
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Categorical Belief Updating Under Uncertainty

Permalink
https://escholarship.org/uc/item/865959m4

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

Authors
Dewitt, Stephen H
Li, Carmen
Koh, Daniel
et al.

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/865959m4
https://escholarship.org/uc/item/865959m4#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Categorical Belief Updating Under Uncertainty 
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Abstract 

The need to update our estimates of probabilities (e.g., the 

accuracy of a test) given new information is commonplace. Ideally, 

a new instance (e.g., a correct report) would just be added to the 

tally, but we are often uncertain whether a new instance has 

occurred. We present an experiment where participants receive 

conflicting reports from two early-warning cancer tests, where one 

has higher historical accuracy (HA). We present a model showing 

that while uncertain which test is correct, estimates of the accuracy 

of both tests should be reduced. However, among our participants, 

we find two dominant approaches: (1) participants increase the 

more HA test, reducing the other; (2) participants make no change 

to either. Based on mixed methods we argue that both approaches 

represent two sides of a ‘binary’ decision i.e., (1) update as if we 

have complete certainty which test is correct and (2) update as if 

we have no information. 
 

Keywords: Categorical Reasoning; Bayesian; Uncertainty; 

Causal; Confirmation Bias 

 

Introduction 

The Problem 
Reasoning under uncertainty has been a major focus within 

JDM for many decades. In the classic medical diagnosis 

problem (e.g., Casscells, Schoenberger & Graboys, 1978), 

below, participants are provided a population base rate for a 

disease and the FPR of a test to detect that disease. They are 

then asked to determine the chance that an individual who 

has had a positive test result actually has the disease: 

. 

“If a test to detect a disease whose prevalence is 1/100 

has a FPR of 5 per cent, what is the chance that a person 

found to have a positive result actually has the disease, 

assuming that you know nothing about the person’s 

symptoms or signs?” 

 

A huge amount of research has been conducted examining 

why, when and for whom people can solve this problem 

(e.g., Gigerenzer & Hoffrage, 1995). However, in this paper 

we are interested in a secondary question that can be asked 

following the positive test result, but which has not been 

studied before. Instead of asking for the revised probability 

that the person has the disease, we are interested in 

participants’ estimates of the revised accuracy of the test for 

positive reports. This question introduces a whole new set of 

dynamics, requiring participants to wrestle with higher 

orders of uncertainty (Kleiter, 2018). 

Previous literature on this problem has assumed a fixed-

point estimate for the FPR (e.g., 5%), with no variance, and 

thus no capacity for it to change. Indeed, it may well be 

reasonable to assume in the standard scenario that the ‘test’ 

has been extensively conducted such that our confidence in 

that 5% FPR being correct is so high that it is reasonable to 

treat it as a fixed-point estimate. 

However, what about situations where we have very 

limited data on the accuracy of a test, and want to provide 

the best ongoing estimate possible, such as during the early 

stages of a clinical trial? How should the mere fact that the 

test reports a positive result affect our estimate of its 

accuracy? What if two such tests gave conflicting results? 

For example, imagine we were trialing two early warning 

tests for cancer with patients in a high-risk group, one using 

blood, and another using a type of scan. We get the 

predictions from the two tests and monitor patients for 20 

years to see if they develop cancer or not. We have so far 

had results from 10 patients, which can be seen below. For 

both tests you can see how often they reported ‘cancer’ 

(‘positive’) and how often they reported ‘clear’ (‘negative’). 

Next to these numbers you can see how often their reports 

were correct or wrong. For example, the blood test reported 

that 7 out of the 10 patients had cancer, and 6 of these 

patients subsequently developed cancer (correct), while 1 

did not (wrong). Similarly, the scan test reported that 7 out 

of the 10 patients did not have cancer, and 4 of these did not 

develop cancer (correct), while 3 did (wrong). 

 

 
 

Figure 1. Test accuracy rate figures shown to participants in 

the ‘blood’ condition 

 

The Model 
Imagine now that we have a new patient from the same 

high-risk group (50% chance of developing this type of 

cancer over the next 20 years). We run both tests, and the 

blood test gives a positive result, while the scan test gives a 

negative. Before we potentially wait 20 years to find out the 

result, is it possible to adjust our estimates of the accuracy 

for these types of report (positive for the blood test, negative 

for the scan test)? We constructed a model of this scenario 

using Bayesian network software, which can be seen in  

Figure 2. 
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Figure 2. A Bayesian model of the ‘two tests’ problem with 

no observations made 

 

While visually complicated, there is a lot of repetition in 

the model such that it is simpler than it may first appear. In 

the top center we have a node which represents the 

probability of the patient having cancer (50:50). On the left 

we have all the nodes relating to the blood test, and on the 

right all equivalent nodes relating to the scan test. For 

example, at the top left we have a distribution representing 

the false positive rate (FPR) of the blood test, based upon 

the above table (four patients were ‘clear’, and once it 

misreported one of them as having cancer). On the bottom 

left we have the true positive rate (TPR) for the blood test 

(six patients had cancer, and every time it correctly reported 

this). 

When we move to the scan test on the right, we switch to 

using true negative rate (TNR) / false negative rate (FNR) 

labels instead of false positive / true positive. This is simply 

a re-framing as the TNR is the complement of the FPR (i.e., 

if a test has a 75% TNR, it has a 25% FPR), and the TPR is 

the complement of the FNR. We make this change because 

in this scenario the blood test provides a positive report, 

while the scan test provides a negative. Therefore, using the 

‘positive’ framing of the rates for the blood test, and the 

‘negative’ framing for the scan test makes the impact of 

those observations on both tests clearer and requires fewer 

mental gymnastics. 

In this model each distribution begins as a uniform (0,1) 

distribution, updated based upon the observations so far. 

This does not produce a classical frequentist mean estimate. 

For example, the FPR of the blood test in  

Figure 2 provides a FPR mean for the blood test of 

33.3…% rather than the classical frequentist estimate of 

25% (1/4). This Bayesian approach takes sample size into 

account when estimating the mean, unlike the classical 

approach, and provides identical means to the values given 

by LaPlace’s (1814) ‘rule of succession’: 

 

Equation 1. LaPlace’s (1814) ‘Rule of succession’ where x 

represents the number of observed instances, while n 

represents the number of trials 
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� 0.333…  

 

This approach is conservative, pulling mean estimates 

towards 50% and away from the extremes. As n grows, the 

estimate converges on the frequentist estimate. The benefit 

of this approach can be seen when estimating the TPR for 

the blood test. Here we have six correct out of six, providing 

a classical estimate of 100% and no variance, while the 

Bayesian mean is only 87.5% (using LaPlace’s rule, 7/8 = 

0.875). If the perfect accuracy were maintained with more 

trials, this estimate would converge on 100%, but never 

quite reach it, allowing that there is always the possibility of 

a future error. For example, with 60/60, the model produces 

a mean of 98.4% (61/62). We can also see that the TNR 

mean for the scan test (also perfect so far but based on the 

smaller sample size of 4/4) is a little further from 100%, at 

83.33…% (5/6). Finally, as we will see, these specifics do 

not affect the main findings of the paper, as we are 

concerned with direction of change (decrease / no change / 

increase) rather than specific numerical values or precise 

magnitude. 

 

Observations 
We can make observations on the model, which effectively 

fix certain nodes at ‘100%’ and the effects of these 

observations on other nodes in the model can be calculated. 

For example, when we observe that the blood test has 

reported a ‘positive’ (i.e., that the patient has cancer) the 

model increases both the FPR mean (to 36.0% [+2.66…%]) 

and TPR mean (to 88.5% [+1.0%]). This reflects the fact 

that we know the test has made a ‘positive’ claim, but we do 

not yet know which of these two it is (true or false), so the 

‘value’ of this instance is spread between them based on this 

uncertainty. The probability that the patient has cancer rises 

to 72.4%, as can be seen in Figure 3. 

 

 
 

Figure 3. A Bayesian model of the problem with an 

‘observed’ positive blood test 

 

However, when we observe that the scan test has reported 

negative (Figure 4), the FPR mean of the blood test goes up 

further (to 37.0% [+1.0%]), and the TPR mean comes back 

down a little (to 88.3% [-0.2%]). This reflects the fact that 

the positive report by the blood test is now more likely (but 

not certain) to be a false positive than a true positive. This is 

because the only other evidence we have (the scan test, 

which is still an informative test, even if not as accurate as 

the blood test) contradicts it. The probability that the patient 

has cancer comes down to 61.2%, which is still higher than 

the original 50% as we have two conflicting results but the 
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test saying ‘positive’ (blood) has been more accurate in the 

past for these particular reports. 

 

 
 

Figure 4. A Bayesian model of the problem with ‘observed’ 

positive blood test and negative scan test 

 

From the point of view of the scan test, the initial TNR 

mean is 83.3% and the initial FNR mean is 50.0%1 (Figure 

2). When we observe the negative scan result before we 

make the blood test observation (not shown) these are 

revised to 84.8% [+1.5%] and 52.1% [+2.1%] respectively, 

as we do not know if this is a true negative or a false 

negative. When we observe that the blood test has produced 

a positive report (Figure 4), these are again revised to 84.3% 

[-0.5%] and 53.4% [+1.3%], indicating that the negative 

scan report is now more likely to be a false negative than a 

true negative. 

Finally, we can see the effect once we find out for certain 

whether the patient really has cancer (Figure 5). If we 

observe that they really did not have cancer, the TPR mean 

of the blood test returns to its original level (87.5%), while 

the FPR mean increases further (to 42.9% [+5.9%]). This 

reflects our certainty that the blood test has produced a false 

positive: this node effectively now has 2/5 rather than 1/4 

(and using LaPlace’s law, 3/7 = 0.429). The TPR however is 

now back to 6/6, so is unchanged from the baseline. 

Additionally, we now know that the negative scan test 

report was correct, so that TNR mean increases to 85.7% 

(now at 5/5 so with LaPlace’s law, 6/7 = 0.857), and the 

FNR returns to its original value (50%). 

 

 
 

Figure 5. A Bayesian model of the problem with 

observations showing a positive blood test, negative scan 

test, and that the patient really does not have cancer 

 
1 Here we see that only at 50.0% do the Bayesian / LaPlacean 

and frequentist estimates completely match. 

 

The initial figures provided set up the blood test as the 

more accurate of the two for the specific reports made (most 

notably, the FNR mean of the scan test is considerably 

higher than the FPR mean of the blood test). In the ‘conflict’ 

situation we set up, it is therefore entirely appropriate to 

conclude that the blood test is more likely to be correct on 

this occasion than the scan test, even though we cannot 

know for certain. However, when dealing with uncertainty 

in a range of situations, people are known to often treat 

uncertainties as categorical or digital values (0% or 100%) 

i.e., to make assumptions. This seems to be especially the 

case in multi-stage inferences, defined by Gettys, Kelly & 

Peterson (1973) as: 

“…a series of single-stage inferences where the output of 

each previous stage becomes the input to the next stage” 

(Gettys, Kelly & Peterson, 1973 pp.364) 

This is relevant to the current situation where participants 

may (stage 1) estimate which test is more likely to be 

correct on this occasion and (stage 2) use this assessment to 

update their estimates of the accuracy of each test for these 

reports (e.g., positive for the blood test, negative for the 

scan test). Both Gettys et al (1973) and Johnson, Merchant 

& Keil (2020) have shown how in such situations, 

presumably for the sake of computational simplification 

(e.g., Lieder & Griffiths, 2019), the initial estimate is often 

converted into categorical form for use in the next stage. In 

the current context that would mean assuming the blood test 

was correct this time when updating beliefs about how 

accurate the two tests are for these types of reports. 

In fact, we have tentatively observed these cognitive 

processes in related work with different scenarios (Dewitt, 

Fenton, Liefgreen & Lagnado, 2020; Dewitt, Lagnado & 

Fenton, 2018). Dewitt et al (2018) presented participants 

with a scenario where two nations, X and Y, are the possible 

sources of a missile explosion where Y has a higher 

historical record of successfully exploding missiles (4/6 vs 

X’s 1/6). Participants were asked to update their estimates 

of the proficiency of X and Y at exploding missiles after the 

latest explosion. Dewitt et al (2020) presented participants 

with a modified version of the classic taxicab problem (Bar 

Hillel, 1980)2, but where the witness’s accuracy at judging 

cab colours, rather than just being stated as 80%, was 

established by them being accurate 4 times out of 5 on a 

test. Furthermore, rather than focusing on participants’ 

estimates of the probability the cab involved in the hit and 

run scenario is blue, our focus was on their estimate of the 

witness’s accuracy after they report that the cab was blue. In 

each of these problems, as well as the current problem we 

 
2 A cab was involved in a hit-and-run accident at night. Two cab 

companies, the Green and the Blue, operate in the city. You are given the 

following data: 90% of the cabs in the city are Green and 10% are Blue. A 

witness identified the cab as Blue. The court tested the reliability of the 

witness under the circumstances that existed on the night of the accident 

and concluded that the witness correctly identified each of the two colours 

80% of the time and failed 20% of the time. What is the probability that the 

cab involved in the accident was Blue rather than Green? 
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are asking participants to update their estimates of 

propensities in light of an ambiguous new instance. 

Across both previous experiments we found two modal 

responses. First, around one third of participants appear to 

update based upon similar assumption-based or ‘as if’ 

reasoning as predicted by Gettys et al (1973). In Dewitt et al 

(2018) these participants increased their estimate of the 

proficiency of Y, leaving X unchanged (although 

normatively both should increase). In Dewitt et al (2020) 

these participants increased their estimate of the witness’s 

accuracy, even though it should decrease (because their 

claim contradicts a strong base rate suggesting the cab is 

green). A second modal response also made by around one 

third of participants in each experiment was to make no 

change at all. In Dewitt et al (2018) this meant leaving both 

X and Y unchanged, and in Dewitt et al (2020) this meant 

making no change to the witness’s accuracy. 

These experiments in combination with the current 

represent the three basic causal structures: a simple chain 

(Dewitt et al [2020]), a ‘common effect’ (Dewitt et al 

[2018]: X and Y are both potential causes of the explosion) 

and now a ‘common cause’ (the patient’s cancer status is a 

cause of both the blood and scan test reports). They also 

represent quite different scenarios across major domains of 

human endeavor: military reasoning, legal reasoning, and 

medical reasoning. Part of the purpose of the present 

experiment is therefore to add to the generalizability of this 

suite of experiments. This experiment also involves a more 

complex scenario, with the BN model having 15 nodes, 

rather than 8 (Dewitt et al [2018]) or 5 (Dewitt et al [2020]). 

A further key aim of the present experiment is to test a 

theory that was developed over those two works about the 

relationship between the ‘as if’ response, and the ‘no 

change’ response. These two responses seem to represent 

two sides of a ‘binary’ choice: either update as if you were 

certain (e.g., that Y was responsible for the explosion / that 

the witness is correct this time) or update as if you have no 

information at all. What is lacking in these approaches is a 

graded / probabilistic approach. Indeed, we have theorized 

that these two response types in fact may have a similar 

representation of the problem, seeing these two approaches 

as the only two possible responses. The difference would 

then be how ‘certain’ they need to be (i.e., their certainty 

threshold) to make the ‘as if’ response. We have speculated 

that ‘no change’ responders have a higher threshold for this 

than ‘as if’ responders, and so withhold from making any 

update, seeing that as their only alternative. 

As with previous experiments, our aim in the present is 

primarily to present participants with the current problem 

and observe their response patterns. Importantly, we are not 

interested in observing the magnitude of our participants 

estimates, as the mathematics requires sophisticated 

modelling, but instead are interested in their intuitions about 

the direction of change i.e., whether, at various stages they 

consider the tests to be more accurate than before (for the 

given type of report), less accurate, or the same. Observing 

their pattern of responses for both tests will allow us to 

determine if they are dealing with the problem in a 

categorical manner or in a graded / probabilistic manner. If, 

after being told the results of the two tests, but before being 

told if the patient has cancer or not, they operate 

categorically, assuming the blood test is correct (and 

therefore scan wrong), we expect them to increase their 

accuracy estimate of the blood test for positive reports and 

reduce their accuracy estimate of the scan test for negative 

reports. However, if they operate in a graded / probabilistic 

manner, avoiding assumptions, they will, like the model, 

decrease their accuracy estimates of both tests. 

Finally, we will be providing our participants with a range 

of supplementary questions to give us as much data as 

possible on their cognitive processes, including most 

crucially, their certainty threshold for making the ‘as if’ 

response. In line with calls for more verbal protocol designs 

(McNair, 2015) we will also be asking our participants to 

explain their responses in open text boxes. 

 

Method 
Participants 
Participants (n = 225) were recruited from Prolific 

Academic and paid £9 per hour. Mean age was 28.8 (SD = 

10.4), with a minimum of 18 and a maximum of 75. 

 

Materials & Procedure 
All materials and data can be found online at 

https://osf.io/ucg92/. Participants were presented with the 

scenario described in the introduction and given time with 

the numbers in  

Figure 1. They were then asked to make initial accuracy 

estimates using sliders of each test for each report type 

(Blood positive / negative; Scan positive / negative) based 

on that table to ensure comprehension. 

Participants were then told about the new patient and the 

result of each test sequentially. After each result they were 

asked, as another comprehension check, to indicate any 

change in the patient’s chance of having cancer. 

Participants were then asked, in light of the two reports, to 

indicate on a sliding scale, whether their accuracy estimate 

for each test, for the type of report made (positive for the 

blood test, negative for the scan test) had increased, 

decreased, or not changed.  

 

 
 

Figure 6. The sliding mechanism for updating accuracy seen 

by participants 

 

The original frequencies (Figure 1) for both tests were 

also provided on this page as a reminder. The participant’s 

own initial estimate was also ‘piped in’ next to the word 
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‘still’. We only recorded whether they increased, decreased 

or made no change. Participants could not just do nothing to 

be recorded as ‘no change’. They had to move the slider to 

activate it and then put it back at ‘Still X’ for this to register. 

Depending on which of the three response types 

participants made (Decrease; No change; Increase), they 

saw some identical, and some different follow up questions 

to probe their reasoning. Firstly, all participants were asked 

to indicate using a slider, their certainty that the blood test 

was correct on this occasion, and their confidence in that 

estimate. They were also asked ‘When deciding how to 

update your accuracy estimates of the two tests, did you:’ 

1. Assume the blood test was correct this time 

2. Assume the scan test was correct this time 

3. Neither / Other [Plus accompanying open text box] 

Following this, participants who made either no change, 

or increased their estimate of the blood test’s accuracy for 

positive reports, were asked to provide the certainty 

threshold they would require for increasing their estimate. 

To provide this they were given a series of options from 

50% to 100% in 5% intervals. 

Participants who made no change to either test were asked 

an additional follow up question, requesting them to choose 

which of the following options most closely captured their 

reasoning: 

1. Until I know for certain whether the blood test is 

correct this time (i.e. whether the patient really has 

cancer) it is incorrect to make any change to my 

accuracy estimates. 

2. I saw my estimate of the test’s accuracy as exactly 

equalling its true accuracy, which cannot change, 

whatever new information we get. 

3. Although my accuracy estimate would change a little, it 

is a negligible change from only one extra observation. 

4. Other [Plus accompanying open text box] 

At the end of the experiment all participants were told 

that we eventually find out the patient really did not have 

cancer, contradicting the blood test’s report. They were then 

asked again to update their accuracy estimate of the two 

tests for the report types made compared to their original 

(prior) estimate. This again acted as a comprehension check 

/ comparison with their estimate under uncertainty. 

Finally, the experiment was run in a second version 

with the figures for the blood and the scan test ‘flipped’ so 

that the scan test was the more historically accurate, to rule 

out possible confounding factors of world knowledge about 

these types of tests and between positive / negative reports. 

In the following results we combine both versions for 

analysis, referring to the test with the more reliable statistics 

(the blood test in the first version, the scan test in the 

second) as the more historically accurate (HA) test. 

 

Results 

Quantitative 

In Table 1 the initial estimates provided by participants 

for each test (Blood / Scan) for each type of report (positive 

/ negative) can be for both framings of the experiment 

(where blood was the more HA / where scan was the more 

HA). The reports made by the two tests in the scenario 

(positive for blood, negative for scan) are highlighted in 

grey. 

 

Table 1. Participant estimates of the accuracy of the two 

tests when providing positive / negative reports for both 

framings of the experiment: [actual frequencies provided], 

mean, (standard deviation).  

 

 Blood Scan 

 Positive Negative Positive Negative 

Blood 

more HA 

[6/7] 

76.3 
(21.3) 

[3/3] 

85.8 
(25.5) 

[3/3] 

82.5 
(26.9) 

[4/7] 

53.8 
(18.1) 

     

Scan 

more HA 

[4/7] 

56.8 
(12.8) 

[3/3] 

84.8 
(22.3) 

[3/3] 

86.1 
(22.0) 

[6/7] 

80.2 
(14.8) 

 

Responses to the problem were coded according to how 

participants changed their accuracy estimates for both tests. 

Two major response types were found. The first was to 

make no change to either (NC-NC), and was made by 

32.4% of the sample. The second, was to increase the more 

HA test, and reduce the other (INC-RED), and was made by 

33.3% of the sample. No other response type was seen in 

more than 6% of participants (only 6 individuals reduced 

both), and the following analyses focus on understanding 

the cognitive processes lying behind NC-NC and INC-RED. 

In Table 2 we present the pattern of responses to a range of 

questions. 

 

Table 2. Descriptive statistics for a range of questions 

divided by the two major response types 

 

 
  NC-NC INC-RED 

 Total N (225) 73 75 

M
ea

n
 

 (
S

D
) 

 

Certainty more HA 

test is correct 
74.7% 
(18.7) 

76.3% 
(15.0) 

Confidence in above 66.0% 
(20.4) 

72.8% 
(18.7) 

Certainty threshold for 

increasing accuracy 

estimate of more HA 

test 

84.1% 
(12.4) 

76.4% 
(12.1) 

    

P
ro

p
o

rt
io

n
  

se
lf

-r
ep

o
rt

in
g

…
 

 

Assumed more HA test 

correct 
52.1% 81.3% 

Assumed less HA test 

correct 
9.6% 6.7% 

Assumed neither / other 38.4% 12.0% 
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All following linear regressions use NC-NC vs INC-RED 

as independent variable (IV). Starting from the top of the 

table, three linear regressions were run with (1) ‘Certainty’ 

as dependent variable (DV) (74.7% vs 76.3%: B=1.6, 

F(1,146)=.334, p=.564), (2) ‘Confidence’ as DV (66.0% vs 

72.8%: B=6.8, F(1,146)=4.5, p=.035) and (3) ‘Threshold’ as 

DV (84.1% vs 76.4%: B=7.7, F(1,146)=14.2, p<.001). 

Three binary logistic regressions, again with NC-NC vs 

INC-RED as IV, were run to examine differences in terms 

of whether they self-reported (1) assuming the more HA test 

was correct (52.1% vs 81.3%: Wald(1) = 13.5, p<.001), (2) 

the less accurate test was correct (9.6% vs 6.7%: Wald(1) = 

.42, p=.517) and (3) whether they assumed neither / other 

(38.4% vs 12.0%: Wald(1) = 12.5, p<.001). 

Participants making the NC-NC response were presented 

with a further multiple-choice question presenting three 

theorized cognitive processes as well as an ‘other’ option. 

Forty-four (60.3%) chose the option stating that it was 

incorrect to update accuracy estimates until we are certain 

whether the patient really has cancer or not. Fourteen 

(19.2%) chose the option stating that the accuracy rates 

were fixed and could not change, while a further 14 (19.2%) 

chose the option stating that the change was negligible. 

Only one individual chose ‘other’. 

Finally, when told the patient’s result at the end of the 

study (which in both versions was in contradiction to the 

more HA test’s report) 60.3% of NC-NC responders 

reduced their accuracy estimate for the more HA test and 

56.2% increased their accuracy estimate for the less HA test. 

 

Qualitative 

INC-RED. Out of the 75 INC-RED individuals, 51 (68.0%) 

were coded as referencing the historical accuracy of the two 

tests in their explanation of their response (21 [28.0%] were 

coded as ‘unclassified’ as their reasoning could not be 

determined). For example, P62 said “[The] blood test when 

checking for cancer is more accurate. [The] scan test is less 

accurate in the case of a "clear" patient”, P8 said, “The 

blood test is more precise than the scan test” and P10 said, 

“I think the blood tests are more accurate”. The majority of 

these didn’t explicitly state that they believed one or the 

other test was correct / incorrect this time. However some 

did, such as P12 “…the blood test has a better history of 

being accurate so it seems more likely that the blood test is 

right”, and in the condition where the scan was more 

reliable, P216 said “Statistically the scan is less likely to be 

wrong on the diagnosis, that's why I think the blood test is 

wrong” and P152 said “Well the blood test was only right 

on 4 out of 7 positives. The scanner was pretty accurate 

(6/7) on clears so in this case I think the person is more 

likely to be clear than having cancer. So, the clear scanner 

makes me think it’s a false positive on the blood test and 

that the blood test has 50% accuracy” 

 

NC-NC. No single dominant code could be established for 

the 73 individuals who made no change (33 [45.2%] were 

coded as ‘unclassified’), however some patterns of thinking 

emerged. Similar to INC-RED, 15 (20.5%) simply 

mentioned the historical accuracies e.g., P25 “I trust the 

blood test result more, because it has more accurate 

outcomes from the same number of trials.”. However, nine 

individuals (12.3%) made clear that they couldn’t change 

their estimates while we were unsure which test was correct 

e.g. P7 “We don't yet know whether the new participant 

has/will develop cancer or not, so we don't have any new 

data to influence the previous estimate.”, P160 “We cannot 

change our predictions of the accuracies without knowing 

the result of this patient” and P162 “As I do not know if the 

patient does indeed have cancer, I can't update the 

probabilities of either of the tests being right or wrong.” 

Four participants wanted more data e.g., P5 “More data is 

needed, I think, for me to be able to really adjust my 

estimates.” Four participants simply stated that nothing had 

changed e.g., P111 “Nothing has changed as far as I can tell, 

and the statistics for the accuracy of the tests are still the 

same” and three saw the new information as irrelevant for 

updating propensities e.g., P21 “I don't see any change in 

the predictive nature of either test based on the 

circumstances.” 

 

Discussion 
As we see in the model, the normative approach to the 

problem when both tests conflict with one another is to 

increase estimates of both their error rates i.e., to decrease 

estimates of their accuracy for the particular reports 

provided. Once that uncertainty is removed, and we know 

which test was correct, we would increase our estimate of 

the accuracy of that test, while decreasing our estimate of 

the accuracy of the one which was incorrect. However, 

while the outcome is uncertain, this is spread in a graded / 

probabilistic manner across the two tests according to how 

likely they are to be correct this time. 

Our two majority responses, either making no change to 

the accuracy of either test (NC-NC), or to increase the 

accuracy of the more HA test while reducing the accuracy 

of the other (INC-RED) do not match the normative 

response. Instead, the INC-RED response matches the 

normative response when we know for certain that the more 

HA test was correct. We therefore suspect, in line with 

previous work, that these responders are using assumption-

based thinking, acting ‘as if’ they knew that the more HA 

test was in fact was correct even while it is uncertain. 

Indeed, as can be seen in Table 1, 81.3% of INC-RED 

responders self-report as having made this assumption. 

While most responses from the qualitative data simply 

referenced the historical accuracy of the two tests, some 

explicit mention of this assumption was also seen there. 

The NC-NC response makes a different error: it is the 

normative response if we had no information at all. Based 

on the pattern of responses to the follow up questions, we 

suspect that the NC-NC responders actually have a similar 

representation of the problem to INC-RED responders but 

are simply making a different choice of how to handle it. 

We can firstly see this in the large number of participants 
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mentioning the historical accuracies of the two tests in the 

qualitative data. However, unlike INC-RED responders, 

many NC-NC responders say, even though they recognize 

that one test has been more accurate than the other, they 

cannot make change until they know for sure which one is 

correct. The NC-NC response may therefore be a 

‘conservative’ choice of how to deal with uncertainty i.e., to 

wait until we know more and avoid updating based on 

assumptions. This fits with the fact that 60.3% of NC-NC 

responders chose the option stating that it was incorrect to 

make updates under uncertainty, and around 60.0% made 

the appropriate adjustment at the end of the study once they 

did know the patient’s true status.  

This general picture also fits with the quantitative data in 

table 1, demonstrating the difference in responses to a range 

of questions by the two approaches. Firstly, we can see that 

there is no difference in certainty: both were equally certain 

(around 75%) that the more HA test was correct on this 

occasion. There is a possible difference in confidence in this 

estimate, with INC-RED responders being more confident, 

but this should be considered tentative. Importantly 

however, there seems to be a clear difference (around 8%, 

p<.001) in the threshold that each response type reports they 

would require in order to increase their estimate in the more 

HA test. Notably, this threshold is lower among INC-RED 

responders and roughly matches their mean certainty 

(76.4% vs 76.3%), than among NC-NC responders, where it 

is considerably higher than their mean certainty (84.1% vs 

74.7%). Connected to this, we can see that nearly 30% more 

INC-RED responders self-reported as ‘assuming’ the more 

HA test was correct. Correspondingly, around 25% more 

NC-NC responders reported not making any assumptions. 

This tentatively presents a picture where both NC-NC and 

INC-RED responders have a similar representation of the 

problem. Both think the more HA test is likely to be correct 

this time, and the INC-RED responders are prepared to 

update accuracy estimates based upon this assumption (their 

certainty threshold has been met) while NC-NC responders 

are not prepared to, and prefer to make no change, either 

waiting for certainty, or for more data in general (until their 

certainty threshold is met). The two responses therefore 

seem to represent two sides of a ‘binary’ (or digital / 

categorical) choice – either make no change, as if we had no 

information at all, or make a change as if we were certain 

that the more HA test was correct. What is lacking in these 

responses representing two thirds of our sample therefore is 

a ‘probabilistic’ or ‘graded’ response to this problem. 

While we do not know why participants make these 

responses, a general framework of ‘resource rationality’ is 

plausible, as the approach certainly simplifies the problem. 

However, as we have mentioned in previous work (Dewitt 

et al., 2018; Dewitt et al., 2020), the INC-RED 

‘simplification’ of the problem produces a belief updating 

dynamic similar to that seen in the confirmation bias 

literature, where, because e.g., the blood test has been more 

accurate in the past, we update our beliefs based on the 

assumption that it is correct this time, producing a self-

reinforcing dynamic. In each of our three experiments these 

assumptions are also based on a very small sample size. It 

would be interesting to see how this updating process is 

handled over multiple iterations i.e., if we saw several more 

patients with conflicting results each time. Participants may 

compensate e.g., after several times of assuming the blood 

test is correct, they may ‘give one’ to the scan test, in 

proportion to the priors. So, while they may not be using a 

graded approach within one individual instance, it is still 

possible that they may do so over time. 
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