. Hence we use a notion of generalized solution called

viscosity solution ([BCD97], [MCL87], [FS06]). The value function can be shown

to satisfy the HJB PDE (1.4) in the viscosity sense. More importantly, for many

classes of problems, it is the unique viscosity solution within a certain class of

functions satisfying boundary conditions. (c.f. [BCD97], [BL97], [Lio00], [MCL87],

[McE98], [Sor96]). Thus the problem of solving the DPP and finding the value

function can be reduced to finding the viscosity solution of the HJB PDE. In this

thesis, we will employ the underlying DPP directly, to compute the value function

of the optimal control problem. Still, the viscosity solution theory will help confirm

the value function as the solution of the HJB PDE.

Let us briefly discuss the idea of the viscosity solution. Following [BCD97],

a continuous function u is a viscosity solution of the nonlinear partial differential

equation

F (z, u(z),∇u(z)) = 0 (1.5)
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if the following conditions are satisfied:

F (z, u(z), p) ≤ 0 ∀z, ∀p ∈ D+u(z)

F (z, u(z), q) ≥ 0 ∀z, ∀q ∈ D−u(z)

where

D+u(z) =

{
p ∈ Rn : lim sup

y→z

u(y)− u(z)− p · (y − z)

|y − z|
≤ 0

}
D−u(z) =

{
q ∈ Rn : lim inf

y→z

u(y)− u(z)− q · (y − z)

|y − z|
≥ 0

}
D+u(z) and D−u(z) are called the superdifferential and the subdifferential at z

respectively. Informally, they can be described as sets of tangent planes touching

u(z) from above and below near z, respectively. Note that if both D+u(z) and

D−u(z) are nonempty at some z, then D+u(z) = D−u(z) = ∇u(z) and u is

differentiable at z.

Observe that the general form (1.5) of the HJB PDE covers the specific case of

(1.4), in which z = {x, t} ∈ Rn × (t1, t2], u(z) = V (x, t) and ∇u(z) = ∇zV (z) =

{∇xV (x, t),∇tV (x, t)}. Thus

F (z, u(z),∇u(z)) = F ({x, t}, V (x, t), {∇xV (x, t),∇tV (x, t)})

= −∇tV (x, t)− sup
u∈U
{f(x, u, t) · ∇xV (x, t) + l(x, u, t)}

In this thesis we shall use idempotent methods to solve the DP problem.

The efficacy of the idempotent methods lies in the fact that the semigroup

underlying DP is linear under certain idempotent algebra. In next section, basics

of idempotent analysis will be discussed.

1.2 Idempotent Analysis

Definition 1.2.1. A binary operation is idempotent if, whenever applied to two

equal values, it gives that value as the result.

Specifically we study two idempotent algebras based on maximum and mini-

mum operations. These are called max-plus and min-plus algebras respectively.
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The symbols we use for addition and multiplication operations under these algebras

are the same. Hence their interpretation will be context specific. The analysis

for the min-plus algebra is exactly analogous to the max-plus algebra, with the

maximum operator substituted by the minimum operator. Additional information

regarding idempotent analysis can be found in [FBQ92], [CG79], [KM97].

1.2.1 Max-Plus algebra

The max-plus algebra is a commutative semifield over R− .
= R ∪ {−∞}. The

addition and multiplication operations, ⊕ and ⊗ are defined for a, b ∈ R− as the

ordinary maximum operation and the ordinary sum respectively.

a⊕ b = max(a, b), a⊗ b = a+ b

In particular, we take

a⊕−∞ = a, a⊗−∞ = −∞ ∀a ∈ R−

Thus the additive identity is −∞, and the multiplicative identity is 0. The

multiplicative inverse of a > −∞ is −a. Note that with the exception of −∞,

no other element has an additive inverse, hence this algebra is a semifield rather

than a field. Also note that the commutative, associative, distributive properties

hold.

a⊕ b = b⊕ a, a⊗ b = b⊗ a, a⊗ (b⊗ c) = (a⊗ b)⊗ c

a⊕ (b⊕ c) = (a⊕ b)⊕ c, a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

Now we define a vector space over the max-plus algebra, referred to as a max-

plus vector space. We say that X is a max-plus vector space (with zero element

denoted by φ0 ∈ X ) if given any a, b ∈ R− and any φ, ψ ∈ X , following properties

hold.

a⊗ φ ∈ X , φ⊕ ψ = ψ ⊕ φ ∈ X , (a⊗ b)⊗ φ = a⊗ (b⊗ φ),

(a⊕ b)⊗ φ = (a⊗ φ)⊕ (b⊗ φ), a⊗ (φ⊕ ψ) = (a⊗ φ)⊕ (b⊗ ψ),

φ⊕ φ0 = φ, a⊗ φ0 = φ0, −∞⊗ φ = φ0, 0⊗ φ = φ.
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If X is defined as a set of vectors of elements of R− indexed by x ∈ Λ for

some index set Λ, then we may denote elements of X as φ = {φ(x)}x∈Λ. As with

standard vector spaces, the max-plus addition of two functions (or vectors) is done

pointwise. Specifically, for functions φ1(x) and φ2(x), the max-plus sum is

[φ1 ⊕ φ2](x) = φ1(x)⊕ φ2(x) = max(φ1(x), φ2(x))

for all x. Multiplication by a scalar is analogous to the standard case as well. That

is, for a ∈ R− and function φ1(x), for all x,

[a⊗ φ1](x) = a⊗ φ1(x) = a+ φ1(x).

Max-Plus Linearity of the Semigroup

Now we revisit the DPP (1.3) which links the value functions at different times

together. This can also be meaningfully expressed using the following operator

notation. If we define the operator

St2t1 [ψ](x)
.
= sup

u∈L2[t1,t2]

{∫ t2

t1

l(ξτ , uτ , τ) dτ + ψ(ξt2)

}
, (1.6)

with ξt1 = x. The DPP, (1.3), can then be expressed as

St2t1 [V (·, t2)](x) = V (·, t1)(x) = V (x, t1).

It is well known (c.f. [McE06]) that operators St2t1 form a semigroup. That is

St2t1 · S
t3
t2 = St3t1 and St1t1 = I. (1.7)

Such semigroup is also known to be linear in the max-plus algebra. Restricting

ourselves to continuous functions, if we define the domain of St2t1 as

Dom(St2t1 )
.
=
{
ψ ∈ C(Rn) : St2t1 [ψ](x) <∞ ∀x ∈ Rn

}
,

then ∀a ∈ R− and ∀φ, ψ ∈ Dom(St2t1 ),

St2t1 [φ⊕ ψ](x) = St2t1 [φ](x)⊕ St2t1 [ψ](x)

St2t1 [a⊗ φ](x) = a⊗ St2t1 [φ](x).

This property makes the max-plus algebra a natural tool to solve the dynamic

programming problems involving maximization of the objective function (payoff).

Hence it is used in chapters 2, 3, 4 and 5 in the analysis of such problems.
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A Max-Plus Fundamental Solution

Now we shall define a max-plus kernel I : Rn × Rn → R derived earlier in

[FM00] and [Fle03]. Let s ≤ t1 ≤ t2 ≤ T and x, y ∈ Rn, and ξt evolves with the

dynamics (1.1). Define

I t2t1 (x, y)
.
=

 sup
u∈Ut2t1 (x,y)

∫ t2
t1
lt(xt, ut, t) dt if U t2t1 (x, y) 6= ∅

−∞ otherwise
(1.8)

where

U t2t1 (x, y)
.
= {u ∈ L2[t1, t2] : xt1 = x, xt2 = y}

Note that I t2t1 = −∞ indicates that it is impossible to reach y from x in time

interval (t1, t2) using any possible control u.

Fleming and McEneaney [FM00] proposed above kernel, and showed that

St2t1 [ψ](x) = sup
y∈Rn

(
I t2t1 (x, y) + ψ(y)

) .
=

∫ ⊕
Rn
I t2t1 (x, y)⊗ ψ(y) dy (1.9)

and since I t2t1 depends only on the dynamics ξ̇t = ft(ξt, ut) and running payoff

lt(ξt, ut), it is independent of the terminal payoff ψ(ξt2). Hence it can serve as a

Fundamental solution, and obtain St2t1 [ψ](x) for any ψ(x) by a kernel operation.

This kernel and the fundamental solution will prove very useful in the chapters

ahead. In chapter 2, we shall prove that such a kernel is bi-quadratic for the

time varying linear-quadratic problems, and shall derive analytical formulas for

the same. In chapters 3 and 6, we will use a similar fundamental solution to

propagate quadratic basis functions under a linear-quadratic Hamiltonian.

1.2.2 Min-Plus Algebra

The min-plus algebra is a commutative semifield over R+ .
= R ∪ {+∞}. It

is completely analogous to the max-plus algebra discussed above, except that the

addition and multiplication operations, ⊕ and ⊗ respectively, are defined for a, b ∈
R+ as the ordinary minimum operation and the ordinary addition respectively.

a⊕ b = min(a, b), a⊗ b = a+ b
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In particular, a ⊕∞ = a, a ⊗∞ = ∞ and a ⊗ 0 = a. Thus, additive identity is

+∞ and the multiplicative identity is 0. The rest of the formalism runs parallel

to the max-plus algebra.

When the objective function (cost) is to be minimized, the semigroup

underlying the dynamic programming, is linear in the min-plus algebra. As an

example, for the infinite horizon regulator problem (1.21) in section 1.3.3, with U
as the control space, the semigroup is

St[ψ](x)
.
= inf

u∈L2[0,t]

{∫ t

0

l(ξτ ) +
1

2
|uτ |2 dτ + ψ(ξt)

}
. (1.10)

The min-plus fundamental solution is

It(x, y)
.
=

{
infu∈Ut0(x,y)

∫ t
0
lτ (xτ ) + 1

2
|uτ |2 dτ if U t0(x, y) 6= ∅

∞ otherwise,
(1.11)

where

U t0(x, y)
.
= {u ∈ L2[0, t] : x0 = x, xt = y} .

The fundamental solution and the semigroup operation are related as

St[ψ](x) = inf
y∈Rn

(
I t0(x, y) + ψ(y)

) .
=

∫ ⊕
Rn
I t0(x, y)⊗ ψ(y) dy. (1.12)

This property is used in chapter 6 for the curse-of-dimensionality-free method

designed to solve problems involving infinite horizon cost minimization.

1.3 Some optimal control problems

We briefly indicate the optimal control problems this thesis attempts to solve.

More rigorous formulation will appear in later chapters.

1.3.1 Finite Horizon Time varying LQ Problem

Now we shall discuss the well known problem involving a time varying system

with linear dynamics and quadratic payoff. Using the notation from section 1.1,
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consider a deterministic, continuous-time, continuous-state dynamical system with

state ξt. The state equation with linear dynamics is as below.

ξ̇t = f(ξt, ut, t)
.
= A(t)ξt + σ(t)ut, ξs = x ∈ Rn. (1.13)

Here, the control u ∈ L2[s, T ] is any square integrable function taking values in

Rn, the control space. The running payoff and the terminal payoff are quadratic,

and the value function is given by

V (x, s) = sup
u∈L2[s,T ]

J(x, u, s) = sup
u∈L2[s,T ]

∫ T

s

l(ξt, ut, t) dt+ φ(ξT ) (1.14)

where l(ξt, ut, t)
.
= 1

2
ξ′tC(t)ξt − 1

2
|ut|2 and φ(ξT )

.
= 1

2
ξT
′PT ξT .

Using (1.4), the dynamic programming gives rise to the following HJB PDE.

0 = −∇tV (x, t)−H(x, t,∇xV (x, t)), V (x, T ) = φ(x). (1.15)

Here (x, t) ∈ Rn × (−∞, T ] and H(x, t, p) is the linear/quadratic Hamiltonian,

defined as

H(t, x, p)
.
= sup

u
{f(x, u, t) · ∇xV (x, t) + l(x, u, t)}

=
1

2
x′C(t)x+ x′A(t)′p+

1

2
p′σ(t)σ(t)′p.

(1.16)

This PDE has a classical (smooth), quadratic solution which is the value function,

V (x, s) =
1

2
x′Psx,

and Ps is the solution of the following differential Riccati equation (DRE)

backwards in time and starting with PT at t = T , where PT is the parameter

in the terminal cost.

− Ṗt = A(t)′Pt + PtA(t) + C(t) + Ptσ(t)σ(t)′Pt (1.17)

Few analytical and many time marching methods have been developed for

solving this important DRE. But they all face numerical problems when applied to

a stiff DRE evolution for long time horizons. Chapter 2 is devoted to this problem,

and a fundamental solution is derived. Such solution allows analytic computation

of a general solution of the DRE (1.17), from any particular solution of a certain

bivariate DRE. Extensions of this problem also prove useful in solving a nonlinear

infinite horizon problem discussed next and covered in chapters 3 and 6.
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1.3.2 An Infinite Horizon Robust Control Problem

We now consider a robust/H∞ infinite time-horizon control problem. We

consider the case with a fixed feedback control and an unknown disturbance process

u. The time-invariant dynamics then takes the form

ξ̇t = g(ξt, v(ξt)) + σ(ξt)ut
.
= f(ξt) + σ(ξt)ut, ξ0 = x ∈ Rn (1.18)

Note that v(ξt) is the fixed feedback controller, and f(ξt) represents the nominal

dynamics in absence of a disturbance process. We assume that f(0) = 0 and that

the origin is an exponentially stable equilibrium point. The state ξt ∈ Rn and the

control u lies in Lloc
2

.
= {u : [0,∞)→ Rm : u ∈ L2[0, T ] ∀T <∞}, where L2[0, T ]

is the set of square-integrable functions over [0, T ].

The associated value function (also known as available storage) is obtained by

maximizing the integral payoff

V (x) = sup
u∈Lloc

2

sup
T<∞

∫ T

0

l(ξt)−
γ2

2
|ut|2 dt

As this problem involves maximization, the value function is linear in the max-plus

algebra, and this problem is referred to as a max-plus problem.

Assumptions that l is strictly nonnegative, l(0) = 0, additional stability

conditions on f and lower threshold on γ ensure that the value function exists

and is reached only at the infinite horizon. Exact assumptions are discussed in

detail in chapter 3.

The value function is the solution of the following HJB PDE in the viscosity

sense satisfying the boundary condition V (0) = 0.

0 = − sup
u∈Rm

{
(f(x) + σ(x)u) · ∇V + l(x)− γ2

2
|ut|2

}
= −

[
f(x) · ∇V + l(x) +∇V ′

(
σ(x)σ′(x)

2γ2

)
∇V

]
.
= −H(x,∇V )

(1.19)

Chapters 3 is devoted to building the curse-of-dimensionality-free method for

exactly such problems. Such a payoff maximization problem also has a cost

minimization analogue, which results in an infinite horizon regulator problem,

which is discussed next.
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1.3.3 An Infinite Horizon Regulator Problem

Consider the problem with dynamics

ξ̇t = f(ξt) + σ(ξt)ut, ξ0 = x ∈ Rn (1.20)

The state ξt ∈ Rn and the control u lies in

Lloc
2

.
= {u : [0,∞)→ Rm : u ∈ L2[0, T ] ∀T <∞} ,

where L2[0, T ] is the set of square-integrable functions over [0, T ].

We assume that f(0) = 0. Thus the origin is the fixed point of the nominal

dynamics. But we do not assume the stability of the origin.

The associated value function is obtained by minimizing the integral payoff

V (x) = inf
u∈Lloc

2

sup
T<∞

∫ T

0

l(ξt) +
1

2
|ut|2 dt (1.21)

As this problem involves minimization, the value function is linear in the min-plus

algebra, and this problem is referred to as a min-plus problem.

Assumptions that l is strictly nonnegative, l(0) = 0, ensure that the value

function exists and is reached as the limit of the finite horizon problems as T →∞.

Exact assumptions are discussed in detail in chapter 6.

The value function is the solution of the following HJB PDE in the viscosity

sense satisfying the boundary condition V (0) = 0.

0 = − inf
ut∈Rm

{
(f(x) + σ(x)u) · ∇V + l(x) +

1

2
|ut|2

}
= −

[
f(x) · ∇V + l(x)−∇V ′

(
σ(x)σ′(x)

2

)
∇V

]
.
= −H(x,∇V )

(1.22)

Chapters 6 is devoted to building the curse-of-dimensionality-free method for

exactly such problems.

1.4 Overview of Methods

In all the problems discussed before, one is interested in finding the value

function at x which solves the corresponding HJB PDE. This in turn, will yield
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the optimal control ux,?(t) or the optimal feedback law u?(ξ, t), if one exists. Now

we shall review the conventional methods for solving such problems. These start

with HJB PDE and find the value function. The more recent, idempotent methods,

discussed later, work with the underlying DPP directly to compute V .

1.4.1 Conventional methods

There are two common methods for computing the value function and

generating the optimal feedback in dynamic programming. Both these methods

face certain difficulties.

Finite element methods: The most common approach is to use grid based finite

element methods to find the value function for all grid-points in the region of

interest. (c.f. [SD02], [FF98]). Unfortunately, they suffer from the curse-of-

dimensionality, as the number of grid-points needed to cover the state space,

grow exponentially with the dimensionality n. As an example, if we choose

100 grid-points per dimension, computations will grow by a factor of 106 as we

go from a dimension 3 problem to a dimension 6 problem. Consequently there

is little hope that such methods could be used for problems in dimensions

greater than 4 or 5 in the foreseeable future.

Method of Characteristics: The second approach uses the classical method of

characteristics for the HJB PDE, also known as the Pontryagin’s Maximum

Principle (PMP). In this method, one tries to solve a two-point boundary

value problem for a system of ordinary differential equations involving state

and adjoint variables. Thus one propagates the solution along the one

dimensional paths, also called the characteristic curves, to obtain the value

and the optimal control only at the points on such a path, instead of the

whole space. This decreases the computational cost drastically. However,

this method assumes smoothness. Nonsmoothness can pose a daunting

challenge, as the shooting methods to find the correct initial conditions may

fail to converge, the projections of characteristics in the state space can

cross and may not cover the entire state space. Also, the solution needs
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to be recomputed if the system deviates from the optimal path, which can

happen in presence of noise. Ways to get around these difficulties using

generalized characteristics, have associated bookkeeping costs which have

been a deterrent to application of this method for large or complex problems.

1.4.2 Idempotent methods

In recent years, an entirely new class of numerical methods for HJB PDEs have

emerged (c.f. [FM00], [McE03], [MAL04], [AGL08], [McE06]). These methods

exploit the linearity of the semigroup associated with the optimal control under

suitable idempotent algebra. Specifically, we deal with the max-plus and the

min-plus algebras. These arise in problems in which the objectives need to be

maximized or minimized, respectively. The description of these methods, several

of which are the contributions of this thesis, follows. The chapters in which they

are covered are also mentioned along with.

Eigenvector methods: The first class of numerical methods based on above

linearity, were the eigenvector methods (c.f. [McE03], [McE04], [CM04]).

These employ the max-plus basis expansion of the value function, and

numerical methods obtain the coefficients in such a basis expansion. But

again, the number of basis functions required grows exponentially with space

dimension. Thus one still can not avoid the curse-of-dimensionality.

The curse-of-dimensionality-free method for max-plus problems: A second numer-

ical method based on max-plus linearity of above semigroup was proposed

for certain class of semiconvex HJB PDEs (c.f. [McE07], [MK], [McE09],

[MDG08], [McE06]). These PDEs arise in the infinite horizon payoff

maximization problems with stable dynamics and unbounded control and

state space. In this method, the Hamiltonian is approximated by the max-

plus sum (pointwise maximum) of many linear/quadratic Hamiltonians, and

the infinite horizon value function is obtained as the limit of the finite horizon

problem as time grows. This method surprisingly is not subject to the curse-

of-dimensionality, hence called the curse-of-dimensionality-free method. In



17

fact, the computational growth in state-space dimension is of the order of n3.

There is however no free lunch, since it exhibits an exponential computational

growth in a certain measure of the complexity of the Hamiltonian. Under

this measure, the minimal complexity Hamiltonian is linear/quadratic, which

is easily solved by a Riccati equation. If the Hamiltonian is the max-plus

sum (pointwise maximum) of M linear/quadratic Hamiltonians, then it is

said to have the complexity M . Such an approximation is very useful, since

the max-plus addition of linear/quadratic Hamiltonians can span the space

of all semiconvex Hamiltonians, which includes many problems of practical

interest. Chapter 3 describes this method in detail.

This thesis contributes towards the error analysis of the curse-of-dimensionality-

free method. Specifically it addresses the error due to an approximation of

a nonlinear Hamiltonian with pointwise maximum of many linear-quadratic

Hamiltonians. It computes the bounds on the error between the original and

approximate value function. It also computes the payoff suboptimality by

following the approximate optimal control. This is covered in chapter 5.

Pruning methods for the curse-of-dimensionality-free method: The exponential

computational growth with complexity, or the curse-of-complexity , which

replaces the curse-of-dimensionality discussed above is not always inevitable.

This is because, the value function is represented as the max-plus summation

(pointwise maximum) of quadratic functions, and those which lie below the

maximal envelope can be pruned without introducing any error. This thesis

proposes various pruning methods in chapter 4. (c.f. [MDG08]). Such

methods make it possible to solve the nonlinear control problems in higher

dimensions on a desktop PC.

The curse-of-dimensionality-free method for min-plus problems: Chapter 6, in

this thesis extends the above method to solve a semiconcave HJB PDE,

which can be approximated as the min-plus sum (pointwise minimum) of

linear/quadratic Hamiltonians. These arise in infinite horizon problems with

unbounded control and state space, and in which we aim to minimize an
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integral cost. In such problems, the nominal dynamics does have a fixed

point at the origin. But the stability need not be assumed, making it more

general.

Fundamental solutions of the differential Riccati equation: A crucial sub-step

in the curse-of-dimensionality-free method is the evolution of a quadratic

terminal cost function under a linear/quadratic Hamiltonian. This involves

solving a Differential Riccati Equation (DRE). As a surprising outcome of the

idempotent methods and semiconvex duality theory, a fundamental solution

for the time-invariant DRE was discovered in [McE08]. In this thesis, this

algorithm is refined, so as not to use the semiconvex dual transformation and

thereby avoid some complications and error sources. In this process, a closed

form quadratic analytical solution for the fundamental solution originally

theorized in [FM00] is also found. Suitable variations of such fundamental

solution are also used in chapters 3 and 6 to evolve the quadratic cost function

in discrete steps for fast computations.

Chapter 2 in this thesis, extends such a fundamental solution to a time

varying DRE. This enables us to compute analytically the general solution

from any particular solution of such a DRE. So far, this has been a hard

problem, with only time marching solutions available for long time horizon

propagation. Chapter 2 covers the development of these algorithms.



Chapter 2

New Fundamental solution for the

time varying differential Riccati

equation

2.1 Introduction

In this chapter, we consider the matrix differential Riccati equation (DRE) of

the form

−ṗ(t) = A(t)′p(t) + p(t)A(t) + C(t) + p(t)′Σ(t)p(t)

p(T ) = pT
(2.1)

where t ∈ (−∞, T ] and A(t) is square and p(t), C(t),Σ(t) are square and symmetric

n×n matrices. Note that (2.1) can be easily converted into an initial value problem

with forward time propagation. Nevertheless, we use this approach because it

simplifies the notation when framed as an optimal control problem.

The development in this chapter is mostly based on the paper [Des]. Variations

of the fundamental solution derived here will be used in numerical methods for

curse-of-dimensionality-free methods developed in chapters 3 and 6. Hence it is

considered first.

DREs are widely used in the systems and control theory, especially so in the

areas of optimal control, filtering and estimation. Many numerical algorithms

19
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have been proposed in the past for solving time-varying DREs. These include

carefully redesigned, conventional Runge-Kutta and other explicit linear multi-

step methods, as well as nonlinear implicit methods by Choi and Laub [CL90],

Dieci [Die92] and many others. Although these methods benefit greatly from

the past development in general purpose computer programs for solving ordinary

differential equations (ODEs), they can become rather complex in code structure

and interface. Implicit methods, which are more preferred to the explicit ones

for solving stiff problems, also suffer from implementation and computational

complexity. Moreover, these methods have to be rerun to solve for each initial

condition, which makes it difficult to carry out the sensitivity analysis.

There have also been many unconventional methods designed to solve time-

invariant DREs (cf. [Lei85], [Rus88], [Lai76], [And77] and [Kim89]). These

comprise of various analytical solutions and doubling algorithms. Nevertheless,

it is known that these are not suited for time-varying DREs.

There are two methods which can be used. The first is the analytical solution

developed by Davison and Maki [DM73]. It solves the following system.[
U̇

V̇

]
=

[
−A(t) −Σ(t)

C(t) A(t)′

][
U

V

]
Pt1 = V (t1)U−1(t1) (2.2)

with the solution to (2.1) obtained as Pt2 = V (t2)U−1(t2). Thus this method does

work for the time-varying systems. But as t2− t1 grows, columns of U(t2) become

more and more linearly dependent, which makes the problem ill-conditioned.

Therefore, this method can be used only for a small time propagation. Thus until

now, there has been no fundamental solution available for the time-varying DRE,

which is useful for a long time horizon propagation and for the infinite horizon as

a special case. This work attempts to fill this gap.

The second method is by Sorine and Winternitz [SW85]. Their work provides a

way to construct a general solution from five particular solutions. The forthcoming

method uses just one particular solution of the bivariate DRE, instead of five

particular solutions in [SW85], to construct the general solution of the time varying

DRE.

Now we shall discuss an overview of the forthcoming development. Recently
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McEneaney [McE08] proposed a new fundamental solution for solving the time-

invariant DRE and a doubling algorithm. They are based on the tools of max-plus

algebra and semiconvex duality. In another recent development, in [FM00], [Fle03],

Fleming and McEneaney introduced the concept of the max-plus fundamental

solution for time invariant systems with nonlinear dynamics. This chapter extends

both of these ideas to apply to a time-varying system with linear dynamics and

quadratic payoff. It finds surprisingly simple formulas for the fundamental solution,

which turns out to be bivariate quadratic and can be represented by three n

dimensional square matrices. It can also be viewed as the max-plus kernel which

can operate on any initial condition p0 to obtain pt analytically.

The fundamental solution is obtained from the time evolution of a bivariate

quadratic terminal cost function under optimal control, where one variable is the

state and the second variable is used to parametrize the terminal cost. Note that

this requires us to solve a bivariate DRE (2.13), hence evolve three parameters

instead of just one in case of the DRE (2.1). The fundamental solution itself is

invariant with respect to the terminal bivariate cost function, but depends only

on the evolution time interval. Thus any particular solution to a bivariate DRE

can be converted into the fundamental solution and then into a general solution,

analytically. This makes sensitivity/ perturbation analysis for such an initial value

problem much easier.

As a special case, the fundamental solution to the time-invariant problem and a

new doubling algorithm is derived. Though inspired from the doubling algorithm in

[McE08], the new algorithm is more direct and simpler, since it does away with the

kernel propagation in the semiconvex dual space. Instead, it propagates the kernel

in the primal space of quadratics. One numerical issue with such a fundamental

solution as well as the one described in [McE08], is that the kernel parameters

blow up as the time step gets smaller. A modification to the formula to avoid such

a blowup is suggested. It maintains better solution accuracy for the propagation

at a small time step.

Building further on the idea of semiconvex duality, it shall be proved that

the semiconvex dual of the solution of DRE (2.1) satisfies another DRE, whose
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coefficients can be found analytically. One can also choose these coefficients

and find an appropriate duality kernel for transformation, as long as certain

compatibility/matching conditions are satisfied. Such conditions take the form

of coupled Riccati equations or similarity transformations on the primal and dual

Hamiltonian matrices. As a special case, one can make the dual DRE linear, by

choosing the quadratic term coefficient zero, and solve it analytically. Using this

method, the analytical solutions obtained earlier by Leipnik [KL85] and Rusnak

[Rus88] can be easily derived, demonstrating the versatility and power of this

approach.

We shall also use the fundamental solution developed here to solve stiff DREs

with known analytical solutions, and benchmark them for accuracy, numerical

stability and speed. These algorithms, being analytical and stable, are very useful

for solving the stiff DRE for a long time horizon propagation, unlike the Davison-

Maki method.

Finally even though the optimal control problem considered here, does make

a number of assumptions to ensure existence of the value function, and avoid

singularity, the resulting fundamental solution is valid for a much wider class

of problems, since it is purely algebraic. As a special case, it is observed that

even in case of unstable DREs, which exhibit the finite time blowup, the above

fundamental solution can propagate beyond the singularity. For example, when

applied to the special case ṗ = 1 + p2, whose solution is tan(p), it correctly

propagates beyond the singularities at p = (2n + 1)π
2
, n ∈ W, where W is the

set of whole numbers. But this aspect shall not be covered here in order to contain

the scope of the thesis.

2.2 Optimal control problem

We shall obtain the fundamental solution for DRE (2.1) through an associated

optimal control problem. To ensure the existence and the regularity of the value

function, we make following assumptions throughout this section.
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Since DREs exhibit a finite time blowup, we assume that for t ∈
(
T̄ , T

]
with t ≤ T , there exists a solution of DRE (2.1) with the terminal

condition PT . We may have T̄ = −∞. We assume that Σ(t) � 0, ∀t ∈(
T̄ , T

]
. Hence let Σ(t) = σ(t)σ(t)′. We also assume controllability,

that is given x, y ∈ Rn, and T̄ < t1 < t2 ≤ T , ∃ũ ∈ L2(t1, t2) such that

the solution x̃t of ˙̃xt = A(t)x̃t + σ(t)ũt, satisfies x̃t1 = x and x̃t2 = y.

We also assume that A(t), C(t),Σ(t) are piecewise continuous, locally

bounded functions of time t, and Σ(t) � 0 for all t.

(2.3)

Now consider the following optimal control problem. Let T̄ < t1 ≤ T . We wish to

maximize

JTt1
z
(x1, u)

.
=

∫ T

t1

lt(xt, ut) dt+ φz(xT ) (2.4)

where xt ∈ Rn satisfies

ẋt = ft(xt, ut)
.
= A(t)xt + σ(t)ut (2.5)

xt1 = x1 (2.6)

and lt(xt, ut)
.
= 1

2
xt
′C(t)xt − 1

2
|ut|2 and with u ∈ L2(t1, T ) and the terminal payoff

is bivariate quadratic in the state variable x and a parameter z ∈ Rn as below.

φz(x) = φ(x, z)
.
=

1

2
x′Px+ x′Sz +

1

2
z′Qz (2.7)

where P , Q are symmetric and S is invertible.

The optimal control value function is defined to be

V z(t1, x1) = V z
t1

(x1)
.
= sup

u∈L2(t1,T )

JTt1
z
(x1, u) (2.8)

for all x, z ∈ Rn and t1 ∈
(
T̄ , T

]
. We shall show that the above value function is

a solution of a particular Hamilton-Jacobi-Bellman (HJB) PDE.

Let W z(t, x) be the solution of following Hamilton-Jacobi-Bellman PDE on(
T̄ , T

]
× Rn

0 = −∇tW
z(t, x)−H (t, x,∇xW

z(t, x)) , (2.9)
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and with the boundary condition defined in (2.7)

W z(T, x) = φ(x, z) ∀x ∈ Rn (2.10)

where

H(t, x, p)
.
= sup

u∈Rn
{p′ft(x, u) + lt(x, u)}

= sup
u∈Rn

{
p′ (A(t)x+ σ(t)u) +

1

2
x′C(t)x− 1

2
|u|2 dt

}
=

1

2
x′C(t)x+ x′A′(t)p+

1

2
p′Σ(t)p (2.11)

and Σ(t)
.
= σ(t)σ′(t).

Lemma 2.2.1. Assuming (2.3), for any z ∈ Rn, there exists a solution to (2.9),

(2.10), (2.11) in C∞((T̄ , T ]× Rn), and this is given by

W z(t, x) =
1

2
x′Ptx+ x′Stz +

1

2
z′Qtz (2.12)

where Pt, St, Qt satisfy PT = P , ST = S,QT = Q and

− Ṗt = A(t)′Pt + PtA(t) + C(t) + PtΣ(t)Pt

−Ṡt = (A(t) + Σ(t)Pt)
′St (2.13)

−Q̇t = St
′Σ(t)St

and St is invertible for all t ∈ (T̄ , T ].

Proof. Existence of the solution Pt : −T̄ < t ≤ T is assumed in (2.3).

This combined with local boundedness, and piecewise continuity of coefficients

guarantees the existence of St, and hence that of Qt for −T̄ < t ≤ T . The proof

that it solves HJB PDE, is immediate by substitution in (2.9) and (2.10). Let us

define, B(t) = −(A(t) + Σ(t)Pt). Then St1 = ΦB(t1, T )ST , where ΦB is the state

transition matrix of the system ẋt = B(t)xt. By Abel-Jacobi-Liouville formula

det ΦB(t1, T ) = e
∫ T
t1

TrB(τ) dτ
> 0

Since both ΦB(t1, T ) and ST = S are invertible, St1 = ΦB(t1, T )ST is invertible as

well.
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Next we need a verification theorem to connect HJB PDE solution to the control

value function.

Theorem 2.2.2. Assume (2.3). Let W and J be defined as per (2.12) and (2.4),

respectively. Let x, z ∈ Rn and t1 ∈
(
T̄ , T

]
. One has

W z(t1, x) ≥ JTt1
z
(x, u) ∀u ∈ L2(t1, T )

and

W z(t1, x) = JTt1
z
(x, ũ)

where ũt = ũ(t, xt) = σ(t)′∇W z(t, xt) = σ(t)′(Ptxt + Stz), which implies W z = V z

and

Vt(x, z) = V z
t (x) = W z

t (x) =
1

2
x′Ptx+ x′Stz +

1

2
z′Qtz (2.14)

Proof. Let u ∈ L2(t1, T ).

JTt1
z
(x, u) =

∫ T

t1

(Lt(xt, ut) + (A(t)xt + σ(t)ut)
′∇W z(t, xt)) dt+ φ(xT , z)

−
∫ T

t1

(A(t)xt + σ(t)ut)
′∇W z(t, xt) dt

which by definition of H

≤
∫ T

t1

H (xt,∇W z(t, xt)) dt+ φ(xT , z)−
∫ T

t1

(A(t)xt + σ(t)ut)
′∇W z(t, xt) dt

which by (2.9) and (2.5)

=

∫ T

t1

{
− ∂

∂t
W z(t, xt)− ẋt∇W z(t, xt)

}
dt+ φ(xT , z)

=−
∫ T

t1

d

dt
W z(t, xt) dt+ φ(xT , z)

=W z(t1, x)−W z(T, xT ) + φ(xT , z) = W z(t1, x)

using (2.10).
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Also note that in the above proof, if we substitute ũt = σ(t)′∇W z(t, xt), then

using lt(x, u) = 1
2
x′C(t)x− |ut|2/2, σ(t)σ′(t) = Σ(t) and (2.11),

lt(xt, ut) + (A(t)xt + σ(t)ut)
′∇W z(t, xt)

=
1

2
xt
′C(t)xt +

1

2
∇W z ′(t, xt)Σ(t)∇W z(t, xt) + A′(t)∇W z(t, xt)

= H (t, xt,∇W z(t, xt))

This converts the inequality into equality and we get JTt1
z
(x, ũ) = W z(t1, x).

Now combining (2.8), lemma (2.2.1) and theorem 2.2.2 and substituting z = 0

(zero vector), redefining V 0
t (x) as P(x), and parametrizing the univariate value

function by p instead of P for the bivariate value function, we get the following

corollary

Corollary 2.2.3. Given t ∈
(
T̄ , T

]
and x ∈ Rn, the value function

Pt(x) = sup
u∈L2(t,T )

{∫ T

t1

(
1

2
xt
′C(t)xt −

|ut|2

2

)
dt+

1

2
xT
′pxT )

}
=

1

2
x′ptx (2.15)

subject to the dynamics

ẋt = A(t)xt + σ(t)ut

satisfies HJB PDE

−∇tPt(x) =
1

2
x′C(t)x+ x′A′(t)∇xPt(x) +

1

2
∇xPt(x)′Σ(t)∇xPt(x)

and pt satisfies the following DRE in which Σ(t) = σ(t)σ(t)′,

−ṗt = A(t)′pt + ptA(t) + C(t) + ptΣ(t)pt

with boundary condition pT = p.

This gives us the motivation to solve the DRE using the underlying optimal

control problem. The optimal control problem defined in (2.8) with bivariate

quadratic terminal payoff parametrized by z will be useful in deriving the

fundamental solution as will be covered in sections ahead.
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2.3 Fundamental Solution

For given t2 and a general terminal payoff function φ(x) : Rn → R, let us define

the operator,

St2t1 [φ](x) = sup
u∈L2(t1,t2)

∫ t2

t1

lt(xt, ut) dt+ φ(xt2) (2.16)

Suppose that t1 < t2 is such that the solution St2t1 [φ](x) exists. (Is finite for any

x ∈ Rn.)

We can restate (2.8) and (2.4) using above operator. Noting that V z
T (x) =

φz(x), as defined in (2.7), we have for all t ∈
(
T̄ , T

]
V z
t (x) = STt [φz](x) = STt [V z

T ](x)

It is well known that operators St2t1 form a semigroup. That is if t1 ≤ t ≤ t2 ≤ T ,

then St2t1 [φ] = Stt1 [St2t [φ]], which is precisely the celebrated Dynamic programming

principle for this problem. That is with t2 = T ,

V z
t1

(x) = STt1 [φz](x) = Stt1
[
STt [φz]

]
(x) = Stt1 [V z

t ] (x)

= sup
u∈L2(t1,t)

∫ t

t1

lt(xt, ut) dt+ V z
t (xt)

(2.17)

Maslov [Mas87] proved that this semigroup is also linear in max-plus algebra. That

is

St2t1 [max(φ1, φ2)](x) = max
{
St2t1 [φ1](x),St2t1 [φ2](x)

}
St2t1 [k + φ1](x) = k + St2t1 [φ1](x)

where φ1(x), φ2(x) are functions and k ∈ R is a scalar. If we define a⊕b .= max(a, b)

and a⊗b .= a+b, then it is well known that (R ∪ {−∞},⊕,⊗) forms a commutative

semifield which is referred to as the max-plus algebra (see [BCOQ92],[HJ99],

[LM98] for a fuller discussion).

We can extend it to functions so as to define the max-plus vector space. Let

[a ⊕ b](x) = max(a(x), b(x)) and a(x) ⊗ k = a(x) + k, where a, b : Rn → R and

k ∈ R. Using this notation, we have

STt1 [φ1 ⊕ φ2](x) = STt1 [φ1](x)⊕ STt1 [φ2](x)

STt1 [k ⊗ φ1](x) = k ⊗ STt1 [φ1](x)
(2.18)
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Now we shall define a max-plus kernel I : Rn × Rn → R derived earlier in

[FM00] and [Fle03]. Let T̄ < t1 ≤ t2 ≤ T and x, y ∈ Rn, and xt evolve with

dynamics (2.5). Define

I t2t1 (x, y)
.
=

 sup
u∈Ut2t1 (x,y)

∫ t2
t1
lt(xt, ut) dt if U t2t1 (x, y) 6= ∅

−∞ otherwise
(2.19)

where

U t2t1 (x, y)
.
= {u ∈ L2(t1, t2) : xt1 = x, xt2 = y}

Note that I t2t1 = −∞ indicates that it is impossible to reach y from x in time

interval (t1, t2) using any possible control u.

Fleming and McEneaney [FM00] proposed above kernel, and showed that

St2t1 [φ](x) = sup
y∈Rn

(
I t2t1 (x, y) + φ(y)

) .
=

∫ ⊕
Rn
I t2t1 (x, y)⊗ φ(y) dy (2.20)

and since I t2t1 depends only on the dynamics ẋt = ft(xt, ut) and running payoff

lt(xt, ut), it is independent of the terminal payoff φ(xt2). Hence it can serve as a

Fundamental solution, and obtain St2t1 [φ](x) for any φ(x) by a kernel operation.

Remark 2.3.1. Note that St2t1 [φ](x) > −∞ for all x ∈ Rn. Since for any

ũ ∈ L2(t1, t2), solution to x̃0 = x and ˙̃xt = ft(x̃t, ũt) exists for t ∈ [t1, t2] and∫ t2
t1
lt(x̃t, ũt) dt > −∞. Hence

St2t1 [φ](x) ≥ I t2t1 (x, x̃t2) + φ(x̃t2) ≥
∫ t2

t1

lt(x̃t, ũt) dt+ φ(x̃t2) > −∞

Remark 2.3.2. Also note that due to the controllability assumption (2.3), for

t1 < t2, we can always find control ũt which generates the trajectory x̃(t) satisfying

x̃t1 = x and x̃t2 = y. Thus U t2t1 (x, y) 6= ∅ and I t2t1 (x, y) ≥
∫ t2
t1
lt(xt, ut) dt > −∞ for

all x, y ∈ Rn. For t1 = t2, I t2t1 (x, y) = −∞ for all y 6= x and I t2t1 (x, x) = 0.

2.3.1 Computing the max-plus kernel

First we derive a lemma about the end point of optimal trajectories.
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Lemma 2.3.3. Assume (2.3). Consider the system trajectory x̃t starting from

x̃t1 = x and evolving according to (2.5) under optimal control ũt = σ(t)′(Ptx̃t+Stz)

from theorem 2.2.2. Then for T̄ < t1 ≤ t2 ≤ T ,

St2
′x̃t2 +Qt2z = St1

′x̃t1 +Qt1z (2.21)

Proof. By time-varying linear system theory, for a system evolving as per

˙̃xt = A(t)x̃t + σ(t)ũt

= A(t)x̃t + σ(t)σ(t)′(Ptxt + Stz)

= (A(t) + Σ(t)Pt)xt + Σ(t)Stz

solution is given as

x̃t2 = ΦB(t2, t1)x̃t1 +

∫ t2

t1

ΦB(t2, τ)Σ(τ)Sτz dτ (2.22)

where ΦB(t2, t1) = Ut2U
−1
t1 , where Ut is the solution of differential equation U̇t =

B(t)Ut, with B(t) = A(t) + Σ(t)Pt.

It is well known that the state transition matrix

ΦB(t)(t2, t1) = Φ′−B(t)′(t1, t2)

now, noting from (2.13) that Ṡt = −(A(t) + Σ(t)Pt)
′St = −B(t)′St, and since St2

is invertible, we have

ΦB(t)(t2, t1) = Φ′−B(t)′(t1, t2) =
(
St1S

−1
t2

) ′ = S−1
t2
′St1

′ (2.23)

Substituting in (2.22), and noting from (2.13) that −Q̇t = St
′Σ(t)St,

x̃t2 = S−1
t2
′St1

′x̃t1 + S−1
t2
′
∫ t2

t1

Sτ
′Σ(τ)Sτz dτ

= S−1
t2
′St1

′x̃t1 + S−1
t2
′
(∫ t2

t1

Sτ
′Σ(τ)Sτ dτ

)
z

= S−1
t2
′St1

′x̃t1 + S−1
t2
′ (Qt1 −Qt2) z

thus we have,

St2
′x̃t2 +Qt2z = St1

′x̃t1 +Qt1z
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Remark 2.3.4. Note that using lemma 2.2.1, since St1 and St2 are invertible,

(2.21) suggests a one-one and onto relation between start and end of optimal

trajectories, xt1 and xt2 for all z. Thus ∀y ∈ Rn there exists a x =

S−1
t2
′ (St1

′y + (Qt1 −Qt2)z) such that optimal trajectory x̃t starting at x̃t1 = x,

ends with y. Thus every y ∈ Rn is an optimal point for some initial condition.

Remark 2.3.5. Note that due to max-plus linearity, if k ∈ R, using (2.17),

V̂ z
t1

= STt1 [φz + k](x) = STt1 [φz](x) + k = V z
t1

(x) + k

Thus while keeping the dynamics and the incremental payoff same, adding a

constant to the terminal payoff only shifts the value function accordingly. Hence

the gradient and therefore the optimal feedback remain the same.

ût(x) = σ(t)∇V̂ z
t1

(x) = σ(t)∇V z
t1

(x) = ũt(x)

Hence the optimal trajectory, which is the solution to ˙̂xt = A(t)x̂t+σ(t)ût(x), also

stays the same.

Now we shall prove another useful lemma before turning to the main result.

Lemma 2.3.6. Given T̄ < t1 < t2 ≤ T , and Qt evolving according to (2.13) with

terminal value QT = Q, then

Qt1 −Qt2 � 0

Proof. Note that we assumed in (2.3) that the system ẋt = A(t)xt + σ(t)ut

parametrized by (A(t), σ(t)) is controllable. This is true if and only if the following

controllability grammian is invertible for any T̄ < t1 < t2 ≤ T .∫ t2

t1

ΦA(t1, τ)σ(t)σ(t)′ΦA(t1, τ)′ dt � 0 (2.24)

Thus for all x, y ∈ Rn, ∃ control ût such that is the trajectory ˙̂x = A(t)x̂t+σ(t)ût

with x̂t1 = x satisfies x̂t2 = y.

Now we claim that system (A(t) + Σ(t)Pt, σ(t)) is also controllable. This is clear

because by using control ūt = ût − σ(t)′Ptxt, we can keep the system trajectory
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same and reach from x to y.

˙̂x = A(t)x̂t + σ(t)ût

= (A(t) + σ(t)σ(t)′Pt)xt + σ(t) (ût − σ(t)′Ptxt)

= (A(t) + Σ(t)Pt)xt + σ(t)ūt

Hence similar to (2.24), using B(t) = A(t) + Σ(t)Pt and σ(t)σ(t)′ = Σ(t), the

following controllability grammian is invertible.∫ t2

t1

ΦB(t1, τ)Σ(t)ΦB(t1, τ)′ dt � 0 (2.25)

Substituting ΦB(t1, τ) = S−1
t1
′Sτ
′ from (2.23),∫ t2

t1

ΦB(t2, τ)Σ(t)ΦB(t2, τ)′ dτ =

∫ t2

t1

S−1
t1
′Sτ
′Σ(t)SτS

−1
t1
dτ

= S−1
t1
′
{∫ t2

t1

Sτ
′Σ(t)Sτ dτ

}
S−1
t1

= S−1
t1
′ (Qt1 −Qt2)S−1

t1
(2.26)

where in the last equation, we used Qt evolution from (2.13). Using (2.25) and

since St1 is invertible by Lemma (2.2.1), we have Qt1 −Qt2 � 0.

Theorem 2.3.7. Assuming (2.3), let V and I be as defined in (2.14) and (2.19),

respectively. Given x, y ∈ Rn and T̄ < t1 ≤ t2 ≤ T , then

inf
z∈Rn

[
V z
t1

(x)− V z
t2

(y)
]

= I t2t1 (x, y) (2.27)

Since by (2.14), V z
t1

(x) = 1
2
x′Pt1x+x′St1z+ 1

2
z′Qt1z and V z

t2
(x) = 1

2
x′Pt2x+x′St2z+

1
2
z′Qt2z, the max-plus kernel I t2t1 (x, y) is also bivariate quadratic.

I t2t1 (x, y) =
1

2
x′I11

t2
t1
x+ x′I12

t2
t1
y +

1

2
y′I22

t2
t1
y where

I11
t2
t1

= Pt1 − St1(Qt1 −Qt2)−1St1
′

I12
t2
t1

= St1(Qt1 −Qt2)−1St2
′

I22
t2
t1

= −Pt2 − St2(Qt1 −Qt2)−1St2
′

(2.28)
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Proof. Let xt1 = x. Since Σ(t) � 0 and St is invertible, by (2.13), Q̇t =

−S ′tΣ(t)St � 0, hence Qt1 −Qt2 � 0. For any z ∈ Rn

V z
t1

(x)− V z
t2

(y)

= St2t1 [V z
t2

](x)− V z
t2

(y)

= sup
u∈L2(t1,t2)

{∫ t2

t1

lt(xt, ut) dt+ V z
t2

(xt2)− V z
t2

(y)

}
substituting for V z

t2
,

= sup
u∈L2(t1,t2)

{∫ t2

t1

lt(xt, ut) dt+
1

2
x′t2Pt2xt2 −

1

2
y′Pt2y + (xt2 − y)′St2z

}

Since U t2t1 (x, y) = {u ∈ L2(t1, t2) : xt1 = x, xt2 = y} ⊂ L2(t1, t2) , and ∀u ∈
U t2t1 (x, y), xt2 = y.

≥ sup
u∈Ut2t1 (x,y)

{∫ t2

t1

lt(xt, ut) dt+
1

2
y′Pt2y −

1

2
y′Pt2y + (y − y)′St2z

}

= sup
u∈Ut2t1 (x,y)

∫ t2

t1

lt(xt, ut) dt = I t2t1 (x, y) (2.29)

Taking infimum over all z ∈ Rn,

inf
z∈Rn

[
V z
t1

(x)− V z
t2

(y)
]
≥ I t2t1 (x, y) (2.30)

Since Qt1 −Qt2 � 0 by 2.3.6, define ẑ = (Qt1 −Qt2)−1(St2
′y − St1 ′x). Hence

St2
′y +Qt2 ẑ = St1

′x+Qt1 ẑ

hence using (2.21) the optimal trajectory x̃t starting from x̃t1 = x and with terminal

payoff V ẑ
t2

(·), ends at x̃t2 = y. Let the corresponding optimal control be ũt. Let us

define k = −V ẑ
t2

(y) = −
(

1
2
ẑ′Qt2 ẑ + 1

2
y′Pt2y + y′St2 ẑ

)
to create a shifted terminal

payoff function

U ẑ
t2

(x) = V ẑ
t2

(x) + k = V ẑ
t2

(x)− V ẑ
t2

(y)

=
1

2
x′Pt2x−

1

2
y′Pt2y + (x− y)′St2 ẑ

(2.31)
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From remark 2.3.5, ũt, x̃t are also the optimal control and trajectory for the

following problem with the terminal payoff U z
t2

. Hence

V ẑ
t1

(x)− V ẑ
t2

(y) =

{
sup

u∈L2(t1,t2)

∫ t2

t1

lt(xt, ut) dt+ V ẑ
t2

(x)

}
− V ẑ

t2
(y)

= sup
u∈L2(t1,t2)

{∫ t2

t1

lt(xt, ut) dt+ V ẑ
t2

(x)− V ẑ
t2

(y)

}
= sup

u∈L2(t1,t2)

∫ t2

t1

lt(xt, ut) dt+ U ẑ
t2

(xt2)

=

∫ t2

t1

lt(x̃t, ũt) dt+ U ẑ
t2

(x̃t2)

since U ẑ
t2

(x̃t2) = U ẑ
t2

(y) = 0 from (2.31) and ũ ∈ U t2t1 (x, y)

≤ sup
u∈Ut2t1 (x,y)

∫ t2

t1

lt(xt, ut) dt = I t2t1 (x, y) (2.32)

Thus we have

inf
z

[
V z
t1

(x)− V z
t2

(y)
]
≤ V ẑ

t1
(x)− V ẑ

t2
(y) ≤ I t2t1 (x, y) (2.33)

Hence (2.30) and (2.33) together give us (2.27) and also the following

inf
z∈Rn

[
V z
t1

(x)− V z
t2

(y)
]

= V ẑ
t1

(x)− V ẑ
t2

(y) = I t2t1 (x, y) (2.34)

with ẑ = (Qt1 −Qt2)−1(St2
′y − St1 ′x).

Substituting ẑ in (2.34) and expanding, we get (2.28).

Remark 2.3.8. It is interesting to note that the formulas extend graciously even

when assumptions on controllability are violated. In that case Qt1 −Qt2 � 0 and

may not be invertible. We can do singular value decomposition

Qt1 −Qt2 =
[
U1 U2

] [ Λ 0

0 0

][
U ′1

U ′2

]

where [U1 U2] is unitary matrix, and Λ is diagonal matrix of nonzero eigenvalues.

We can obtain Moore-Penrose pseudoinverse as

(Qt1 −Qt2)+ = U1Λ−1U ′1
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If we take the limit of the formula (2.28), by replacing all zero eigenvalues by

k > 0, and letting k → 0, then we obtain following formulas, which also give us a

representation of the reachable set.

I t2t1 (x, y) =


(2.28) with (Qt1 −Qt2)−1

replaced by (Qt1 −Qt2)+
if St1

′x− St2 ′y ∈ range(U1)

−∞ otherwise

In the special case when Σ(t) is zero matrix, and no control is possible. U1 is

empty, since there are no nonzero eigenvalues. (Q1−Q2) and (Q1−Q2)+ are zero

matrices. Hence range(U1) = 0, which is the null range. Hence St1
′x− St2 ′y = 0,

and

I t2t1 (x, y) =


x′Pt1x− y′Pt2y if y = S−1

t2
′St1

′x

−∞ otherwise

Thus using (2.23), only state accessible from starting point x is S−1
t2
′St1

′x =

ΦB(t)(t2, t1)x = ΦA(t)(t2, t1)x, since B(t) = A(t) + Σ(t)Pt = A(t). This is the

well-known solution to time-varying linear differential equation, ẋt = A(t)xt.

Now we shall prove a theorem which can allow us to combine max-plus kernels

in time.

Theorem 2.3.9. Assuming (2.3), let T̄ < t1 < t2 < t3 ≤ T , then max-plus kernel

I t3t1 can be computed from I t2t1 and I t3t2 as follows

I t3t1 (x, y) = St2t1 [I t3t2 (., y)](x) = sup
z∈Rn

{
I t2t1 (x, z) + I t3t2 (z, y)

}
(2.35)

Thus I t3t1 (x, y) = 1
2
x′I11

t3
t1
x+ x′I12

t3
t1
y + 1

2
y′I22

t3
t1
y where

I11
t3
t1

= I11
t2
t1
− I12

t2
t1

(
I22

t2
t1

+ I11
t3
t2

)−1
I12

t2
t1

T

I12
t3
t1

= −I12
t2
t1

(
I22

t2
t1

+ I11
t3
t2

)−1
I12

t3
t2

I22
t3
t1

= I22
t3
t2
− I12

t3
t2

T (
I22

t2
t1

+ I11
t3
t2

)−1
I12

t3
t2

(2.36)
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Proof. Note that by remark 2.3.2, U tbta (x, y) 6= ∅ for all ta < tb and x, y ∈ Rn.

I t3t1 (x, y) = sup
u∈Ut2t1 (x,y)

∫ t3

t1

lt(xt, ut) dt

since U t3t1 (x, y) =
⋃
z∈Rn

(
U t2t1 (x, z) ∩ U t3t2 (z, y)

)
= sup

z∈Rn
sup

u∈Ut2t1 (x,z)∩Ut3t2 (z,y)

∫ t3

t1

lt(xt, ut) dt (2.37)

Now, we consider the following

sup
u∈Ut2t1 (x,z)∩Ut3t2 (z,y)

∫ t3

t1

lt(xt, ut) dt

≤ sup
u∈Ut2t1 (x,z)∩Ut3t2 (z,y)

{∫ t2

t1

lt(xt, ut) dt+

∫ t3

t2

lt(xt, ut) dt

}

≤ sup
u∈Ut2t1 (x,z)

{∫ t2

t1

lt(xt, ut) dt

}
+ sup

u∈Ut3t2 (z,y)

{∫ t3

t2

lt(xt, ut) dt

}
= I t2t1 (x, z) + I t3t2 (z, y) (2.38)

Now, since I t2t1 (x, z) > −∞, ∀ε > 0, ∃ ū ∈ U t2t1 (x, z) and trajectory x̄t with x̄t1 = x

such that ∫ t2

t1

lt(x̄t, ūt) dt+ ε ≥ I t2t1 (x, z) (2.39)

Similarly ∃ ũ ∈ U t3t2 (z, y) and trajectory x̃t with x̃t2 = z such that∫ t3

t2

lt(x̃t, ũt) dt+ ε ≥ I t3t2 (z, y) (2.40)

Now we can create augmented control û such that ût = ūt for t ∈ [t1, t2) and ût = ũt

for t ∈ [t2, t3], and extend it arbitrarily beyond. Note that if x̂t is corresponding

trajectory, then starting with x̂t1 = x, x̂t = x̄t for t ∈ [t1, t2]. Hence x̂t2 = z and

x̂t = x̃t for t ∈ [t2, t3], hence x̂t3 = y. Hence û ∈ U t2t1 (x, z) ∩ U t3t2 (z, y). Moreover

using (2.39) and (2.40),

sup
u∈Ut2t1 (x,z)∩Ut3t2 (z,y)

∫ t3

t1

lt(xt, ut) dt ≥
∫ t2

t1

lt(x̂t, ût) dt+

∫ t3

t2

lt(x̂t, ût) dt

=

∫ t2

t1

lt(x̄t, ūt) dt+

∫ t3

t2

lt(x̃t, ũt) dt

= I t2t1 (x, z) + I t3t2 (z, y)− 2ε (2.41)
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Since ε is arbitrary, from (2.38) and (2.41), we have

sup
u∈Ut2t1 (x,z)∩Ut3t2 (z,y)

∫ t3

t1

lt(xt, ut) dt = I t2t1 (x, z) + I t3t2 (z, y)

which with (2.37) proves (2.35). Now, using (2.28) and since (Qt1 −Qt2) � 0 and

(Qt2 −Qt3) � 0,

I22
t2
t1

+ I11
t3
t2

=
(
−Pt2 − St2(Qt1 −Qt2)−1St2

′)+
(
Pt2 − St2(Qt2 −Qt3)−1St2

′)
= −St2

(
(Qt1 −Qt2)−1 + (Qt2 −Qt3)−1

)
St2
′

≺ 0

Thus
{
I t2t1 (x, z) + I t3t2 (z, y)

}
is concave in z. Thus supremum in (2.35) exists, and

we get (2.36) by algebraic computation of the local maxima.

Remark 2.3.10. Note that I t3t (x, z) has the same bivariate form as V z
t given by

(2.14), and both I t3t and Vt evolve in the time interval (t1, t2) according to the

semigroup St2t1 as per (2.35). Hence the parameters satisfy DREs similar to the

(2.13).

− d

dt
I11

t3
t = A(t)′I11

t3
t + I11

t3
t A(t) + C(t) + I11

t3
t Σ(t)I11

t3
t

− d

dt
I12

t3
t = (A(t) + Σ(t)I11

t3
t )′I12

t3
t

− d

dt
I22

t3
t = I12

t3
t
′Σ(t)I12

t3
t

(2.42)

2.3.2 Algorithm

Thus following is the final algorithm to obtain the fundamental solution, and to

convert a particular solution of (2.13) into a general solution. It gives us a closed

form solution to the DRE (2.1) using max-plus kernel I t2t1 (2.20). We shall reiterate

the formulae derived earlier to make the section self-contained.

• Choose terminal t2 and the parameters (Pt2 , St2 , Qt2) of the terminal bivariate

payoff V z
t2

(x) = 1
2
x′Pt2x + x′St2z + 1

2
z′Qt2z, such that Pt2 , Qt2 are n × n

symmetric matrices, and St2 is n× n invertible matrix.



37

• Propagate (P, S,Q) backwards in time according to (2.13) till time t1 < t2.

That is

−Ṗt = A(t)′Pt + PtA(t) + C(t) + PtΣ(t)Pt

−Ṡt = (A(t) + Σ(t)Pt)
′St

−Q̇t = St
′Σ(t)St

• Compute the max-plus kernel or the fundamental solution as per (2.28),

I t2t1 (x, y) = I t2t1 (x, y) =
1

2
x′I11

t2
t1
x+ x′I12

t2
t1
y +

1

2
y′I22

t2
t1
y

parametrized by triplet (I11, I12, I22)t2t1 where

I11 = Pt1 − St1(Qt1 −Qt2)−1St1
′

I12 = St1(Qt1 −Qt2)−1St2
′

I22 = −Pt2 − St2(Qt1 −Qt2)−1St2
′

• As per corollary 2.2.3, if terminal payoff is given by Pt2(x) = 1
2
x′pt2x and if

pt evolves as per DRE (2.1),

−ṗ = A(t)′pt + ptA(t) + C(t) + ptΣ(t)pt

and if pt1 exists, i.e. the solution does not blow up during t2 → t1 evolution.

Then by (2.20)

Pt1(x) =
1

2
x′pt1x = St2t1 [Pt2 ](x) = sup

y∈Rn
I t2t1 (x, y) + Pt2(y) (2.43)

Thus algebraically we get

1

2
x′pt1x = sup

y

{
1

2
x′I11x+ x′I12y +

1

2
y′(I22 + pt2)y

}
(2.44)

pt1 = I11 − I12(pt2 + I22)−1I12
′ (2.45)

which is the analytical solution to the DRE (2.1). Thus we have converted a

general solution to a bivariate DRE (P, S,Q) as per (2.13) into a fundamental

solution I t2t1 , and then into a particular solution pt of (2.1).
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• As seen in (2.28), as (t2− t1)→ 0, (Qt1−Qt2)−1 may blow up, as Qt1 → Qt2 .

Thus parameters of the max-plus kernel I t2t1 also blow up, causing numerical

inaccuracy in propagation. To remedy this, an alternate form of propagation

(2.45) is proposed as follows.

After substituting kernel parameters from (2.28) in (2.45), with some

manipulation we get(
St1
′(pt1 − Pt1)

−1St1

)−1

= −(Qt1 −Qt2)
−1

− (Qt1 −Qt2)
−1St2

′ (pt2 − Pt2 − St2(Qt1 −Qt2)
−1St2

′)−1
St2(Qt1 −Qt2)

−1

which by using Woodbury’s matrix identity [Woo50],

=
(
−(Qt1 −Qt2) + St2

′(pt2 − Pt2)
−1St2

)−1

Thus

St1
′(pt1 − Pt1)−1St1 +Qt1 = St2

′(pt2 − Pt2)−1St2 +Qt2

or rearranging, propagation from pt2 to pt1 is given by

pt1 = Pt1 − St1
(
Qt1 −Qt2 − St2 ′(pt2 − Pt2)−1St2

)−1
St1
′ (2.46)

This formula does not blow up for a small time step propagation, and yields

an accurate propagation.

Remark 2.3.11. Note that we assumed that the propagation 1
2
x′pt1x = St2t1 [Vt2 ](x)

exists, and derived (2.45). This is also equivalent to I22 + pt2 ≺ 0, so that

the supremum in (2.44) exists. Thus I22
t2
t1

+ pt2 ≺ 0 characterizes all initial

conditions pt1 for which DRE propagation t2 → t1 does not blow up. Also note

that the minimum time T̄ for which solution to DRE exists, depends on initial

condition. Max-plus kernel obtained from one particular solution, may cause blow

up for a different initial condition. Surprisingly it is possible to pass through

singularity/ solution blow up using (2.45) without numerical instability (since

instead of marching through singularity, we step over it), and generate solution

trajectories akin to tan(x) which is the solution to ẋ = 1 + x2.
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2.4 Semiconvex dual DRE

Now we shall introduce the concept of semiconvex duality which can help us

transform time invariant DREs into semiconvex dual DREs.

2.4.1 Semiconvex duality

A function P(x) : Rn → R− .
= R∪{−∞} is defined to be uniformly semiconvex

with (symmetric) matrix constant K if P(x)+ 1
2
x′Kx is convex over Rn. We denote

this space by SK .

Semiconvex duality is parametrized by a bivariate quadratic kernel

φ(x, z) =
1

2
x′Px+ x′Sz +

1

2
z′Qz (2.47)

where P and Q are symmetric matrices. We use this kernel to define semiconvex

duality.

Theorem 2.4.1. Let P ∈ S−P , S is invertible and φ(x, z) defined as above. Then

∀z ∈ Rn we can define the dual Q(z) of primal P(x) as follows.

Q(z) = inf
x

[P(x)− φ(x, z)]
.
= Dφ[P ](z) (2.48)

from the dual Q(z), primal can be recovered again using

P(x) = sup
z

[φ(x, z) +Q(z)]
.
= D−1

φ [Q](x) (2.49)

φ(x, z) is called the kernel of duality. Thus D−1
φ Dφ[P ](x) = P(x).

Proof. Since P ∈ S−P , P(x)− φ(x, z) is convex in x. Now,

sup
z

[φ(x, z) +Q(z)] = sup
z

[φ(x, z) + inf
y

[P(y)− φ(y, z)]

= sup
z

inf
y

[P(y) + φ(x, z)− φ(y, z)]

= sup
z

inf
y

[P(y) +
1

2
x′Px− 1

2
y′Py + (x− y)′Sz]
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Let z̄ = Sz. Since S is invertible, z̄ also spans Rn

=
1

2
x′Px+ sup

z̄
inf
y

[P(y)− 1

2
y′Py + (x− y)′z̄]

=
1

2
x′Px+ sup

z′
[x′z̄ + inf

y
[P(y)− 1

2
y′Py − y′z̄]

Since P(y) − 1
2
y′Py is convex, by Legendre-Fenchel transform (see e.g. Theorem

11.1 in [RW98])

=
1

2
x′Px+ P(x)− 1

2
x′Px

= P(x)

If we choose P(x) = 1
2
x′px, φ(x, z) = 1

2
x′Px+ x′Sz+ 1

2
z′Qz and assume p > P

and S is nonsingular, then P(x) ∈ S−p. Hence by substitution in (2.48), we get

Q(z) = 1
2
z′qz, where

q = −S ′ (p− P )−1 S −Q (2.50)

We can also derive the following inverse relation

p = −S (q +Q)−1 S ′ + P (2.51)

Corollary 2.4.2. Using very similar methodology, if Q(z) + z′Qz is concave over

z ∈ Rn, then

DφD−1
φ Q(z) = Q(z) (2.52)

Remark 2.4.3. Let us observe that a result using (2.20) and (2.17) we saw earlier,

can be reposed in the following manner using semiconvex dual notation. With

t1 < t2, since St2t1 [φ](x) exists, and I t2t1 (x, y) is bivariate quadratic, we have

V z
t1

(x) = St2t1 [V z
t2

](x) = sup
y

(
I t2t1 (x, y) + V z

t2
(y)
)

= D−1

I
t2
t1

[V z
t2

](x) (2.53)

Since above supremum exists for all x, I22
t2
t1

+Pt2 � 0, hence by (2.45), and matrix

congruence Pt1 − I11
t2
t1

= −I12
t2
t1

(
Pt2 + I22

t2
t1

)−1
I12

t2
t1
′ � 0. Hence V z

t1
(x) ∈ S−I11 .

Hence we can take semiconvex dual. Now using (2.52),

inf
x

(
V z
t1

(x)− I t2t1 (x, y)
)

= D
I
t2
t1

[V z
t1

](y) = D
I
t2
t1

D−1

I
t2
t1

[V z
t2

](y) = V z
t2

(y) (2.54)
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As a special case, from (2.43), we have

Pt1(x) = St2t1 [Pt2 ](x) = sup
y∈Rn

I t2t1 (x, y) + Pt2(y) = D−1

I
t2
t1

[Pt2 ](x) (2.55)

2.4.2 Dual differential Riccati equation

Now let us start with primal space quadratic P(x) = 1
2
x′ptx, with pt varying

with time as per (2.1). Let us find its dual Q(z) = 1
2
z′qtz, with kernel φ(x, z) =

1
2
x′Px + x′Sz + 1

2
z′Qz. We assume pt − P > 0 and S is nonsingular, so that we

can use theorem 2.4.1. Using (2.50) and (2.51), we get

qt = −S′ (pt − P )−1 S −Q (2.56)

pt = −S (qt +Q)−1 S′ + P (2.57)

Differentiating both sides of (2.56),

q̇t = S′ (pt − P)−1 ṗt (pt − P)−1 S (2.58)

If the primal quadratic evolves according to (2.1), we can track the evolution of

the dual. Substituting for ṗt from (2.1), and for pt from (2.57) in (2.58), we get

q̇t =(qt +Q)S−1 (A(t)′P + PA(t) + PΣ(t)P)ST
−1

(qt +Q)

− (qt +Q)S−1(A(t) + Σ(t)P)TS

− ST (A(t) + Σ(t)P)ST
−1

(qt +Q) + S′Σ(t)S

Using (2.13), and after simplification, we get.

−q̇t = qtS
−1ṖS−1T qt + qtS

−1(ṖS−1TQ − Ṡ)

+(ṖS−1TQ − Ṡ)′S−1′qt +QS−1ṖS−1′Q

−QS−1Ṡ − (QS−1Ṡ)T + Q̇

This shows that the dual quadratic also satisfies a Riccati equation

− q̇t = Ā(t)′qt + qtĀ(t) + C̄(t) + qt
′Σ̄(t)qt (2.59)
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with coefficients

Ā(t) = S−1(ṖS−1TQ − Ṡ)

Σ̄(t) = S−1ṖS−1T (2.60)

C̄(t) = QS−1ṖS−1′Q

−QS−1Ṡ − (QS−1Ṡ)T + Q̇

where Ṗ , Ṡ and Q̇ are constants defined by (2.13). Thus
(
Ā(t), Σ̄(t), C̄(t)

)
=

f (P, S,Q,A(t),Σ(t), C(t)).

2.4.3 Kernel Matching conditions

By using (2.108) and some algebraic manipulation, it can be easily shown that

simultaneous equations (2.60) are equivalent to following simultaneous equations,

−Ṗ = A(t)′P + PA(t) + C(t) + PΣ(t)P = SΣ̄(t)S ′

−Ṡ = (A(t) + Σ(t)P )′S = S(−Ā(t) + Σ̄(t)Q)

−Q̇ = S ′Σ(t)S = −Ā(t)′Q−QĀ+ C̄(t) +QΣ̄(t)Q

(2.61)

These give a neater feasibility condition for finding a kernel parameters, (P, S,Q)

to transform Riccati equation (2.105) into any other Riccati equation (2.59).

Remark 2.4.4. Observing the symmetry between the primal and dual DREs

motivates us to propose a dual problem with dynamics ż = Ā(t)z + σ̄(t)u, with

σ̄σ̄(t)′ = Σ̄(t) (if Σ̄ � 0), and payoff l̄t(zt, ut) = 1
2
z′C̄(t)z, and a corresponding dual

semigroup S̄t2t1 similar to (2.16). Using the symmetry of above equations, it can be

easily proved that

φt1(x, z) = St2t1 [φt2(·, z)](x) = −S̄t1t2 [−φt2(x, ·)](z) (2.62)

Thus given the coefficients of primal and dual Riccati equations, both

(P0, S0, R0) and (Pt, St, Rt) satisfy (2.61), suggesting that these equations are not

independent. Indeed, it can be verified that (2.61) are also equivalent to the

following matrix equation, which uses classic Hamiltonian and symplectic matrices.

KH = H̄K (2.63)
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where

K =

[
S−1P −S−1

S ′ −QS−1P QS−1

]
,H =

[
A(t) Σ(t)

−C(t) −A(t)′

]
, H̄ =

[
Ā(t) Σ̄(t)

−C̄(t) −Ā(t)′

]

H is the classic Hamiltonian matrix and K is the classic symplectic matrix. K is

invertible, with the following inverse.

K−1 =

[
S−1′Q S−1′

−S + PS−1′Q PS−1′

]

Hence H̄ = KHK−1. Hence a necessary condition to find kernel (P, S,Q) and to

convert DRE (A(t), C(t),Σ(t)) into (Ā(t), C̄(t), Σ̄(t)) is that matrices H and H̄ be

similar. Sufficiency conditions are being investigated.

With K(t) = K(P (t), S(t), Q(t)) and using (2.61), it is also easy to verify that

−K̇ = KH = H̄K (2.64)

˙K−1 = −K−1K̇K−1 = HK−1 = K−1H̄ (2.65)

Thus if Φ(t1, t2) is the state transition matrix associated with the linear time

varying system ẋ(t) = −H(t)x(t), then

Kt2 = Kt1Φ(t2, t1) and K−1
t1

= Φ(t2, t1)K−1
t2

Similarly, if Φ̄(t1, t2) is the state transition matrix associated with the linear time

varying system ẋ(t) = −H̄(t)x(t), then

Kt2 = Φ̄(t2, t1)Kt1 and K−1
t1

= K−1
t2

Φ̄(t2, t1)

If Φ(t2, t1) and Φ̄(t2, t1) are partitioned into four n× n blocks, then we have[
S−1
t1
′Qt1 S−1

t1
′

−St1 + Pt1S
−1
t1
′Qt1 Pt1S

−1
t1
′

]
=

[
Φ11 Φ12

Φ21 Φ22

][
S−1
t2
′Qt2 S−1

t2
′

−St2 + Pt2S
−1
t2
′Qt2 Pt2S

−1
t2
′

]
(2.66)

and[
S−1
t1
′Qt1 S−1

t1
′

−St1 + Pt1S
−1
t1
′Qt1 Pt1S

−1
t1
′

]
=

[
S−1
t2
′Qt2 S−1

t2
′

−St2 + Pt2S
−1
t2
′Qt2 Pt2S

−1
t2
′

][
Φ̄11 Φ̄12

Φ̄21 Φ̄22

]
(2.67)
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Matching terms, we get following set of equations

St1 = (Φ11 + Φ12Pt2)−1′St2 = St2(Qt2Φ̄12 + Φ̄22)−1′ (2.68)

Qt1 = Qt2 − St2 ′(Φ11 + Φ12Pt2)−1Φ12St2

= (Qt2Φ̄12 + Φ̄22)−1(Qt2Φ̄11 + Φ̄21) (2.69)

Pt1 = (Φ21 + Φ22Pt2) (Φ11 + Φ12Pt2)−1

= Pt2 − St2Φ̄12(Qt2Φ̄12 + Φ̄22)−1St2
′ (2.70)

Remark 2.4.5. Note that (2.70) is equivalent to the traditional Davison-Maki

approach, substituting U = S−1
t
′ and V = PtS

−1
t
′, we have Pt = V U−1. U and V

form the second column on the K matrix and using (2.66), they evolve as per[
Ut1

Vt1

]
=

[
Φ11 Φ12

Φ21 Φ22

][
Ut2

Vt2

]

which is the solution to (2.2).

We can substitute (2.68),(2.70) and (2.69) into (2.28), to get

I11
t2
t1

= (Φ21 + Φ22Pt2)(Φ11 + Φ12Pt2)−1 + (Φ11 + Φ12Pt2)−1′Φ−1
12

I12
t2
t1

= −(Φ11 + Φ12Pt2)−1′Φ−1
12 (Φ11 + Φ12Pt2)

I22
t2
t1

= Φ−1
12 Φ11

But since (I11, I12, I22) depend only on (A(t), C(t),Σ(t), t1, t2) and are independent

of starting (P, S,Q), we can take Pt2 = 0 to simplify above formulas.

I11
t2
t1

= Φ21Φ11
−1 + Φ11

−1′Φ−1
12

I12
t2
t1

= −Φ11
−1′Φ−1

12 Φ11

I22
t2
t1

= Φ−1
12 Φ11

(2.71)

Remark 2.4.6. Above formulas are useful in deriving analytical solutions for

(P, S,Q). Especially for the time invariant case, Φ(t2, t1) = e−H(t2−t1) and

Φ̄(t2, t1) = e−H̄(t2−t1). But note that the eigenvalues of Hamiltonian H are

symmetric along imaginary axis, thus containing both stable and unstable

eigenvalues. For time-invariant case, this leads to more and more ill conditioned

Φ(t1, t2), and is thus useful as an analytic solution only for small t2 − t1.
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2.4.4 More Fundamental solutions

Now we shall see how semiconvex duality can help us relate solutions of the

primal and the dual DRE in various ways through max-plus kernel operations, in

process generating other, possibly easier ways to compute fundamental solutions.

With t1 ≤ t2 and u ∈ L2(t1, t2), first we define a backward trajectory of the

system, with final point x, which is a unique solution to

ẋt = ft(xt, ut) t ∈ [t1, t2],with xt2 = y (2.72)

which is guaranteed by assumptions (2.3).

Theorem 2.4.7. Assume (2.3). With T̄ < t1 < t2 ≤ T , backward dynamic

programming counterpart of (2.17) also holds true. That is if xt is the backwards

trajectory ending at xt2 = y, under controls u, as defined in (2.72), then

V z
t2

(y) = inf
u∈L2(t1,t2)

{
−
∫ t2

t1

lt(xt, ut) dt+ V z
t1

(xt1)

}
(2.73)

= inf
x∈Rn

(
V z
t1

(x)− I t2t1 (x, y)
)

(2.74)

.
= St1t2 [V z

t1
](y)

Note that this also defines the semigroup operation St1t2 for t1 ≤ t2. Also we have

V z
t2

= St1t2 [V z
t1

] = St1t2 [St2t1 [V z
t2

]]. Thus

St2t1 = St1t2
−1

(2.75)

Proof. Given u ∈ L2(t1, t2), let xt be the backwards trajectory which satisfies

(2.72) with xt2 = y. Let x = xt1 . Then x = y −
∫ t2
t1
ft(xτ , uτ ) dτ , thus

xt = y −
∫ t2

t

ft(xτ , uτ ) dτ = x+

∫ t

t1

ft(xτ , uτ ) dτ

Thus xt is also a unique solution of ẋt = ft(xt, ut) for t ∈ [t1, t2] with xt1 = x.

Thus we have y = xt2 , where ẋt = ft(xt, ut), with xt1 = x. Hence using (2.17),

V z
t1

(x) ≥
∫ t2

t1

lt(xt, ut) dt+ V z
t2

(xt2) =

∫ t2

t1

lt(xt, ut) dt+ V z
t2

(y)
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Since x = xt1 ,

V z
t2

(y) ≤ V z
t1

(xt1)−
∫ t2

t1

lt(xt, ut) dt

taking infimum ∀u ∈ L2(t1, t2) and corresponding backward trajectories,

≤ inf
u∈L2(t1,t2)

{
−
∫ t2

t1

lt(xt, ut) dt+ V z
t1

(xt1)

}
(2.76)

Now specifically, we can take x = S−1
t2
′ (St1

′y + (Qt1 −Qt2)) and the forward

trajectory x̃t starting from x̃t1 = x as per optimal feedback control discussed

in lemma 2.3.3, ũt = σ(t)′(Ptxt + Stz). By remark 2.3.4, it is clear that x̃t2 = y.

Hence

V z
t1

(x) = sup
u∈L2(t1,t2)

∫ t2

t1

lt(xt, ut) dt+ V z
t2

(xt2)

=

∫ t2

t1

lt(x̃t, ũt) dt+ V z
t2

(x̃t2) =

∫ t2

t1

lt(x̃t, ũt) dt+ V z
t2

(y)

Since x̃t1 = x,

V z
t2

(y) = −
∫ t2

t1

lt(x̃t, ũt) dt+ V z
t1

(x̃t1)

≥ inf
u∈L2(t1,t2)

{
−
∫ t2

t1

lt(xt, ut) dt+ V z
t1

(xt1)

}
(2.77)

and we prove (2.73) using (2.76) and (2.77). We get (2.74) from (2.73) and (2.54).

Now we prove two lemmas which will be useful later.

Lemma 2.4.8. Let φ(x, y) be a bivariable function of x ∈ Rn and y ∈ Rm. Let us

define sets

Y = {y′ : y′ = argmax
y

φ(x, y) for some x ∈ Rn} (2.78)

X = {x′ : x′ = argmax
x

φ(x, y) for some y ∈ Rm} (2.79)

Then following inequalities hold true

inf
y∈Y

sup
x∈Rn

φ(x, y) ≤ inf
x∈Rn

sup
y∈Rm

φ(x, y) (2.80)

inf
x∈X

sup
y∈Rm

φ(x, y) ≤ inf
y∈Rm

sup
x∈Rn

φ(x, y) (2.81)
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Proof. Note that (2.81) follows from (2.80) using symmetry in x and y. To

prove (2.80), take any y1 ∈ Y . From definition of Y , ∃x1 ∈ Rn such that

y1 = argmaxy∈Rm φ(x, y). Hence

sup
x∈Rn

φ(x, y1) ≥ φ(x1, y1) = max
y∈Rm

φ(x1, y)

≥ inf
x∈Rn

sup
y∈Rm

φ(x, y)

Taking infimum over all y1 ∈ Y , we get (2.78). Hence proved.

Corollary 2.4.9. If φ(x, y) is a bivariable function of x ∈ Rn and y ∈ Rn. With

X and Y as defined in (2.78) and (2.78) respectively, if X = Y = Rn, then using

(2.80) and (2.81), we have

inf
x∈Rn

sup
y∈Rn

φ(x, y) = inf
y∈Rn

sup
x∈Rn

φ(x, y) (2.82)

Now for the forthcoming analysis, we assume the following.

Assume that t1 < t2. Pt(x) = 1
2
x′pt(x), with pt evolving as per

(2.1). We also define a bivariate quadratic function φzt (x) = φt(x, z) =

1
2
x′Ptx + x′Stz + 1

2
z′Qtz, with parameters (Pt, St, Qt) evolving as per

(2.13). A duality kernel φz(x) = φzt2(x) = φt2(x, z) = 1
2
x′Pt2x+x′St2z+

1
2
z′Qt2z transforms Pt into DφzPt = Qt = 1

2
x′qt(x). Also assume that

pt2 � Pt2 , and St2 nonsingular, and that Pt1(x) = St2t1 [Pt2 ](x) and

φzt1(x) = St2t1 [φzt2 ](x) exists.

(2.83)

Theorem 2.4.10. Assuming (2.3)-(2.83), the semiconvex dual of Pt1(x) under

kernel φt1(x, z) exists, and is same as the semiconvex dual of Pt2(x) under kernel

φt2(x, z). Using (2.48), ∀z ∈ Rn

inf
x

[Pt2(x)− φt2(x, z)] = inf
y

[Pt1(y)− φt1(y, z)] = Qt2(z) (2.84)

That is Dφt2 [Pt2 ] = Dφt1 [Pt1 ]. In terms of parameters, following equation holds

true.

qt2 = −St2 ′(pt2 − Pt2)−1St2 −Qt2 = −St1 ′(pt1 − Pt1)−1St1 −Qt1 (2.85)



48

Proof. Existence of the dual Dφzt2 [Pt2 ] is evident from theorem 2.4.1. Note that

from corollary 2.2.3 and (2.20), with x = x0,

1

2
x′pt1x = Pt1(xt1) = St2t1 [Pt2 ](xt2) = sup

y∈Rn

(
I t2t1 (x, y) + Pt2(y)

)
using (2.45), pt1 = I11− I12(pt2 + I22)−1I12

′. Since Pt2 exists, pt2 + I22 is invertible.

Similarly since φzt1 exists, φzt2 = D
I
t2
t1

φzt1 . Thus

1

2
x′Pt2x+ x′St2z +

1

2
z′Qt2z = φzt2(x) = St1t2 [φzt1 ](x) = inf

y∈Rn

(
φzt1(y)− I t2t1 (y, x)

)
exists, thus by a similar logic, I11 − Pt1 is also invertible.

Now we shall consider a bivariable function

ψ(x, y) = −φzt1(x) + I t2t1 (x, y) + Pt2(y) (2.86)

note that given x ∈ Rn,

argmax
y

ψ(x, y) = argmax
y

I t2t1 (x, y) + Pt2(y)

= (I22 + Pt2)−1I12
′x

(2.87)

similarly given y ∈ Rn,

argmax
x

ψ(x, y) = argmax
x
−φzt1(x) + I t2t1 (x, y)

= argmin
x

I t2t1 (x, y)− φzt1(x)

= −(I11 − Pt1)−1I12y

(2.88)

Using 2.3.6 and (2.28), Qt1 − Qt2 � 0 and hence I12 � 0. Combined with

invertibility of I22 + Pt2 and I11 − Pt1 , from (2.87), (2.88), we have

Y = {ȳ : ȳ = argmax
y

ψ(x, y) for some x ∈ Rn} = Rn

X = {x̄ : x̄ = argmax
x

ψ(x, y) for some y ∈ Rn} = Rn

Hence by corollary 2.4.9 from appendix,

inf
x

sup
y
ψ(x, y) = inf

y
sup
x
ψ(x, y) (2.89)
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With this preparation, we are ready to prove the main result.

inf
x

[
Pt1(x)− φzt1(x)

]
= inf

x

[
St2t1 [Pt2 ](x)− φzt1(xt1)

]
= inf

x

[
sup
y

(
I t2t1 (x, y) + Pt2(y)

)
− φzt1(x)

]
= inf

x
sup
y

(
−φzt1(x) + I t2t1 (x, y) + Pt2(y)

)
= inf

x
sup
y
ψ(x, y)

using (2.89),

= inf
y

sup
x
ψ(x, y)

= inf
y

[
Pt2(y) + sup

x

(
−φzt1(x) + I t2t1 (x, y)

)]
= inf

y

[
Pt2(y)− inf

x

(
φzt1(x)− I t2t1 (x, y)

)]
= inf

y

[
Pt2(y)− φzt2(y)

]
Algebraically, it is easy to see that, minimum occurs at x = (pt1 − Pt1)−1St1z

and y = (pt2 − Pt2)−1St2z, respectively. Plugging this into (2.84) gives us (2.85).

Note that these equations have the same form as (2.46) obtained earlier.

Corollary 2.4.11. Assume (2.3),(2.83). Using φ(x, z) = φzt2(x) as a duality

kernel, let 1
2
z′qtz = Qt(z) = DφPt(x) for all t ∈ [t1, t2]. The semiconvex primal

of Qt2(z) under kernel φt1(x, z) is same as the semiconvex primal of Qt1(x) under

kernel φt2(x, z). Using (2.48), ∀x ∈ Rn

sup
z

[Qt2(z) + φt1(x, z)] = sup
z

[Qt1(z) + φt2(x, z)] = Pt1 (2.90)

That is D−1
φzt1

[Qt2 ] = D−1
φzt2

[Qt1 ], and

pt1 = −St1(qt2 +Qt1)−1St1
′ + Pt1 = −St2(qt1 +Qt2)−1St2

′ + Pt2 (2.91)

Proof. We have,

Qt1(z) = Dφ[Pt1 ](z) = Dφt2 [Pt1 ](z) (2.92)

Qt2(z) = Dφ[Pt2 ](z) = Dφt2 [Pt2 ](z) (2.93)
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Also using theorem 2.4.10, Dφt2 [Pt2 ](z) = Dφt1 [Pt1 ](z), hence

D−1
φt1

[Dφt2 [Pt2 ]] = Pt1 (2.94)

Thus using, (2.92), (2.93) and (2.94)

D−1
φt1

[Qt2 ] = D−1
φt1

[Dφt2 [Pt2 ]] = Pt1 = D−1
φt2

[Dφt2 [Pt2 ]] = D−1
φt1

[Qt2 ]

Finally we obtain (2.91), using (2.90) and (2.49).

Now we shall obtain a time-varying version of the result previously obtained in

[McE08], in order to complete our picture of kernel relationships between primal

and dual DREs. For this result, we make an additional assumption.

We assume that F (Pt) = A(t)′Pt+PtA(t)+C(t)+PtΣ(t)Pt = −Ṗt � 0

for t ∈ [t1, t2]. Thus we have, pt1 − pt2 � 0.
(2.95)

Theorem 2.4.12. Assuming (2.3), (2.83) and (2.95), Qt1(z) is the semiconvex

primal of Qt2(z̄) under kernel Bt2
t1 (z, z̄)

Qt1(z) = sup
y∈Rn

[
Bt2
t1 (z, y) +Qt2(y)

]
or

Qt1(z) = D−1

B
t2
t1

[Qt2 ](z)
(2.96)

where,

Bt2t1 (z, y) = inf
x∈Rn
{φt1(x, y)− φt2(x, z)} (2.97)

Hence Bt2t1 (z, y) = 1
2
z′B11

t2
t1
z + z′B12

t2
t1
y + 1

2
y′B22

t2
t1
y, with

B11
t2
t1

= −St2 ′(Pt1 − Pt2)−1St2 −Qt2

B12
t2
t1

= St2
′(Pt1 − Pt2)−1St1

B22
t2
t1

= −St1 ′(Pt1 − Pt2)−1St1 −Qt1

(2.98)

and

qt1 = B11
t2
t1
−B12

t2
t1

(B22
t2
t1

+ qt2)−1B12
t2
t1
′ (2.99)



51

Proof. In corollary 2.4.11, we saw that D−1
φt2

[Qt1 ] = D−1
φt1

[Qt2 ]. hence we have

Qt1(z) = Dφt2D
−1
φt1

[Qt2 ](z)

= inf
x∈Rn

(
D−1
φt1

[Qt2 ](x)− φt2(x, z)
)

= inf
x∈Rn

(
sup
y∈Rn

(φt1(x, y) +Qt2(y))− φt2(x, z)

)
= inf

x∈Rn
sup
y∈Rn

(φt1(x, y) +Qt2(y)− φt2(x, z))

= inf
x∈Rn

sup
y∈Rn

ψ(x, y) (2.100)

where

ψ(x, y) =
1

2
x′(Pt1 − Pt2)x+ x′St1y +

1

2
y′(Qt2 + qt2)y − x′St2z −

1

2
z′Qt2z

Note that by (2.95), Pt1 − Pt2 � 0. Hence ψ(x, y) is strictly convex in x. Also

observe that by corollary 2.4.11, Pt1(x) = supy(φt1(x, y) + Qt2(y)) exists for any

x ∈ Rn. Hence Qt2 + qt2 ≺ 0. Thus ψ(x, y) is strictly concave in y. For such a

convex-concave function following saddle point exists. By setting ∇xψ and ∇yψ

equal to zero, and solving, we get

x0 =
(
(Pt1 − Pt2)− St1(Qt2 + qt2)−1St1

′)−1
St2z

y0 = −(Qt2 + qt2)−1St1
′x0

For such x0 and y0, ψ(x0, y) ≤ ψ(x0, y0) ≤ ψ(x, y0). Hence by a well known result,

inf
x∈Rn

sup
y∈Rn

ψ(x, y) = ψ(x0, y0) = sup
y∈Rn

inf
x∈Rn

ψ(x, y) (2.101)

Using (2.100) and (2.101)

Qt1(z) = sup
y∈Rn

inf
x∈Rn

ψ(x, y) (2.102)

= sup
y∈Rn

(
Qt2(y) + inf

x∈Rn
(φt1(x, y)− φt2(x, z))

)
(2.103)

= sup
y∈Rn

(
Qt2(y) +Bt2

t1 (z, y)
)

(2.104)

(2.98) can be easily obtained from (2.97) by finding local minimum in x (which

is global minimum, since infimum exists), substituting and term-wise equating



52

coefficients. Similarly (2.99) results from substituting Qt = 1
2
z′qtz , (2.97), (2.98)

into (2.96).

Thus equations (2.45), (2.55), (2.85), (2.84), (2.91), (2.90), (2.96), (2.99) can be

summarized in the diagram below. Note that primal and dual quadratics are on top

and bottom respectively. Vertical and diagonal lines show duality transformation

with indicated kernel. Arrows are directed from the primal to it semiconvex dual.

Primal DRE: −ṗt = A(t)′pt + ptA(t) + C(t) + ptΣ(t)pt.

Pt2(x) Pt1(x)

Qt2(z) Qt1(z)

Dual DRE: −q̇t = Ā(t)′qt + qtĀ(t) + C̄(t) + qtΣ̄(t)qt.

�

?
�

?!!
!!

!!
!!

!!
!!

!!

φt2 φt2
φt1

I t2t1

Bt2
t1

Figure 2.1: Time varying problem: Duality relationships.

Thus in conclusion, so far we saw three distinct ways of solving (2.1), that is

obtaining pt1 from pt2 .

1. Direct method which assumes only (2.3). Formulae are given by (2.45) and

(2.28). Propagation is achieved by following transform.

Pt1 = D−1

I
t2
t1

[Pt2 ]

Problem with this method is that as t1 → t2, parameters of the kernel I t2t1

blow up, limiting solution accuracy.

2. Alternate method, which assumes (2.3) and (2.83). Formulas are given

by (2.85), which is same as (2.46). Propagation is achieved by following

transform.

Pt1 = D−1
φt1
Dφt2 [Pt2 ]

This method works better for a small time step propagation, since parameters

of kernels φt1 and φt2 do not blow up.
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3. Third method assumes (2.3), (2.83) and (2.95). Time invariant version of

this method was first proposed in [McE08]. Formulae are (2.98) and (2.99).

Propagation is achieved by following transform

Pt1 = D−1
φt2
D−1

B
t2
t1

Dφt2 [Pt2 ]

Problem with this method is similar to the direct method. Namely, t1 → t2,

parameters of the kernel I t2t1 blow up, limiting solution accuracy.

2.5 Time Invariant problem

The theory so far developed for DREs with time-varying coefficients, extends

readily for the time invariant DRE, in which A(t) ≡ A, C(t) ≡ C, σ(t) ≡ σ hence

Σ(t) ≡ σσ′ = Σ. Again we assume (2.3). We state such a DRE again for reference.

− ṗ = A′p+ p+ C + p′Σp (2.105)

If we define Pt2(x) = 1
2
x′pt2x, then with T̄ < t1 ≤ t2 ≤ T , l(xt, ut) = 1

2
xt
′Cxt −

1
2
|ut|2, and dynamics ẋt = f(xt, ut) = Axt + σut and starting point xt1 = x, value

function is

Pt1(x) = St2t1 [Pt2 ](x)
.
= sup

u∈L2(t1,t2)

{∫ t2

t1

l(xt, ut) dt+ Pt2(xt2)

}
(2.106)

Then Pt1(x) = 1
2
x′pt1x, where pt satisfies DRE (2.105). Let us define ∆ = t2 − t1.

Let δ ∈ R. Note that using the time invariance of dynamics and incremental

payoff, and change of variables t→ (t− δ),

St2t1 [φ](x) =

{
sup

u∈L2(t1,t2)

(∫ t2

t1

l(xt, ut) dt+ φ(xt2)

)
: xt1 = x

}

=

{
sup

u∈L2(t1−δ,t2−δ)

(∫ t2−δ

t1−δ
l(xt, ut) dt+ φ(xt2−δ)

)
: xt1−δ = x

}
= St2−δt1−δ [φ](x)

As a special case, using δ = t2 − t1 and δ = t1 − t2 respectively,

St2t1 = S0
t1−t2 = S0

−∆ = St2−t10 = S∆
0
.
= S∆
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By similar argument, the fundamental solution, or max-plus kernel

I t2t1 = I0
t1−t2 = I0

−∆ = I t2−t10 = I∆
0
.
= I∆ (2.107)

Similarly, the bivariate quadratic DRE in (2.13) turns into

−Ṗt = A′Pt + PtA+ C + PtΣPt

−Ṡt = (A+ ΣPt)
′St

−Q̇t = St
′ΣSt

(2.108)

2.5.1 A doubling algorithm

Using (2.36), we can derive a useful doubling algorithm for solving (2.105).

First we propagate the triad (P0, S0, Q0) backwards in time by ∆ to obtain

(P−∆, S−∆, Q−∆), using (2.108). Then we can compute I∆ as defined in (2.107).

Thus using (2.28) with t1 = −∆ and t2 = 0.

I11
∆ = P−∆ − S−∆(Q−∆ −Q0)−1S−∆

′

I12
∆ = S−∆(Q−∆ −Q0)−1S0

′

I22
∆ = −P0 − S0(Q−∆ −Q0)−1S0

′

(2.109)

We can build up I2∆ using (2.35) as follows

I2∆(x, y) = I2∆
0 (x, y) = sup

z

{
I∆

0 (x, z) + I2∆
∆ (z, y)

}
= sup

z

{
I∆

0 (x, z) + I∆
0 (z, y)

}
Thus using (2.36)

I11
2∆ = I11

∆ − I12
∆
(
I22

∆ + I11
∆
)−1

I12
∆′

I12
2∆ = −I12

∆
(
I22

∆ + I11
∆
)−1

I12
∆

I22
2∆ = I22

∆ − I12
∆′ (I22

∆ + I11
∆
)−1

I12
∆

(2.110)

Thus by recursively combining kernel operations, we can get I2N∆ in N steps.

Hence the name doubling algorithm. Finally the DRE (2.105) can be solved by

(2.45). This can give an exponentially fast propagation of the DRE.

Remark 2.5.1. In [McE08], an analogous doubling algorithm was derived in

semiconvex dual space. We shall sketch it here without proof. It starts with
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construction of the dual kernel Bt2
t1 = B∆ using time invariant special case of

(2.98).

B11
∆ = −S0

′(P−∆ − P0)−1S0 −Q0

B12
∆ = S0

′(P−∆ − P0)−1S−∆

B22
∆ = −S−∆

′(P−∆ − P0)−1S−∆ +Q−∆

(2.111)

and kernel is doubled using following formulas.

B11
2∆ = B11

∆ −B12
∆
(
B22

∆ +B11
∆
)−1

B12
∆′

B12
2∆ = −B12

∆
(
B22

∆ +B11
∆
)−1

B12
∆

B22
2∆ = B22

∆ −B12
∆′ (B22

∆ +B11
∆
)−1

B12
∆

(2.112)

Thus for T = 2N∆, B2N is found using N doubling operations, and propagation is

achieved using P−T = D−1
φ0
D−1
BT
Dφ0 [P0]. Which using (2.48) and (2.49) implies

p−T = −S0

(
BT

11 −BT
12

(
BT

22 − S0
′(p0 − P0)−1S0 −Q0

)−1
BT

12
′ +Q0

)−1

S0
′ + P0

(2.113)

Remark 2.5.2. For both (2.109) and (2.112), as ∆ → 0, (Q−∆ − Q0)−1 and

(P−∆−P0)−1 can grow very large, leading to numerical inaccuracy at a very small

time step propagation. A work-around is designed in the next subsection.

2.5.2 Alternate doubling algorithm

First we deduce following generalization of theorem 2.4.10.

Lemma 2.5.3. Consider t < 0. Define φzt (x) = φt(x, z) = 1
2
x′Ptx+x′Stz+ 1

2
z′Qtz,

with parameters (Pt, St, Qt) evolving as per (2.108). Assume that a primal function

P0(x) is such that P0(x) − x′P0x is a convex function. Also assume that Pt(x) =

S0
t [P0](x). Hence a duality kernel φz(x) = φz0(x) = φ0(x, z) = 1

2
x′P0x + x′S0z +

1
2
z′Q0z transforms Pt into DφzPt = Qt. Then, the semiconvex dual of Pt under

kernel φ0(x, z) exists, and is same as the semiconvex dual P0(x) under kernel

φ0(x, z).

inf
x

[P0(x)− φ0(x, z)] = inf
y

[Pt(y)− φt(y, z)] = Q0(z) (2.114)
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Proof. The proof proceeds exactly as in theorem 2.4.10 with t2 = 0 and t1 = t.

The only difference in the assumption is, instead of assuming Pt(x) = 1
2
x′ptx with

p0 � P0, now we assume P0(x)−x′P0x is a strictly convex function, and Pt = S0
t P0.

This enables broader choice of P0, which we shall use in next corollary.

Corollary 2.5.4. Let t1 < 0 and t2 < 0. Staring with terminal φ0(x, z) we assume

that φt1(x, z), φt2(x, z) and φt1+t2(x, z) exist, and φt2(x, z) − φ0(x, z) is strictly

convex. With choice of P0(x) = φzt2(x) = φt2(x.z), and t = t1, we have

Pt = S0
t2

[φzt1 ](x) = St2t1+t2 [φzt2 ](x) = φzt1+t2
(x) = φt1+t2(x, z)

Hence using lemma 2.5.3 for all z and z̄

inf
x

[φt2(x, z̄)− φ0(x, z)] = inf
y

[φt1+t2(y, z̄)− φt1(y, z)] (2.115)

Hence following is true.

Pt1+t2 = Pt1 + St1
{

(Q0 −Qt1) + S0
′(Pt2 − P0)−1S0

}−1
St1
′

St1+t2 = St1
{

(Q0 −Qt1) + S0
′(Pt2 − P0)−1S0

}−1
S0
′(Qt2 −Q0)−1St2

Qt1+t2 = Qt2 + St2
′ {(P0 − Pt2) + S0(Qt1 −Q0)−1S0

′}−1
St2

(2.116)

Proof. Substituting the parameters of φt for t = 0, t1, t2, t1 + t2 in (2.115), using

(2.50) and (2.51) and matching terms gives us following

S0
′(Pt2 − P0)−1S0 +Q0 = St1

′(Pt1+t2 − Pt1)−1St1 +Qt1

St2
′(Pt2 − P0)−1S0 = St1+t2

′(Pt1+t2 − Pt1)−1St1

−St2 ′(Pt2 − P0)−1St2 +Q0 = −St1+t2
′(Pt1+t2 − Pt1)−1St1+t2 +Qt1+t2

from which (2.116) can be derived by some manipulation, and using Woodbury’s

matrix inversion formula.

Corollary 2.5.5. Using t1 = t2 = −∆, ∆ ≥ 0. We have following kernel doubling

formula, in terms of parameters of the biquadratic duality kernel.

P−2∆ = P−∆ + S−∆

{
(Q0 −Q−∆) + S0

′(P−∆ − P0)−1S0

}−1
S−∆

′

S−2∆ = S−∆

{
(Q0 −Q−∆) + S0

′(P−∆ − P0)−1S0

}−1
S0
′(Q−∆ −Q0)−1S−∆

Q−2∆ = Q−∆ + S−∆
′ {(P0 − P−∆) + S0(Q−∆ −Q0)−1S0

′}−1
S−∆

(2.117)
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Using these we can create kernel φt(x, z) parametrized by (Pt, St, Qt) at time t =

−2N∆ in N steps and achieve Riccati propagation using time-invariant version of

(2.46), that is

pt = Pt − St
(
Qt −Q0 − S0

′(p0 − P0)−1S0

)−1
St
′ (2.118)

2.5.3 Dual DRE and Analytic solutions

Extending (2.59) to time-invariant case, we have if Qt(z) = Dφ[Pt] = 1
2
z′qtz,

where φ(x, z) = 1
2
x′Ptx+ x′Stz + 1

2
z′Qtz, then qt satisfies following dual DRE.

− q̇t = Ā′qt + qtĀ+ C̄ + qt
′Σ̄qt (2.119)

Similarly extending (2.61) to the time invariant case, coefficients of the dual

DRE, (Ā, C̄, Σ̄) satisfy following matching or compatibility conditions.

−Ṗ = A′P + PA+ C + PΣP = SΣ̄S ′

−Ṡ = (A+ ΣP )′S = S(−Ā+ Σ̄Q)

−Q̇ = S ′ΣS = −Ā′Q−QĀ+ C̄ +QΣ̄Q

(2.120)

Similarly extending (2.63),

KH = H̄K (2.121)

where

K =

[
S−1P −S−1

S ′ −QS−1P QS−1

]
,H =

[
A Σ

−C −A′

]
, H̄ =

[
Ā Σ̄

−C̄ −Ā′

]

Note that with a constant duality kernel, hence constantK (assuming invertibility),

and using time invariance of H, ˙̄H = KḢK−1 = 0, dual DRE is also time invariant.

Extending the figure 2.5.3 to the time varying case gives us figure 2.4.4. Note

that t1 = −∆ and t2 = 0, and φt(x, z) = 1
2
x′Ptx + x′Stz + 1

2
z′Qtz, with the triad

(Pt, St, Qt) evolving as per (2.120). Note that we have one new relationship in

figure (2.4.4), stated as below.
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Primal DRE: −ṗt = A′pt + ptA+ C + ptΣpt.

P0(x) P−∆(x)

Q0(z) Q−∆(z)

Dual DRE: −q̇t = Ā′qt + qtĀ+ C̄ + qtΣ̄qt.

�

?
�

?

aaaaaaaaaaaaaa!!
!!
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!!

!!
!!

!!

φ0 φ0

φ−∆φ∆

I∆

B∆

Figure 2.2: Time invariant problem: Duality relationships.

Lemma 2.5.6.

Dφ∆
[P0] = Q−∆

Proof. From figure (2.5.3), we have [Pt2 ] = D−1
φt2
Dφt1 [Pt1 ] = St2t1 [Pt1 ]. Because of

time invariance, for any δ ∈ R,

St2t1 = D−1
φt2
Dφt1 = St2+δ

t1+δ = D−1
φt2+δ
Dφt1+δ

Hence using δ = ∆, t1 = −∆ and t2 = 0, we have,

P−∆ = S0
−∆[P0] = S∆

0 [P0] = D−1
φ0
Dφ∆

[P0]

Thus finally, using Dφ0 [P−∆] = Q−∆,

Dφ∆
P0 = Dφ0 [P−∆] = Q−∆

Remark 2.5.7. Note that letting ∆ → ∞ gives us the relation between the

solutions of primal and dual Riccati equations. That is, if p̂ is stabilizing solution

of = A′p̂t+ p̂tA+C+ p̂tΣp̂t and q̂ is the stabilizing solution of Ā′q̂t+ q̂tĀ+C̄+ q̂tΣ̄q̂t.

Then q̂ is the semiconvex dual of p̂, under kernel (P, S,Q)0. Hence

q̂ = −S0
′(p̂− P0)−1S0 −Q0 (2.122)

Remark 2.5.8. Note that 1
2
z′qtz = Qt = Dφ0 [Pt](z) and qt satisfies dual DRE.

Similarly, using lemma 2.5.6, Dφ∆
[Pt](z) = Qt−∆ = 1

2
z′qt−∆z. Since qt−∆ also
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satisfies same dual DRE (2.119), kenel φ∆(x, z) also satisfies same matching

conditions (2.120). Let us define

Kt
.
=

[
S−1
t Pt −S−1

t

St
′ −QtS

−1
t Pt QtS

−1
t

]

Thus from figure (2.4.4), if K0 satisfies matching conditions (2.121), then so does

K∆, for any ∆ ≥ 0.

The kernel matching conditions (2.61) allow us to transform one Riccati

equation into any other. In particular, we can transform a Riccati equation into a

Linear equation amenable to analytical solution. Thus we can derive well known

analytical solutions to Riccati equations derived earlier in [KL85] and [Rus88].

Analytical solution 1

We wish to solve ṗt = ATpt + ptA + C + ptΣpt. To convert this into a linear

equation, let us choose S0 = I, C̄ = Σ̄ = 0. Thus kernel matching conditions

(2.61) imply that, ∀t

− Ṗt = A′Pt + PtA+ C + PtΣPt = 0 (2.123)

−Ṡt = (A+ ΣPt)
′St = −StĀ (2.124)

−Q̇t = STΣSt = −Ā′Qt −QtĀ (2.125)

From (2.123), for all t, Pt is the solution to the Riccati equation ATP +PA+C +

PΣP = 0. Thus if the Riccati equation has stable and unstable solutions, say P−

and P+, and if P0 = P+, then Pt = P+ ∀t.
From (2.124), since S0 = I, Ā = −(A + ΣP )T . Solving S0 = I and Ṡ = −SĀ,

we have S−t = e−Āt.

From (2.125), Q0 is solution to the Lyapunov equation, ĀTQ0 +Q0Ā+ Σ = 0.

It can be proved that Q0 = (P+ − P−)−1. Solving Q̇ = −ĀTQ − QĀ, we get

Q−t = e−Ā
T tQ0e

−Āt.
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Combining all above and (2.46), we get

(p−t − P−t)

= −S−t
[
−S0

′(p0 − P0)−1S0 +Q−t −Q0

]−1
S−t

′

= −e−Āt[−(p0 − P+)−1 + e−Ā
T tQ0e

−Āt −Q0]−1e−Ā
T t

Rearranging and substituting Q0 = (P+ − P−)−1 and Ā = −(A+ ΣP+)T , we get

et(A+ΣP+)
[
(pt − P+)−1 − (P− − P+)−1

]
et(A+ΣP+)T

=
[
(p0 − P+)−1 − (P− − P+)−1

]
(2.126)

Equation (2.126) is same as the Method 3 developed by Leipnik in [KL85].

Note that (2.126) assumes that extremal solutions P+ and P− are well separated.

This method being analytic, is extremely fast and accurate, and does away

with the need to combine operators.

Analytical solution 2

Above method suffers from numerical errors when extremal solutions of the

Riccati equations, are not well separated. Following almost analytic method can

solve this problem. The reason it is called almost analytics is because it requires

computation of integrals of matrix exponentials instead of exponentials themselves.

If we use S0 = I, Σ̄ = 0, Q0 = 0, then matching conditions (2.61) give us

− Ṗt = A′Pt + PtA+ C + PtΣPt = 0 (2.127)

−Ṡt = (A+ ΣPt)
′St = −StĀ (2.128)

−Q̇t = S ′ΣSt = −Ā′Qt −QtĀ+ C̄ (2.129)

Hence again, P0 = Pt = P for all t, where P is any solution of Riccati equation

(2.127). S−t = e−tĀ, with −Ā = (A + ΣP )T as earlier. Since Q0 = 0, C̄ = Σ

and Qt evolves according to (2.129). If T is a solution of Lyapunov equation,

−Ā′T + TĀ = C̄, then Q−t = e−tĀ
′
Te−tĀ − T . Hence

−Q̇t = −Ā′e−tĀ′Te−tĀ − e−tĀ′Te−tĀĀ

= −e−tĀ′(Ā′T + TĀ)e−tĀ

= e−tĀ
′
C̄e−tĀ
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Since Q0 = 0, and C̄ = Σ, Q−t =
∫ t

0
e−tĀ

′
Σe−tĀ. Substituting in (2.46), and using

−Ā = (A+ ΣP )T = B,

etB
′
(−P + pt)

−1etB = (−P + p0)−1 −
∫ t

0

eτB
′
ΣeτBdτ (2.130)

This formula works well for problems with extremal solutions not well

separated. In the limiting case, when P = P+ = P−, it can be proved that

−Ā = (A+ ΣP+)T = 0, which implies

(−P + p−t)
−1 = (−P + p0)−1 − Σt

Using shorthand for p̄t = pt − P and p̄0 = p0 − P It can be shown that above

is equivalent to

p̄−t = etB p̄0

{
I −

∫ t

0

etB
′
ΣeBtp̄0dt

}−1

etB
′

(2.131)

This formula is same as the one developed by Rusnak [Rus88]. Integrals of matrix

exponentials can be calculated easily using techniques from [VL78]. For our use, if

exp

([
−BT Σ̄

0 B

]
t

)
=

[
F1(t) F2(t)

0 F3(t)

]

then
∫ t

0
etB

T
Σ̄eBtdt = F3(t)TF2(t).

2.5.4 Numerical Experiments and Results

Thus we have seen three different approaches to solve the time invariant DRE,

(2.105) in this text. Following is the summary of algorithms.

• Starting with (P0, S0, Q0), find the solution of bivariate DRE (2.108) on a

smaller time interval, [−t, 0]. This can either be done analytically using

(2.68),(2.69),(2.70) (for a small time interval, since Davison-Maki theorem is

illconditioned for large t), or by time marching using an appropriate solver.

Here we use fixed step Runge-Kutta fourth order method for the same. We

shall denote the number of steps by Nrk. Note that an often useful initial

condition is P0 = 0, S0 = I and Q0 = 0.
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• Using (P−t, S−t, Q−t), we can construct kernels Bt as per (2.111) and I t as

per (2.109). We may also choose to find I analytically using (2.71).

• Having found a kernel at time −t and starting with given p0, we can choose

to perform M kernel doubling operations to solve for kernel at time 2M t and

N time-stepping operations to compute p−T for T = 2MNt. We can do this

three different ways as follows.

Method A Construct I2M t using doubling formula (2.110) recursively M

times, and evolve p0 back in time to get p−T using N stepping operations

as per (2.45).

Method B Construct B2M t using doubling formula (2.112) recursively M

times, and evolve p0 back in time to get p−T using N stepping operation

as per (2.113). This method was first proposed in [McE08].

Method C Use doubling formula (2.117) M times recursively to compute

(P,Q, S)−2M t. Evolve p0 back in time to get p−T using N stepping

operations as per (2.118).

Assuming that we evolve the solution from 0 to t, using Runge-Kutta fourth

order method, using Nrk steps, and perform M doubling and N stepping

operations, computational complexity (flops) needed for three methods are as

follows (found using [Min])

Method A Nrk(32n3+3n2)+(M+1)
(
16n2 + 37

3
n3 + 11

3
n
)
+N

(
18n2 + 19

3
n3 + 11

3
n
)

Method B Nrk(32n3+3n2)+(M+1)
(
16n2 + 37

3
n3 + 11

3
n
)
+N (54n2 + 19n3 + 11n)

Method C Nrk(32n3 + 3n2) +M
(
67n2 + 94

3
n3 + 44

3
n
)

+N
(
36n2 + 38

3
n3 + 22

3
n
)

Now we shall apply the theory developed so far to the example problems. We

shall also benchmark Method B proposed in [McE08] against Method C, which

show greater accuracy at a very small time step propagation.
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2.5.5 A Stiff Time Invariant Example

We shall show in this section that algorithms discussed so far are applicable

to stiff DREs. Usual time marching methods are constrained in step size by the

stability requirement. To get a rough idea, let us look at a linear system ẋ(t) =

Ax(t). Explicit methods like Euler method impose condition |1 + hλ| < 1 on

stepsize h, where λ is an eigenvalue of A. If λ is real and negative, this condition

implies h < 2
|λ| . Thus excessively small step sizes may be needed to ensure accuracy

if λ is large. Following numerical experiments show that new algorithms give

accurate answers with step size h = 2M t significantly larger than 2/λ when the

initial transient phase is almost over.

We shall choose example 4.1 from [CL90]. Symmetric DRE

−ṗ(t) = −p2(t) + k2In; p(0) = Udiag[i]U−1, t ≥ 0

where diag[i] denotes the diagonal matrix with successive diagonal entries 1, 2, . . . , n,

and U is an orthogonal matrix. Above DRE is solved for different n (size of the

equation) and k (larger the value of k, the stiffer the equation). The error of the

computed solution is defined as err = ||p− p̄||F/||p||F , where X denotes the true

and X̄ denotes the computed solution. The analytical solution of above DRE is

p(t) = Udiag

[
ksinh kt+ icosh kt

cosh kt+ i
k
sinh kt

]
U−1

where diag[·] here denotes the diagonal matrix whose diagonal entries are generated

by letting i take successively the values 1, 2, . . . , n.

Let 0 ≤ t1 ≤ t2. Starting with p̄−t1 = p(−t1) which is the analytic solution,

we computed the solution p̄−t2 using method A, for different t1, t2, n, k, and

using various choices for Nrk, M , N . Note that the solution is marched for

t = T/(N2M), and results are tabulated in table 2.1.

Usually error in the final solution arises out of

1. Error in the initial time marched solution (P, S,Q)t and hence in I t, which

gets amplified due to doubling algorithms. Higher steps in time marching,

Nrk, lead to a more accurate final solution.
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Table 2.1: Numerical accuracy test for a stiff DRE.

t1 t2 n k M N Nrk h 2
|λ| err

0 10 10 5 1 10 10 1 0.2 2.94× 10−5

0 1000 10 5 10 1 10 1000 0.2 1.50× 10−5

0 1000 10 10 10 1 10 1000 0.2 8.07× 10−6

0 1000 100 10 10 1 10 1000 0.02 8.07× 10−6

0 1000 100 10 10 1 100 1000 0.02 1.55× 10−12

0 1000 100 10 10 1 500 1000 0.02 3.24× 10−15

0 1000 100 10 16 1 10 1000 0.02 6.65× 10−10

0 100000 100 10 22 1 -* 100000 0.02 2.98× 10−15

0 100000 100 100 22 1 -* 100000 0.02 2.24× 10−14

3 10 100 100 8 3 10 2 0.02 1.52× 10−6

3 10 100 100 8 3 1 2 0.02 1.77× 10−2

0 10 100 100 11 1 100 10 0.02 9.84× 10−12

0 10 100 100 1 211 100 10 0.02 4.83× 10−9

* Note that a blank entry for Nrk implies that the solution for

(P,Q, S)t was found analytically using (2.68),(2.69),(2.70).

2. Error in computing I t for very small t. Since matrix inverses involved in

computation of I t in (2.110), grow more singular as t → 0. For extremely

small timesteps, parameters of I t can blow up, leading to inaccuracies. Hence

it is preferable to keep t above a certain minimum threshold.

Exact error analysis of these methods is beyond the scope of this thesis. But above

results show that method 1, is fast, useful and numerically stable fundamental

solution for a long time horizon propagation of a stiff DRE. Kernel doubling

methods give a quadratic convergence rate, rather than the linear rate of stepping

iterations. This enables us to take longer time steps, much higher than the stability

threshold of the stiff DRE explicit time marching algorithms.

Time invariant doubling algorithms

Now we shall benchmark the numerical performance of method 1, 2 and 3 using

the example from [McE08]. We consider a 2× 2 size DRE, with

A =

[
−2 1.6

−1.6 −0.4

]
, C =

[
1.5 0.2

0.2 −0.4

]
,Σ =

[
0.216 −0.008

−0.008 0.216

]
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starting with initial condition

p0 =

[
−0.1 0

0 −0.1

]

and we use the duality kernel (P, S,Q)0 = (D,−D,D), where

D =

[
−1 −0.2

−0.2 −0.1

]

We also compute a near exact solution using variable step Runge-Kutta (ode45

in MATLAB) method for T = 4, with absolute tolerance 10−15 and relative

tolerance of 10−13. Treating this as the true solution, we compare this against

solutions by all three methods, using just one step of Runge Kutta fourth order

fixed step method for computing (P, S,Q)−t and using only kernel doubling. Thus

we choose N = 1, Nrk = 1 and vary M between 3 and 17. Error in the computed

solution is defined as err = ||p− p̄||F/||p||F . Here p indicates the true solution,

and p̄ is the computed solution. Figure 2.3 show plots of M against err for all

three methods. We can see that the method 3, can achieve maximum accuracy of

9.48× 10−13 as against to 5.77× 10−10 for method 1 and 3.85× 10−10 for method

2 first proposed in [McE08], which is significantly better. Although increasing M ,

decreases err initially, eventually all methods exhibit an increase in err with M .

This is because t = 4/2M → 0, and P−t−P0 → 0, S−t−S0 → 0 and Q−t−Q0 → 0,

and their inverses grow very large and can not be accurately computed. Thus it

is advisable to keep t above a minimum threshold. In this example, with M = 13,

t = 4.88× 10−4.

We also benchmark above methods against a fourth order Runge-Kutta

method, for various stepsizes, and plot err against computational cost measured in

flops (using [Min]) in figure 2.4. Specifically, the flopcount for Runge Kutta fixed

step 4th order method was taken to be Nrk(32n3 + 3n2). Note that the above

methods exhibit a faster convergence rate, and yield more accuracy for a given

computational cost.
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Figure 2.3: M vs. Solution Error

Figure 2.4: Computational cost vs. Solution Error

2.6 Conclusion

Thus in this chapter, we derived a new fundamental solution for the DRE (2.1)

with the time varying coefficients. We showed its equivalence with the max-plus

based fundamental solution (2.19) and (2.20), proposed in [FM00], which arises

out of a two-point boundary value problem and dynamic programming. We proved

that such a fundamental solution is a bivariate quadratic for the linear/quadratic

problem in (2.28).

We showed that under a semiconvex duality kernel, a primal DRE is trans-
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formed into a dual DRE. We derived the compatibility conditions which the

coefficients of such DREs should satisfy in (2.61). These conditions can be

readily expressed as per (2.63), in terms of classic Hamiltonian matrices of system

dynamics and symplectic matrices of kernel parameters. This led us to derive

analytical forms of the kernel parameters involving state transition matrix of the

Hamiltonian system as per (2.68), (2.69), (2.70).

Using backward dynamic programming principle, we showed the kernel rela-

tionships between time shifted primal and the dual DREs, shown in Figure 2.4.4.

This enabled us to develop three different methods to propagate a DRE. Time

invariant analogue of one of these methods was first proposed in [McE08].

As a special case of the time-varying problem, we derived doubling and stepping

algorithms in primal space, for the time-invariant DRE ((2.109),(2.110), (2.45)).

Using the kernel matching conditions, we could design kernels which convert

primal DREs into linear differential equations under duality, which have well-

known analytical solution. Using this, in sections 2.5.3 and 2.5.3, we rediscovered

the analytical solutions for the DRE, previously developed by [KL85] and [Rus88].

Finally in section 2.5.4, we used these methods on the stiff problems and

demonstrated their speed, accuracy and numerical stability. We also benchmarked

them against previous dual space doubling algorithm developed in [McE08], and

demonstrated an order of magnitude improvement in the accuracy for propagation

at a very small time step.

Thus this paper provides an elegant fundamental solution for the time-varying

DRE, useful for stiff problems and a long time horizon propagation. It also

provides a powerful unifying framework based on optimal control formulation,

semiconvex duality and max-plus algebra, which enables us to solve Riccati

differential equations, and see existing methods in new light.

Chapter 2, in part, has been submitted for publication as it may appear in

Automatica. Deshpande, Ameet, Elsevier Press [Des]. The dissertation author

was the primary investigator and author of this paper.



Chapter 3

A Curse-of-Dimensionality-Free

Numerical Method based on

Max-Plus algebra

3.1 Introduction

In this chapter we shall revisit the earlier development (cf. [McE07], [McE06],

[McE09]) on the curse-of-dimensionality-free method for solving the maximization

problems in which the Hamiltonian can be approximated by the maxima of the

linear-quadratic Hamiltonians.

Then we shall derive the max-plus fundamental solution for the constituent

linear-quadratic problem, and use it in the context of curse-of-dimensionality-free

method.

3.2 The Problem

We consider the problem already discussed in chapter 1, with the dynamics

ξ̇t = f(ξt) + σ(ξt)ut

ξ0 = x ∈ Rn
(3.1)

68
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where the state ξt ∈ Rn, the control u lies in Lloc
2

.
= {u : [0,∞) → Rm : u ∈

L2[0, T ] ∀T < ∞}, f represents the nominal dynamics, and σ is the n × m

matrix valued multiplier on the control.

This represents an infinite horizon H∞ problem with the fixed feedback f(ξ)

and u is the disturbance, and we wish to compute the worst case cost/ maximal

payoff for the disturbance.

Thus the optimal control objective is to minimize the integral payoff

V (x)
.
= inf

u∈Lloc
2

sup
T<∞

∫ T

0

l(ξt)−
γ2

2
|ut|2 dt. (3.2)

Such system is said to satisfy an H∞ attenuation bound (of γ) if there exists γ <∞
such that V (also called a storage function) defined as above, is locally bounded.

V is the value function of the problem. For the existence and regularity of the

value function, we make following assumptions on the dynamics and the running

cost.

We assume that there exist K, c,M ∈ (0,∞) such that for all x ∈ Rn,

|f(x)− f(y)| ≤ K|x− y| and f(0) = 0

(x− y)′ (f(x)− f(y)) | ≤ −c|x− y|2

|σ(x)− σ(y)| ≤ K|x− y|

|σ(x)| ≤M

(3.3)

Note that this implies x′f(x) ≤ −c|x|2 for all x ∈ Rn or the exponential stability

of the feedback control.

Regarding the running cost l(x), we assume that there exist C, α ∈ (0,∞) such

that

|l(x)− l(y)| ≤ C(1 + |x|+ |y|)|x− y| ∀x, y ∈ Rn

0 ≤ l(x) ≤ α|x|2.
(3.4)

This assumes a linear bound on the growth of the Lipschitz constant and restricts

l to be zero at the origin.

Only the existence of constants K,C will be important and not the values.

Rest of the constants satisfy the following final assumption.

γ2

2M2
>
α

c2
(3.5)
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The corresponding HJB PDE is as follows.

0 = − sup
ut∈Rm

{
(f(x) + σ(x)u) · ∇W + l(x)− γ2

2
|ut|2

}
= −

[
f(x) · ∇W + l(x) +∇W ′

(
σ(x)σ′(x)

2γ2

)
∇W

]
.
= −H(x,∇W )

(3.6)

The boundary condition is W (0) = 0.

Such a PDE can have multiple viscosity solutions. Consider a simple one-

dimensional problem as an illustration. Let ξ̇t = −ξt + wt, l(ξ) = ξ2 and take

γ = 2. The PDE is then

0 =
1

8
∇W − x∇W + x2, and W (0) = 0.

There are two C∞ solutions, W 1(x) = (2 −
√

2)x2 and W 1(x) = (2 +
√

2)x2, and

an infinite number of viscosity solutions such as

W (x) =

(2−
√

2)x2 if x ≤ 1

(2 +
√

2)x2 − 2
√

2 if x > 1

Next section gives an overview of an important earlier work by McEneaney

[McE98] which extracts the correct viscosity solution, which is the value function.

3.3 Existence and Uniqueness

Soravia [Sor96] and McEneaney [McE98], [McE07], [McE06] have proved the

following important theorems which serve as the foundation.

Theorem 3.3.1. Assuming (3.3), (3.4) and (3.5), the value function V defined in

(3.2), exists and is the unique continuous viscosity solution of the HJB PDE (3.6)

in the class

K .
=

{
W ∈ C(Rn) : 0 ≤ W (x) ≤ c

(γ − δ)2

2M2
|x|2
}

(3.7)

for some δ > 0. Note that δ depends on the choice of W .
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Theorem 3.3.2. Assuming (3.3), (3.4) and (3.5), if we define a finite horizon

value function

U(x, T )
.
= sup

u∈Lloc
2

∫ T

0

l(ξt)−
γ2

2
|ut|2 dt, (3.8)

then for all x ∈ Rn, U(x, T ) is monotonically increasing with T , and

lim
T→∞

U(x, T ) = V (x) (3.9)

where V is the value function (3.2). The convergence is uniform over the compact

subsets of Rn.

Using the semigroup notation introduced in chapter 1, following holds true.

Theorem 3.3.3. Assuming (3.3), (3.4) and (3.5), for any T ≥ 0 and for all

x ∈ Rn, V defined in (3.2), also satisfies the following dynamic programming

principle (DPP).

V (x) = ST [V ](x)
.
= sup

u∈Lloc
2

[∫ T

0

(l(ξt)−
γ2

2
|ut|2) dt+ V (ξT )

]
(3.10)

Thus V is the fixed point of the operator ST for all T ≥ 0. It is the

unique such fixed point in class K defined in (3.7). Further, given any W ∈ K,

limT→∞ ST [W ](x) = V (x) for all x ∈ Rn. Convergence is uniform on compact

sets.

Note that since 0 ∈ K,

lim
T→∞

ST [0](x) = lim
T→∞

U(x, T ) = V (x).

Thus the theorem 3.3.2 is a special case of theorem 3.3.3. Also it is known that

operators ST form a semigroup. Thus for t1, t2 ≥ 0 and W ∈ K, St1 [St1 [W ]](x) =

St1+t2(x).

This suggests an alternate way to compute the value function, by finding the

fixed point of the semigroup or as the limit of iterated semigroup propagations.

Starting with an initial guess W ∈ K, with a given T > 0,

V (x) = lim
t→∞
St[W ](x) = lim

n→∞
SnT [W ](x). (3.11)

Here n ∈ N, and SnT [W ] can be constructed iteratively as per ST · S(n−1)T [W ] =

ST · ST [W ] . . .ST [W ].
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3.4 Approximation with LQ Hamiltonians

In order to solve the HJB PDE (3.6), one approach is to approximate it by the

max-plus summation of linear-quadratic (LQ) Hamiltonians. This section reviews

the theoretical development along this approach covered in [McE07] and [McE09].

Specifically, we consider:

0 = −H(x,∇W ) ≈ −H̃(x,∇W )
.
= − sup

m∈{1,2,...,M}
Hm(x,∇W )

W (0) = 0

(3.12)

with each of the constituent Hm is linear-quadratic,

Hm(x, p)
.
=

1

2
x′Cmx+

1

2
p′Σmp+ (Amx)′p+ x′lm1 + p′lm2 +

1

2
αm, (3.13)

where Cm, Σm are n× n symmetric matrices, lm1 , l
m
2 ∈ Rn and αm ∈ R.

Note that this approximation using the max-plus sum of linear-quadratic

Hamiltonians can approximate any semiconvex Hamiltonian arbitrarily closely.

Recall that a function φ : Rn → R is semiconvex over Rn if ∃C > 0 such that

φ(x) + C|x|2 is convex over x ∈ Rn. This greatly extends the applicability of this

method to general nonlinear problems.

If such approximation is exact, then H = H̃ is associated with an optimal

control problem for a switched linear system. For such a problem the dynamics is,

ξ̇t = Aµtξt + lµt2 + σµtut, ξ0 = x (3.14)

and the corresponding value function is

Ṽ (x) = sup
u∈Lloc

2

sup
µ∈D∞

sup
T<∞

J̃(x, T ;u, µ)

.
= sup

u∈Lloc
2

sup
µ∈D∞

sup
T<∞

∫ T

0

lµt(ξt)−
γ2

2
|ut|2 dt (3.15)

where

M .
= {1, 2, . . . ,M} and σi are such that Σi = σiσi

′

γ2 for i ∈M

lµt(ξt)
.
=

1

2
ξ′Cµtξ + ξ′lµt1 +

1

2
αµt ,

D∞
.
= {µ : [0,∞)→M : measurable }.
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We make following assumptions on this problem for further analysis.

Assume that the underlying system dynamics and the payoff

functions satisfy (3.3), (3.4). Hence the value function

V defined by (3.2) is a unique viscosity solution, of 0 =

−H(x,∇V ) in class K, defined in (3.7).

Assume that the approximating Hamiltonian H̃(x, p) =

supmH
m(x, p) ≤ H(x, p) for all x, p ∈ Rn.

Assume that there exist cA ∈ (0,∞) such that x′Amx ≤
−cA|x|2 for all x ∈ Rn and all m ∈M.

Assume H1(x, p) has coefficients satisfying the following: l11 =

l12 = 0; α1 = 0; there exists cA,1 ∈ (0,∞) such that x′A1x ≤
−cA,1|x|2 ∀x ∈ Rn; C1 is positive definite, symmetric; and

γ2/c2
σ > cD/c

2
A,1, where cσ

.
= |σ1| and cD is such that x′D1x ≤

cD|x|2 ∀x ∈ Rn.

Assume that the system (3.14) is controllable in the sense that

given x, y ∈ Rn and T > 0, there exist processes w ∈ W and

µ measurable with range inM, such that ξT = y when ξ0 = x

and one applies control w, µ.

(3.16)

Note that the last assumption is satisfied, if for at least one m ∈ M, σmσm′

has n positive eigenvalues.

Final assumption is that there exist c1, c2 < ∞ such that

for any ε-optimal pair, µε, wε for the H̃ problem, one has

||wε||2L2[0,t] ≤ c1 + c2|x|2 for all ε ∈ (0, 1], all T < ∞ and all

x ∈ Rn.

(3.17)

This behavior was proved in the purely quadratic case (cf. [McE98], [McE07]).

But in this general case, we assume it instead.

Now we are ready to review the previous development. Following theorems form

the foundations of the numerical methods in the next section, and were proved in

[McE09].
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Theorem 3.4.1. Assume (3.16), (3.17), and let V , Ṽ and K be as defined in

(3.15), (3.2) and (3.7), respectively. Then Ṽ (x) exists and 0 ≤ Ṽ (x) ≤ V (x) for

all x ∈ Rn. Consequently, Ṽ ∈ K.

Ṽ is also the unique continuous viscosity solution of the PDE,

0 = −H̃(x,∇W )), W (0) = 0

in class K. Here H̃ is defined as per (3.12).

Assuming ξ0 = x and dynamics (3.15), we define the semigroup,

S̃T [φ](x)
.
= sup

u∈Lloc
2

sup
µ∈D∞

[∫ T

0

lµt(ξt)−
γ2

2
|ut|2 dt+ φ(ξT )

]
. (3.18)

Now we state the dynamic programming principle for this problem, and

uniqueness of the Ṽ as a fixed point of the semigroup operation.

Theorem 3.4.2. Assume (3.16), (3.17). The value function Ṽ as defined in

(3.15), is a fixed point of the semigroup operation S̃T for any T > 0.

Ṽ (x) = sup
u∈Lloc

2

sup
µ∈D∞

{∫ T

0

lµt(ξt)−
γ2

2
|ut|2 dt+ Ṽ (ξT )

}
= S̃T [Ṽ ](x) (3.19)

for all x ∈ RN . Moreover, it is the unique fixed point in class K, defined in (3.7).

The process µt which represents the switching time history, can in general be

any measurable function taking values in M. In the next section, we will allow it

only to switch at discrete times to motivate the numerical method.

3.5 Discrete Time Approximation

Since we seek to avoid curse-of-dimensionality, we can not discretize over space.

Instead discretization will be over time where approximate µ processes will be

constant over the length of each time-step.

We define operator S̄τ on φ ∈ K by

S̄τ [φ](x)
.
= sup

u∈Lloc
2

sup
m∈M

[∫ τ

0

lm(ξmt )− γ2

2
|ut|2 dt+ φ(ξmτ )

]
= sup

m∈M
Smτ [φ](x)

(3.20)
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where ξm satisfies dynamics

ξ̇mt = Amξmt + σmut, ξm0 = x (3.21)

and Smτ is defined as

Smτ [φ](x)
.
= sup

u∈Lloc
2

[∫ τ

0

lm(ξt)
m − γ2

2
|ut|2 dt+ φ(ξmτ )

]
(3.22)

It is useful to note that operators S̄τ do not necessarily form a semigroup,

although they do form a sub-semigroup (i.e. S̄τ1+τ2 [φ] ≤ S̄τ1S̄τ2 [φ]). Further, one

has Smτ ≤ S̄τ ≤ S̃τ for all m ∈M.

With τ acting as a time-discretization step-size, let us define discretized

switching control spaces over infinite and finite horizon.

Dτ∞
.
=

{
µ : [0,∞)→M

∣∣∣∣∣ for all k ∈ N, there exists mk ∈M
such that µt = mk for all t ∈ [(k − 1)τ, kτ)

}
(3.23)

DτT
.
=

{
µ : [0, T )→M

∣∣∣∣∣ for all k ∈ N, k ≤ dT
τ
e, there exists mk ∈M

such that µt = mk for all t ∈ [(k − 1)τ,min(kτ, T ))

}
(3.24)

For N ∈ N, let Mn be the outer product of M, n times. Define

¯̄SτNτ [φ](x) = sup
µ∈Dτ∞

sup
u∈Lloc

2

∫ Nτ

0

lµt(ξt)−
γ2

2
|ut|2 dt+ φ(ξNτ ) (3.25)

It is easy to prove that

¯̄SτNτ [φ](x) = max
mN∈M

{SmNτ } ¯̄Sτ(N−1)τ [φ](x)

= max
{mk}Nk=1∈MN

{
N∏
k=1

Smkτ

}
[φ](x) =

(
S̄τ
)N

[φ](x)
(3.26)

where the
∏

notation indicates operator composition, and the superscript in

the last expression indicates repeated application of S̄τ , N times.

We will be approximating Ṽ by the fixed point of the semigroup S̄τ . This fixed

point, or the solution to W = S̄τ [W ], will be computed as a limit of semigroup

propagations on a starting φ ∈ K. Consequently, we need to show that the

existence and uniqueness of the fixed point and that it is the limit of semigroup

iterations. These have been proved in [McE09] and stated below.
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Theorem 3.5.1. Assume (3.16), (3.17) and the dynamics (3.14). Let Ṽ , K and

¯̄SτNτ be defined as per (3.15), (3.7) and (3.26) respectively. For all x ∈ Rn,

V̄τ (x)
.
= lim

N→∞
¯̄SτNτ [0](x) (3.27)

exists and the convergence is uniform on compact sets. V̄τ ∈ K and 0 ≤ V̄τ ≤ Ṽ .

V̄τ is also the infinite horizon value function for a discrete time switching problem,

V̄τ (x) = sup
µ∈Dτ∞

sup
u∈Lloc

2

sup
T<∞

[∫ T

0

lµt(ξt)−
γ2

2
|ut|2 dt

]
.

Also V̄τ is the fixed point of the semigroup S̄τ . Thus it is the solution of V̄τ = S̄τ [V̄τ ]
and V̄τ (0) = 0. Moreover, it is the unique, minimal, nonnegative such solution in

class K.

McEneaney [McE09] also showed that one may approximate Ṽ , the solution

of W = S̃τ [W ], to as accurate a level as one desires by solving W = S̄τ [W ] for

sufficiently small τ . Recall that if W = S̄τ [W ], then it satisfies W = ¯̄SτNτ [W ] for all

N > 0. So this is equivalent to introducing a discrete time µ̄ ∈ DτNτ approximation

to the µ process in S̃Nτ .
Stated below is the main approximation result.

Theorem 3.5.2. Given ε > 0 and R <∞, there exists τε,R > 0 such that

Ṽ (x) ≤ V̄τε,R(x) ≤ Ṽ (x) + ε ∀x ∈ B̄(0, R) (3.28)

V̄τε,R(x) can itself be computed as the uniformly convergent limit of iterated

operations of the semigroup S̄τε,R on any φ ∈ K.

V̄τε,R(x) = lim
N→∞

¯̄Sτε,RNτε,R
[φ](x) = lim

N→∞
S̄Nτε,R [φ](x)

Specifically one can choose φ(x) to be a quadratic function.

3.6 Max-Plus Fundamental Solution

In section 3.4, we approximated a nonlinear Hamiltonian by the pointwise

maximum of M linear quadratic Hamiltonians in (3.12). Such a Hamiltonian
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represents a switched linear system switching between M constituent systems with

linear dynamics and quadratic payoff. For such a system, in section 3.5, we simplify

the switching problem still further, by time discretizing the switching control by

(3.20)and (3.25). We can compute arbitrarily accurate solution of the switching

problem by decreasing the discretization timestep τ and increasing the time horizon

T . The error and the convergence analysis due to such time discretization is carried

out in [MK].

Thus we reduce the original problem to that of computing Smτ [φ], in which

a semigroup for a linear-quadratic system (corresponding to the quadratic

Hamiltonian Hm in (3.13), dynamics (3.21) and payoff (3.22)) acts on a quadratic

terminal payoff function φ(x). Fortunately, this is an analytically tractable

problem, with a quadratic solution. Due to this, starting with the zero function,

φ retains the quadratic form throughout the propagation under switching controls

and the final value function is simply the max-plus sum of the propagated quadratic

forms.

In [McE07], this problem was solved using semiconvex duality. Here we

present another form which is more direct. It also turns out to be the max-plus

fundamental solution to the underlying problem. This fundamental solution was

first proposed for general nonlinear systems in [FM00], and as a special case, the

closed form solution for linear time varying systems was derived in [Des] using

max-plus algebra. This fundamental solution is more direct and does not use

the semiconvex duality. Below is a similar analysis stemming from the same

fundamental solution. Here we derive the closed form propagation formulas for

computing Smτ [φ]. For brevity, we shall drop the superscript m from the dynamics

and payoff functions, and implicitly understand that they correspond to the m’th

constituent linear-quadratic system.

First we shall define the general fundamental solution/ max-plus kernel.

Consider a system starting with ξ0 = x and evolving as per

ξ̇s = Aξs + l2 + σus (3.29)
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and the payoff obtained along a particular trajectory is

J (x, u, t)
.
=

∫ t

0

l(ξs)−
1

2
|us|2 ds+ φ(ξt) (3.30)

where

l(ξs) =
1

2
ξ′sCξs + ξ′sl1 +

1

2
α. (3.31)

and the value function for the finite horizon problem with terminal payoff φ given

by the semigroup operation Smt [φ] is

V (x, t)
.
= Smt [φ](x) = sup

u∈Lloc
2

J (x, u, t) (3.32)

We shall now define a max-plus kernel I : Rn × Rn → R

I t(x, y)
.
=

supu∈Ut(x,y)

∫ t
0
l(ξs)− 1

2
|us|2 ds if U t(x, y) 6= ∅

−∞ otherwise
(3.33)

where

U t(x, y)
.
= {u ∈ L2(0, t) : ξ0 = x, ξt = y under the dynamics (3.29)}

Note that I t = −∞ indicates that it is impossible to reach y from x in time

interval (0, τ) using any possible control u. Thus if the system is controllable, then

I t(x, y) > −∞ for all t > 0, and I0(x, y) = −∞ for x 6= y, and 0 otherwise.

McEneaney and Fleming proposed the above kernel in [FM00] and [Fle03].

They also proved the following theorem.

Theorem 3.6.1. With the dynamics (3.29) and the terminal payoff φ(x), assume

that the finite horizon value function V (x, t)
.
= Smt [φ] as defined by (3.32), exists.

Then with I t defined as per (3.33), we have

Smt [φ](x) = sup
y∈Rn

(I t(x, y) + φ(y)) =

∫ ⊕
Rn
I t(x, y)⊗ φ(y) dy (3.34)
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Since I t depends only on the dynamics (3.29) and the running payoff l(xs) −
1
2
|us|2, it is independent of the terminal payoff φ(xt). Hence it can serve as a

Fundamental solution and obtain Smt [φ](x) for any φ(x) by a kernel operation.

Now we shall find a closed form solution for I t(x, y). To do this we parametrize

φ(x) by an additional variable z, which along with (3.36) gives us the next lemma.

First, we assume the following

1. Let C, P , Σ are n×n symmetric matrices. Assume that

the solution to the differential Riccati equation (DRE)

−Ṗt = A′Pt + PtA+ C + PtΣPt, PT = P

exists for t ∈ [0, T ].

2. The dynamics (3.29), hence the pair (A, σ) is control-

lable. That is given t > 0, for all x, y ∈ Rn, starting

from ξ0 = x there exists controls u such that ξt = y.

(3.35)

Let Σ = σσ′, and let ∇t and ∇x denote ∂/∂t and ∂/∂x respectively. Consider

the following Hamilton-Jacobi-Bellman PDE.

0 = −∇tW (x, t)−H (x,∇xW (x, t))

W (x, T ) = φ(x)
(3.36)

where

Hm(x, p)
.
= sup

u∈Rn

{
p′ (Ax+ l2 + σu) +

1

2
x′Cx+ x′l1 +

1

2
α− 1

2
|u|2
}

=
1

2
x′Cx+

1

2
p′Σp+ p′Ax+ p′l2 + x′l1 +

α

2
. (3.37)

Lemma 3.6.2. Let the terminal payoff be

φ(x) = φz(x) = φ(x, z) =
1

2
x′Px+ x′Sz +

1

2
z′Qz + x′a+ z′b+

β

2
.

Assume that S is invertible and P is such that (3.35) holds true. Then there exists

a C∞ solution to (3.36) for all x ∈ Rn and t ∈ [0, T ], given by

Wm
z (x, t) =

1

2
x′Ptx+ x′Stz +

1

2
z′Qtz + x′at + z′bt +

βt
2

(3.38)
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where Pt, St, Qt, at, bt, βt satisfy PT = P , ST = S, QT = Q, aT = a, bT = b, and

−Ṗt = A′Pt + PtA+ C + PtΣPt

−Ṡt = (A+ ΣPt)
′St

−Q̇t = S ′tΣSt

−ȧt = (A+ ΣPt)
′at + l1 + Ptl2

−ḃt = S ′t(l2 + Σat)

−β̇ = α + a′tΣat + 2a′tl2

(3.39)

and St is invertible for all t ∈ [0, T ].

Proof. Existence of solution Pt : 0 ≤ t ≤ T is assumed in (3.35). This combined

with local boundedness and continuity of coefficients, guarantees the existence of

St, at, and hence of Qt, bt and βt. The proof that it solves HJB is immediate by

substitution in (3.36).

If we define Bt
.
= −(A + ΣPt), then St = ΦB(t, T )ST = ΦB(t, T )S, where ΦB

is the state transition matrix of the system ξ̇t = Btξt. By Abel-Jacobi-Liouville

formula

det ΦB(t, 0) = e
∫ t
T TrB(s) ds > 0

Since both ΦB(t, T ) and ST = S are invertible, St = ΦB(t, T )ST is invertible as

well.

Next we have the verification theorem to connect the HJB PDE solution to the

control value function.

Theorem 3.6.3. Assume (3.35). Let x, z ∈ Rn and t ∈ [0, T ], Wm
z (x, t) as per

(3.38) and V m
z (x, t) be the value function as defined in (3.32). For all t ∈ [0, T ]

and u ∈ L2[0, T − t], one has

Wm
z (x, t) ≥ Jmz (x, u, T − t)

and Wm
z (x, t) = Jmz (x, ũ, T − t), where

ũs = ũ(s, ξ̃s) = σ′∇Wm
z (s, ξ̃s) = σ′

(
Psξ̃s + Ssz + as

)
. (3.40)
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Thus using (3.38) this implies,

V m
z (x, T − t) = Wm

z (x, t) =
1

2
x′Ptx+ x′Stz +

1

2
z′Qtz + x′at + z′bt +

βt
2
. (3.41)

Proof. Let ∇t and ∇x denote ∂/∂t and ∂/∂x respectively. Let u ∈ L2[t, T ], and ξ

be the corresponding time shifted trajectory with ξt = x and satisfying (3.29).

Jmz (x, u, T − t) =

∫ T

t

(
l(ξs)−

1

2
|us|2 + (Aξt + l2 + σus)

′∇Wm
z (ξs, s)

)
ds+ φz(ξT )

−
∫ T

t

(Aξs + l2 + σus)
′∇Wm

z (ξs, s) ds

which by definition of H

≤
∫ T

t

H (ξs,∇Wm
z (ξs, s)) ds+ φz(ξT )

−
∫ T

t

(Aξs + l2 + σus)
′∇W z(ξs, s) ds

which by (3.36) and (3.29)

=

∫ T

t

{
−∇sWz(ξs, s)− ξ̇s∇Wz(ξs, s)

}
ds+ φz(ξT )

= −
∫ T

t

d

ds
Wz(ξs, s) ds+ φz(ξT )

= Wm
z (x, t)−Wm

z (ξT , T ) + φz(ξT )

= Wm
z (x, t)

by (3.36).

Also note that in the proof, if we substitute ũs = σ(s)′∇Wm
z (ξ̃s, s) =

σ(s)′
(
Psξ̃s + Ssz + as

)
, then we have the equality throughout, and Jmz (x, ũ, T −

t) = Wm
z (x, t) = V m

z (x, T − t). Hence proved.

Remark 3.6.4. Since the dynamics (3.29) is time-invariant, we can define

V̂ (x, t)
.
=

{
sup
u∈Lloc

2

∫ T

t

l(ξs, us)−
1

2
|us|2 ds+ φz(ξT )

∣∣∣∣∣ ξ0 = x

ξt evolves as per (3.29)

}
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by shifting the time back by t

=

{
sup
u∈Lloc

2

∫ T−t

0

l(ξs, us)−
1

2
|us|2 ds+ φ(ξT−t)

∣∣∣∣∣ ξt = x

ξt evolves as per (3.29)

}
= V (x, T − t) = W (x, t)

=
1

2
x′Ptx+ x′Stz +

1

2
z′Qtz + x′at + z′bt +

βt
2

(3.42)

Now we prove a useful lemma towards obtaining the max-plus fundamental

solution.

Lemma 3.6.5. Consider the system trajectory ξ̃s starting from ξ̃t = x and evolving

according to (3.29) under the optimal control ũs = σ′
(
Psξ̃s + Ssz + as

)
from

Theorem 3.6.3. Then for t ≤ t1 ≤ s2 ≤ T ,

S ′t1 ξ̃t1 +Qt1z + bt1 = S ′t2 ξ̃t2 +Qt2z + bt2 (3.43)

Proof. By linear system theory, for a system evolving as per

˙̃ξs = Ax̃s + l2 + σũs

= Aξ̃s + l2 + σσ′
(
Psξ̃s + Ssz + as

)
= (A+ ΣPs) ξ̃s + Σ(Ssz + as) + l2

solution is given as

ξ̃t2 = ΦB(t2, t1)ξ̃t1 +

∫ t2

t1

ΦB(t2, s)(ΣSsz + Σas + l2) ds (3.44)

where ΦB(t2, t1) = Ut2U
−1
t1 , where Us is the solution of differential equation U̇s =

B(s)Us, with B(s) = A+ ΣPs.

It is well known that the state transition matrix

ΦB(s)(t2, t1) = Φ′−B(s)′(t1, t2)

now, noting from (3.39) that Ṡs = −(A + ΣPs)
′Ss = −B(s)′Ss, and since St2 is

invertible, we have

ΦB(s)(t2, t1) = Φ′−B(s)′(t1, t2) =
(
St1S

−1
t2

) ′ = S−1
t2
′St1

′ (3.45)
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Substituting in (3.44), and noting from (3.39) that Q̇s = −Ss′Σ(s)Ss and −ḃs =

Ss
′(l2 + Σas),

ξ̃t2 = S−1
t2
′St1

′ξ̃t1 + S−1
t2
′
∫ t2

t1

Ss
′(ΣSsz + Σas + l2) ds

= S−1
t2
′St1

′ξ̃t1 + S−1
t2
′
(∫ t2

t1

Ss
′ΣSs ds

)
z + S−1

t2
′
(∫ t2

t1

Ss
′(Σas − l2) ds

)
= S−1

t2
′St1

′x̃t1 + S−1
t2
′ (Qt1 −Qt2) z + S−1

t2
′(bt1 − bt2)

thus we have,

St2
′ξ̃t2 +Qt2z + bt2 = St1

′ξ̃t1 +Qt1z + bt1

Remark 3.6.6. Note that ∀z, since St1 and St2 are invertible, (3.43) suggests a

one-one and onto relation between start and end of optimal trajectories, ξt1 and

ξt2 . Thus ∀y ∈ <n there exists a x = S−1
t2
′ (St1

′y + (Qt1 −Qt2)z + bt1 − bt2) such

that optimal trajectory x̃ starting at x̃t1 = x, ends with y. Thus every y ∈ <n is

an optimal point for some initial condition.

Remark 3.6.7. Note that due to max-plus linearity, if k ∈ <,

V̂ z(x, t)
.
= St[φz + k](x) = St[φz](x) + k = V z(x, t) + k

Thus while keeping the dynamics and the running payoff the same, adding a

constant to the terminal payoff only shifts the value function accordingly. The

gradient hence the optimal feedback control remains the same.

ût(x) = σ∇V̂ z(x, T − t) = σ∇V z(x, T − t) = ũt(x)

Hence the optimal trajectory, which is the solution to ˙̂xt = Ax̂t + l2 + σût(x), also

stays the same.

Now we shall prove another useful lemma before turning to the main result.

Lemma 3.6.8. Assume (3.35). Given 0 ≤ t1 < t2 ≤ T , and Qt evolving according

to (3.39) with terminal value QT = Q, then

Qt1 −Qt2 � 0
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Proof. Since we assumed (A, σ) is controllable, the following controllability gram-

mian is invertible for any 0 ≤ t1 < t2 ≤ T . Here since A is time-invariant,

ΦA(t1, s) = eA(t1−s). ∫ t2

t1

ΦA(t1, s)σσ
′ΦA(t1, s)

′ dt � 0 (3.46)

Thus for all x, y ∈ Rn, ∃ control ût such that is the trajectory ˙̂x = Ax̂t+l2 +σût

with x̂t1 = x satisfies x̂t2 = y.

Now we claim that system (A+ ΣPt, σ) is also controllable. This is clear

because by using control ūt = ût − σ′Ptxt, we can keep the system trajectory

same and reach from x to y.

˙̂x = Ax̂t + l2 + σût

= (A+ σσ′Pt)xt + l2 + σ (ût − σ′Ptxt)

= (A+ ΣPt)xt + l2 + σūt

Hence similar to (3.46), using B(t) = A + ΣPt and σσ′ = Σ(t), following

controllability grammian is invertible.∫ t2

t1

ΦB(t1, s)ΣΦB(t1, s)
′ dt � 0 (3.47)

Substituting ΦB(t1, s) = S−1
t1
′Ss
′ from (3.45),∫ t2

t1

ΦB(t2, s)ΣΦB(t2, s)
′ ds =

∫ t2

t1

S−1
t1
′Ss
′ΣSsS

−1
t1
ds

= S−1
t1
′
{∫ t2

t1

Ss
′ΣSs ds

}
S−1
t1

= S−1
t1
′ (Qt1 −Qt2)S−1

t1
(3.48)

where in the last equation, we used Qt evolution from (3.39). Using (3.47) and

since St1 is invertible by Lemma 3.6.2, we have Qt1 −Qt2 � 0.

Theorem 3.6.9. Given x, y ∈ Rn and 0 ≤ t1 < t2 ≤ T , then if δ
.
= t2 − t1,

inf
z∈Rn

[
V̂ z(x, t1)− V̂ z(y, t2)

]
= Iδ(x, y) (3.49)
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Since by (3.42), V̂ z(x, t1) = 1
2
x′Pt1x + x′St1z + 1

2
z′Qt1z + x′at1 + z′bt1 +

βt1
2

and

V̂ z(x, t2) = 1
2
x′Pt2x + x′St2z + 1

2
z′Qt2z + x′at2 + z′bt2 +

βt2
2

, the max-plus kernel

Iδ(x, y) is also bivariate quadratic.

Iδ(x, y) =
1

2
x′I11

δ x+ x′I12
δ y +

1

2
y′I22

δ y + x′I1
δ + y′I2

δ + I0
δ where

I11
δ = Pt1 − St1(Qt1 −Qt2)−1St1

′

I12
δ = St1(Qt1 −Qt2)−1St2

′

I22
δ = −Pt2 − St2(Qt1 −Qt2)−1St2

′

I1
δ = at1 − St1(Qt1 −Qt2)−1(bt1 − bt2)

I2
δ = −at2 + St2(Qt1 −Qt2)−1(bt1 − bt2)

I0
δ = βt1 − βt2 − (bt1 − bt2)′(Qt1 −Qt2)−1(bt1 − bt2)

(3.50)

Proof. Let ξt1 = x. Since Σ � 0 and St is invertible, by (3.39), −Q̇s = S ′tΣ(t)St �
0, hence Qt1 −Qt2 � 0. For any z ∈ Rn

V̂ z(x, t1)− V̂ z(y, t2)

= St2−t1 [V̂ z](x, t2)− V̂ z(y, t2)

= sup
u∈L2[t1,t2]

{∫ t2

t1

lt(ξt, ut) dt+ V̂ z(ξt2 , t2)− V̂ z(y, t2)

}
substituting for V̂ z(·, t2),

= sup
u∈L2[t1,t2]

{∫ t2

t1

lt(ξt, ut) dt+
1

2
ξ′t2Pt2ξt2 −

1

2
y′Pt2y + (ξt2 − y)′(St2z + at2)

}
Since U t2t1 (x, y) = {u ∈ L2(t1, t2) : ξt1 = x, ξt2 = y} ⊂ L2(t1, t2) , and ∀u ∈ U t2t1 (x, y),

ξt2 = y.

≥ sup
u∈Ut2t1 (x,y)

{∫ t2

t1

lt(ξt, ut) dt+
1

2
y′Pt2y −

1

2
y′Pt2y + (y − y)′(St2z + at2)

}

= sup
u∈Ut2t1 (x,y)

∫ t2

t1

lt(ξt, ut) dt = Iδ(x, y) (3.51)

Taking infimum over all z ∈ Rn,

inf
z∈Rn

[
V̂ z(x, t1)− V̂ z(y, t2)

]
≥ Iδ(x, y) (3.52)
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Since Qt1 − Qt2 � 0 by 3.6.8, define ẑ = (Qt1 − Qt2)−1(St2
′y − St1 ′x + bt2 − bt1).

Hence

St2
′y +Qt2 ẑ + bt2 = St1

′x+Qt1 ẑ + bt1

Hence using (3.43) the optimal trajectory x̃t starting from x̃t1 = x and with ter-

minal payoff V̂ ẑ(·, t2), ends at x̃t2 = y. Let the corresponding optimal control be ũt.

Let us define k = −V̂ ẑ(y, t2) = −
(

1
2
y′Pt2y + y′St2 ẑ + 1

2
ẑ′Qt2 ẑ + y′at2 + ẑ′bt2 +

βt2
2

)
to create a shifted terminal payoff function

U ẑ
t2

(x) = V̂ ẑ(x, t2) + k = V̂ ẑ(x, t2)− V̂ ẑ(y, t2)

=
1

2
x′Pt2x−

1

2
y′Pt2y + (x− y)′(St2 ẑ + at2)

(3.53)

From remark 3.6.7, ũt, ξ̃t are also the optimal control and trajectory for the

following problem with the terminal payoff U z
t2

. Hence

V̂ ẑ(x, t1)− V̂ ẑ(y, t2) =

{
sup

u∈L2[t1,t2]

∫ t2

t1

lt(ξt, ut) dt+ V̂ ẑ(x, t2)

}
− V̂ ẑ(y, t2)

= sup
u∈L2[t1,t2]

{∫ t2

t1

lt(ξt, ut) dt+ V̂ ẑ(x, t2)− V̂ ẑ(y, t2)

}
= sup

u∈L2[t1,t2]

∫ t2

t1

lt(ξt, ut) dt+ Ut2(ξt2)

=

∫ t2

t1

lt(ξ̃t, ũt) dt+ U ẑ
t2

(ξ̃t2)

since U ẑ
t2

(ξ̃t2) = U ẑ
t2

(y) = 0 from (3.53) and ũ ∈ U t2t1 (x, y)

≤ sup
u∈Ut2t1 (x,y)

∫ t2

t1

lt(ξt, ut) dt = Iδ(x, y) (3.54)

Thus we have

inf
z

[
V̂ z(x, t1)− V̂ z(y, t2)

]
≤ V̂ ẑ(x, t1)− V̂ ẑ(y, t2) ≤ Iδ(x, y) (3.55)

Hence (3.52) and (3.55) together give us (3.49) and also the following

inf
z∈Rn

[
V̂ z(x, t1)− V̂ z(y, t2)

]
= V̂ ẑ(x, t1)− V̂ ẑ(y, t2) = Iδ(x, y) (3.56)

with ẑ = (Qt1 −Qt2)−1(St2
′y − St1 ′x+ bt2 − bt1).

Substituting ẑ in (3.56) and expanding, we get (3.50).
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3.7 The Algorithm

Now we begin the discussion of the actual algorithm. From Theorem 3.5.1,

V̄
.
= limN→∞

¯̄SτNτ [0](x). Let V̄ 0 ≡ 0 and define for k ≥ 1,

V̄ k .
= ¯̄Sτkτ [0](x), (3.57)

Then we have V̄ = limN→∞ V̄
N(x). In practice, we approximate the infinite horizon

by a sufficiently long finite horizon Nτ . The propagation from from V̄ 0 to V̄ N is

achieved as follows.

For all {mi}ki=1 ∈Mk, define

v{mi}ki=1
(x)

.
=

k∏
i=1

Smiτ [0](x).

Then we have

V̄ k = ¯̄Sτkτ [0] = max
{mi}ki=1∈Mk

{
k∏
i=1

Smiτ

}
[0](x) = max

{mi}ki=1∈Mk
v{mi}ki=1

(x).

Also by (3.27),

V̄ k+1 .
= S̄τ [V̄ k] = max

mk+1∈M
Smkτ

[
max

{mi}ki=1∈Mn
v{mi}ki=1

]
(x)

Since Smkτ is max-plus linear,

= max
{mi}k+1

i=1 ∈Mk+1
Smkτ

[
v{mi}ki=1

]
(x)

= max
{mi}k+1

i=1 ∈Mk+1
v{mi}k+1

i=1
(x) (3.58)

The algorithm shall consist of the forward propagation of v{mi}ki=1
to v{mi}k+1

i=1
=

Smkτ

[
v{mi}ki=1

]
for all k-tuple switchings {mi}ki=1 ∈ Mk and all mk+1 ∈ M. Such

propagation is carried out from k = 0 to some termination step k = N . Value

function is obtained by taking the maximum over all such vN{mi}Ni=1
.

It is important to note that the computation of each v{mi}ki=1
is analytical. We

will indicate the actual analytical computations in the steps below. Note that

many formulae are duplicated here to make this section self-contained.
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• First approximate a nonlinear Hamiltonian we wish to solve, with a max-plus

summation of linear quadratic Hamiltonians as in (3.12).

H(x, p) ≈ H̃(x, p)
.
= max

m∈{1,2,...,M}
Hm(x, p)

where each Hm is linear-quadratic,

Hm(x, p) =
1

2
x′Cmx+

1

2
p′Σmp+ (Amx)′p+ x′lm1 + p′lm2 +

1

2
αm, (3.59)

• Choose time step τ ∈ R and N ∈ N. Thus we shall approximate the infinite

horizon value function Ṽ for the switching problem, as defined in (3.15) by

V̄ N , the value function of discretized switching problem with horizon Nτ as

defined in (3.57).

• For each m ∈ M starting with any (P, S,Q, a, b, β)0, evolve them forward

in time by τ as per (3.39), in which all paparemeters correspond to m’th

Hamiltonian. Restating here:

−Ṗm
t = Am′Pm

t + Pm
t A

m + Cm + Pm
t ΣmPm

t

−Ṡmt = (Am + ΣmPm
t )′Smt

−Q̇m
t = Smt

′ΣmSmt

−ȧmt = (Am + ΣmPm
t )′amt + lm1 + Pm

t l
m
2

−ḃmt = Smt
′(lm2 + Σmamt )

−β̇mt = αm + amt
′Σmamt + 2amt

′lm2

(3.60)

Lets denote the solution set by (P, S,Q, a, b, β)mτ .

• Now for each m ∈M, compute the parameters of the max-plus fundamental

solution,

Imτ (x, y) =
1

2
x′I11

m,τx+ x′I12
m,τy +

1

2
y′I22

m,τy + x′I1
m,τ + y′I2

m,τ + I0
m,τ ,
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as per (3.50). Restating here:

I11
m,τ = P0 − S0(Q0 −Qm

τ )−1S0
′

I12
m,τ = S0(Q0 −Qm

τ )−1Smτ
′

I22
m,τ = −Pm

τ − Smτ (Q0 −Qm
τ )−1Smτ

′

I1
m,τ = a0 − S0(Q0 −Qm

τ )−1(b0 − bmτ )

I2
m,τ = −amτ + Smτ (Q0 −Qm

τ )−1(b0 − bmτ )

I0
m,τ = β0 − βmτ − (b0 − bmτ )′(Q0 −Qm

τ )−1(b0 − bmτ )

(3.61)

Note that as a special case, we can choose P0 = Q0 = 0, S0 = I, a0 =

b0 = 0 and β0 = 0, to simplify above formulae considerably. We note that

parameters of Im need only be computed once, and thus can be precomputed.

• Starting with v0(x) = 0, we shall prove that v{mi}ki=1
retain the quadratic

form as k increases by induction. Lets us assume v{mi}ki=1
in the following

quadratic form.

v{mi}ki=1
(x) =

1

2
x′P̂{mi}ki=1

x+ x′â{mi}ki=1
+

1

2
β̂{mi}ki=1

(3.62)

Then for each mk+1 ∈M, by Theorem 3.6.1,

v{mi}k+1
i=1

(x) = Smkτ

[
v{mi}ki=1

]
(x)

= max
y∈Rn

{
Imk+1
τ (x, y) + v{mi}ki=1

(y)
}

=
1

2
x′P̂{mi}k+1

i=1
x+ x′â{mi}k+1

i=1
+

1

2
β̂{mi}k+1

i=1
(3.63)

Note that maximum exists because otherwise, due to the quadratic form

the supremum would be ∞ for all x. This is impossible because, the LHS

≤ V̄ (x) <∞. Now by (3.62), (3.63) and (3.61),

P̂{mi}k+1
i=1

= I11
mk+1,τ

− I12
mk+1,τ

(
I22
mk+1,τ

+ P̂{mi}ki=1

)−1

I12
mk+1,τ

′

â{mi}k+1
i=1

= −I12
mk+1,τ

(
I22
mk+1,τ

+ P̂{mi}ki=1

)−1 (
â{mi}ki=1

+ I2
mk+1,τ

)
+ I1

mk+1,τ

β̂{mi}k+1
i=1

= β̂{mi}ki=1
+ I0

mk+1,τ

−
(
â{mi}ki=1

+ I2
mk+1,τ

)
′
(
I22
mk+1,τ

+ P̂{mi}ki=1

)−1 (
â{mi}ki=1

+ I2
mk+1,τ

)
(3.64)
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Similar to the max-plus counterpart in [McE07], the errors in the solution are due

to :

1. The approximation of H(x, p) by H̃(x, p). The error analysis for the max-plus

methods for such approximation was carried out in [MD08a] and [MDb].

2. Discretization of the timestep τ and premature termination of the horizon at

Nτ . Error analysis for this approximation for max-plus methods was carried

out in [McE09] and [MK].

Note that the computation of each triplet (P̂ , â, β̂){mi}ki=1
grows like the cube

of the space dimension (due to matrix operations). Thus one avoids the curse-of-

dimensionality.

However, the curse of curse-of-dimensionality is replaced by another type of

rapid computational cost growth. Here, we refer to this as the curse-of-complexity

. If #M = 1, then all the computations of our algorithm (except the solution of

the Riccati equation) are unnecessary, and we informally refer to this as complexity

one. When there are M = #M such quadratics in the Hamiltonian, H̃ we say it

has complexity M . Note that

#
{
v{mi}Ni=1

|mi ∈M ∀ i ∈ {1, 2, . . . , N}
}
≈MN

For large N , this number is indeed large. We shall discuss ways to limit this

quadratic growth with N in the next section, but it is significant to note that the

exponential computational cost growth with space dimension n is limited to cubic

growth.

3.7.1 Pruning

The number of quadratics in the solution V̄ k grows exponentially with k.

However in practice, relatively few of these actually contribute to V̄ k. Thus it

is useful to prune the set, to contain the curse-of-complexity. Note that if

v{m̂i}ki=1
(x) ≤

⊕
{m̂i}ki=1 6={mi}ki=1

v{mi}ki=1
(x) ∀x ∈ Rn
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then

S̄t
[
v{m̂i}ki=1

]
(x) ≤ S̄t

 ⊕
{m̂i}ki=1 6={mi}ki=1

v{mi}ki=1

 (x) = S̄t[V̄ k] ∀x ∈ Rn

Thus v{m̂i}ki=1
will play no role in the computation of V̄ kτ+t, for t ≥ 0. Thus one

may prune such v{m̂i}ki=1
without any loss of accuracy. Pruning methods of various

order designed for max-plus methods in [MDG08] can be easily adapted for above

problem to check if a quadratic dominates the max-plus sum of the rest, and prune

it. Note that such pruning methods incur additional computational burden. But

usually it is justifiable in their efficacy in attenuating the exponential curse-of-

complexity as the horizon grows. The next chapter covers these methods in more

detail.



Chapter 4

Curse-of-Complexity Attenuation

in the Curse-of-Dimensionality

Free Method for HJB PDEs

4.1 Introduction

In chapters 1 and 3, we discussed the curse-of-dimensionality-free method

proposed by McEneaney (cf. [McE07], [McE05], [McE06]) for certain HJB PDEs

arising in problems involving objective maximization. This method is based on

the max-plus linearity of the underlying semigroup and is free from the curse-of-

dimensionality. In fact, the computational growth with dimensionality is cubic.

However, there is an exponential computational growth in a certain measure of

complexity of the Hamiltonian, which is used to express the HJB PDE. Under

this measure, the minimal complexity Hamiltonian is linear/quadratic – solvable

using a Riccati equation. If the Hamiltonian is given as a pointwise maximum

of M linear/quadratic Hamiltonians, then one could say the complexity of the

Hamiltonian is M . Such PDEs can also arise in switched linear systems.

This method constructs the value function as a max-plus sum, i.e., a pointwise

maximum, of certain quadratic functions. An infinite time-horizon problem is

considered, and as such, the value function is approximated by iterating a finite-

92
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horizon semigroup until a large enough propagation horizon is reached. This finite-

horizon semigroup itself is approximated as the maximum of a finite number of

quadratic forms, or as a semigroup for a system switching between M linear-

quadratic systems. The approximate value function at each iteration is stored as

a set of quadratic functions. Acting on these quadratic functions with the above

semigroup leads to a new approximation, where the number of quadratics grows

by a fixed factor at each iteration. This is the curse-of-complexity. To attenuate

this computational growth, a pruning method based on semidefinite programming

(SDP) is developed here.

4.2 Problem statement and assumptions

To make this chapter self contained, the problem statements and assumptions

described in section 3.4 are repeated here.

The HJB PDEs we consider, arise in infinite-horizon nonlinear optimal control

problems, and their Hamiltonians are given as (or well-approximated by) pointwise

maxima of linear-quadratic functions. Note that pointwise maxima of quadratic

forms can approximate, arbitrarily closely, any semiconvex function. More

specifically, we consider

0 = −H̃(x,∇V ) = − max
m∈{1,2,...,M}

{Hm(x,∇V )} (4.1)

V (0) = 0 (4.2)

(i.e., with boundary condition V = 0 at the origin) where each of the constituent

Hamiltonians has the form

Hm(x, p)
.
=

1

2
x′Cmx+

1

2
p′Σmp+ (Amx)′p+ x′lm1 + p′lm2 +

1

2
αm, (4.3)

where Cm,Σm are n× n symmetric matrices, lm1 , l
m
2 ∈ Rn and αm ∈ R.

Hamiltonian H̃ is associated with an optimal control problem for switched
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linear systems. Let M .
= {1, 2, . . .M}. The corresponding value function is

Ṽ (x) = sup
u∈Lloc

2

sup
µ∈D∞

sup
T<∞

J̃(x, T ;u, µ)

= sup
u∈Lloc

2

sup
µ∈D∞

sup
T<∞

∫ T

0

lµt(ξt)−
γ2

2
|ut|2 dt (4.4)

where lµt (x)
.
= 1

2
xTCµtx+ (lµt1 )Tx+ 1

2
αµt ,M .

= {1, 2, . . . ,M}, D∞ = {µ : [0,∞)→
M : measurable }, Lloc

2
.
= {u : [0,∞)→ Rn |u ∈ L2[0, T ] ∀T <∞} and σi and

γ are such that Σi = σiσi
′

γ2 for i ∈M.

With µt as the switching control in addition to the control u, the state dynamics

are given by

ξ̇ = Aµtξ + lµt2 + σµtut, ξ0 = x (4.5)

To motivate the assumptions for this rather general problem class, we consider

H̃ as being constructed so as to resemble the Hamiltonian, H, for the originating

control problem of interest. Hence we make the following block of assumptions,

earlier seen in section 3.4.

We assume that the underlying system dynamics and the payoff

functions satisfy (3.3), (3.4). Hence the value function V defined by

(3.2) is a unique viscosity solution, of 0 = −H(x,∇V ) in class K,

defined in (3.7).

The approximating Hamiltonian H̃(x, p) = supmH
m(x, p) ≤ H(x, p)

for all x, p ∈ Rn.

There exists cA ∈ (0,∞) such that x′Amx ≤ −cA|x|2 for all x ∈ Rn

and all m ∈M.

H1(x, p) has coefficients satisfying the following: l11 = l12 = 0; α1 = 0;

there exists cA,1 ∈ (0,∞) such that x′A1x ≤ −cA,1|x|2 ∀x ∈ Rn; D1

is positive definite, symmetric; and γ2/c2
σ > cD/c

2
A,1, where cσ

.
= |σ1|

and cD is such that x′D1x ≤ cD|x|2 ∀x ∈ Rn.

System (3.14) is controllable in the sense that given x, y ∈ Rn and

T > 0, there exist processes w ∈ W and µ measurable with range in

M, such that ξT = y when ξ0 = x and one applies control w, µ.

(4.6)
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Note that the last of these assumptions, the controllability assumption, is

satisfied if there exists at least one m ∈ M such that σm(σm)T (which is n × n)

has n positive eigenvalues.

Final assumption is that there exist c1, c2 < ∞ such that for any ε-

optimal pair, µε, wε for the H̃ problem, one has ||wε||2L2[0,t] ≤ c1+c2|x|2

for all ε ∈ (0, 1], all T <∞ and all x ∈ Rn.

(4.7)

Above assertion was proved in the purely quadratic case (cf. [McE98],

[McE07]). But in this general case, we assume it instead.

Now, define the operator

S̃T [φ]
.
= sup

w∈W
sup
µ∈DT

∫ T

0

lµt(ξt)−
γ2

2
|wt|2 dt+ φ(ξT )

where DT
.
= {µ : [0, T ) → M : measurable }. Under the above assumptions,

a viscosity solution, Ṽ of (4.1),(4.2) exists, satisfies 0 ≤ Ṽ ≤ V and is given by

Ṽ = limT→∞ S̃T [V0] for any V0 ∈ QK such that 0 ≤ V0 ≤ Ṽ , [MK], [McE07].

In the max-plus algebra, addition and multiplication are defined as a ⊕ b =

max{a, b} and a ⊗ b = a + b, respectively. It is well known that S̃T forms a

max-plus linear semigroup.

4.3 Curse-of-dimensionality-free algorithm

The key steps in the curse-of-dimensionality-free algorithm developed in

[McE07] are given below. Since we are interested in understanding how the curse-

of-complexity arises in this algorithm, we shall sidestep the theoretical foundations

which are well covered in [McE07], [McE06], and focus on the algorithmic flow.

4.3.1 Approximate propagation

Define the constituent-Hamiltonian semigroup operators as

Smτ [φ] = sup
w∈W

∫ τ

0

Lm(ξt)−
γ2

2
|wt|2 dt+ φ(ξτ ).
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Importantly, propagation of a quadratic φ ∈ K by an Smτ operator can be reduced

to a solution of a differential Riccati equation. Define the time-indexed operators

S̄τ [φ](x) = max
m∈M

Smτ [φ](x) =
⊕
m∈M

Smτ [φ](x).

Fix any T <∞. Under the above assumptions, we have (c.f., [MK])

lim
N→∞

{
ST/N

}N
[φ] = S̃T [φ] and lim

T→∞
S̃T [φ] = Ṽ

where the superscript N represents repeated application of the operator, N times.

Error analysis of this method, carried out in [McE09] guarantees that an

arbitrarily accurate solution can be found on a compact set with a small enough

timestep τ and long enough time horizon Nτ .

In practice, starting with a quadratic φ ∈ K, the numerical method uses a

discretization timestep τ and a time horizon Nτ , and approximates the infinite

horizon value function as

Ṽ (x) ≈ V̄ N(x)
.
= S̄Nτ [φ](x) =

{
S̄τ
}N

[φ](x)

=

{⊕
m∈M

Smτ

}N

[φ](x) =
⊕

{mi}Ni=1∈MN

{
N∏
i=1

Smiτ

}
[φ](x).

For each k ∈ N, {mi}ki=1 ∈Mk, if we define v{mi}ki=1
(x) =

∏k
i=1 Smiτ [φ](x), then we

have

Ṽ (x) ≈ V̄ N(x) =
⊕

{mi}Ni=1∈MN

v{mi}Ni=1
(x).

Note that v{mi}ki=1
(x) = Smkτ [v{mi}k−1

i=1
](x), and if v{mi}k−1

i=1
(x) is quadratic, so is

v{mi}ki=1
(x). Since we start with a quadratic φ(x), by induction each of the v{mi}k−1

i=1

is quadratic. Unfortunately, the number of quadratics in the above approximation

is MN , which grows exponentially in complexity, thus leading to the curse-of-

complexity. Nevertheless, only a few of these contribute to the max-plus sum. The

rest can be pruned without affecting the value function. This problem is formulated

and partially solved in the rest of this chapter.
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4.4 Pruning Algorithms

In the above curse-of-dimensionality-free algorithm, at step k, V̄ k is represented

as a max-plus sum of quadratics. Let us index the elements of this sum by integers

i ∈ Ik (rather than by the sequences {mi}ki=1). That is, we have

V̄ k(z) =
⊕
i∈Ik

vki (z)

where we let each vki be given in the form

vki (z) = vi(z) = zTAiz + 2bTi z + ci

where we delete the superscript k for simplicity of notation here and in the sequel.

Recall that we are reducing computational cost by pruning quadratics (vi)

which do not contribute to the solution approximation (not achieving the maximum

at any z ∈ Rn). Consequently, we want to determine whether the pth quadratic

contributes to the pointwise maximum. i.e. whether there is a region where it is

greater than all other quadratics. Fix p ∈ Ik. Thus we want to ensure feasibility

of

vp(z) ≥ vi(z) ∀i 6= p. (4.8)

Alternatively, we consider the problem:

Maximize G(z, ν)
.
= ν subject to (4.9)

vp(z)− vi(z) ≥ ν ∀i 6= p.

Then, the maximum value of ν, ν̄, is the maximum amount by which the pth

quadratic can be lowered before it submerges below the max-plus sum of the rest.

If ν̄ ≤ 0, then pth quadratic does not contribute to the max-plus sum, and hence

it can be pruned without consequence. If ν̄ > 0,the quadratic contributes to

the max-plus sum, and ν̄ can serve as some measure of contribution of the pth

quadratic to the value function, enabling us to rank the quadratics. This is useful

in over-pruning.

Note that (4.9) implies that the importance metric,

ν̄ = max
z∈<n

min
i 6=p

vp(z)− vi(z) (4.10)
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This ranking scheme is independent of the location of the quadratic. Since in

curse-of-dimensionality-free method, solution is grown from near the origin, and

region of interest, where we want to construct the value function, is often near the

origin, we would like to have a ranking scheme which reflects this bias. Hence we

consider following importance metric

ν0 = max
z∈<n

1

1 + |z|2
min
i 6=p

(vp(z)− vi(z)) (4.11)

which discounts the quadratics which contribute to the value function far away

from origin. The extent of this bias between location and contribution, can be

tweaked by a multiplier on the term |z|2. Similar to (4.9), the above metric can

be reformulated as

Maximize G(z, ν)
.
= ν subject to (4.12)

vp(z)− vi(z) ≥ ν(1 + |z|2) ∀i 6= p.

and vp(z) can be pruned if and only if the maximum value ν0 ≤ 0.

4.4.1 Pairwise pruning

Before undertaking the pruning using semidefinite programming, pairwise

pruning is used, which checks between all pairs of quadratic basis functions, and

prunes those which are completely dominated by another. Let A = Ai − Aj,

b = bi − bj, c = ci − cj, and define q(z) = z
′
Az + 2b

′
z + c. Then q is nonnegative

everywhere if and only if the homogeneous quadratic form, z
′
Az + 2tbT z + ct2 is

nonnegative for all z ∈ Rn and all t ∈ R (easily proved using q(t−1z) ≥ 0 when

t 6= 0). Latter statement is true if and only if[
c b

′

b A

]
� 0. (4.13)

If we define for any index p, Qp =

[
cp b

′
p

bp Ap

]
. Using (4.13), in the pairwise

comparison between i’th and j’th quadratics, later can be pruned if Qi −Qj � 0.

Pairwise pruning reduces the computational effort of the semidefinite pruning by

getting rid of obviously dominated quadratics.
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4.4.2 Shor’s semidefinite relaxation based pruning

The problem of evaluating an individual quadratic vp(z) for pruning, (4.12),

can be rephrased as below. Let qi(z) = vp(z)− vi(z) for all i 6= p. Then, vp can be

pruned if and only if

ν0 .
= max

z,ν

{
ν : qi(z)− ν(1 + |z|2) ≥ 0 ∀i 6= p

}
≤ 0. (4.14)

Lemma 4.4.1. With λ ∈ <#Ik−1 such that λi ≥ 0 and λ 6= 0, ν ∈ < is an upper

bound on ν0 if following condition is satisfied.∑
i 6=p

λi(qi(z)− ν(1 + |z|)2) ≤ 0 ∀z (4.15)

Proof. From (4.14), ∃z such that, qi(z)− v0(1 + |z|2) ≥ 0, ∀i 6= p, therefore,∑
i 6=p

λi
(
qi(z)− v0(1 + |z|2)

)
≥ 0 (4.16)

Subtracting (4.15) from (4.16)

(ν − ν0)(1 + |z|2)
∑
i

λi ≥ 0

with assumptions on λ,
∑

i 6=p λi > 0, so that we can divide by it, to get, ν ≥ ν0.

Hence proved.

Now we will seek to minimize this upper bound ν by varying λ and ν subject

to constraint (4.15). Also note that, if (λ, ν) are feasible, so is (kλ, ν) for k > 0.

using this we can normalize λ by dividing by
∑
λi. Which implies, λ lies within a

simplex Λ, λi ≥ 0,
∑
λi = 1.

ν0 = min
λ∈Λ,ν∈<

{
ν :
∑
i 6=p

λiqi(z) ≤ ν(1 + |z|)2 ∀z

}
(4.17)

Since qi(z) = vp− vi, using linear superposition and result (4.13), (4.17) can be

reposed with following semidefinite program:

ν0 = min
λ∈Λ,ν

{
ν :
∑
i 6=p

λi (Qp −Qi) � νI

}
(4.18)
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Note that if such a minimal ν0 < 0 value, the by Lemma 4.4.1, ν0 ≤ ν0 ≤ 0.

Hence as per (4.14), p’th quadratic, vp(z) can be pruned. Since this gives sufficient

condition for pruning, it leads to conservative pruning. If ν0 > 0, the prunability is

not conclusive. Nevertheless, it does give us a working indication of the importance

of the quadratic. Since (4.18) can be restated as,

ν0 = min
λ∈Λ,ν

{
ν : Qp � νI +

∑
i 6=p

λiQi

}
(4.19)

if ν0 > 0, it indicates that the pth quadratic has to come down by at least ν0(1+|z|2),

before it is dominated by the convex hull of the remaining quadratics.

An additional way to develop intuition for result (4.19) is as follows. The

above test evaluates the pth quadratic vp, which can be pruned if ν = 0 satisfies

the inequality in (4.19). Thus vp can be pruned if, Qp �
∑

i 6=p λiQi. Thus, if the

convex hull of remaining quadratics intersects the semidefinite cone of quadratics

greater than vp for all z ∈ <n, then vp can be pruned.

4.4.3 Dual of Shor’s relaxation based pruning

If qi(z) = vp(z)− vi(z) = z
′
Āiz + 2b̄i

′
z + c̄i, and if we define,

Q̄i =

[
c̄i b̄i

′

b̄i Āi

]
= Qp −Qi and Z(z) =

[
1 z

′

z zz
′

]

Then value of a quadratic form qi(z) can be written as Frobenius inner product of

Q̄i and Z(z).

qi(z) = z
′
Āiz + 2b̄i

′
z + c̄i

=

[
1

z

]′
Q̄i

[
1

z

]
= Tr

Q̄i

[
1

z

][
1

z

]′
= 〈Q̄i, Z(z)〉

Similarly, qi(z)− ν(1 + z2) = 〈Q̄i − νI, Z(z)〉 Thus from (4.14), vp can be pruned

if and only if

ν0 = max
z∈<n,ν∈<

{
ν : 〈Q̄i − νI, Z(z)〉 ≥ 0 ∀i 6= p

}
≤ 0 (4.20)
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Let Z be the nonlinear manifold of the set of all symmetric dyadic matrices

Z(z), z ∈ <n. All matrices in Z are positive semidefinite with northwestern entry

1. Let Z̄ be set of all such matrices. Replacing Z with Z̄ ⊃ Z, , we get relaxation

and an upper bound for the maximum in (4.20).

ν0 ≤ ν̄0 .
= max

Z∈Z̄,ν∈<

{
ν : 〈Q̄i − νI, Z〉 ≥ 0 ∀i 6= p

}
If ν̄0 ≤ 0, then ν0 ≤ 0, implying prunability. Thus vp can be pruned if

max
Z,ν∈<

{
ν
〈Q̄i − νI, Z〉 ≥ 0 ∀i 6= p

Z � 0, Z11 = 1

}
≤ 0 (4.21)

Since Z � 0 and Z11 = 1, Tr(Z) > 0. Also note that 〈I, Z〉 = Tr(Z). If we define

Y = Z/Tr(Z), then Y � 0, Tr(Y ) = 1. Also

〈Q̄i − νI, Z〉 = 〈Q̄i, Z〉 − νTr(Z) = Tr(Z){〈Q̄i, Y 〉 − ν}

constraint set in (4.21) can be simplified to following semidefinite program. Thus

vp(z) can be pruned if

max
Y,ν∈<

{
ν
〈Q̄i, Y 〉 ≥ ν ∀i 6= p

Y � 0,Tr(Y ) = 1

}
≤ 0 (4.22)

This program is a dual of (4.18).

Intuitively, L(Q) = 〈Q, Y 〉 can be thought as a linear functional over space of

n×n symmetric matrices, taking constant values over hyperplanes normal (in the

sense of above inner product) to Y . So we are searching in the space of hyperplane

normals Y � 0,Tr(Y ) = 1, which is a slice of the cone of semidefinite matrices.

If we can find a hyperplane, separating Qp from convex hull of rest of Qi,∀i 6= p,

then prunability of p’th quadratic is not conclusive. Hence it need not be pruned.

Since above is the sufficient condition for pruning, it leads to conservative

pruning. It is not a necessary condition, due to the nonconvexity of Z, manifold

of dyadic matrices. To achive better pruning, higher order pruning techniques can

be used.
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4.5 Computational complexity

Since our aim is to reduce the curse-of-complexity without loosing the freedom

from the curse-of-dimensionality, it is worthwhile to discuss the computational

overhead involved in these pruning methods. They are polynomial in both

dimensionality and the number of quadratic functions. In particular, they are

free from the curse-of-dimensionality.

A generic semi-definite program P is given by

P0 = min
η∈RN

{
c
′
η : A0 +

N∑
j=1

ηjAj ≥ 0, ||η||2 ≤ R

}

where the Aj are symmetric matrices with M̃ diagonal blocks of size ki × ki,

i = 1, . . . M̃ . We say that ηε is an ε–optimal solution if

‖ηε‖2 ≤ R, A0 +
N∑
j=1

ηεjAj ≥ −εI, c
′
ηε ≤ P0 + ε.

In [BTN01], the authors derive the computational complexity of obtaining such an

ηε.

C(P , ε) = O(1)

1 +
M̃∑
1

ki

1/2

(4.23)

·N

N2 +N
M̃∑
1

k2
i +

M̃∑
1

k3
i

D(P , ε)

where D(P , ε) depends on the specific problem data (as indicated by the P in the

argument as well as ε). Using this expression, we can obtain an upper bound for

the arithmetic complexity of the pruning algorithms. Assuming the worst case

scenario where no quadratic gets pruned, we find the complexity of testing one

quadratic for pruning as follows.

For the Shor’s relaxation pruning of (4.18), we have η = [ν λ
′
]
′
. Hence N =

#Ik. In addition to the main LMI, we have λi ≥ 0 and an equality
∑

λi
= 1, which

can be split up into two inequalities, giving the number of LMI blocks M̃ = #Ik+2,

and k1 = n+1, k2 = k3 = · · · = kM̃ = 1. Substituting these into (4.23), complexity
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is

C(P , ε) = O(1) (#Ik + n+ 3)1/2 #I2
k (4.24)

·
[
3#Ik + 2 + (n+ 1)2(n+ 2)

]
D(P , ε).

The complexity grows as n3.5 and #I3.5
k .

For the dual of Shor’s relaxation pruning of (4.22), independent variables are

Y , which has (n+ 1)(n+ 2)/2 free variables (corresponding to the upper triangle),

and ν. Thus N = 1
2
(n2 + 3n + 4). Number of block LMIs is M̃ = #Ik + 2, and

k1 = · · · = kM̃−3 = 1, kM̃−2 = n + 1, kM̃−1 = kM̃ = 1. Substituting these into

(4.23), complexity grows as n6.5 and #I1.5
k .

Note that these computational cost growth rates as a function of space

dimension, n, are poorer than the cubic growth of the basic algorithm. However,

they are still tremendously helpful for real-world problems, and the curse-of-

dimensionality is still very far off.

4.6 Importance-based over-pruning

Both the Shor’s relaxation and its dual pruning schemes generate importance

metric for unpruned quadratics. Over-pruning keeps a limited number of more

important quadratics, due to memory/computational constraints. This is useful in

containing the complexity growth, while ensuring an accurate solution in a region

of interest. At end of k’th iteration, the algorithm sorts vki according to importance

metric, and keeps at most L(k) quadratics, pruning the rest.

However, there does not yet exist a theory which allows us to map the

importance measure of a quadratic at step k to an error bound in the approximation

at the terminal step. Regardless, application of these methods has proven

extremely fruitful, as can be seen in the example below.

4.7 Six-dimensional, six-Hamiltonian example

We applied the curse-of-dimensionality-free method to the following problem

over R6 with six constituent quadratic Hamiltonians. Note that the problem was
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tweaked to exhibit sufficiently complex and interesting behavior, such that there

is interaction amongst dimensions, and each operator is important somewhere in

the domain. Hence the following data yields a reasonably rich problem.

We shall specify the matrices in terms of the following building blocks for the

dynamics:

Aa =

[
−1 .5

.1 −1

]
, Ab = Aa,

Ac = Aa, Ad =

[
−1 .5

.3 −1

]
,

Ae = Aa, Af =

[
−1 .5

.1 −1

]
,

Σa = 0.4×

[
0.27 −.01

−.01 0.27

]
, Σb = 0.4Σa,

Σc = Σa, Σd = 0.4Σa,

Σe = Σa, Σf = 0.4Σa,

and the following building blocks for the payoff functions:

Da =

[
1.5 .2

.2 1.5

]
, Db = 1.4×Da,

Dc = 1.4×

[
0.2 1.5

1.5 0.2

]
, Dd = 1.2×

[
1.6 0

0 0

]
,

De = 1.1×

[
0.3 1.5

1.5 0.3

]
, Df = 1.3×

[
0 0

0 1.6

]
.

We will use a parameter to adjust the interaction in the dynamics across the

dimensions, and this will be γ = −0.1. Now we are ready to define each of the

Hamiltonians. We need to specify parameters for the dynamics (A, Σ, l2) and the

payoff (D, l1, α). For the example below, l1 = 0 and l2 = 0 for all the Hamiltonians.

The remaining parameters are as follows.
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For the first Hamiltonian, H1, we let

A1 =


Aa γI γI

γI Aa 0

γI 0 Aa

 , Σ1 =


Σa 0 0

0 Σa 0

0 0 Σa



D1 =


Da 0 0

0 Da 0

0 0 Da

 , α1 = 0 .

For the second Hamiltonian, H2, we let

A2 =


Ab γI γI

γI Ab 0

γI 0 Ab

 , Σ2 =


Σb 0 0

0 Σb 0

0 0 Σb



D2 =


Db 0 0

0 Db 0

0 0 Db

 , α2 = −0.4 .

For the third Hamiltonian, H3, we let

A3 =


Ac γI γI

γI Ac 0

γI 0 Ac

 , Σ3 =


Σc 0 0

0 Σc 0

0 0 Σc



D3 =


Dc 0 0

0 Dc 0

0 0 Dc

 , α3 = 0.

For the fourth Hamiltonian, H4, we let

A4 =


Ad γI γI

γI Ad 0

γI 0 Ad

 , Σ4 =


Σd 0 0

0 Σd 0

0 0 Σd



D4 =


Dd 0 0

0 Dd 0

0 0 Dd

 , α4 = −0.4 .
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For the fifth Hamiltonian, H5, we let

A5 =


Ae γI γI

γI Ae 0

γI 0 Ae

 , Σ5 =


Σe 0 0

0 Σe 0

0 0 Σe



D5 =


De 0 0

0 De 0

0 0 De

 , α5 = 0.

For the sixth Hamiltonian, H6, we let

A6 =


Af γI γI

γI Af 0

γI 0 Af

 , Σ6 =


Σf 0 0

0 Σf 0

0 0 Σf



D6 =


Df 0 0

0 Df 0

0 0 Df

 , α6 = −0.4 .

For this example, we let the time-discretization step-size be τ = 0.2, and

propagation was carried out with the Shor’s semidefinite relaxation based pruning,

implemented using YALMIP preprocessor [Lf04] and SeduMi solver [Stu99]. The

overpruning threshold was set heuristically to L(k) = 20+6k. That is, a maximum

of L(k) quadratics, vki , were retained at the kth step. In this test, 25 iteration steps

were carried out in 30 minutes, yielding a rather accurate solution in a compact

domain in all six dimensions. This computation-time is for an Apple mac desktop,

from roughly 2005. Slices of statistics for this value function along the 1-2 axes

are shown in the accompanying figures. The backsubstitution error depends on

the propagation as well as the time-discretization. The theoretical error bounds in

[MK] are of the form ε(1 + |x|2) (over the entire space) where ε ↓ 0 as the number

of propagation steps goes to infinity and time-discretization go to zero, with the

convergence rates derived in above reference.
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Figure 4.1: x1 partial on the x1, x2 plane

Figure 4.2: x2 partial on the x1, x2 plane

Figure 4.3: Optimal switching policy on the x1, x2 plane
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Figure 4.4: Backsubstitution error on the x1, x2 plane

4.8 Conclusions

Thus in this paper, two semi-definite programming schemes for pruning the

quadratics were proposed for containing the curse-of-complexity in the curse-of-

dimensionality-free method. Computational complexity for both is polynomial

in space dimension. Both give us an importance metric to rank the quadratics

according to the importance, which is a function of contribution to the point-wise

maximum and its location. This is useful in case we need to over-prune. These

methods have been applied to solve a sample six dimensional, six Hamiltonian

problem in a reasonable amount of time.

Chapter 4, in part, is a reprint of the material as it appears in the proceedings

of American Control Conference 2008, McEneaney, William; Deshpande, Ameet;

Gaubert, Stéphane, IEEE Press, 2008 [MDG08]. The dissertation author was the

coauthor of this paper.



Chapter 5

Payoff Suboptimality and Errors

in Value Induced by

Approximation of the

Hamiltonian

5.1 Introduction

Chapter 3 reviewed the curse-of-dimensionality-free method, which is based

on the max-plus linearity of underlying semigroup (cf. [MK], [McE07], [McE06]).

Chapter 4, based on [MDG08], discussed the curse-of-complexity that arises in

the above method and developed the pruning methods based on semidefinite

programming, and example problems with high dimensionality were solved.

This approach has, so far, only been developed for steady-state problems over

the entire space, although the class could be enlarged. (For other max-plus-based

methods developed for larger classes of problems, see [AGL08], [MAL04], [FM00],

[McE06], [DM03].) The curse-of-dimensionality-free approach currently handles

HJB PDE problems of form

0 = −H̃(x,∇V ) ∀x ∈ Rn \ {0}, V (0) = 0 (5.1)

where

109
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H̃(x,∇V ) = max
m∈M
{Hm(x,∇V )}, (5.2)

M = {1, 2 . . .M}, and the Hm have computationally simpler forms. In particular,

the Hm considered to date have been quadratic forms.

In [McE07], [McE06], the method was developed and the curse-of-dimensionality-

free nature was made clear. In [McE09], [MK], the convergence rate for the

algorithm was obtained. In particular, it was shown that there were two

parameters, τ and T = Nτ such that the errors go to zero as T = Nτ → ∞
and τ ↓ 0. Further, a required relation between the relative T and τ rates was

indicated. The errors in the pre-limit solution approximation are bounded in a form

0 ≤ Ṽ − V a ≤ ε(1 + |x|2) where Ṽ is the true solution and V a is the computed

approximation. Additionally, we had T = Nτ ∝ ε−1 and τ ∝ ε2, and so N ∝ ε−3.

The computational cost growth with (space dimension) n is only of the order of

n3 (due to some matrix inverses). However, the approach is subject to a curse-of-

complexity, where the computational cost can grow like MN . Attenuation of this

curse-of-complexity growth through pruning, using semidefinite programming, is

an active area of research [MDG08].

Although the PDEs of (5.1) are certainly nontrivial nonlinear PDEs, we would

like to solve more general HJB PDEs. A function, say F (y), is semiconvex if

given any R < ∞, there exists CR < ∞ such that F (y) + CR
2
|y|2 is convex

over BR(0). (Note that the space of semiconvex functions certainly contains both

C2 and the space of convex functions as subspaces.) It is well known that one

can approximate any semiconvex function as the pointwise maximum of quadratic

forms. In fact, this is simply a max-plus basis expansion over the max-plus vector

space, or moduloid, of semiconvex functions (c.f., [McE06]). With this in mind, we

see that we could approximate any semiconvex Hamiltonian by a Hamiltonian, H̃,

of the form (5.2) with quadratic Hm. We could then solve the HJB PDE problem

(5.1) with a curse-of-dimensionality-free method, thereby yielding an approximate

solution of the HJB PDE with the original semiconvex Hamiltonian. Such a

procedure would induce two error sources. The first consists of the errors in the

solution of (5.1) generated by the curse-of-dimensionality-free algorithm. These are

briefly discussed in the previous paragraph, and fully discussed in [McE09], [MK].
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The second source is that induced by the approximation of the original Hamiltonian

by H̃. This latter error source is under discussion here. Although the analysis to

follow is specifically oriented toward approximation by H̃ of the above form, the

general concepts may be more widely applicable. Further, in addition to obtaining

bounds on the difference between the solution of the original and approximating

HJB PDE problems, we also obtain a lower bound on the suboptimality of the

controller obtained by use of the solution of (5.1) in the controller computation.

This latter question is, of course, of significant practical value.

5.2 Problem Statement and Assumptions

We will consider the HJB PDE problem

0 = −H(x,∇V ) = − sup
w∈Rk

[f ′(x,w)∇V + l(x,w)] ,

V (0) = 0 (5.3)

where x ∈ Rn. More specifically, we are seeking the particular viscosity solution

of (5.3) which is the value function of the following optimal control problem. The

dynamics are given by

ξ̇t = f(ξt, wt)
.
= g(ξt) + σ(ξt)wt, (5.4)

and the running cost is

l(ξt, wt)
.
= L(ξt)−

γ2

2
|wt|2. (5.5)

The value function we seek, maximizing the payoff over controls w ∈ W .
=

L2([0,∞); Rk), is

V̂ (x) = sup
w∈W

sup
T<∞

{∫ T

0

l(ξt, wt)dt

∣∣∣∣ ξ0 = x

}
. (5.6)
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We assume, ∃K, c, dσ, C, α ∈ (0,∞) such that the following hold.

g(x) is globally Lipschitz continuous with constant K, (x−y)T (g(x)−
g(y)) ≤ −c|x − y|2 for all x, y, and g(0) = 0. σ(x) is Lipschitz

continuous with constant K, and its norm is bounded globally by dσ.

|L(x)−L(y)| ≤ C(1+|x|+|y|)|x−y| for all x, y, and 0 ≤ L(x) ≤ α|x|2

for all x. Finally, we assume γ2/d2
σ > α/c2.

(A.V )

It is worth noting, that with the above forms for f and l,

H(x, p) = g(x)′p+ L(x) + 1
2γ2p

′σ(x)σ′(x)p.

In [McE06], it was demonstrated that the above assumptions guarantee the

following:

Theorem 5.2.1. V̂ (given by (5.6)) is a continuous viscosity solution of (5.3),

and is the unique such solution within the class

Gδ̄
.
= {φ : φ is semiconvex, 0 ≤ φ(x) ≤ c

γ2 − δ̄2

2d2
σ

|x|2} (5.7)

for δ̄ > 0 sufficiently small.

The goal is to approximately compute V̂ by approximating H by an H̃ taking

the form (5.2) with quadratic Hm, and then to solve (5.1) with the curse-of-

dimensionality-free method [McE07], [McE06].

In particular, we assume that H and H̃ are close in the following sense. Assume

that:

There exists θ > 0 such that, for all x, p ∈ Rn such that H̃(x, p) ≤ 0,

one has

H̃(x, p) ≤ H(x, p) ≤ H̃(x, p) + θ
[
|x|2 + |p|2

]
.

(A.c)

Note that the coefficient θ parameterizes the degree of closeness between H

and H̃. As we are dealing with max-plus vector spaces, H̃ approximates H from

below (c.f. [McE06]), and so this approximation assumption is one-sided.
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Let D−V (x) denote the sub-differential of V at x, i.e.,

D−V (x) =

{
p ∈ Rn

∣∣∣
lim inf
y→x

V (y)− V (x)− p · (y − x)

|y − x|
≥ 0

}
.

Remark 5.2.2. If Ṽ is a viscosity solution of (5.1), and p ∈ D−Ṽ (x), then by

the definition of viscosity solutions, H̃(x, p) ≤ 0. Consequently, the inequalities of

Assumption (A.c) hold for all x, p such that p ∈ D−Ṽ (x).

We will suppose that the Hm are generalized quadratic forms, with parameters

meeting certain conditions which guarantee existence and uniqueness within a

certain function class. The Hm take the form

Hm(x, p) = 1
2
x′Dmx+ 1

2
p′Σmp+ (Amx)′p

+(lm1 )′x+ (lm2 )′p+ αm (5.8)

where each Σm = (1/γ2)σm(σm)′ for appropriate matrices σm. In regards to Hm,

we make following assumptions, which ensure existence of a solution meeting the

boundary condition at the origin (c.f. [MK]).

Assume there exists cA ∈ (0,∞) such that x′Amx ≤ −cA|x|2 for all

x ∈ Rn and all m ∈M.

Assume H1(x, p) has coefficients satisfying the following: l11 = l12 = 0;

α1 = 0; there exists cA,1 ∈ (0,∞) such that x′A1x ≤ −cA,1|x|2 ∀x ∈
Rn; D1 is positive definite, symmetric; Σ1 > 0; and γ2/c2

σ > cD/c
2
A,1,

where cD is such that x′D1x ≤ cD|x|2 ∀x ∈ Rn and cσ
.
= |σ1|.

Assume that system ξ̇µt = Aµtξµt + lµt2 + σµtw is controllable in the

sense that given x, y ∈ Rn and T > 0, there exist processes w ∈ W
and µ measurable with range in M, such that ξT = y when ξ0 = x

and one applies controls w, µ.

(A.m)

The first assumption in (A.m) is not restrictive, as without this nominal sta-

bility, sensible problems with positive definite running cost would have unbounded

value. The second of the assumptions assures that at least one of the Hamiltonians
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has a purely quadratic structure, and this one typically “looks like” the H near the

origin. The controllability assumption is (currently) needed for technical reasons.

We let

Ṽ (x)
.
= sup

T<∞
sup
µ∈D∞

sup
w∈W

∫ T

0

Lµt(ξt)−
γ2

2
|wt|2 dt

where

Lm(x) = 1
2
x′Dmx+ (lm1 )′x+ αm,

ξ̇ = Aµtξt + lµt2 + σµtwt,

and

D∞ = {µ : [0,∞)→M| measurable }.

In [McE06], [McE07], it was shown that:

Theorem 5.2.3. Ṽ is the unique viscosity solution of (5.1) in the class of

continuous functions satisfying V (x) ∈ [0, V̂ (x)] for all x ∈ Rn.

5.3 Preliminaries

The following lemmas will be useful further below. Let T ∈ (0,∞), and let W

be the finite horizon value function given by

W (x, T ) = sup
w∈W

∫ T

0

l(ξt, wt)dt, ξ0 = x, (5.9)

where ξ satisfies (5.4). Noting that V̂ ≥ 0, we see that

W (x, T ) ≤ sup
w∈W

∫ T

0

l(ξt, wt)dt+ V̂ (ξT ), ξ0 = x.

Also, let δ̄
.
= γ2− 2d2

σα
c2

. With these definitions and [McE06], Ch. 3, we immediately

obtain the following two lemmas.

Lemma 5.3.1. Let wεt be ε–optimal (with ε ∈ (0, 1]) for problem (5.9). Then,

1
2
‖wε‖2

L2[0,T ] ≤
ε

δ̄
+

1

δ̄

[
cγ2

2d2
σ

e−cT +
α

c

]
|x|2. (5.10)
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Lemma 5.3.2. Let wεt be ε–optimal (with ε ∈ (0, 1]) for problem (5.9), and let ξεt

be the corresponding state process. Then,∫ T

0

|ξεt |2dt ≤
2ε

δ̄

d2
σ

c
+
d2
σ

δ̄c

[(
2α

c2
+
γ2

dσ

)
+

1

c

]
|x|2. (5.11)

5.4 Error in the Value Function

As noted in Theorem 5.2.3, 0 ≤ Ṽ (x) ≤ V̂ (x) for all x ∈ Rn. Now we obtain an

upper bound on V̂ − Ṽ . The main result and core of the proof are Theorem 5.4.6

below and its corresponding proof. Prior to this we obtain some technical results.

Lemma 5.4.1. There exists Kg <∞ such that for any x ∈ Rn,

|p| ≤ Kg|x| ∀ p ∈ D−Ṽ (x).

Proof. By Theorem 5.2.3, Remark 5.2.2, and (5.2), for all p ∈ D−Ṽ (x), one has

H1(x, p) ≤ H̃(x, p) ≤ 0.

Using (5.8) and Assumption (A.m), this implies

xTD1x+ pTΣ1p+ (A1x)Tp ≤ 0 ∀ p ∈ D−Ṽ (x).

Rearranging this, and dropping superscripts for convenience, yields(
p+

Σ−1Ax

2

)T
Σ

(
p+

Σ−1Ax

2

)
≤ xT (AΣ−1A−D)x.

Thus ∣∣∣∣p+
Σ−1Ax

2

∣∣∣∣2 λmin[Σ] ≤ |x|2λmax[AΣ−1A−D],

where, λmin[X] = mini Re(λi[X]) and λmax[X] = maxi Re(λi[X]) with λi[X] being

the eigenvalues of X. By Assumption (A.m), λmin[Σ] = λmin[Σ1] > 0. With a little

calculation, this implies the desired result.

Remark 5.4.2. Using the above proof, a specific value of the bound, Kg, can be

explicitly computed as:

Kg =
1

2
λmax[Σ1−1

A1] +

√
λmax[A1Σ1−1A1 −D1]

λmin[Σ1]
. (5.12)
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Fix R < ∞, and let x ∈ BR. Let ε ∈ (0, 1], and let wε be an ε–optimal

controller for (5.9). Also, let ξε denote the corresponding state process.

Lemma 5.4.3. For any T ∈ [0,∞), ξεt is absolutely continuous on [0, T ].

Proof. Fix any δ > 0. Consider any finite set of disjoint subintervals of [0, T ],

say {[si, ti] | i ∈]1, N [}, such that ti < si+1 for all i ∈]1, N − 1[ and such that∑
i≤N |ti − si| = δ. We have

N∑
i=1

|ξεti − ξ
ε
si
|=

N∑
i=1

∣∣∣∣ ∫ ti

si

g(ξεt ) + σ(ξεt )w
ε
t dt

∣∣∣∣,
which by Assumption (A.V )

≤
N∑
i=1

∫ ti

si

K|ξεt |+ dσ|wεt | dt (5.13)

for the proper choice of K1.

From inequality (3.17) from [McE06] (which follows easily from assumptions

(A.V )), there exists C4 <∞, independent of T , such that

|ξεt |2 ≤ C4

(
1 + |x|2 +

∫ t

0

|wεr|2 dr
)

∀ t ∈ [0, T ]

which by Lemma 5.3.1,

≤ C5(1 + |x|2) ∀ t ∈ [0, T ], (5.14)

for the proper choice of C5 < ∞ (independent of T ∈ [0,∞) and ε ∈ (0, 1] ).

Combining (5.13) and (5.14), one finds for the proper choice of C6 < ∞
(independent of T ∈ [0,∞) and ε ∈ (0, 1]),

N∑
i=1

|ξεti − ξ
ε
si
| ≤

N∑
i=1

{∫ ti

si

C6(1 + |x|) dt+

∫ ti

si

dσ|wεt | dt
}

= C6(1 + |x|)δ +
N∑
i=1

∫ ti

si

dσ|wεt | dt. (5.15)

Define

φ(t) =

1 if t ∈ [si, ti] for some i

0 otherwise.
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With this definition, (5.15) becomes

N∑
i=1

|ξεti − ξ
ε
si
| ≤ C6(1 + |x|)δ + dσ

∫ T

0

φ(t)|wεt | dt.

which by the Cauchy-Schwarz inequality

≤ C6(1 + |x|)δ + dσ

[∫ T

0

(φ(t))2 dt

]1/2

‖wεt‖

≤ C6(1 + |x|)δ + dσδ
1/2‖wεt‖

which, by Lemma 5.3.1 again

≤ C6(1 + |x|)δ + C7(1 + |x|)δ1/2

for the proper choice of C7 <∞. This last inequality implies absolute continuity.

Lemma 5.4.4. For any T ∈ [0,∞), Ṽ (ξεt ) is absolutely continuous on [0, T ], and

Ṽ (ξεT )− Ṽ (x) =

∫ T

0

d

dt
Ṽ (ξεt ) dt,

where the time-derivative exists almost everywhere.

Proof. The semiconvexity of Ṽ (given in Theorem 5.2.3) implies local Lipschitz

behavior (c.f., [Fle77]). Further, by the continuity given in Lemma 5.4.3 and

finiteness of T , ξεt remains in a bounded set. Combining the absolute continuity

of ξε obtained in Lemma 5.4.3 with the Lipschitz property of Ṽ over the bounded

set immediately implies the absolute continuity of Ṽ (ξεt ). The remaining assertion

is a direct result of the absolute continuity.

Lemma 5.4.5. For any T ∈ [0,∞),

Ṽ (ξεT )− Ṽ (x) =

∫ T

0

max
p∈D−Ṽ (ξεt )

p · f(ξεt , w
ε
t ) dt.

Proof. By the semiconvexity of Ṽ , the (one-sided) directional derivative, Ṽu(x),

exists for all x ∈ Rn and all |u| = 1 in Rn (c.f., [BCD97], Th. II.4.7). Now,

d

dt
Ṽ (ξεt ) = lim

δ→0

1

δ
[Ṽ (ξεt+δ)− Ṽ (ξεt )]

= lim
δ→0

1

δ
[Ṽ (ξεt + δf(ξεt , w

ε
t ) +O(δ2))− Ṽ (ξεt )]

= |f(ξεt , w
ε
t )|Ṽut(ξεt )
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with ut = f(ξεt , w
ε
t )/|f(ξεt , w

ε
t )| when f(ξεt , w

ε
t ) 6= 0, and ut an arbitrary unit vector

otherwise. Again applying [BCD97], Th. II.4.7, this yields

d

dt
Ṽ (ξεt ) = |f(ξεt , w

ε
t )| max

p∈D−Ṽ (ξεt )
p · ut

= max
p∈D−Ṽ (ξεt )

p · f(ξεt , w
ε
t ).

We now proceed to obtain the main result of the section. For any t ∈ [0, T ], let

vεt
.
= max

p∈D−Ṽ (ξεt )
p · f(ξεt , w

ε
t ).

By the ε-optimality of wε, one has

W (x, T ) ≤
∫ T

0

[l(ξεt , w
ε
t ) + vεt ] dt−

∫ T

0

vεt dt+ ε

(where existence of the integrals follows from Lemma 5.4.5). Then, by Lemma

5.4.5,

W (x, T ) ≤ Ṽ (x)− Ṽ (ξεT )

+

∫ T

0

[l(ξεt , w
ε
t ) + vεt ] dt+ ε. (5.16)

For any t ∈ [0, T ], let

pεt ∈ argmax
p∈D−Ṽ (ξεt )

p · f(ξεt , w
ε
t ).

Then,

l(ξεt , w
ε
t ) + vεt = l(ξεt , w

ε
t ) + pεt · f(ξεt , w

ε
t )

which by Assumption (A.c),

≤ H̃(ξεt , p
ε
t) + θ(|ξεt |2 + |pεt |2). (5.17)

However, by the definition of a viscosity solution, and the fact that pεt ∈ D−Ṽ (ξεt ),

H̃(ξεt , p
ε
t) ≤ 0, and so, (5.17) yields

l(ξεt , w
ε
t ) + vεt ≤ θ(|ξεt |2 + |pεt |2)

which by Lemma 5.4.1,
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≤ θ(1 +K2
g )|ξεt |2. (5.18)

Substituting (5.18) into (5.16), one obtains

W (x, T ) ≤ Ṽ (x)− Ṽ (ξεT ) + θ(1 +K2
g )

∫ T

0

|ξεt |2 dt+ ε,

and noting Ṽ ≥ 0,

≤ Ṽ (x) + θ(1 +K2
g )

∫ T

0

|ξεt |2 dt+ ε,

which, by Lemma 5.3.2,

≤ Ṽ (x) + θ(1 +K2
g )[C1 + C2|x|2] + ε, (5.19)

where

C1 = 2d2
σ/(δ̄c) and C2 =

d2
σ

δ̄c

[(
2α

c2
+
γ2

dσ

)
+

1

c

]
.

Since this is true for all ε ∈ (0, 1], we have

W (x, T ) ≤ Ṽ (x) + θ(1 +K2
g )[C1 + C2|x|2]. (5.20)

Then, noting (c.f., [McE06]) that W (x, T ) → V̂ (x) as T → ∞, (5.20) yields the

value approximation result:

Theorem 5.4.6. There exists C3 <∞ such that

V̂ (x)− θ(1 +K2
g )[C1 + C2|x|2] ≤ Ṽ (x) ≤ V̂ (x) ∀x ∈ Rn, (5.21)

where

C1 = 2d2
σ/(δ̄c), C2 =

d2
σ

δ̄c

[(
2α

c2
+
γ2

dσ

)
+

1

c

]
, (5.22)

and θ is as given in Assumption (A.c).

Thus, we see that Ṽ approximates V̂ arbitrarily well if H̃ is sufficiently close

to H, this closeness being parameterized by θ.

5.5 Degree of Suboptimality of the Controller

In the previous section, it was shown that if the approximating Hamiltonian

is close to the Hamiltonian of the originating problem in a certain sense, then the
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corresponding viscosity solutions will be close in an appropriate sense. However,

recall that we are specifically concerned with a case where we can efficiently solve

the HJB PDE with the approximating Hamiltonian, and would like to use this

solution to generate a controller for the originating problem. Consequently, we

would like to know whether an (approximate) optimal control generated from the

solution of the approximate HJB PDE, will perform well when applied to the true

system, which is described by the originating Hamiltonian. We begin with some

preparatory results, which are minor variations of the well-known properties of

viscosity solutions and semiconvexity. Between Lemma 5.5.4 and Lemma 5.5.6,

the optimal control approximation will be introduced. The main development will

begin with Theorem 5.5.8.

Lemma 5.5.1. Suppose V is a semiconvex viscosity solution of 0 = Ĥ(x,∇V ),

where Ĥ is continuous. Let D−V (x) denote the sub-differential of V at x. For any

x, q ∈ Rn, there exists p̄ ∈ D−V (x) such that

p̄ · q = max
p∈D−V (x)

p · q (5.23)

and

Ĥ(x, p̄) = 0. (5.24)

Proof. Let

D∗V (x)
.
=

{
p ∈ Rn

∃{xn} ⊆ A, such that

xn → x and p = limn→∞∇V (xn)

}
(5.25)

where A = {a ∈ Rn | ∇V (x) exists }. We note that by Rademacher’s Theorem

(c.f., [Zie89]), the Lebesgue measure of Ac is zero, due to the fact that V is locally

Lipschitz, which follows from the semiconvexity (c.f., [Fle77]). The generalized

gradient (c.f., [Cla83]) is the convex hull of D∗V (x), denoted by 〈D∗V (x)〉. Then,

by the semiconvexity of V and [BCD97], Proposition II.4.7,

D−V (x) = 〈D∗V (x)〉. (5.26)

Obviously, for any q ∈ Rn, p · q is linear as a function of p, and so it takes its

maximum over a convex hull at a point in the generating set. Using this observation
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and (5.26), we see that

max
p∈D−V (x)

p · q = max
p∈〈D∗V (x)〉

p · q = max
p∈D∗V (x)

p · q. (5.27)

Let p̄ ∈ argmaxp∈D∗V (x) p · q. By (5.26) and (5.27), we see that it is an element of

D−V that achieves the maximum in (5.23). Then, by (5.25), there exists xn →
x with ∇V (xn) → p̄. However, Ĥ(xn,∇V (xn)) = 0 for all n, and so, by the

continuity of Ĥ, Ĥ(x, p) = 0.

It will be helpful to make the following definitions. Let

P(x) = P(x; Ṽ )

.
= argmax

{
f(x,w) · p+ l(x,w) | (w, p) ∈ Rk×D−Ṽ (x)

}
.

Also, let

W0(x; Ṽ ) = argmax
w∈Rk

max
p∈D−Ṽ (x)

[f(x,w) · p+ l(x,w)] ,

and

P0(x; Ṽ ) = argmax
p∈D−Ṽ (x)

max
w∈Rk

[f(x,w) · p+ l(x,w)]

= argmax
p∈D−Ṽ (x)

[
g(x) · p+ 1

2γ2p
′σ(x)σ′(x)p

]
.

It will also be handy to note some simple relations.

Lemma 5.5.2. If ŵ ∈ W0(x; Ṽ ), then there exists p̂ ∈ D−Ṽ (x) such that (ŵ, p̂) ∈
P(x). On the other hand, (ŵ, p̂) ∈ P(x) implies that ŵ ∈ W0(x; Ṽ ).

Proof. To simplify the notation, let G(x,w, p)
.
= f(x,w) · p + l(x,w). Suppose

ŵ ∈ W0(x; Ṽ ). Then

max
p∈D−Ṽ (x)

G(x, ŵ, p) = max
w∈Rk

max
p∈D−Ṽ (x)

G(x,w, p),

which implies that there exists p̂ ∈ D−Ṽ (x) such that (ŵ, p̂) ∈ P(x).

Alternatively, let (ŵ, p̂) ∈ P(x). Then,

G(x, ŵ, p̂) = max
w∈Rk

max
p∈D−Ṽ (x)

G(x,w, p),
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which implies

max
p∈D−Ṽ (x)

G(x, ŵ, p) ≥ max
w∈Rk

max
p∈D−Ṽ (x)

G(x,w, p). (5.28)

Now, suppose ŵ 6∈ W0(x; Ṽ ). This implies that

max
p∈D−Ṽ (x)

G(x, ŵ, p) < max
w∈Rk

max
p∈D−Ṽ (x)

G(x,w, p), (5.29)

Which contradicts (5.28).

Analogously, one has:

Lemma 5.5.3. If p̂ ∈ P0(x; Ṽ ), then there exists ŵ ∈ Rk such that (ŵ, p̂) ∈ P(x).

On the other hand, (ŵ, p̂) ∈ P(x) implies that p̂ ∈ P0(x; Ṽ ).

We now get a simple representation for ŵ, which will be useful in bounding the

control effort.

Lemma 5.5.4. Suppose p̂ ∈ P0(x; Ṽ ), and let ŵ = ŵ(x, p̂) = 1
γ2σ

′(x)p̂. Then,

(ŵ, p̂) ∈ P(x), and ŵ ∈ W0(x; Ṽ ).

Proof. Using (5.4) and (5.5), we have

f(x, ŵ) · p̂ +l(x, ŵ)

= [g(x) + σ(x)ŵ] · p̂+ L(x)− γ2

2
|ŵ|2

which by a simple calculation of the maximum of a quadratic,

= max
w∈Rk

[f(x,w) · p̂+ l(x,w)],

which, since p̂ ∈ P0(x; Ṽ ),

= max
w∈Rk

max
p∈D−Ṽ (x)

[f(x,w) · p+ l(x,w)],

which implies (ŵ, p̂) ∈ P(x). The second assertion then follows from Lemma 5.5.2.
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We now deal with a technical issue related to existence of solutions. We will

make an assumption, and then indicate a class of systems meeting the assumption.

Let

F s(x)
.
=

{
g(x) +

1

γ2
σ(x)σ′(x)p | p ∈ P0(x)

}
=

{
g(x) +

1

γ2
σ(x)w |w =

1

γ2
σ′(x)p, p ∈ P0(x)

}
which by Lemma 5.5.4,

=

{
g(x) +

1

γ2
σ(x)w |w ∈ W0(x)

}
.

Consider the differential inclusion

ξ̇ ∈ F s(ξ), ξ0 = x. (5.30)

We assume there exists a a locally Lipschitz solution of (5.30). (A.s)

We denote this solution of (5.30) as ξ̄·. Note that in the case where Ṽ is smooth,

(5.30) reduces to an ordinary differential equation, and there is no technical issue.

However, in general, existence proofs for differential inclusions are less trivial than

those for differential equations. One class of problems where it is known that (A.s)

holds is as follows.

Theorem 5.5.5. Suppose that −F s is monotone in the sense that (u−v)·(x−y) ≥
0 for all u ∈ −F s(x), v ∈ −F s(y), and all x, y ∈ Rn. Then for any x ∈ Rn, there

exists a locally Lipschitz solution of (5.30), and further, ‖ξt‖ is monotonically

decreasing.

Proof. With a possible linear rescaling of the time variable, I−F s is onto (where I

indicates the identity mapping). By [AC84], Theorem 3.1.1, this implies that −F S

is maximal monotone. Then, by [AC84], Theorem 3.2.1, one obtains the result.

Lemma 5.5.6. For any T ∈ [0,∞),

Ṽ (ξ̄T )− Ṽ (x) =

∫ T

0

d

dt
Ṽ (ξ̄t) dt

where d
dt
Ṽ (ξ̄t) exists a.e.
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Proof. By the existence and continuity of ξ̄ on [0, T ] (for any T ), there exists

RT <∞ such that |ξ̄t| ≤ RT for all t ∈ [0, T ]. Also, by the Lipschitz continuity of

Ṽ (implied by the semiconvexity, c.f., [Fle77]), there exists KT <∞ such that

|Ṽ (x)− Ṽ (y)| ≤ KT (x− y) ∀x, y ∈ BRT , (5.31)

and this implies |p| ≤ KT for all p ∈ D−Ṽ (x) for all x ∈ BRT . By (5.31) and

the Lipschitz behavior of ξ̄ on [0, T ], Ṽ (ξ̄·) is Lipschitz on [0, T ], which implies

absolute continuity. Therefore, d
dt
Ṽ (ξ̄t) exists a.e. on [0, T ], and Ṽ (ξ̄t) − Ṽ (ξ̄s) =∫ t

s
d
dr
Ṽ (ξ̄r) dr for all 0 ≤ s ≤ t ≤ T .

As noted in the proof just above, there exists RT < ∞ such that ξ̄t ∈ B̄RT

for all t ∈ [0, T ] Then, again using the local Lipschitz nature of Ṽ , there exists

KT <∞ such that D−Ṽ (x) ⊆ B̄KT (0) for all x ∈ B̄RT (0), that is D−Ṽ (B̄RT (0)) ⊆
B̄KT (0). Consequently,W0(B̄RT (0); Ṽ ) ⊆ dσ

γ2 B̄KT (0). Then, by for example, [AC84]

Corollary 1.14.1, there exists a measurable selection, w̄·, where for a.e. t ∈ [0, T ],

w̄t ∈ {W0(ξ̄t; Ṽ ) | g(ξ̄t) + σ(ξ̄t)w̄t = ˙̄ξt}.

Of course, where ∇Ṽ (ξ̄t) exists, this reduces to w̄t = 1
γ2σ

′(ξ̄t)∇Ṽ (ξ̄t).

The proof of the following lemma is essentially identical to the proof of Lemma

5.4.5, and so we do not repeat it.

Lemma 5.5.7. For any T ∈ [0,∞),

Ṽ (ξ̄T )− Ṽ (x) =

∫ T

0

max
p∈D−Ṽ (ξ̄t)

p · f(ξ̄t, w̄t) dt.

It will be necessary to show that solutions driven by our feedback control are

well-behaved, i.e., staying bounded and eventually decaying to the origin. This

step is comprised of Theorem 5.5.8 to Lemma 5.5.11.

Theorem 5.5.8. For any T ∈ [0,∞),∫ T

0

l(ξ̄t, w̄t) dt ≥ Ṽ (x)− Ṽ (ξ̄T ).
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Proof. ∫ T

0

l(ξ̄t, w̄t) dt =

∫ T

0

[
l(ξ̄t, w̄t) + max

p∈D−Ṽ (ξ̄t)
f(ξ̄t, w̄t) · p

]
dt

−
∫ T

0

max
p∈D−Ṽ (ξ̄t)

f(ξ̄t, w̄t) · p dt, (5.32)

where the integrability follows from Lemma 5.5.7.

Define

H0(x; H̃)
.
= {p ∈ Rn | H̃(x, p) = 0}.

Then, note that

l(ξ̄t, w̄t) + max
p∈D−Ṽ (ξ̄t)

f(ξ̄t, w̄t) · p

= max
p∈D−Ṽ (ξ̄t)

[
l(ξ̄t, w̄t) + f(ξ̄t, w̄t) · p

]
,

and, since w̄t ∈ W0(ξ̄t; Ṽ ),

= max
w∈Rk

max
p∈D−Ṽ (ξ̄t)

[
l(ξ̄t, w) + f(ξ̄t, w) · p

]
,

= max
w∈Rk

{
l(ξ̄t, w) + max

p∈D−Ṽ (ξ̄t)

[
f(ξ̄t, w) · p

]}
,

which by Lemma 5.5.1,

= max
w∈Rk

{
l(ξ̄t, w) + max

p∈D−Ṽ (ξ̄t)∩H0(ξ̄t;H̃)

[
f(ξ̄t, w) · p

]}
,

= max
p∈D−Ṽ (ξ̄t)∩H0(ξ̄t;H̃)

max
w∈Rk

[
l(ξ̄t, w) + f(ξ̄t, w) · p

]
,

= max
p∈D−Ṽ (ξ̄t)∩H0(ξ̄t;H̃)

H(ξ̄t, p),

which by Assumption (A.c),

≥ max
p∈D−Ṽ (ξ̄t)∩H0(ξ̄t;H̃)

H̃(ξ̄t, p),

which since p ∈ H0(ξ̄t; H̃),

= 0.

Integrating this over time, we see that,∫ T

0

[
l(ξ̄t, w̄t) + max

p∈D−Ṽ (ξ̄t)
f(ξ̄t, w̄t) · p

]
dt ≥ 0. (5.33)
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Substituting (5.33) into (5.32), one finds∫ T

0

l(ξ̄t, w̄t) dt ≥ −
∫ T

0

max
p∈D−Ṽ (ξ̄t)

f(ξ̄t, w̄t) · p dt,

which by Lemma 5.5.7,

= Ṽ (x)− Ṽ (ξ̄T ).

Corollary 5.5.9. For any x ∈ Rn, and any T ∈ [0,∞),∫ T

0

l(ξ̄t, w̄t) dt+ V̂ (ξ̄T ) ≥ V̂ (x)−Kx

where Kx
.
= V̂ (x)− Ṽ (x).

Proof. The result follows immediately from the theorem by noting that Ṽ (ξ̄T ) ≤
V̂ (ξ̄T ).

From Corollary 5.5.9 and [McE06], Lemma 3.17, one has

Corollary 5.5.10. For any R <∞, there exists MR <∞ such that for all |x| ≤ R

and all T ∈ [0,∞), ∫ T

0

|ξ̄t|2 dt ≤MR.

Lemma 5.5.11. Given ε ∈ (0, 1], x ∈ Rn and T < ∞, there exists T > T such

that

0 ≤ Ṽ (ξ̄T ) ≤ V̂ (ξ̄T ) < ε.

Proof. As the other inequalities are already proven, we prove only the rightmost.

Using Corollary 5.5.10, it is easy to show that given ε̄ > 0 and T <∞, there exists

T ∈ [T ,∞) such that

|ξ̄T |2 < ε̄. (5.34)

From [McE06], Theorems 3.19 and 3.20, there exists CV < ∞ such that V̂ (x) ≤
CV |x|2, and consequently,

V̂ (ξ̄T ) ≤ CV |ξ̄T |2. (5.35)

Combining (5.34) and (5.35) yields the result.
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We now begin the development leading to the main result of the section. By

Corollary 5.5.9 and Lemma 5.5.11, we see that given ε ∈ (0, 1] and T < ∞, there

exists T ∈ [T ,∞) such that∫ T

0

l(ξ̄t, w̄t) dt ≥ V̂ (x)−Kx − ε. (5.36)

Recalling the specific form of l given in (5.5) and the growth on L given by

Assumption (A.V ), we see that (5.36) implies

γ2

2
‖w̄·‖2

L2(0,T ) ≤ α‖ξ̄‖2
L2(0,T ) +Kx + ε− V̂ (x)

which, by Corollary 5.5.10

≤ αM|x| +Kx + ε− V̂ (x).

Since this is true for any T <∞,

‖w̄·‖2
L2(0,∞) ≤Mx

.
=

2

γ2

[
αM|x| +Kx + 1− V̂ (x)

]
. (5.37)

Combining (5.37) and Corollary 5.5.10, we see that given ε̂ > 0, there exists

T̂ <∞ such that

‖ξ̄‖2
L2(T̂ ,∞)

, ‖w̄·‖2
L2(T̂ ,∞)

< ε̂,

which implies that given ε̂ > 0, there exists T̃ <∞ such that∫ ∞
T̂

∣∣l(ξ̄t, w̄t)∣∣ dt < ε̂, (5.38)

which implies that limT→∞
∫ T

0
l(ξ̄t, w̄t) dt exists. In particular, given ε̂ > 0,∣∣∣∣∫ T

0

l(ξ̄t, w̄t) dt− lim
T→∞

∫ T

0

l(ξ̄t, w̄t) dt

∣∣∣∣ < ε̂ (5.39)

for all T ≥ T̃ . By (5.39) and Theorem 5.5.8, given ε̂ > 0,

lim
T→∞

∫ T

0

l(ξ̄t, w̄t) dt ≥ Ṽ (x)− ε̂− Ṽ (ξ̄T ) ∀T ≥ T̃ . (5.40)

Combining (5.40) and Lemma 5.5.11 (with T replacing T̃ ), one sees that given

ε̂ > 0,

lim
T→∞

∫ T

0

l(ξ̄t, w̄t) dt ≥ Ṽ (x)− 2ε̂.

Lastly, since this is true for all ε̂ > 0, we obtain:
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Theorem 5.5.12.

lim
T→∞

∫ T

0

l(ξ̄t, w̄t) dt ≥ Ṽ (x).

Combining Theorem 5.5.12 and Theorem 5.4.6, we have:

Theorem 5.5.13. For any x ∈ Rn,

lim
T→∞

∫ T

0

l(ξ̄t, w̄t) dt ≥ V̂ (x)− θ(1 +K2
g )[C1 + C2|x|2],

where C1, C2 are as given in (5.22), and Kg is indicated in Lemma 5.4.1, with an

explicit bound given in Remark 5.4.2.

In other words, the payoff obtained with control w̄·, based on solution of

the approximating problem, will be arbitrarily close to the optimal payoff, V̂ (x).

Further, the bound on the difference, θC3(1 + |x|2), goes to zero as θ → 0, where

θ parameterizes the closeness of H̃ to the originating Hamiltonian, H.

5.6 Numerical Examples

We include two examples validating the bounds obtained above. More

specifically, we validate the error bounds of Theorems 5.4.6 and 5.5.13.

5.6.1 Simplest example

The simplest possible example is to approximate a quadratic Hamiltonian for a

problem in one dimension by another quadratic Hamiltonian. In such a case, one

can validate the results analytically. The PDE we choose to approximate is

0 = −H(x,∇V ) = −
(

1

2
Dx2 +

1

2
Σ(∇V )2 + Ax∇V

)
with A = −1, D = 1, Σ = 0.9. Without loss of generality, we may let σ = 1, in

which case one has γ =
√
σ2/Σ = 1.0541.

The associated value function (PDE solution) is quadratic and given by V̂ (x) =

1
2
Px2, where P is the smallest nonnegative solution to A′P +PA+D+PΣP = 0.

Hence P = (−A−
√
A2 − ΣD)/Σ = 0.7597.
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We approximate the Hamiltonian in our above PDE crudely by another

quadratic Hamiltonian. In particular, we take

−H̃(x, p) = −
(

1

2
(D − ε)x2 +

1

2
(Σ− ε)p2 + Axp

)
.

The associated value function is Ṽ (x) = 1
2
x′P̃ x, where P̃ is the smallest

nonnegative solution of A′P̃ + P̃A + (D − ε) + P̃ (Σ − ε)P̃ = 0. With ε = 0.2,

one obtains P̃ = 0.5.

In order to validate the bounds in Theorems, 5.4.6 and 5.5.13, we need to

compute values for θ, C1, C2 and Kg. We will obtain C1, C2 and Kg from (5.12) and

(5.22). To obtain these values, we note immediately that one has dσ = ||σ||2 = 1,

c = −λmax[A] = 1 and α = λmax[D] = 1. (Here, we again use the notation

λmax[X] = maxi Re(λi[X]) and λmin[X] = mini Re(λi[X]), where the λi[X] are the

eigenvalues of X.) To choose lower bounds, we need highest possible δ̄ satisfying

(5.7), that is 1
2
Px2 ≤ cγ

2−δ̄2

2d2
σ
|x|2. Hence we take δ̄ =

√
γ2 − 1

c
λmax(P )d2

σ = 0.3746.

With these coefficient values, we find

Kg =
1

2
λmax[(Σ− ε)−1A] +

√
λmax[A(Σ− ε)−1A− (D − ε)]

λmin[Σ− ε]
= 0.2333,

C1 = 2d2
σ/(δ̄c) = 5.34

and

C2 =
d2
σ

δ̄c

[(
2α

c2
+
γ2

dσ

)
+

1

c

]
= 10.41 .

One can also easily verify that

θ
.
= max

x,p

H(x, p)− H̃(x, p)

|x|2 + |p|2
=
ε

2
= 0.1 .

We now define the normalized value function error, Verr as

Verr(x)
.
=

V̂ (x)− Ṽ (x)

θ(1 +K2
g )(C1 + C2|x|2)

. (5.41)

If the bound in Theorem 5.4.6 is correct, then this should lie in [0, 1] for all x ∈ Rn.

Using the values computed above for all the terms on the right-hand side of (5.41),

we have

Verr(x) =
0.2597|x|2

0.5630 + 1.098|x|2
,
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and by inspection, we see that this lies in [0, 1] for all x.

The approximate optimal feedback control is ŵ(x) = 1
γ2σ

′(x)p̃, where p̃ ∈
P0(x; Ṽ ) = argmaxp∈D−Ṽ (x) H(x, p). Hence ŵ(x) = σ

γ2 P̃ x = 0.556x. The dynamics

corresponding to this approximately optimal control is

˙̄ξt = f(ξ̄t, ŵ(ξ̄t)) = g(ξ̄t) + σ(ξ̄t)ŵ(ξ̄t) = (A+ ΣP̃ )ξ̄,

and the solution is simply ξ̄t = e(A+ΣP̃ )tx0. With the above problem data, A+ΣP̃ =

−0.55, and so this solution is ξ̄t = e−0.55tx0. The associated running cost is

l(ξ̄t, w̄t) = L(ξ̄t)−
γ2

2
|w̄t|2 = L(ξ̄t)−

γ2

2
|ŵ(ξ̄t)|2 =

1

2
ξ̄Tt (D − P̃ΣP̃ )ξ̄t.

Integrating this along the approximate optimal trajectory, we find the approximate

optimal payoff for a trajectory starting at ξ̄0 = x0 to be

Papp(x0)
.
= lim

T→∞

∫ T

0

l(ξ̄t, w̄t) dt =
1

2
x2

0

∫ ∞
0

e2(A+ΣP̃ )t dt

=
1

2
x2

0

(P̃ΣP̃ −D)

2(A+ ΣP̃ )
=

1

2
0.7045|x0|2.

We define the normalized payoff error, Perr, to be

Perr(x0)
.
=

V̂ (x0)− Papp(x0)

θ(1 +K2
g )(C1 + C2|x0|2)

. (5.42)

By Theorem 5.5.13, this should lie in [0, 1] for all x ∈ Rn. Substituting in the

above data, we find

Perr(x0) =
0.0552|x0|2

0.5630 + 1.098|x0|2
,

which clearly lies in [0, 1] for all x.

Note that as proven in Theorem 5.5.12, in this example we found Papp ≥ Ṽ and

hence Perr ≥ Verr. That is, the suboptimality of the approximate payoff is less than

the error in the approximate value function. This is expected intuitively since in

calculating Papp, we have access not only to the approximate value function, Ṽ (x),

but to the exact dynamics and running cost.
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5.6.2 Four Hamiltonians and four-dimensional state space

We now verify our bounds in a more complex case, with four constituent quad-

ratic forms in the approximating Hamiltonian. In order to make this verification

tractable, we again approximate only a simple PDE with a quadratic Hamiltonian,

and consequently, have an analytical expression for the true solution, V̂ . Again,

it would make no sense to use our methods on a problem with known solution,

but we find it useful to do so as a means for verifying the results obtained above.

The four-dimensional approximating Hamiltonian will be constructed from the

following building blocks. We take

Aa =

[
−1 .5

.1 −1

]
, Ab = Aa,

Ac = Aa, Ad =

[
−1 .5

.3 −1

]
,

Σa =

[
1.08 −.04

−.04 1.08

]
, Σb = Σa,

Σc = Σa, Σd = Σa,

and

Da =

[
1.5 .2

.2 1.5

]
, Db = 1.4×Da,

Dc = 1.6×Da, Dd = 1.8×Da.

We will use a parameter to adjust the interaction in the dynamics across the

dimensions, and this will be η = −0.01. Now we are ready to define each of the

Hamiltonians. The true PDE is given by

0 = −H(x,∇V ) = −
(

1

2
x′Dx+

1

2
(∇V )′Σ∇V + (Ax)′∇V

)
where the coefficients in the Hamiltonian are

A =

[
Ad ηI

ηI Ad

]
, Σ =

[
Σd 0

0 Σd

]

D =

[
Dd 0

0 Dd

]
.
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Recall that we solve the approximating HJB PDE, 0 = −H̃(x,∇V ) where in

our example here, the Hm take the specific form

Hm(x, p) = 1
2
x′Dmx+ 1

2
p′Σmp+ (Amx)′p+ αm,

that is, with lm1 , l
m
2 = 0. We take M = 4, i.e., H̃(x, p) = maxm∈{1,2,3,4}H

m(x, p).

For the first Hamiltonian, H1, we let

A1 =

[
Aa ηI

ηI Aa

]
, Σ1 =

[
Σa 0

0 Σa

]

D1 =

[
Da 0

0 Da

]
, α1 = 0 .

For the second Hamiltonian, H2, we let

A2 =

[
Ab ηI

ηI Ab

]
, Σ2 =

[
Σb 0

0 Σb

]

D2 =

[
Db 0

0 Db

]
, α2 = −1 .

For the third Hamiltonian, H3, we let

A3 =

[
Ac ηI

ηI Ac

]
, Σ3 =

[
Σc 0

0 Σc

]

D3 =

[
Dc 0

0 Dc

]
, α3 = −3.

For the fourth Hamiltonian, H4, we let

A4 =

[
Ad ηI

ηI Ad

]
, Σ4 =

[
Σd 0

0 Σd

]

D4 =

[
Dd 0

0 Dd

]
, α4 = −8 .

We solve 0 = −H̃(x,∇V ) to obtain Ṽ , using the curse-of-dimensionality-

free algorithm [MDG08]–[McE05]. The time-step size used was dt = 0.3 and
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the time horizon was taken to be T = 4 (c.f. [McE06]). (The computation

required approximately 20 minutes on a typical desktop machine.) As the value

is a function on R4, we cannot display it. For illustrative purposes, we plot

information on the (x3, x4) plane (passing through the origin). Of course, as we

are using a numerical method, we are only computing an approximation to Ṽ , and

we denote the approximate solution by V̄ . The backsubstitution error is given

by e(x) = H̃(x,∇V̄ (x)). The backsubstitution error and the optimal controller

switching schedule on this plane are plotted in Figures 5.1 and 5.2. One can see

that the solution converged within the domain of interest.

A heuristic measure of the error in gradient can developed using Newton’s

method as follows. Given x ∈ <n, let m̄ = argmaxmH
m(x,∇V̄ ). If p̃ =

∇Ṽ (x) and p̄ = ∇V̄ (x) (where we are assuming existence of the gradients),

0 = H̃(x, p̃) ≈ H̃(x, p̄) + (p̃ − p̄)′∇pH̃(x, p̄) = e − (Σm̄p̄ + Am̄x). To obtain

our heuristic gauge of accuracy, we choose the nearest p, p̂, which is the solution

of linearized approximation to the quadratic Hamiltonian, and use this as an

approximation for p̃. That is, we take

p̂
.
= argmin

p
{|p− p̄| : e− (Σm̄p̄+ Am̄x)′(p− p̄) = 0} .

This can solved using the pseudo-inverse, yielding

p̃− p̄ ≈ p̂− p̄ = (Σm̄p̄+ Am̄x)−1e.

The relative error in the gradient, |p̃−p̄|
p̄

, is plotted in Figure 5.3, and we see that it

is everywhere less than 10%, and generally much smaller. This indicates that our

following check on the bound of Theorem 5.4.6 is valid.

As in the previous example, we obtain C1, C2 and Kg from (5.12) and (5.22),

and obtain Kg = 7.07, C1 = 1.07 and C2 = 15.03. We find a value for θ satisfying

H(x, p)− θ(|x|2 + |p|2) ≤ H̃(x, p) ≤ H(x, p)

by a rough search. In particular, we see that θ = 0.66 satisfies the condition.

As in the previous example, we compute Verr from (5.41), although in this case,
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we use the computationally obtained V̄ in place of Ṽ . Again, Theorem 5.4.6 is

validated if Verr(x) ∈ [0, 1] for all x. This was verified, and in particular, we

plot the value of Verr on the (x3, x4) plane in Figure 5.4. We also compute the

resulting suboptimality in the payoff (see (5.42)) on the same plane in Figure 5.5.

In this case, for the values of Papp(·) at each point, x0, are obtained by integrating

along the trajectory, starting at x0, using a control based on the gradient of the

approximating value function. In particular, at each point along the trajectory,

this gradient is obtained as the exact gradient of the quadratic which is maximal

at that point.

Chapter 5, in part, is a reprint of the material as it appears in the international

symposium on Mathematical Theory of Networks and Systems, (MTNS) 2008,

McEneaney, William; Deshpande, Ameet, Birkhäuser Press [MD08b]. The same

chapter, in full, has been submitted for publication as it may appear in SIAM

Journal of Control and Optimization, McEneaney, William; Deshpande, Ameet,

SIAM Press [MDb]. The dissertation author was the coauthor of these papers.
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Figure 5.1: backsubstitution error along 3-4 plane

Figure 5.2: optimal switching along 3-4 plane

Figure 5.3: relative gradient error along 3-4 plane
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Figure 5.4: Normalized Value function error along 3-4 plane

Figure 5.5: Normalized Payoff function error along 3-4 plane



Chapter 6

A Curse-of-Dimensionality-Free

Numerical Method based on

Min-Plus algebra

6.1 Introduction

In chapter 3, we reviewed the curse-of-dimensionality-free method developed

to solve a certain class of semiconvex Hamilton-Jacobi-Bellman (HJB) PDEs

(cf. [McE07], [MK], [McE09], [MDG08], [McE06]). These PDEs arise in

the infinite horizon problems with stable dynamics and unbounded control and

state space, in which we aim to maximize a payoff. In this method, the

Hamiltonian is approximated by the max-plus sum (pointwise maximum) of many

linear/quadratic Hamiltonians, and the infinite horizon value function is obtained

as the limit of finite horizon problem as the time grows. This method surprisingly

is not subject to the curse-of-dimensionality. In fact, the computational growth

in state-space dimension is of the order of n3. There is however no free lunch,

since the curse-of-dimensionality is replaced by the curse-of-complexity. Various

pruning methods developed to attenuate this curse were reviewed in chapter 4.

In this chapter, we shall extend the above method to solve a semiconcave

HJB PDE, which can be approximated as the min-plus sum (pointwise minimum)

137
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of linear/quadratic Hamiltonians. These arise in infinite horizon problems with

unbounded control and state space, and in which we aim to minimize an integral

cost. In such problems, the nominal dynamics does have a fixed point at origin,

but the stability need not be assumed, making it more general.

In the section 6.3, drawing on the previous work in [Lio00] and [BL97], we

shall prove the existence and uniqueness of the value function within a certain

class of viscosity solutions of the HJB PDE. Section 6.6 shall discuss the min-

plus fundamental solution, and derive the same for linear/quadratic PDEs. In

section 6.5, we shall prove some important theorems regarding the validity of the

discrete time approximation for propagation in finding the value function. The

main algorithm will be covered in section 6.7. Lastly we shall examine a sample

numerical example to test our algorithm in section 6.8.

6.2 The Problem

We consider the problem with dynamics

ξ̇t = f(ξt) + σ(ξt)ut

ξ0 = x ∈ Rn
(6.1)

where the state is ξt ∈ Rn, the control u lies in Lloc
2

.
= {u : [0,∞) → Rm : u ∈

L2[0, T ] ∀T <∞}, f represents nominal dynamics, and σ is n×m matrix valued

multiplier on the control.

The optimal control objective is to minimize the integral cost

V (x)
.
= inf

u∈Lloc
2

sup
T<∞

∫ T

0

l(ξt) +
1

2
|ut|2 dt. (6.2)

V is the value function of the problem. For the existence and regularity of the

value function, we make following assumptions on the dynamics and the running

cost. The proof of existence is similar to that of lemma 1 in [CM04]. Hence we

shall not reproduce it.
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We assume that there exists c1, c2, c3 ∈ (0,∞) such that for all x ∈ Rn,

(x− y)′ (f(x)− f(y)) | ≤ c1|x− y|2

|σ(x)− σ(y)| ≤ c1|x− y|

|σ(x)| ≤ c2

and f(0) = 0

(6.3)

Regarding the running cost l(x), we assume that

l(·) is nonnegative and continuous in Rn

l(0) = 0 and c3|x|2 ≤ l(x)
(6.4)

We shall prove that the HJB PDE for this problem which the value function satisfies

in the viscosity sense is as follows:

0 = − inf
ut∈Rm

{
(f(x) + σ(x)u) · ∇V + l(x) +

1

2
|ut|2

}
= −

[
f(x) · ∇V + l(x)−∇V ′

(
σ(x)σ′(x)

2

)
∇V

]
.
= −H(x,∇V )

(6.5)

In next section, we prove that it is the unique viscosity solution in a certain class

of functions.

6.3 Existence and Uniqueness

As our assumptions (6.3), (6.4) satisfy the assumptions of the theorem 3.4 in

Da Lio [Lio00], following theorem holds true.

Theorem 6.3.1. Assume (6.3) and (6.4). With the control u ∈ L∞
.
=

L∞([0,∞),Rn), and with the dynamics same as (6.1), the value function

V ∞(x)
.
= inf

u∈L∞
sup
T<∞

∫ T

0

l(ξt) +
1

2
|ut|2 dt (6.6)

exists and is the unique viscosity solution of the HJB PDE (6.5) in the class

K .
= {W ∈ C(Rn) : W is nonnegative, W (0) = 0 and ||W ||R < +∞,∀R > 0}

(6.7)



140

where ||W ||R
.
= sup{|W (x)|+ |q| : x ∈ B̄(0, R), q ∈ D−W (x). Also if U(x, t) is the

solution to the finite horizon Lagrange problem

U∞(x, T )
.
= inf

u∈L∞

∫ T

0

l(ξt) +
1

2
|ut|2 dt, (6.8)

then for all x ∈ Rn, U∞(x, T ) increases monotonically with T and

lim
T→∞

U∞(x, T ) = V ∞. (6.9)

Now, we shall expand the control space to Lloc
2 ⊇ L∞([0,∞),Rn), and prove

that the value function remains the same and is thus the unique viscosity solution

of (6.5) in the class K. First we shall prove an useful lemma.

Lemma 6.3.2. Assuming (6.3), (6.4), ξ0 = x and u ∈ Lloc
2 , we have following

bounds on the system trajectory.

|ξt − x|2 ≤ e(2c1+c2+1)t

(
|f(x)|2t+ c2

∫ t

0

|us|2 ds
)

(6.10)

|ξt|2 ≤ e(2c1+c2)t|x|2 + c2

∫ t

0

e(2c1+c2)(t−s)|us|2 ds (6.11)

Proof. By (6.1), ξt is an absolutely continuous function of t. Hence if we define

R
.
=
∫ t

0
|ξs − x|2 dt, then by the fundamental theorem of calculus, for all t ≥ 0,

Ṙ(t) = |ξt − x|2, and we have

Ṙ(t) = 2

∫ t

0

(ξs − x)′ (f(ξs) + σ(ξs)us) ds

= 2

∫ t

0

(ξs − x)′ (f(ξs)− f(x) + f(x) + σ(ξs)ut) ds

using (6.3), (ξs − x)′(f(ξs)− f(x)) ≤ c1|ξs − x|2,

≤ 2c1

∫ t

0

|ξs − x|2 ds+ 2

∫ t

0

|ξs − x||f(x)| ds+ 2c2

∫ t

0

|ξs − x||us| ds

using 2ab ≤ |a|2 + |b|2

≤ 2c1

∫ t

0

|ξs − x|2 dt+

∫ t

0

|ξs − x|2 ds+ |f(x)|2t+ c2

[∫ t

0

|ξs − x|2 ds+

∫ t

0

|us|2 ds
]

≤ (2c1 + c2 + 1)

∫ t

0

|ξs − x|2 ds+ |f(x)|2t+ c2

∫ t

0

|us|2 ds

≤ (2c1 + c2 + 1)R(t) + |f(x)|2t+ c2

∫ t

0

|us|2 ds (6.12)
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Solving this ODI, we find

R(t) ≤ 1

2c1 + c2 + 1

∫ t

0

(
e(2c1+c2+1)(t−s) − 1

) (
|f(x)|2 + c2|us|2

)
ds

≤ 1

2c1 + c2 + 1

(
e(2c1+c2+1)t − 1

)(
|f(x)|2t+ c2

∫ t

0

|us|2 ds
)

(6.13)

Substituting in (6.12)

|ξt − x|2 = Ṙ(t) ≤ e(2c1+c2+1)t

(
|f(x)|2t+ c2

∫ t

0

|us|2 ds
)

which gives us (6.10).

To prove (6.11), we define Q(t)
.
=
∫ t

0
|ξs|2 ds. Therefore, Q̇(t) = |ξt|2, and

Q̇(t) = |x|2 + 2

∫ t

0

ξ′s(f(ξs) + σ(ξs)us) ds

using (6.3), (ξ − 0)′(f(ξ)− f(0)) ≤ c1|ξ|2, |σ(ξ)| ≤ c2 and 2ξ′u ≤ |ξ|2 + |u2|,

≤ |x|2 + (2c1 + c2)

∫ t

0

|ξs|2 ds+ c2

∫ t

0

|us|2 ds

≤ |x|2 + (2c1 + c2)Q(t) + c2

∫ t

0

|us|2 ds (6.14)

Solving this ODI, we find

Q(t) ≤ c2

2c1 + c2

∫ t

0

(
e(2c1+c2)(t−s) − 1

)
|us|2 ds+

|x|2

2c1 + c2

(
e(2c1+c2)t − 1

)
(6.15)

Substituting in (6.14),

|ξt|2 = Q̇(t) ≤ e(2c1+c2)t|x|2 + c2

∫ t

0

e(2c1+c2)(t−s)|us|2 ds (6.16)

which is (6.11). Hence proved.

Theorem 6.3.3. Assuming (6.3)and (6.4), let V and V ∞ be defined as per (6.2)

and (6.6) respectively. Then

V (x) = V ∞(x) (6.17)

Hence by Theorem 6.3.1, V is the unique viscosity solution of the HJB PDE (6.5)

in the class K given by (6.7).
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Proof. Since L∞ ⊆ Lloc
2 , from (6.2) and (6.6), it is clear that

V (x) ≤ V ∞. (6.18)

Now we shall prove the other inequality.

From the definition of V (x) and non-negativity of the integrand, for any ε > 0,

there exists control uε ∈ Lloc
2 and the corresponding trajectory ξεt , such that

V (x) + ε ≥ sup
T<∞

∫ T

0

l(ξεt ) +
1

2
|uεt|2 dt =

∫ ∞
0

l(ξεt ) +
1

2
|uεt|2 dt (6.19)

Note that by (6.4) l(ξt) ≥ 0. Hence using (6.19), V (x) + ε ≥
∫∞

0
1
2
|uεt|2 dt. Thus

uε ∈ L2
.
= L2 ([0,∞),Rm). For such uε ∈ L2 and for all k ∈ N, define truncated

controls

ukt = uε,k(t)
.
=

 min
(

1, k
|uεt |

)
uεt if uεt 6= 0

0 if uεt = 0

where we dropped the ε superscript, for the convenience of notation.

Note that for all k ∈ N, uk ∈ L∞([0,∞),Rm). Also for all t ∈ [0,∞), the series

ukt is monotonically increasing in k and converge to uεt. Thus limk→∞ u
k
t = uεt for

all t ∈ [0,∞). Note that since uε ∈ L2,
∫ T

0
|ukt |2 dt ≤

∫ T
0
|uεt|2 dt ≤ V (x) + ε, for all

k and T . By letting T → ∞ and the Dominated Convergence Theorem, uk → uε

in L2 norm.

Let ξk(·) and ξε(·) be the trajectories corresponding to the controls uk and uε

respectively. Now, using Lemma 6.3.2, both |ξkt | and |ξεt | are bounded in [0, T ] by a

constant, independent of k. Now we prove that ξkt converges to ξεt locally uniformly

in [0,∞). The following estimates hold:

|ξεt − ξkt | =
∣∣∣∣∫ t

0

f(ξεs)− f(ξks ) ds

∣∣∣∣+

∣∣∣∣∫ t

0

σ(ξεs)u
ε
s − σ(ξks )uks ds

∣∣∣∣
≤
∣∣∣∣∫ t

0

f(ξεs)− f(ξks ) ds

∣∣∣∣+

∣∣∣∣∫ t

0

σ(ξεs)u
k
s − σ(ξks )uks ds

∣∣∣∣
+

∣∣∣∣∫ t

0

σ(ξεs)u
ε
s − σ(ξεs)u

k
s ds

∣∣∣∣
≤
∫ t

0

c1(1 + |uks |)|ξεs − ξks | ds+

∫ t

0

|σ(ξεs)|
∣∣uks − uεs∣∣ ds
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Since (uε − uk) ∈ L2, define βk
.
= ||uε − uk||2

.
=
(∫∞

0

∣∣uks − uεs∣∣2 ds) 1
2
. Using

|σ(·)| ≤ c2 from (6.3) and the Holder inequality,

≤
∫ t

0

c1(1 + |uks |)|ξεs − ξks | ds+ c2

√
tβk

using Gronwall’s inequality and |ukt | ≤ |uεt| and t ≤ T

≤ c2βk

(√
t+ c1

∫ t

0

(1 + |uεt|) exp

(
c1

∫ t

s

(1 + |uεp|) dp
)√

s ds

)
≤ c2βk

(√
T + c1 exp

(
c1T + c1

√
T ||uε||2

)(2

3
T 3/2 +

T√
2
||uε||2

))
(6.20)

where ||uε||2
.
=
(∫∞

0
|uεt|2 dt

) 1
2 . Note that since uε ∈ L2([0,∞),Rm), ||uε||2 <∞.

Hence the expression in parentheses in (6.20) is finite. Since uk → uε in L2, βk → 0.

Thus |ξεt − ξkt | → 0 uniformly in [0, T ] for any T <∞. Now using (6.19), we have:

V (x) + ε ≥
∫ ∞

0

l(ξεt ) +
1

2
|uεt|2 dt

≥
∫ T

0

l(ξkt ) +
1

2
|ukt |2 dt−

∫ T

0

∣∣l(ξkt )− l(ξεt )
∣∣ dt

Using ukt ∈ L∞ and (6.8),

≥ U∞(x, T )−
∫ T

0

∣∣l(ξkt )− l(ξεt )
∣∣ dt

which is true for all k ∈ N and T < ∞. Since |ξεt | and |ξkt | are bounded for

t ∈ [0, T ], let the bound be C. Since l(·) is continuous over the compact set

B̄(0, C), it is uniformly continuous by Heine-Cantor theorem. Thus ∃δ > 0 such

that for y, z ∈ B̄(0, C), if |y − z| ≤ δ then |l(y) − l(z)| ≤ ε/T . Since, ξk → ξε

locally uniformly, we can choose k = kT ∈ N such that |ξkTt − ξεt | ≤ δ for t ∈ [0, T ].

For such kT , |l(ξkt )− l(ξεt )| ≤ ε/T for all t ∈ [0, T ]. Hence,

≥ U∞(x, T )− ε
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Finally letting T →∞ and using (6.9),

≥ V ∞ − ε (6.21)

Since ε is arbitrary, (6.18) and (6.21) give us the result.

Remark 6.3.4. With U∞(x, T ) as defined in (6.8), if we define

U(x, T )
.
= inf

u∈Lloc
2

∫ T

0

l(ξt) +
1

2
|ut|2 dt, (6.22)

then by a very similar proof as above, we can show that U(x, T ) = U∞(x, T ). Thus

using (6.22), (6.9) and Theorem 6.3.3, we have

lim
T→∞

U(x, T ) = lim
T→∞

U∞(x, T ) = V ∞(x) = V (x) (6.23)

Now, we shall prove the uniqueness of the value function V , as the fixed point

of the associated semigroup. First we prove a simple lemma.

Lemma 6.3.5. Let uε be the ε optimal control for the problem (6.2), and ξε be the

corresponding state trajectory. Then

lim
t→∞

ξεt = 0 (6.24)

Proof. Since uε is ε optimal,

V (x) + ε ≥
∫ ∞

0

l(ξεt ) +
1

2
|uεt|2 dt

using (6.4),

≥ c3

∫ ∞
0

|ξεt |2 dt+
1

2

∫ ∞
0

|uεt|2 dt (6.25)

Since
∫∞

0
|ξεt |2 dt <∞, we have

lim inf
t→∞

|ξεt | = 0. (6.26)

Now choose any δ > 0. Since
∫∞

0
|uεt|2 dt < ∞, there exist T1 < ∞ such

that
∫∞
T1
|uεt|2 dt ≤ δ

c2
and since

∫∞
0
|ξεt |2 dt < ∞, there exists T2 < ∞ such that
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∫∞
T2
|ξεt |2 dt ≤ δ

2c1+c2
. By (6.26), there exists T3 ≥ max(T1, T2) such that |ξεT3

| ≤ δ.

Hence by shifting time by T3 in (6.14), for all t ≥ T3,

|ξεt |2 ≤ |ξεT3
|2 + (2c1 + c2)

∫ t

T3

|ξεs|2 ds+ c2

∫ t

T3

|uεs|2 ds

≤ |ξεT3
|2 + (2c1 + c2)

∫ ∞
T3

|ξεs|2 ds+ c2

∫ ∞
T3

|uεs|2 ds

≤ δ2 + 2δ

Thus |ξεt | ≤
√
δ2 + 2δ for all t > T3. Hence lim supt→∞ |ξεt | ≤

√
δ2 + 2δ for any

δ > 0. Since δ is arbitrary and using (6.26),

lim sup
t→∞

|ξεt | = lim inf
t→∞

|ξεt | = lim
t→∞
|ξεt | = 0.

Hence proved.

Now for any T > 0, define the semigroup

ST [φ](x)
.
= inf

u∈Lloc
2

sup
T<∞

[∫ T

0

l(ξt) +
1

2
|ut|2 dt+ φ(ξT )

]
(6.27)

where ξt evolves as per (6.1), with ξ0 = x. It is well-known ([Mas87] and many

others) that this ST form a semigroup which is linear under min-plus algebra (in

which a⊗ b .= a+ b and a⊕ b .= min(a, b)). That is, if a, b ∈ R and φ1(·) andf φ2(·)
are functions over Rn,

ST1ST2 = ST1+T2

ST [a⊗ φ1 ⊕ b⊗ φ2] = a⊗ ST [φ1]⊕ b⊗ ST [φ2]
(6.28)

Using this notation, we have the next theorem:

Theorem 6.3.6. For any T ≥ 0 and for all x ∈ Rn, the value function V as

defined in (6.2), satisfies

V (x) = ST [V ](x)
.
= inf

u∈Lloc
2

sup
T<∞

[∫ T

0

l(ξt) +
1

2
|ut|2 dt+ V (ξT )

]
(6.29)

Proof. This is the celebrated dynamic programming principle. The proof is entirely

standard, hence we do not include it here.
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Theorem 6.3.7. Assuming (6.3), (6.4), for any T > 0, the value function V as

defined in (6.2), is the unique solution of

W = ST [W ] (6.30)

in the class K as defined in (6.7). Further, given any W ∈ K,

lim
k→∞
SkT [W ](x) = V (x) (6.31)

for all x ∈ Rn locally uniformly (uniformly on the compact sets).

Proof. Theorem 6.3.6 proved that V ∈ K is the solution of (6.30). Now suppose

that another function W ∈ K solves (6.30). Using semigroup property for all

k ∈ N, we get

SkT [W ] = S(k−1)TST [W ] = S(k−1)T . . .ST [W ] = W

Taking limit as k →∞,

W (x) = lim
n→∞

SnT [W ](x)

since W ∈ K, W (·) ≥ 0,

≥ lim
n→∞

SnT [0](x)

note that from (6.27) and (6.22), SnT [0] = U(x, nT ). Now using (6.23),

= lim
n→∞

U(x, nT ) = V (x) (6.32)

Now we wish to prove the reverse inequality. Choose any ε > 0, and consider

ε optimal controls uε, for the problem (6.2) and the corresponding trajectory ξε.

Note that, since W is continuous and W (0) = 0, there exists δ > 0, such that

|W (x)| < ε for any |x| ∈ B(0, δ). Also using Lemma 6.3.5, limt→∞ ξ
ε
t = 0. Thus

we can choose kδ ∈ N such that for all t ≥ kδT , |ξεt | ≤ δ. Using this, we have

W (x) = SkδT [W ](x) ≤
∫ kδT

0

(
l(ξεt ) +

1

2
|uεt|2 dt

)
+W (ξεkδT )

≤
∫ ∞

0

(
l(ξεt ) +

1

2
|uεt|2 dt

)
+ ε

≤ V (x) + 2ε (6.33)
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Since ε is arbitrary, (6.32) and (6.33) give us V = W . Thus V is the unique fixed

point of (6.30) in class K.

Now we shall prove that V is the unique limit of the semigroup iterations on

any function in class K. Let φ ∈ K. Given any ε > 0, there exists δ > 0 such that

φ(x) < ε for all x ∈ B(0, δ). Consider again ε optimal controls uε for the problem

(6.2), and the trajectory ξε. Since ξεt → 0, there exists kδ ∈ N such that for all

t ≥ kδT , |ξt| ≤ δ, and we have:

SkT [φ](x) ≤
∫ kT

0

l(ξεt ) +
1

2
|uεt|2 dt+ φ(ξεkT )

≤
∫ ∞

0

l(ξεt ) +
1

2
|uεt|2 dt+ ε

≤ V (x) + 2ε

Letting k →∞, and since ε is arbitrary,

lim sup
k≥kδ

SkT ≤ V (x). (6.34)

Also since φ(x) ≥ 0, SkT [φ] ≥ SkT [0]. Letting k →∞ and using (6.23),

lim inf
k∈N

SkT [φ](x) ≥ lim
k→∞
SkT [0](x) = lim

k→∞
U(x, kT ) = V (x) (6.35)

Using (6.34) and (6.35), we have the result (6.31).

The proof of the uniform convergence over compact sets is along similar lines

but slightly technical. Given ε > 0 and R > 0, for any x ∈ B̄(0, R), let uε and

ξε be ε optimal control and trajectory for problem (6.2). Due to nonnegativity

and continuity of V at 0, we can choose ε ≥ δε > 0 such that for all |x| ≤ δε,

0 ≤ V (x) < ε. Now define

Tε
.
=

max|x|≤R V (x) + ε

c3δ2
ε

(6.36)

We claim that there exists T ∈ [0, Tε] such that |ξT | ≤ δε. This is because,

supposing otherwise |ξt| > δε for all t ∈ [0, Tε] and

max
|x|≤R

V (x) + ε ≥ V (x) + ε ≥
∫ ∞

0

l(ξεt ) +
1

2
|uεt|2 dt

≥
∫ Tε

0

l(ξεt ) dt ≥
∫ Tε

0

c3|ξεt |2 dt > Tεc3δ
2
ε = max

|x|≤R
V (x) + ε
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which is a contradiction.

Now note that ε optimal controls are also optimal for for any state along the

trajectory. Using (6.2) and (6.29)

V (x) ≤
∫ T

0

l(ξεs) +
1

2
|uεs|2 ds+ V (ξεT ) ≤

∫ ∞
0

l(ξεs) +
1

2
|uεs|2 ds

≤ V (x) + ε ≤
∫ T

0

l(ξεs) + V (ξεT ) + ε

Thus subtracting
∫ T

0
l(ξεs) from all terms,

V (ξεT ) ≤
∫ ∞
T

l(ξεs) +
1

2
|uεs|2 ds ≤ V (ξεT ) + ε (6.37)

Hence

V (ξεT ) + ε ≥
∫ ∞
T

l(ξεs) +
1

2
|uεs|2 ds ≥ c3

∫ ∞
T

|ξεs|2 +
1

2

∫ ∞
T

|uεs|2 ds (6.38)

Now time shifting (6.12) by T , we have for any t ≥ Tε ≥ T ,

|ξεt |2 ≤ |ξεT + (2c1 + c2)

∫ t

T

|ξεs|2 ds+ c2

∫ t

T

|uεs|2 ds

using (6.37)and (6.38),

≤ δ2
ε +

2c1 + c2

c3

(V (ξεT ) + ε) + 2c2(V (ξεT ) + ε)

Now using |ξεT | ≤ δε ≤ ε and hence V (ξεT ) < ε ,

≤ ε2 + 2ε
2c1 + c2

c3

+ 4εc2
.
= ω1(ε) (6.39)

where ω1 is a modulus function.

Now lets define

ωφ(ε)
.
= max
|y|≤ω1(ε)

φ(y). (6.40)

It can be easily seen that this is also a modulus, due to continuity of φ at 0, and

since φ(0) = 0.

Thus for all t ≥ Tε and all x ∈ B̄(0, R)

St[φ](x) ≤
∫ t

0

l(ξεs) +
1

2
|uεs|2 ds+ φ(ξεt )
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by (6.39) and (6.40),

≤
∫ ∞

0

l(ξεs) +
1

2
|uεs|2 ds+ max

|y|≤ω1(ε)
φ(y)

≤ V (x) + ε+ ωφ(ε) (6.41)

Now we shall prove reverse inequality in an analogous manner. Let Tε be defined

as per (6.36). Let us redefine uε and ξε to be ε optimal control and trajectory for

the finite horizon problem (6.22) with horizon Tε. Note that using the semigroup

notation U(x, Tε) defined in (6.22), can be re-expressed as STε [0](x). As before, we

claim that for some T ∈ [0, Tε], |ξεT | ≤ δε, since if it is not true, then

max
|x|≤R

V (x) + ε ≥ V (x) + ε ≥ STε [0](x) + ε ≥
∫ Tε

0

l(ξεt ) +
1

2
|uεt|2 dt

≥
∫ Tε

0

c3|ξεt |2 dt > Tεc3δ
2
ε = max

|x|≤R
V (x) + ε

which is a contradiction.

Hence for any t ≥ Tε and for all x ∈ B̄(0, R), using monotonicity of St[0] with

t, T ≤ Tε and |V (ξεT | ≤ δε,

St[φ](x) + ε ≥ St[0](x) + ε ≥ STε [0](x) + ε ≥
∫ Tε

0

l(ξεs) +
1

2
|uεs|2 ds

≥
∫ T

0

l(ξεs) +
1

2
|uεs|2 ds

≥ V (x)− V (ξT )

≥ V (x)− ε

(6.42)

Using (6.41) and (6.42) we have for all t ≥ Tε and for all x ∈ B̄(0, R),

|St[φ](x)− V (x)| ≤ 2ε+ ωφ(ε). (6.43)

Thus we have uniform convergence over compact sets.

6.4 Approximation with LQ Hamiltonians

To solve the HJB PDE (6.5), we shall approximate the Hamiltonian by

the min-plus summation of linear-quadratic (LQ) Hamiltonians. Note that this
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vastly expands the class of approximation, since minimum of LQ functions can

approximate any semiconcave Hamiltonian. Specifically, we consider:

0 = −H(x,∇V ) ≈ −H̃(x,∇V )
.
= − inf

m∈{1,2,...,M}
Hm(x,∇V )

V (0) = 0

(6.44)

with each Hm is linear-quadratic,

Hm(x, p) =
1

2
x′Cmx− 1

2
p′Σmp+ (Amx)′p+ x′lm1 + p′lm2 +

1

2
αm, (6.45)

where Cm, Σm are n × n symmetric matrices, lm1 , l
m
2 ∈ Rn and αm ∈ R. H̃ is

associated with an optimal control problem for a switched linear system. For such

problem the dynamics is,

ξ̇t = fµt(ξt) + σµtut, ξ0 = x (6.46)

where fµt
.
= Aµtξt + lµt2 and the corresponding value function is

Ṽ (x) = inf
u∈Lloc

2

inf
µ∈D∞

sup
T<∞

J̃(x, T ;u, µ)

.
= inf

u∈Lloc
2

inf
µ∈D∞

sup
T<∞

∫ T

0

lµt(ξt) +
1

2
|ut|2 dt (6.47)

where

M .
= {1, 2, . . . ,M} and σi are such that Σi = σiσi

′
for i ∈M

lµt(ξt)
.
=

1

2
ξ′Cµtξ + ξ′lµt1 +

1

2
αµt ,

D∞
.
= {µ : [0,∞)→M : measurable }.

In forthcoming development, we shall see that Ṽ is also the viscosity solution of

0 = H̃(x,∇Ṽ ). When the approximation (6.44) is exact, then V = Ṽ . We make

the following assumptions on such an approximation for further analysis.
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1. Assume that the underlying system dynamics and the

payoff functions satisfy (6.3), (6.4). Hence the value

function V defined by (6.2) is a unique viscosity solution,

of 0 = −H(x,∇V ) in class K, as defined in (6.7).

2. With H̃ defined as per (6.44), assume that H̃(x, p) =

infmH
m(x, p) ≥ H(x, p) for all x, p ∈ Rn.

3. Assume that there exist c̄1, c̄2 ∈ (0,∞) such that |Am| ≤
c1, |σm| ≤ c2 for all m ∈M .

= {1, 2, . . . ,M}.

4. Assume that H1(x, p) has coefficients satisfying the

following: l11 = l12 = 0; α1 = 0.

5. Assume that system (6.46) is controllable for any µt =

m ∈M. Thus the pair (Am, σm) is controllable for each

m ∈M.

(6.48)

Specifically in (6.48).3, if #M < ∞, we can choose c̄1 = maxm∈M |Am| and c̄2 =

maxm∈M |σm|. Also note that one consequence of (6.48).1, (6.48).2 , (6.45) and

(6.4) is that

|lm(x)| = |Hm(x, 0)| ≥ H̃(x, 0) ≥ H(x, 0) = l(x) ≥ c3|x|2 (6.49)

Now we assume the following proposition and proceed. It runs parallel to the

development for max-plus curse-of-dimensionality-free method covered in [McE06],

[McE07].

Proposition 6.4.1. Assuming (6.48), value function Ṽ as defined in (6.47), is

the viscosity solution to 0 = −H̃(0,∇Ṽ ), where H̃ is defined as per (6.44), (6.45).

Further Ṽ ∈ K, where K is defined as per (6.7).

Now we state the dynamic programming principle for this problem without

proof, which is entirely standard.
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Theorem 6.4.2. Assume (6.48) and value function Ṽ as defined in (6.47). Then

for all x ∈ RN and t > 0,

Ṽ (x) = inf
u∈Lloc

2

inf
µ∈D∞

{∫ t

0

lµt(ξt) +
1

2
|ut|2 dt+ Ṽ (ξt)

}
(6.50)

Now we propose two bounds on the trajectories of such systems.

Lemma 6.4.3. Assuming (6.48) and the dynamics (6.46), if , we have following

bounds on the system trajectory.

|ξt − x|2 ≤ e(2c̄1+c̄2+1)t

(
c̄2

1|x|2t+ c̄2

∫ t

0

|us|2 ds
)

(6.51)

|ξt|2 ≤ e(2c̄1+c̄2)t|x|2 + c̄2

∫ t

0

e(2c̄1+c̄2)(t−s)|us|2 ds (6.52)

Proof. For each m, with fm(x)
.
= Amx + lm2 and σm(x)

.
= σm, it is easy to see

that fm(·), σm(·), c̄1, c̄2 satisfy the assumptions (6.3). Now, replacing f(ξ) and

σ(ξ) with fµt and σµt respectively in the proof of lemma 6.3.2 with other minor

modifications gives us the above.

Theorem 6.4.4. Assume (6.48) and proposition 6.4.1. With underlying dynamics

(6.46), define

Ũ(x, T )
.
= inf

µ∈D∞
inf
u∈Rn

{∫ T

0

lµt(ξt) +
1

2
|ut|2 dt

}
(6.53)

Then limT→∞ Ũ(x, T ) = Ṽ (x).

Proof. Since lµt(x) ≥ c3|x|2 by (6.49), it is easy to see that Ũ(x, T ) is monotonically

increasing with T , and are bounded above by Ṽ (x) ∈ K, hence they converge to a

limit, Ũ(x,∞) ≤ Ṽ (x). Now we wish to prove that Ṽ (x) ≤ Ũ(x,∞) which proves

the theorem.

Since Ṽ ∈ K, Ṽ is continuous and Ṽ (0) = 0. Thus for any ε > 0, there exists

δε > 0 such that for any ξ ∈ B(0, δε), |Ṽ (ξ)| < ε. Since Ũ(x, T ) ↑ Ũ(x,∞), there

exists Tε >
Ṽ (x)+ε
c3δ2

ε
such that

Ũ(x,∞) ≥ Ũ(x, Tε) ≥ Ũ(x,∞)− ε. (6.54)

Further there exist controls µε, uε and corresponding trajectory ξε such that

Ũ(x, Tε) + ε ≥
∫ Tε

0

lµ
ε
t(ξεt ) +

1

2
|uεt|2 dt (6.55)
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Since Tε >
Ṽ (x)+ε
c3δ2

ε
, there exists T̄ ∈ [0, Tε] such that |ξε

T̄
| ≤ δε. This is so because,

assuming otherwise, leads to following contradiction.

Ṽ (x) + ε ≥ Ũ(x, Tε) + ε ≥
∫ Tε

0

lµ
ε
t(ξεt ) +

1

2
|uεt|2 dt >

∫ Ṽ (x)+ε

c3δ
2
ε

0

c3δ
2
ε dt ≥ Ṽ (x) + ε

Consequently, Ṽ (ξε
T̄

) < ε. Now using the DPP (6.4.2), and (6.54), (6.54), we

get

Ṽ (x) ≤
∫ T̄

0

lµ
ε
t(ξεt ) +

1

2
|uεt|2 dt+ Ṽ (ξεT̄ )

≤
∫ T̄

0

lµ
ε
t(ξεt ) +

1

2
|uεt|2 dt+ ε

≤
∫ Tε

0

lµ
ε
t(ξεt ) +

1

2
|uεt|2 dt+ ε

≤ Ũ(x, Tε) + 2ε

≤ Ũ(x,∞) + 2ε

Since ε is arbitrary, Ṽ (x) ≤ Ũ(x,∞). Hence proved.

With ξ0 = x and dynamics (6.46), define the semigroup,

S̃T [φ](x)
.
= inf

u∈Lloc
2

inf
µ∈DT

[∫ T

0

lµt(ξt) +
1

2
|ut|2 dt+ φ(ξT )

]
(6.56)

where

DT
.
= {µ : [0, T ]→M : measurable}. (6.57)

Now we need a lemma to prove uniqueness of Ṽ as the unique fixed point of the

semigroup operation. Then we have the following.

Theorem 6.4.5. Assume (6.48) and proposition 6.4.1. With the underlying

dynamics (6.46), fix any T > 0. Value function Ṽ is the unique continuous solution

of

W = S̃T [W ]

in the class K. Further given any W ∈ K, limT→∞ S̃[W ](x) = Ṽ (x) for all x ∈ Rn,

uniformly on compact sets.
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Proof. Using the trajectory bounds from the Lemma 6.4.3, we can show that the

ε optimal trajectory for Ṽ defined in (6.47) goes to 0. The proof is very similar

to that of Lemma 6.3.5. Using this, and the lemmas 6.4.3, 6.4.4, the proof follows

almost verbatim to the proof of the Theorem 6.3.7. Hence we not reproduce it

here.

6.5 Discrete Time Approximation

Since we seek to avoid curse-of-dimensionality, we can not discretize over space.

Instead discretization will be over time where approximate µ processes will be

constant over the length of each time-step.

We define operator S̄τ on K by

S̄τ
.
= inf

u∈Lloc
2

inf
m∈M

[∫ τ

0

lm(ξmt +
1

2
|ut|2 dt+ φ(ξmτ )

]
= inf

m∈M
Smτ [φ](x)

(6.58)

where ξm satisfies dynamics

ξ̇mt = Amξmt + σmut, ξm0 = x (6.59)

and Smτ is defined as

Smτ
.
= inf

u∈Lloc
2

[∫ τ

0

lm(ξt)
m +

1

2
|ut|2 dt+ φ(ξmτ )

]
(6.60)

It is useful to note that operators S̄τ do not necessarily form a semigroup,

although they do form a super-semigroup (i.e. S̄τ1+τ2 [φ] ≥ S̄τ1S̄τ2 [φ]). Further, one

has Smτ ≥ S̄τ ≥ S̃τ for all m ∈M.

With τ acting as a time-discretization step-size, let us define discretized
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switching control spaces over infinite and finite horizon.

Dτ∞
.
=

{
µ : [0,∞)→M

∣∣∣∣∣ for all k ∈ N, there exists mk ∈M
such that µt = mk for all t ∈ [(k − 1)τ, kτ)

}
(6.61)

DτT
.
=

{
µ : [0, T )→M

∣∣∣∣∣ for all k ∈ N, k ≤ dT
τ
e, there exists mk ∈M

such that µt = mk for all t ∈ [(k − 1)τ,min(kτ, T ))

}
(6.62)

For N ∈ N, let Mn be the outer product of M, n times, and define

¯̄SτNτ [φ](x) = inf
µ∈Dτ∞

inf
u∈Lloc

2

∫ Nτ

0

lµt(ξt) +
1

2
|ut|2 dt+ φ(ξNτ ) (6.63)

It is easy to prove that

¯̄SτNτ [φ](x) = min
mN∈M

{SmNτ } ¯̄Sτ(N−1)τ [φ](x)

= min
{mk}Nk=1∈MN

{
N∏
k=1

Smkτ

}
[φ](x) =

(
S̄τ
)N

[φ](x)
(6.64)

where the
∏

notation indicates operator composition, and the superscript in

the last expression indicates repeated application of S̄τ , N times.

We will be approximating Ṽ by solving W = S̄τ [W ]. Consequently we will

need to show that the existence and uniqueness of the solution to W = S̄τ [W ]. We

begin with existence.

Theorem 6.5.1. Assume (6.48) and the dynamics (6.46). Let

V̄
.
= inf

µ∈Dτ∞
inf

u∈Lloc
2

∫ ∞
0

lµt(ξt) +
1

2
|ut|2 dt (6.65)

for all x ∈ Rn. Then V̄ satisfies

V̄ = S̄τ [V̄ ] and V̄ (0) = 0 (6.66)

Further, 0 ≤ Ṽ ≤ V̄ .

Proof. Choose µt = 1 for all t. By the controllability of (A1, σ1), as per (6.48),

there exists controls ūt under which the trajectory satisfies ξ0 = x and ξT = 0 for



156

some T > 0. Let ūt = 0 for t > T . Since l11 = l12 = 0 and α1 = 0, as per (6.48),

ξt = 0 for t > T and

V̄ (x) ≤ J(x, ū,∞) =

∫ ∞
0

lµt(ξt) +
1

2
|ūt|2 dt <∞

Hence V̄ exists and is locally bounded.

Since Dτ∞ ⊆ D∞ and Ṽ ∈ K, we have 0 ≤ Ṽ ≤ V̄ . Also the dynamic

programming principle for the discrete time switching problem, which we state

without proof, gives us:

V̄ (x)
.
= inf
Dτ∞

inf
ū∈Lloc

2

{∫ τ

0

lµt(ξt) +
1

2
|ūt|2 dt+ V̄ (ξτ )

}
= S̄τ [V̄ ](x) (6.67)

Finally from the (6.48), at x = 0, 0 ≤ Ṽ (x) = V̄ (0) ≤ J(0, ū,∞) = 0. Hence

V̄ (0) = 0.

Now we assume the following lemma and proceed. Note that it is the discrete

time counterpart of lemma 6.55.

Proposition 6.5.2. Assume (6.48) and the dynamics (6.46). Define

Ū(x,Nτ)
.
= inf

µ∈Dτ∞
inf
u∈Rn

{∫ Nτ

0

lµt(ξt) +
1

2
|ut|2 dt

}
(6.68)

Then limN→∞ Ū(x,Nτ) = V̄ (x).

Theorem 6.5.3. Assuming proposition 6.5.2, V̄ is the unique nonnegative solution

to (6.66). Further, given any W ∈ K, limN→∞
¯̄SτNτ [W ](x) = V̄ (x) for all x ∈ Rn,

uniformly on compact sets.

Proof. Since Dτ∞ ⊂ D∞, using the trajectory bounds from the Lemma 6.4.3, we

can show that the ε optimal trajectory for V̄ defined in (6.65) goes to 0. The

proof is very similar to that of 6.3.5. Using this and the Lemmas 6.4.3, 6.5.2, the

proof follows almost verbatim to the proof of the Theorem 6.3.7. Hence we do not

reproduce it here.



157

We now assume that one may approximate Ṽ , the solution of W = S̃τ [W ] to

as accurate a level as one desires by solving W = S̄τ [W ] for sufficiently small τ .

equivalent to introducing a discrete time µ̄ ∈ DτNτ approximation to the µ process

in S̃Nτ .

Proposition 6.5.4. Given ε > 0 and R <∞, there exists τ > 0 such that

Ṽ (x) ≤ V̄ (x) ≤ Ṽ (x) + ε ∀x ∈ B̄(0, R) (6.69)

6.6 Min-Plus Fundamental Solution

In section 6.4, we approximated a nonlinear Hamiltonian by the pointwise

minimum of M linear quadratic Hamiltonians in (6.44). Such Hamiltonian

represents a switched linear system switching between M constituent systems with

linear dynamics and quadratic payoff. For such a system, in section 6.5, we simplify

the switching problem still further, by time discretizing the switching control by

(6.58)and (6.63). We can compute arbitrarily accurate solution of the switching

problem by decreasing the discretization timestep τ and increasing the time horizon

T . Although the complete error or convergence analysis is not yet carried out, it

would be similar to that for the max-plus counterpart derived in [MK].

Thus we reduce the original problem to that of computing Smτ [φ], in which

a semigroup for a linear-quadratic system (corresponding to the quadratic

Hamiltonian Hm in (6.45), dynamics (6.59) and cost (6.60)) acts on a quadratic

terminal cost function φ(x). Fortunately this is an analytically tractable problem,

with a quadratic solution. Due to this, starting with the zero function, φ retains

the quadratic form throughout the propagation under switching controls and the

final value function is simply the max-plus sum of the propagated quadratic forms.

In [McE07], this problem was solved using semiconvex duality. Here we

present another form which is more direct. It also turns out to be the max-

plus fundamental solution to the underlying problem. This fundamental solution

was first proposed for general nonlinear systems in [FM00], and as a special case,

the closed form solution for linear time varying systems was derived in [Des] using

max-plus algebra. Below is a similar analysis stemming from the min-plus analysis.
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Here we derive the closed form propagation formulae for computing Smτ [φ]. For

brevity, we shall drop the superscript m from the dynamics and cost fuctions,

and implicitly understand that they correspond to the m’th constituent linear-

quadratic system.

First we shall define the general fundamental solution/ max-plus kernel.

Consider a system starting with ξ0 = x and evolving as per

ξ̇s = Aξs + l2 + σus (6.70)

and cost incurred along a particular trajectory is

Jm(x, u, t)
.
=

∫ t

0

l(ξs) +
1

2
|us|2 ds+ φ(ξt) (6.71)

where

l(ξs) =
1

2
ξ′sCξs + ξ′sl1 +

1

2
α. (6.72)

and the value function for the finite horizon problem with terminal cost φ given

by the semigroup operation Smt [φ] is

V m(x, t)
.
= Smt [φ](x) = inf

u∈Lloc
2

Jm(x, u, t) (6.73)

We shall now define a min-plus kernel I : Rn × Rn → R

I t(x, y)
.
=

infu∈Ut(x,y)

∫ t
0
l(ξs) + 1

2
|us|2 ds if U t(x, y) 6= ∅

∞ otherwise
(6.74)

where

U t(x, y)
.
= {u ∈ L2(0, t) : ξ0 = x, ξt = y under the dynamics (6.70)}

Note that I t = ∞ indicates that it is impossible to reach y from x in time

interval (0, τ) using any possible control u. Thus if the system is controllable,

then I t(x, y) <∞ for all t > 0, and I0(x, y) =∞ for x 6= y, and 0 otherwise.

McEneaney and Fleming proposed the above kernel in [FM00] and [Fle03].

They also proved the following theorem.
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Theorem 6.6.1. With the dynamics (6.70) and the terminal cost φ(x), assume

that the finite horizon value function V m(x, t)
.
= Smt [φ] as defined by (6.73), exists.

Then with I t defined as per (6.74), we have

Smt [φ](x) = inf
y∈Rn

(I t(x, y) + φ(y)) =

∫ ⊕
Rn
I t(x, y)⊗ φ(y) dy (6.75)

Since I t depends only on the dynamics (6.70) and the running cost l(xs)+ 1
2
|us|2,

it is independent of the terminal payoff φ(xt). Hence it can serve as a Fundamental

solution and obtain Smt [φ](x) for any φ(x) by a kernel operation.

Now we shall seek to find a closed form solution for I t(x, y). To do this we

parametrize φ(x) by an additional variable z, which along with (6.77) gives us the

next lemma. But first we assume the following

1. Let C, P , Σ are n×n symmetric matrices. Assume that

the solution to the differential Riccati equation (DRE)

−Ṗt = A′Pt + PtA+ C − PtΣPt, PT = P

exists for t ∈ [0, T ].

2. The dynamics (6.70), hence the pair (A, σ) is control-

lable. That is given t > 0, for all x, y ∈ Rn, starting

from ξ0 = x there exists controls u such that ξt = y.

(6.76)

Let Σ = σσ′, and let ∇t and ∇x denote ∂/∂t and ∂/∂x respectively. Consider

the following Hamilton-Jacobi-Bellman PDE.

∇tW
m(x, t) = −Hm(x,∇xW

m(x, t))

Wm(x, T ) = φ(x)
(6.77)

where

Hm(x, p)
.
= inf

u∈Rn

{
p′ (Ax+ l2 + σu) +

1

2
x′Cx+ x′l1 +

1

2
α +

1

2
|u|2
}

=
1

2
x′Cx− 1

2
p′Σp+ p′Ax+ p′l2 + x′l1 +

α

2
. (6.78)
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Lemma 6.6.2. Let the terminal cost be

φ(x) = φz(x) = φ(x, z) =
1

2
x′Px+ x′Sz +

1

2
z′Qz + x′a+ z′b+

β

2
.

Assume that S is invertible and P is such that (6.76) holds true. Then there exists

a C∞ solution to (6.77) for all x ∈ Rn and t ∈ [0, T ], given by

Wm
z (x, t) =

1

2
x′Ptx+ x′Stz +

1

2
z′Qtz + x′at + z′bt +

βt
2

(6.79)

where Pt, St, Qt, at, bt, βt satisfy PT = P , ST = S, QT = Q, aT = a, bT = b, and

−Ṗt = A′Pt + PtA+ C − PtΣPt

−Ṡt = (A− ΣPt)
′St

−Q̇t = −S ′tΣSt

−ȧt = (A− ΣPt)
′at + l1 + Ptl2

−ḃt = S ′t(l2 − Σat)

−β̇ = α− a′tΣat + 2a′tl2

(6.80)

and St is invertible for all t ∈ [0, T ].

Proof. Existence of solution Pt : 0 ≤ t ≤ T is assumed in (6.76). This combined

with local boundedness and continuity of coefficients, guarantees existence of

St, at, and hence of Qt, bt and βt. The proof that it solves HJB is immediate

by substitution in (6.77).

If we define Bt
.
= −(A − ΣPt), then St = ΦB(t, T )ST = ΦB(t, T )S, where ΦB

is the state transition matrix of the system ξ̇t = Btξt. By Abel-Jacobi-Liouville

formula

det ΦB(t, 0) = e
∫ t
T TrB(s) ds > 0

Since both ΦB(t, T ) and ST = S are invertible, St = ΦB(t, T )ST is invertible as

well.

Next we have the verification theorem to connect HJB PDE solution to the

control value function.
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Theorem 6.6.3. Assume (6.76). Let x, z ∈ Rn and t ∈ [0, T ], Wm
z (x, t) as per

(6.79) and V m
z (x, t) be the value function as defined in (6.73). For all t ∈ [0, T ]

and u ∈ L2[0, T − t], one has

Wm
z (x, t) ≤ Jmz (x, u, T − t)

and Wm
z (x, t) = Jmz (x, ũ, T − t), where

ũs = ũ(s, ξ̃s) = −σ′∇Wm
z (s, ξ̃s) = −σ′

(
Psξ̃s + Ssz + as

)
. (6.81)

Thus using (6.79) this implies,

V m
z (x, T − t) = Wm

z (x, t) =
1

2
x′Ptx+ x′Stz +

1

2
z′Qtz + x′at + z′bt +

βt
2
. (6.82)

Proof. Let ∇t and ∇x denote ∂/∂t and ∂/∂x respectively. Let u ∈ L2[t, T ], and ξ

be corresponding time shifted trajectory with ξt = x and satisfying (6.70).

Jmz (x, u, T − t) =

∫ T

t

(
l(ξs) +

1

2
|us|2 + (Aξt + l2 + σus)

′∇Wm
z (ξs, s)

)
ds+ φz(ξT )

−
∫ T

t

(Aξs + l2 + σus)
′∇Wm

z (ξs, s) ds

which by definition of Hm

≥
∫ T

t

Hm(ξs,∇Wm
z (ξs, s)) ds+ φz(ξT )

−
∫ T

t

(Aξs + l2 + σus)
′∇W z(ξs, s) ds

which by (6.77) and (6.70)

=

∫ T

t

{
−∇sW

m
z (ξs, s)− ξ̇s∇Wz(ξs, s)

}
ds+ φz(ξT )

= −
∫ T

t

d

ds
Wm
z (ξs, s) ds+ φz(ξT )

= Wm
z (x, t)−Wm

z (ξT , T ) + φz(ξT )

= Wm
z (x, t)

by (6.77).

Also note that in the proof, if we substitute ũs = −σ(s)′∇Wm
z (ξ̃s, s) =

−σ(s)′
(
Psξ̃s + Ssz + as

)
, then we have the equality throughout, and Jmz (x, ũ, T −

t) = Wm
z (x, t) = V m

z (x, T − t). Hence proved.
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Remark 6.6.4. Since the dynamics (6.70) is time-invariant, we can define

V̂ m(x, t)
.
=

{
inf

u∈Lloc
2

∫ T

t

l(ξs, us) +
1

2
|us|2 ds+ φz(ξT )

∣∣∣∣∣ ξ0 = x

ξt evolves as per (6.70)

}

by shifting the time back by t

=

{
inf

u∈Lloc
2

∫ T−t

0

l(ξs, us) +
1

2
|us|2 ds+ φ(ξT−t)

∣∣∣∣∣ ξt = x

ξt evolves as per (6.70)

}
= V m(x, T − t) = Wm(x, t)

=
1

2
x′Ptx+ x′Stz +

1

2
z′Qtz + x′at + z′bt +

βt
2

(6.83)

Now we prove a useful lemma towards obtaining the min-plus fundamental

solution.

Lemma 6.6.5. Consider the system trajectory ξ̃s starting from ξ̃t = x and evolving

according to (6.70) under the optimal control ũs = −σ′
(
Psξ̃s + Ssz + as

)
from

Theorem 6.6.3. Then for t ≤ t1 ≤ s2 ≤ T ,

S ′t1 ξ̃t1 +Qt1z + bt1 = S ′t2 ξ̃t2 +Qt2z + bt2 (6.84)

Proof. By linear system theory, for a system evolving as per

˙̃ξs = Ax̃s + l2 + σũs

= Aξ̃s + l2 − σσ′
(
Psξ̃s + Ssz + as

)
= (A− ΣPs) ξ̃s − Σ(Ssz + as) + l2

solution is given as

ξ̃t2 = ΦB(t2, t1)ξ̃t1 +

∫ t2

t1

ΦB(t2, s)(−ΣSsz − Σas + l2) ds (6.85)

where ΦB(t2, t1) = Ut2U
−1
t1 , where Us is the solution of differential equation U̇s =

B(s)Us, with B(s) = A− ΣPs.

It is well known that the state transition matrix

ΦB(s)(t2, t1) = Φ′−B(s)′(t1, t2)
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now, noting from (6.80) that Ṡs = −(A − ΣPs)
′Ss = −B(s)′Ss, and since St2 is

invertible, we have

ΦB(s)(t2, t1) = Φ′−B(s)′(t1, t2) =
(
St1S

−1
t2

) ′ = S−1
t2
′St1

′ (6.86)

Substituting in (6.85), and noting from (6.80) that Q̇s = Ss
′Σ(s)Ss and −ḃs =

Ss
′(l2 − Σas),

ξ̃t2 = S−1
t2
′St1

′ξ̃t1 + S−1
t2
′
∫ t2

t1

Ss
′(−ΣSsz − Σas + l2) ds

= S−1
t2
′St1

′ξ̃t1 − S−1
t2
′
(∫ t2

t1

Ss
′ΣSs ds

)
z − S−1

t2
′
(∫ t2

t1

Ss
′(Σas − l2) ds

)
= S−1

t2
′St1

′x̃t1 + S−1
t2
′ (Qt1 −Qt2) z + S−1

t2
′(bt1 − bt2)

thus we have,

St2
′ξ̃t2 +Qt2z + bt2 = St1

′ξ̃t1 +Qt1z + bt1

Remark 6.6.6. Note that ∀z, since St1 and St2 are invertible, (6.84) suggests a

one-one and onto relation between start and end of optimal trajectories, ξt1 and

ξt2 . Thus ∀y ∈ <n there exists a x = S−1
t2
′ (St1

′y + (Qt1 −Qt2)z + bt1 − bt2) such

that optimal trajectory x̃ starting at x̃t1 = x, ends with y. Thus every y ∈ <n is

an optimal point for some initial condition.

Remark 6.6.7. Note that due to min-plus linearity (6.28), if k ∈ <, using (6.29),

V̂ z(x, t) = St[φz + k](x) = St[φz](x) + k = V z(x, t) + k

Thus while keeping the dynamics and the running cost the same, adding a constant

to the terminal cost only shifts the value function accordingly. The gradient hence

the optimal feedback control remains the same.

ût(x) = −σ∇V̂ z(x, T − t) = −σ∇V z(x, T − t) = ũt(x)

Hence the optimal trajectory, which is the solution to ˙̂xt = Ax̂t + l2 + σût(x), also

stays the same.

Now we shall prove another useful lemma before turning to the main result.
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Lemma 6.6.8. Assume (6.76). Given 0 ≤ t1 < t2 ≤ T , and Qt evolving according

to (6.80) with terminal value QT = Q, then

Qt2 −Qt1 � 0

Proof. Since we assumed (A, σ) is controllable, the following controllability gram-

mian is invertible for any 0 ≤ t1 < t2 ≤ T . Here since A is time-invariant,

ΦA(t1, s) = eA(t1−s). ∫ t2

t1

ΦA(t1, s)σσ
′ΦA(t1, s)

′ dt � 0 (6.87)

Thus for all x, y ∈ Rn, ∃ control ût such that is the trajectory ˙̂x = Ax̂t+l2 +σût

with x̂t1 = x satisfies x̂t2 = y.

Now we claim that system (A− ΣPt, σ) is also controllable. This is clear

because by using control ūt = ût + σ′Ptxt, we can keep the system trajectory

same and reach from x to y.

˙̂x = Ax̂t + l2 + σût

= (A− σσ′Pt)xt + l2 + σ (ût + σ′Ptxt)

= (A− ΣPt)xt + l2 + σūt

Hence similar to (6.87), using B(t) = A − ΣPt and σσ′ = Σ(t), following

controllability grammian is invertible.∫ t2

t1

ΦB(t1, s)ΣΦB(t1, s)
′ dt � 0 (6.88)

Substituting ΦB(t1, s) = S−1
t1
′Ss
′ from (6.86),∫ t2

t1

ΦB(t2, s)ΣΦB(t2, s)
′ ds =

∫ t2

t1

S−1
t1
′Ss
′ΣSsS

−1
t1
ds

= S−1
t1
′
{∫ t2

t1

Ss
′ΣSs ds

}
S−1
t1

= S−1
t1
′ (Qt2 −Qt1)S−1

t1
(6.89)

where in last equation, we used Qt evolution from (6.80). Using (6.88) and since

St1 is invertible by Lemma 6.6.2, we have Qt2 −Qt1 � 0.
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Theorem 6.6.9. Given x, y ∈ Rn and 0 ≤ t1 < t2 ≤ T , then if δ
.
= t2 − t1,

sup
z∈Rn

[
V̂ z(x, t1)− V̂ z(y, t2)

]
= Iδ(x, y) (6.90)

Since by (6.83), V̂ z(x, t1) = 1
2
x′Pt1x + x′St1z + 1

2
z′Qt1z + x′at1 + z′bt1 +

βt1
2

and

V̂ z(x, t2) = 1
2
x′Pt2x + x′St2z + 1

2
z′Qt2z + x′at2 + z′bt2 +

βt2
2

, the max-plus kernel

Iδ(x, y) is also bivariate quadratic.

Iδ(x, y) =
1

2
x′I11

δ x+ x′I12
δ y +

1

2
y′I22

δ y + x′I1
δ + y′I2

δ + I0
δ where

I11
δ = Pt1 − St1(Qt1 −Qt2)−1St1

′

I12
δ = St1(Qt1 −Qt2)−1St2

′

I22
δ = −Pt2 − St2(Qt1 −Qt2)−1St2

′

I1
δ = at1 − St1(Qt1 −Qt2)−1(bt1 − bt2)

I2
δ = −at2 + St2(Qt1 −Qt2)−1(bt1 − bt2)

I0
δ = βt1 − βt2 − (bt1 − bt2)′(Qt1 −Qt2)−1(bt1 − bt2)

(6.91)

Proof. Let ξt1 = x. Since Σ � 0 and St is invertible, by (6.80), Q̇s = S ′tΣ(t)St � 0,

hence Qt1 −Qt2 � 0. For any z ∈ Rn

V̂ z(x, t1)− V̂ z(y, t2)

= St2−t1 [V̂ z](x, t2)− V̂ z(y, t2)

= inf
u∈L2[t1,t2]

{∫ t2

t1

lt(ξt, ut) dt+ V̂ z(ξt2 , t2)− V̂ z(y, t2)

}
substituting for V̂ z(·, t2),

= inf
u∈L2[t1,t2]

{∫ t2

t1

lt(ξt, ut) dt+
1

2
ξ′t2Pt2ξt2 −

1

2
y′Pt2y + (ξt2 − y)′(St2z + at2)

}
Since U t2t1 (x, y) = {u ∈ L2(t1, t2) : ξt1 = x, ξt2 = y} ⊂ L2(t1, t2) , and ∀u ∈ U t2t1 (x, y),

ξt2 = y.

≤ inf
u∈Ut2t1 (x,y)

{∫ t2

t1

lt(ξt, ut) dt+
1

2
y′Pt2y −

1

2
y′Pt2y + (y − y)′(St2z + at2)

}
= inf

u∈Ut2t1 (x,y)

∫ t2

t1

lt(ξt, ut) dt = Iδ(x, y) (6.92)
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Taking supremum over all z ∈ Rn,

sup
z∈Rn

[
V̂ z(x, t1)− V̂ z(y, t2)

]
≤ Iδ(x, y) (6.93)

Since Qt2 − Qt1 � 0 by 6.6.8, define ẑ = (Qt2 − Qt1)−1(St1
′x − St2 ′y + bt1 − bt2).

Hence

St2
′y +Qt2 ẑ + bt2 = St1

′x+Qt1 ẑ + bt1

Hence using (6.84) the optimal trajectory x̃t starting from x̃t1 = x and with ter-

minal payoff V̂ ẑ(·, t2), ends at x̃t2 = y. Let the corresponding optimal control be ũt.

Let us define k = −V̂ ẑ(y, t2) = −
(

1
2
y′Pt2y + y′St2 ẑ + 1

2
ẑ′Qt2 ẑ + y′at2 + ẑ′bt2 +

βt2
2

)
to create a shifted terminal payoff function

U ẑ
t2

(x) = V̂ ẑ(x, t2) + k = V̂ ẑ(x, t2)− V̂ ẑ(y, t2)

=
1

2
x′Pt2x−

1

2
y′Pt2y + (x− y)′(St2 ẑ + at2)

(6.94)

From remark 6.6.7, ũt, ξ̃t are also the optimal control and trajectory for the

following problem with the terminal payoff U z
t2

. Hence

V̂ ẑ(x, t1)− V̂ ẑ(y, t2) =

{
inf

u∈L2[t1,t2]

∫ t2

t1

lt(ξt, ut) dt+ V̂ ẑ(x, t2)

}
− V̂ ẑ(y, t2)

= inf
u∈L2[t1,t2]

{∫ t2

t1

lt(ξt, ut) dt+ V̂ ẑ(x, t2)− V̂ ẑ(y, t2)

}
= inf

u∈L2[t1,t2]

∫ t2

t1

lt(ξt, ut) dt+ Ut2(ξt2)

=

∫ t2

t1

lt(ξ̃t, ũt) dt+ U ẑ
t2

(ξ̃t2)

since U ẑ
t2

(ξ̃t2) = U ẑ
t2

(y) = 0 from (6.94) and ũ ∈ U t2t1 (x, y)

≥ inf
u∈Ut2t1 (x,y)

∫ t2

t1

lt(ξt, ut) dt = Iδ(x, y) (6.95)

Thus we have

sup
z

[
V̂ z(x, t1)− V̂ z(y, t2)

]
≥ V̂ ẑ(x, t1)− V̂ ẑ(y, t2) ≥ Iδ(x, y) (6.96)

Hence (6.93) and (6.96) together give us (6.90) and also the following

sup
z∈Rn

[
V̂ z(x, t1)− V̂ z(y, t2)

]
= V̂ ẑ(x, t1)− V̂ ẑ(y, t2) = Iδ(x, y) (6.97)
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with ẑ = (Qt2 −Qt1)−1(St1
′y − St2 ′x+ bt1 − bt2).

Substituting ẑ in (6.97) and expanding, we get (6.91).

6.7 The Algorithm

Now we begin the discussion of the actual algorithm. From Theorem 6.5.1,

V̄
.
= limN→∞

¯̄SτNτ [0](x). Let V̄ 0 ≡ 0 and define for k ≥ 1,

V̄ k .
= ¯̄Sτkτ [0](x), (6.98)

Then we have V̄ = limN→∞ V̄
N(x). In practice, we approximate the infinite horizon

by a sufficiently long finite horizon Nτ . The propagation from from V̄ 0 to V̄ N is

achieved as follows.

For all {mi}ki=1 ∈Mk, define

v{mi}ki=1
(x)

.
=

k∏
i=1

Smiτ [0](x).

Then we have

V̄ k = ¯̄Sτkτ [0] = min
{mi}ki=1∈Mk

{
k∏
i=1

Smiτ

}
[0](x) = min

{mi}ki=1∈Mk
v{mi}ki=1

(x).

Also by (6.65),

V̄ k+1 .
= S̄τ [V̄ k] = min

mk+1∈M
Smkτ

[
min

{mi}ki=1∈Mn
v{mi}ki=1

]
(x)

Since Smkτ is min-plus linear,

= min
{mi}k+1

i=1 ∈Mk+1
Smkτ

[
v{mi}ki=1

]
(x)

= min
{mi}k+1

i=1 ∈Mk+1
v{mi}k+1

i=1
(x) (6.99)

The algorithm shall consist of the forward propagation of v{mi}ki=1
to v{mi}k+1

i=1
=

Smkτ

[
v{mi}ki=1

]
for all k-tuple switchings {mi}ki=1 ∈ Mk and all mk+1 ∈ M. Such

propagation is carried out from k = 0 to some termination step k = N . The value

function is obtained by taking the minimum over all such vN{mi}Ni=1
.
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It is important to note that the computation of each v{mi}ki=1
is analytical. We

will indicate the actual analytical computations in the steps below. Note that

many formulae are duplicated here to make this section self-contained.

• First approximate a nonlinear Hamiltonian we wish to solve, with a min-plus

summation of linear quadratic Hamiltonians as in (6.44).

H(x, p) ≈ H̃(x, p)
.
= min

m∈{1,2,...,M}
Hm(x, p)

where each Hm is linear-quadratic,

Hm(x, p) =
1

2
x′Cmx− 1

2
p′Σmp+ (Amx)′p+ x′lm1 + p′lm2 +

1

2
αm, (6.100)

• Choose time step τ ∈ R and N ∈ N. Thus we shall approximate the infinite

horizon value function Ṽ for the switching problem, as defined in (6.47) by

V̄ N , the value function of discretized switching problem with horizon Nτ as

defined in (6.98).

• For each m ∈ M starting with any (P, S,Q, a, b, β)0, evolve them forward

in time by τ as per (6.80), in which all parameters correspond to m’th

Hamiltonian. Restating here:

−Ṗm
t = Am′Pm

t + Pm
t A

m + Cm − Pm
t ΣmPm

t

−Ṡmt = (Am − ΣmPm
t )′Smt

−Q̇m
t = −Smt

′ΣmSmt

−ȧmt = (Am − ΣmPm
t )′amt + lm1 + Pm

t l
m
2

−ḃmt = Smt
′(lm2 − Σmamt )

−β̇mt = αm − amt
′Σmamt + 2amt

′lm2

(6.101)

Lets denote the solution set by (P, S,Q, a, b, β)mτ .

• Now for each m ∈M, compute the parameters of the min-plus fundamental

solution,

Imτ (x, y) =
1

2
x′I11

m,τx+ x′I12
m,τy +

1

2
y′I22

m,τy + x′I1
m,τ + y′I2

m,τ + I0
m,τ ,
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as per (6.91). Restating here:

I11
m,τ = P0 − S0(Q0 −Qm

τ )−1S0
′

I12
m,τ = S0(Q0 −Qm

τ )−1Smτ
′

I22
m,τ = −Pm

τ − Smτ (Q0 −Qm
τ )−1Smτ

′

I1
m,τ = a0 − S0(Q0 −Qm

τ )−1(b0 − bmτ )

I2
m,τ = −amτ + Smτ (Q0 −Qm

τ )−1(b0 − bmτ )

I0
m,τ = β0 − βmτ − (b0 − bmτ )′(Q0 −Qm

τ )−1(b0 − bmτ )

(6.102)

Note that as a special case, we can choose P0 = Q0 = 0, S0 = I, a0 =

b0 = 0 and β0 = 0, to simplify above formulae considerably. We note that

parameters of Im need only be computed once, and thus can be precomputed.

• Starting with v0(x) = 0, we shall prove that v{mi}ki=1
retain the quadratic

form as k increases by induction. Lets us assume v{mi}ki=1
in the following

quadratic form.

v{mi}ki=1
(x) =

1

2
x′P̂{mi}ki=1

x+ x′â{mi}ki=1
+

1

2
β̂{mi}ki=1

(6.103)

Then for each mk+1 ∈M, by Theorem 6.6.1,

v{mi}k+1
i=1

(x) = Smkτ

[
v{mi}ki=1

]
(x)

= min
y∈Rn

{
Imk+1
τ (x, y) + v{mi}ki=1

(y)
}

=
1

2
x′P̂{mi}k+1

i=1
x+ x′â{mi}k+1

i=1
+

1

2
β̂{mi}k+1

i=1
(6.104)

Note that the minimum exists because otherwise, due to the quadratic form

the infimum would be −∞ for all x. This is impossible because, the LHS

≥ V̄ (x) ≥ 0. Now by (6.103), (6.104) and (6.102),

P̂{mi}k+1
i=1

= I11
mk+1,τ

− I12
mk+1,τ

(
I22
mk+1,τ

+ P̂{mi}ki=1

)−1

I12
mk+1,τ

′

â{mi}k+1
i=1

= −I12
mk+1,τ

(
I22
mk+1,τ

+ P̂{mi}ki=1

)−1 (
â{mi}ki=1

+ I2
mk+1,τ

)
+ I1

mk+1,τ

β̂{mi}k+1
i=1

= β̂{mi}ki=1
+ I0

mk+1,τ

−
(
â{mi}ki=1

+ I2
mk+1,τ

)
′
(
I22
mk+1,τ

+ P̂{mi}ki=1

)−1 (
â{mi}ki=1

+ I2
mk+1,τ

)
(6.105)
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Similar to the max-plus counterpart in [McE07], the errors in the solution are due

to :

1. The approximation of H(x, p) by H̃(x, p). The error analysis for the max-

plus methods for such approximation was carried out in [MD08a] and [MDb].

Analysis for the min-plus method is expected to be similar.

2. Discretization of the timestep τ and premature termination of the horizon at

Nτ . Errors analysis for this approximation for max-plus methods was carried

out in [McE09] and [MK]. Analysis for the min-plus method is expected to

be similar.

Note that the computation of each triplet (P̂ , â, β̂){mi}ki=1
grows like the cube

of the space dimension (due to matrix operations). Thus one avoids the curse-of-

dimensionality.

However, the curse-of-dimensionality is replaced by another type of rapid

computational cost growth. Here, we refer to this as the curse-of-complexity .

If #M = 1, then all the computations of our algorithm (excepting the solution of

the Riccati equation) are unnecessary, and we informally refer to this as complexity

one. When there are M = #M such quadratics in the Hamiltonian, H̃ we say it

has complexity M . Note that

#
{
v{mi}Ni=1

|mi ∈M ∀ i ∈ {1, 2, . . . , N}
}
≈MN

For large N , this number is indeed large. We shall discuss ways to limit this

quadratic growth with N in the next section, but it is significant to note that the

exponential computational cost growth with space dimension n is limited to cubic

growth.

6.7.1 Pruning

The number of quadratics in the solution V̄ k grows exponentially with k.

however in practice, relatively few of these actually contribute to V̄ k. Thus it
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is useful to prune the set, to contain the curse-of-complexity. Note that if

v{m̂i}ki=1
(x) ≥

⊕
{m̂i}ki=1 6={mi}ki=1

v{mi}ki=1
(x) ∀x ∈ Rn

then

S̄t
[
v{m̂i}ki=1

]
(x) ≥ S̄t

 ⊕
{m̂i}ki=1 6={mi}ki=1

v{mi}ki=1

 (x) = S̄t[V̄ k] ∀x ∈ Rn

Thus v{m̂i}ki=1
will play no role in the computation of V̄ kτ+t, for t ≥ 0. Thus

one may prune such v{m̂i}ki=1
without any loss of accuracy. Pruning methods of

various order designed for max-plus methods in [MDG08] can be easily adapted

for above problem to check if a quadratic dominates the min-plus sum of the rest,

and prune it. Note that such pruning methods incur additional computational

burden. But usually it is justifiable in their efficacy in attenuating the exponential

curse-of-complexity as the horizon grows.

Specifically, in the examples below, we used a second order pruning method

based on semi-definite programming developed in [MDG08].

6.8 Numerical Examples

A number of examples were tested on a standard 2004 PC. The algorithm

described above was coded in MATLAB using a second order pruning technique

described in [MDG08]. Since the plots below require one to compute value

functions on a gridded plane in the space, computational time for such plotting

was not included in the quoted computational time.

We will discuss examples with the complexity 3, in dimensions 2 and 4. Note

that all parameters with the superscript j correspond to the Hamiltonian Hj, as

defined in (6.45). Observe that the dynamics is parametrized by A, l2,Σ, and the

payoff by C, l1, α.

Second order example: Let the parameters of the constituent Hamiltonian be
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as below.

A1 =

[
1 −0.5

−0.1 1

]
, C1 =

[
1.5 0.2

0.2 1.5

]
, Σ1 =

[
0.22 −0.01

−0.01 0.22

]
,

l11 = l12 =

[
0

0

]
, α1 = 0,

A2 =

[
−0.35 0.7

0.7 −0.07

]
, C2 = 0.6C1 Σ2 = Σ1,

l21 = 0.05

[
−1

1

]
, l22 = 0.04

[
1

1

]
, α2 = 30

A3 = 0.5A2, C3 = C2, Σ3 = Σ1, l31 = l21, l32 = l22, α3 = 45

The timestep was chosen to be 0.1 seconds. The solution converges in the area

of interest, i.e. a square with side 10 centered at origin in about 14 timesteps

which corresponds to the time horizon of 1.4 seconds. No over pruning was

used. The growth in number of quadratic functions remaining after each

propagation is shown in figure 6.8. Note that at last timestep, using the

pruning methods, the number of quadratics is just 160, which is far lesser

than 314 = 4782969 without pruning. The backsubstitution error and the

optimal switching regimes are shown in the figure 6.1. Here the switching

error plot is rotated for better viewing. Note that the error has converged,

and has a distribution centered at zero. Magnitude of the error can be

decreased arbitrarily by decreasing the timestep, or by reintegrating the

optimal switching histories of the computed quadratics at a smaller timestep.

Thus the error, though coarse, represents the value function (figure 6.3 and

optimal switching regimes (figure 6.1) fairly accurately. The gradients in x

and y directions are shown in figure 6.2. This solution was computed on a

2005 laptop PC with 1.5 GHz speed and 512 MB of memory, in 131 seconds.

A heuristic measure of the error in gradient can developed using Newton’s

method as follows. Let Ṽ and V̄ be the exact and approximate solution of 0 =

−H̃(x,∇(·)). Given x ∈ <n, let m̄ = argminmH
m(x,∇V̄ ). If p̃ = ∇Ṽ (x)

and p̄ = ∇V̄ (x) (where we are assuming the existence of gradients), 0 =
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H̃(x, p̃) ≈ H̃(x, p̄)+(p̃− p̄)′∇pH̃(x, p̄) = e−(Σm̄p̄+Am̄x), where e
.
= H̃(x, p̄)

is the backsubstitution error. To obtain our heuristic gauge of accuracy, we

choose the nearest p, p̂, which is the solution of linearized approximation to

the quadratic Hamiltonian, and use this as an approximation for p̃. That is,

we take

p̂
.
= argmin

p
{|p− p̄| : e− (Σm̄p̄+ Am̄x)′(p− p̄) = 0} .

This can solved using the pseudo-inverse, yielding

p̃− p̄ ≈ p̂− p̄ = (Σm̄p̄+ Am̄x)−1e.

The relative error in the gradient, |p̃−p̄|
p̄

, is plotted in Figure 6.4, and we see

that on an average, it is 2%, and generally much smaller, except at the points

of switching discontinuities.

Figure 6.1: Backsubstitution error and optimal switching regimes for the 2D
problem

Fourth order example: Let the parameters of the constituent Hamiltonian be

defined in terms of the building blocks below.
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Figure 6.2: First and second partials of the Value for the 2D problem

Figure 6.3: Value function for the 2D problem

A1 =

[
1 −0.5

−0.1 1

]
, A2 =

[
−0.35 0.7

0.7 −0.07

]
, C =

[
1.5 0.2

0.2 1.5

]
,

Σ =

[
0.22 −0.01

−0.01 0.22

]
, a =

[
1 0

0 1

]
, l1 = 0.05

[
−1

1

]
, l2 = 0.04

[
1

1

]

We will use a as the coupling matrix between the dynamics in different
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Figure 6.4: Relative gradient error for the 2D problem

dimensions.

A1 =

[
A1 a

a A1

]
, C1 =

[
C 0

0 C

]
, Σ1 =

[
Σ 0

0 Σ

]
, l11 = l12 = 0, α1 = 0,

A2 =

[
A2 a

a A2

]
, C2 = 0.6C1, Σ2 = Σ1, l21 =

[
l1

l1

]
, l22 =

[
12

12

]
, α2 = 30

A3 = 0.8A2, C3 = C2, Σ3 = Σ1, l31 = l21, l32 = l22, α3 = 35

Again the timestep was chosen to be 0.1 seconds. The solution converges in

the area of interest, i.e. a hypercube with side 10 centered at origin in about

14 timesteps which corresponds to the time horizon of 1.4 seconds. No over

pruning was used. The growth in number of quadratic functions remaining

after each propagation is shown in figure 6.8. Note that at last timestep, using

the pruning methods, the number of quadratics is just 198, which is far lesser

than 314 = 4782969. This shows the utility of the pruning methods developed

in [MDG08] to attenuate the curse-of-complexity . The backsubstitution

errors along 1 − 2 and 3 − 4 planes are shown in the figure 6.5. Note

that the error has converged, and has a distribution centered at zero. The

magnitude of error can be decreased arbitrarily by decreasing the timestep, or

by reintegrating the optimal switching histories of the computed quadratics

at a smaller timestep. Thus the error, though coarse, represents the value

function and optimal switching regimes (figure 6.7) fairly accurately. First
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and second partials of the value function for the 1 − 2 plane are shown in

figure 6.6. This solution was computed on a 2005 laptop PC with 1.5 GHz

speed and 512 MB of memory, in 152 seconds.

Figure 6.5: Backsubstitution error along 1−2 and 3−4 planes for the 4D problem

Figure 6.6: First and second partials of the Value in 1−2 plane for the 4D problem

Chapter 6, in part, is currently being prepared for submission for publication

of the material. McEneaney, William; Deshpande, Ameet [MDa]. The dissertation

author was the coauthor of this paper.
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Figure 6.7: Value function and the optimal switching regimes in 1 − 2 plane for
the 4D problem

Figure 6.8: Time vs. number of quadratics in the 2D and 4D problems

Figure 6.9: relative gradient error along 3-4 plane
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