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Contributed article

Optimization of olfactory model in software to give 1/f power
spectra reveals numerical instabilities in solutions governed by

aperiodic (chaotic) attractors

Hung-Jen Chang*, Walter J. Freeman, Brian C. Burke
Division of Neurobiology, LSA 129 and Department of Molecular and Cell Biology, University of California, Berkeley, USA

Received 17 August 1995; accepted 12 September 1997

Abstract

We present a general connectionist model for an olfactory system. The dynamical behavior of each node (neural ensemble) of the model is
governed by a second-order ordinary differential equation (ODE) followed by an asymmetric sigmoidal function, relating the aggregate
activity of neurons to system parameters and stimuli from an outside environment. A digital implementation of the general connectionist
model simulates the characteristics of a mammalian olfactory system having modifiable synaptic connections and spatio-temporal inter-
actions among neural ensembles. Each of four distributed delay terms is represented by a second-order ODE. A parameter optimization
algorithm is an integral component of the model. The parameter optimization discussed in this paper results in aperiodic oscillations having a
near 1/f-type power spectrum with a peak in the gamma range, simulating the electro-encephalographic (EEG) potentials from the neural
olfactory system. Random optimization is used for a rough search in a global parameter domain and the parameter self-adaptation rule serves
for fine tuning within a local domain after the global search. By design the model is started from an unstable zero point by an external impulse
input. It requires 650–850 ms to pass through an initializing transient before settling into a strange attractor. The attractor persists for at least
1500 ms, which is 7.5–20 times longer than the duration of the maximal stationary states observed in the EEGs and it is stable under
perturbation by simulated sensory inputs giving response amplitudes less than 2 times the basal aperiodic activity. However, the optimization
to 1/f-type activity reveals an inherent limit on digital simulation of chaotic states, owing to attractor crowding such that the size of basins
decreases with increasing size of the model, until it approaches the size of digitizing step in computation, here a 64-bit word (,10¹16).
Outputs that are not optimized to approach 1/f-type power spectra transit earlier to limit cycle activity, usually well before 2000 ms. The
duration of stationarity is increased by randomizing the terminal bit of the 64-bit words representing the state variables. The 1/f-type solutions
are also exquisitely sensitive to parameter truncation; parameter values must be saved in their full binary form for re-starting. The
implications in terms of numerical instability, chaos, attractor crowding and the shadowing theorem are discussed.q 1998 Elsevier
Science Ltd. All rights reserved.

Keywords:1/f Power spectrum; Attractor crowding; Chaos; EEG wave; Neural ensemble; Olfactory system; Shadowing; Pseudo-trajectory

Nomenclature

n number of channels of an olfactory system, i.e. a distributed
OB layer withn units

xi(t) wave amplitude activity of cell ensemblei [ {1, 2,…,N} at
time t [ R

yi(t) pulse density activity of cell ensemblei [ {1, 2,…,N} at
time t [ R

r i(t) external stimulus (forcing term) ofxi at time t
wij system parameter, which is the connection strength fromyj

to yi Þ j

ki system parameter, which is the gain forr i to yi

1. Introduction

There are two steps to model a very large-scale neural
system. The first is to construct a set of parametric
equations, which incorporate the anatomical synaptic con-
nections and physiological interactions among neural

PERGAMON

* Requests for reprints should be sent to Huang-Jen Chang, Department of
Molecular and Cell Biology, University of California, Berkeley, CA 94720,
U.S.A.; E-mail: hjchang@icsib28.icsi.berkeley.edu.

0893–6080/98/$19.00q 1998 Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(97)00116-0

LR set of cell ensemble nodes in one of the layers of the
olfactory model, i.e.LR [ { PG, OB, AON, PC}

Q(xi, q(LR)) sigmoidal I/O transformation function forxi with a system
parameter,q(LR), defining its least upper bound

DL set of four delay feedback nodes
a 0.220/ms, which reflects the slower real rate constant ofxi

b 0.720/ms, which reflects the faster real rate constant ofxi
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ensembles that are perturbed by external inputs. The second
is to derive quantitative rules, which direct self-adjustment
of the values of parameters of the model from its searching
history. The automation of parameter optimization in large-
scale biologically plausible cortical networks opens a new
approach to investigate sensorimotor operations in brains
(Freeman and Shimoide, 1994; Chang and Freeman,
1996). By using biological data as the criteria, we optimize
parameters in a neural ensemble model used to simulate
output of the olfactory system for specified input and for
basal activity with no input.

An early model simulating a biological neural system was
a relatively lower dimensional chaotic system (Freeman,
1987) in which slight variation of initial conditions of

variables or system parameters led to diverse output
patterns. The results from computer simulations are thus
highly dependent on the numerical precision and differences
in machines, ODE solvers, programming languages, etc.
Instead of showing the values of parameters used to simu-
late experimental data, it makes more sense to report the
optimization algorithm, including specification of per-
formance criteria, for researchers to generate the data by
using their own software and hardware. Both the parametric
mathematical model and its parameter optimization
algorithm, based on the attendant activity perturbation
dynamics, should be regarded as integral components of a
realistic neural model.

The parameter optimization algorithm, which leads the

Fig. 1. This topological diagram specifies the connections among neural ensembles of the olfactory system. The olfactory bulb (OB) and prepyriform cortex
(PC) are distributed layers of coupled oscillators. The anterior olfactory nucleus (AON) is a control nucleus relaying centrifugal modulatory commands. These
three oscillators have incommensurate characteristic frequencies. Only the OB is at present modeled as an array. Each node stands for a second-orderODE for
the single ensemble dynamics. An input from receptors (R) goes to periglomerular (P) and mitral cells (M). The mitral cells transmit to granule cells (G) and to
AON and PC, from which the final output is sent to the external capsule (EC) from deep pyramidal cells (C), as well as back to the OB and AON.
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model to operate in a domain of aperiodic solutions simu-
lating the olfactory EEG, includes two techniques: random
optimization (Matyas, 1965) and error propagation (Chang
and Freeman, 1996). The first serves for a rough searching
in a global parameter domain and the second serves for fine
tuning within the local domain from the global search. This
optimization algorithm, including specification of per-
formance criteria should be regarded as an integral com-
ponent of a realistic neural model, although it is not
unique. The results reported here reveal a significant barrier
to implementation of a digital embodiment of the model,
owing to the instability of numerical solutions of the
equations.

1.1. Architecture of a model of an olfactory system

The central olfactory system consists of the peri-
glomerular layer (PG), the bulb (OB), anterior olfactory
nucleus (AON) and prepyriform cortex (PC). Each part is
composed of cell ensembles, which are populations of
excitatory or inhibitory neurons. Fig. 1 shows a schematic
diagram of principal types of neurons, pathways and syn-
aptic connections in the olfactory mucosa, bulb and cortex.
Each node represents an ensemble in a local neighborhood.
The dynamics is represented by a linear second-order equa-
tions to model cable delay and passive membrane delay.
The linear part is followed by a static sigmoid nonlinear
function.

The ensemble rate constants,a andb, of each node were
fixed throughout at physiologically determined values
(Freeman, 1975). Length constants were obviated by using
a globally connected network. Gain constants,q(LR), for the
asymptotic maximum of the sigmoidal I/O relationship
(Fig. 2) were fixed at a common value (Eeckman and
Freeman, 1991) within the periglomerular (P) array in the
PG and at other values in the mitral (M) and granule (G)
arrays in the OB, the excitatory (E,A) and inhibitory (I,B)
neurons in the AON and PC and the deep pyramidal cells
(C) in the PC. The connection strengths between nodes

within the PG, OB, AON and PC and the feed-forward
and feed-back gains between them, are the system
parameters modeling the synaptic interactions of neural
ensembles. Other parameters required to model the full set
are distributed feedback delays. We have been shown
empirically that the solutions of the model suffice to simu-
late versatile EEG patterns by proper evaluation of all the
parameters (Freeman, 1987, 1992; Yao and Freeman, 1990).

The asymmetric sigmoid function (Fig. 2) has been
derived from the Hodgkin–Huxley equations (Freeman,
1979) and evaluated by fitting it to the normalized prob-
ability density conditional on EEG amplitude of single
and multiple unit firing of neurons in the PG, OB, AON,
PC and entorhinal cortex (Freeman, 1975; Eeckman and
Freeman, 1991). The asymmetry is necessary for the
input-dependent increase in gain that is required to simulate
bursts of oscillation on inhalation. The function has only one
parameter,q(LR), to specify slope, asymptotes and zero
operating point, whereas alternatives such as the logistics
curve, the arctangent and a cubic spline cell require three
parameters.

1.2. The problem of parameter optimization

Because the synaptic connection weights cannot be
directly measured from experiments, we optimize these
values by simulating with the model the biologically
measured activity (endogenous EEG waves) and average
evoked potentials (AEPs impulse response evoked by elec-
trical stimulation). Owing to a high dimensional parameter
space and thus high complexity of parameter controls for the
entire system, it is unrealistic to optimize all the parameters
at the same time. We take a step-by-step approach to over-
come this difficulty (Freeman, 1975; Freeman and
Shimoide, 1994; Shimoide and Freeman, 1995).

1. Fix the values of parameters that can be measured
experimentally, e.g. the values of passive membrane
rate constants and conduction delays in the open loop,
noninteractive state under deep anesthesia (Freeman,
1975).

2. Partition the olfactory system (e.g. the PG, OB, AON and
PC) and optimize the values of their internal parameters
with respect to AEPs in their near-linear ranges at their
characteristic frequencies. (Freeman and Shimoide,
1994; Chang and Freeman, 1996).

3. Fix the values of parameters which have been deter-
mined and optimize the values of synaptic connection
parameters between the parts with reference to the
EEGs and multiple unit activity of the four parts.

In this paper, we focus on the third step. One of observed
characteristics of EEGs is a 1/f-type power spectrum.
Averaged auto and cross spectra for the OB and PC at rest
and of the entorhinal cortex and dentate gyrus of hippo-
campus (DG), show that the log power decreased nearly
linearly with log frequency. Temporal frequency analysis

Fig. 2. Asymmetric sigmoidal I/O transformation function [q(LR) ¼ 5.000].
This function was derived from the Hodgkin–Huxley system (Freeman,
1979) and holds for all parts of the central olfactory system (Eeckman
and Freeman, 1991).
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on pre- and post-stimulus of neocortical EEG segments for
prepyriform, visual, somatic and auditory recordings also
reveal 1/f-type power spectra (Barrie et al., 1996). Thus,
the 1/f Property becomes our criterion for the optimization.
Our aim is to derive an analytical rule and determine the
values of parameters to match the characteristic from nor-
mal neuro-physiological data.

In Section 2, a mathematical model of the olfactory
system is presented. The parameter optimization rule is
addressed in Section 3. Simulation results shown in
Section 4 employ the mathematical analyses in the previous
sections.

2. Dynamics of the olfactory neural ensemble model

A massively parallel distributed architecture with multi-
ple layers can be used to describe the olfactory neural
system (Freeman, 1974). We first express a vector–matrix
representation of the olfactory neural dynamics and next
give an example to show how it is derived. The definitions
of variables and parameters are given in nomenclature.

2.1. Vector–matrix representation of the olfactory model

The dynamical behavior of each cell ensemble of the
olfactory system can be governed by:

1
Fi

[ẍi(t) þ Wi ẋi(t) þ Fixi(t)] ¼
∑N
jÞi

wij yi(t) þ kiri(t), (1)

a general connectionist model (Chang and Freeman, 1996),
whereF i and W i are derived from experimental rate con-
stants. A single (double) dot over a variable means the first
(second) derivative of the variable with respect to time. The
variable,x, represents dendritic potential, as it is evaluated
by extracellular measurements of EEGs. The variabley
represents multineuronal pulse density as it is evaluated
by multiunit recording. Both variables are continuous in
the cortex. They are discretized by experimental measure-
ment. Conversion from pulse density,y, to wave amplitude,
x, is implicit in the synaptic weights. Conversion from
wave amplitude,x, to pulse density,y, is implicit in the
sigmoidal function,Q(x,q(LR)) (see Fig. 2 withq(LR) ¼

5.000). The pulse–wave conversion is kept in its linear
range by the sigmoid (Freeman, 1975). The variabler stands
for an external stimulus. Physiological experiments confirm
that a linear second-order derivative is an appropriate
choice.

By the topological diagram of Fig. 1, then-channel
olfactory model is implemented by Eq. (1) in vector–matrix
notation with the specifications listed in Appendix A. This
notation allows us to concisely present the olfactory model
and its corresponding dynamics of parameter optimization
(see Section 3).

2.2. ODEs for the periglomerular cell ensemble

To show how to evaluate Eq. (1) in vector–matrix
representation, we begin with the dynamics of the P cell
ensemble in the PG layer:

1
ab

[P̈m(t) þ (aþ b)Ṗm(t) þ abPm(t)]

¼
W(PPL)

n¹ 1

∑n

nÞm

Q(Pn(t), q(PG)) þ k(PR)Rm(t)

þ w(PD2)

∫t
0

K(t)Q(E1(t), q(AON)) dt ð2Þ

The RHS of Eq. (2) represents the summed input to a P
neural ensemble from receptor R, from the other
P-ensembles in the same layer and from delayed outputs
of ensembles in the AON layer. Here,K(t) $ 0 is used to
simulate the distributed delay feedback from cell ensemble
E1(t). It is a unimodal and normalized function, which
means that for a current timet $ 0 and 0# t # t, K(t)
has only one maximum withK(0) ¼ K(t) ¼ 0 andR t

0 K(t) dt ¼ 1. The LHS of Eq. (2) is the inside change of
the ensemble due to the net input.

Let t ¹ T(s)
2 and t ¹ T(e)

2 be delay starting time and delay
ending time, respectively, and take the kernel functionK(t) as:

K(step)(t) ¼
1

T(s)
2 ¹ T(e)

2 þ 1

∑t ¹ T(e)
2

k¼ t ¹ T(s)
2

d(t ¹ k)

i.e. a difference of two discrete step functions. The delay
feedback term in Eq. (2) becomes

w(PD2)

T(s)
2 ¹ T(e)

2 þ 1

∑t ¹ T(e)
2

t ¼ t ¹ T(s)
2

Q(E1(t), q(AON)) (3)

The olfactory model is thus described by a set of
differential-delay equations, which is the dynamics that
Yao and Freeman studied in 1990. It is, however, biologi-
cally implausible, owing to distributed arrival times in mul-
tiaxonal tracts due to distributed conduction velocities and
delays and it is also numerically error prone in digital simu-
lations, due to coarse graining of distributed delays by the
computational time step. By using a numerical solver for an
ODE set, the actual integration time step is internally
adjusted according to the slope at that moment. To have an
accurate implementation on a numerical integration of Eq. (2)
with K(t) ¼ K (step)(t), we should offer these data ofE1(t) at
each correct moment, but it is technically impossible.

In this paper, to model temporal distributed axonal delays
we express the kernel functionK (step)by a difference of two
exponential functions:

K(exp)(t) ¼
1

T(s)
2 ¹ T(e)

2

exp ¹
t ¹ t

T(s)
2

 !
¹ exp ¹

t ¹ t

T(e)
2

 !" #

452 H.-J. Chang et al. / Neural Networks 11 (1998) 449–466



as shown in Fig. 3. Obviously,K (exp)(t) has the unique
maximum att ¼ t ¹ Tm with

T(e)
2 , Tm ¼

T(s)
2 T(e)

2

T(s)
2 ¹ T(e)

2

ln
T(s)

2

T(e)
2

 !
, T(s)

2

and K (exp)(0) < 0 (when t is large) andK (exp)(t) ¼ 0. In
addition, because of:

∫t
0

K(exp)(t) dt ¼ 1þ
1

T(s)
2 ¹ T(e)

2

T(e)
2 exp ¹

t

T(e)
2

 !"

¹ T(s)
2 exp ¹

t

T(s)
2

 !#
,

K (exp)(t) is a normalized function. (The second term
becomes negligible whent is large.) K (exp) is thus a
temporally smooth version ofK (step). Through Laplace trans-
formation, we then see that Eq. (2) withK(t) ¼ K (exp)(t) is
mathematically equivalent to:

1
ab

P̈m(t) þ (aþ b)Ṗm(t) þ abPm(t)
� �

¼
w(PPL)

n¹ 1

∑n

vÞm

Q(Pv(t), q(P)) þ k(PR)tm(t) þ w(PD2)D2(t),

T(s)
2 T(e)

2 D̈2(t) þ
1

T(s)
2

þ
1

T(e)
2

 !
Ḋ2(t) þ

1

T(s)
2 T(e)

2

D2(t)

" #
¼ Q(E1(t), q(AON)Þ,

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
with D2(0) ¼ D̈2(0) ¼ 0.

Moreover, because the Fourier transformation ofD2(t) is:

F [D2(t)] ¼ H(q)F [Q(E1(t), q(AON))]

with

H(q) ¼
(1¹ T(s)

2 T(e)
2 q2) ¹ i(T(s)

2 ¹ T(e)
2 )q

(1¹ T(s)
2 T(e)

2 q2)2 þ (T(s)
2 ¹ T(s)

2 )2q2
, (4)

the delayed feedback node acts as a low-pass filter. Using
the same procedure to model the other delayed feedback
loops, the ‘‘infinite dimensional’’ differential-delay
equations (Yao and Freeman, 1990) convert into finite
dimensional ODEs. The dynamical model expressed in
Section 2.1 and Appendix A is thus constructed. We call it
the low-pass filter olfactory model.

3. An optimization technique for 1/f power spectra

We combine global and local search processes for para-
meter optimization. The global search has long jumps to
avoid being trapped in a local minimum. The local search
is a gradient descent to a local minimum.

3.1. Parameter optimization rule for local searching

By way of spatio-temporal error propagation, we obtain
the parameter self-adjusting rule (Chang and Freeman,
1996). The criterion is to match the power spectrum of the
model to the desired 1/f-type power spectrum (in the sense
of minimizing a pre-defined error function within a
frequency domainQ).

We decompose each second-order ODE to two first-order
ODEs. Let l [ {0, 1} and x(0)

i (t) ¼
K

xi(t) and reformulate
Eq. (1) as:

ẋ(0)
i (t)

ẋ(1)
i (t)

0@ 1A
2N31

¼

x(1)
i (t)

¹ Aix
(1)
i (t) ¹ Bix

(0)
i (t) þ Bi

∑N
jÞi

wij yj þ Bikiri(t)

0BBB@
1CCCA

2N31

:

ð5Þ

A time sequencex(l )
i (t) is then generated by Eq. (5) fort

from t i $ 0 to t f . t i. Its power spectrum
is S(l )

i (q) ¼
K lX(l )

i (q)l2 with X(l )
i (q) ¼ F [x(l )

i (t)] (a Fourier
transformation ofx(l )

i (t)) for t from a state transitiontst $
t i to the next state transitiontnst # t f.

To derive parameter optimization rules, in the first step
we have to choose an objective functionE to be minimized
in terms of power spectra of actual outputs of the mathe-
matical modelS(l )

i (q)s and its targetsT(l )
i (q)s. There are

only two requirements for the choices:E $ 0 andE ¼ 0

Fig. 3. Kernel function for delayed feedback (at timet ¼ 750 ms,Tl
(s) ¼

20.000,Tl
(e) ¼ 11.000 ms).
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if S(l )
i (q) ¼ T(l )

i (q) for all l [ {0, 1}, q [ Q andi [ {1, 2,…,
N}. Here,F(S(l )

i (q), T(l )
i (q)) is an error function, which can

be from the least-square fit, relative entropy, etc. (Kullback,
1978; Chang and Freeman, 1996). We also introduce a
weight function h

(l )
i (q) for S(l )

i (q) achieving T(l )
i (q) at

frequencyq. For instance, we may have:

h
(0)
i (q) ¼

1������
2p

p
j

exp ¹
(q ¹ q̄)2

2j2

� �
andh

(1)
i (q) ¼ 0

to suppress the output time series ofxi(t) from having too
strong frequency components aroundq ¼ q̄ (see also
Section 4 for theh(l )

i (q) we used in the simulations). Thus,
the objective functionE ¼ E(0) þ E(1) with the form:

E(l ) ¼
∑N
i ¼ 1

∫
Q

h
(l )
i (q)F(S(l )

i (q), T(l )
i (q)) dq: (6)

In the second step, we derive dynamics of the network of
perturbation variablel(l )

i (t) [Eq. (8)] from the dynamics of
the network of ensemble variablex(l )

i (t) [Eq. (5)]. We need
to define and distinguish two kinds of partial differentiations
with respect tox(l )

i (t).
(1) The derivative which accounts for the corresponding

change ofE due to an arbitrarily small change ofx(l )
i (t) at

some particular timet with everything else fixed; that is, the
conventional partial derivative:

]E

]x(l )
i (t)

¼ p(l )
i (t) dt (7)

with

p(l )
i (t) ¼

����
2
p

r ∫
Q

h(l )
i (q)

]F(S(l )
i (q), T(l )

i (q))
]S(l )

i (q)

3 Re[X(l )
i (q) exp( ¹ iqt)] dq

from Eq. (6).
(2) The other derivative which accounts for the corre-

sponding change ofE due to an arbitrarily small change
of x(l )

i at time t, when this change propagates throughout
the trajectories of other ensembles in the entire time interval
that is denoted byl(l )

i (t) ¼ (]þ E)=(]x(l )
i (t)), an ordered

partial derivative (Werbos, 1974, 1988).

The perturbation dynamics are then:

l̇
(0)
i (t)

l̇(1)
i (t)

0@ 1A
2N31

¼
Bil

(1)
i (t) ¹

]yi(t)
]x(0)

i (t)

∑N
jÞi

Bjqji l
(1)
j (t) ¹ p(0)

i (t)

Ail
(1)
i (t) ¹ l(0)

i (t) ¹ p(1)
i (t)

0BBB@
1CCCA

2N31

ð8Þ

with boundary conditionsl(0)
i (tnst) ¼ l

(1)
i (tnst) ¼ 0 for all is.

The complementary relationship of network structures
between the two dynamics is expressed in Fig. 4.

We can next relate the perturbation ofE with respect to
parameterswij and ki to l(l )

i (t) by the following Eq. (9).
Because of symmetric property of the network structure,
assume thatqi1j1, qi2j2, … and wiL(q) jL(q) all have the value
of the ıth distinguishable connection strengthq̃ ı. Similarly,
ki1 ¼ ki2 ¼ … ¼ kiL(k) ¼ k̃ı. Following this, the derivative
which accounts for the corresponding change inE due to
an arbitrarily small change of the parameter,p i over the time
interval from tst to tnst, is:

]E
]pi

¼

∫tnst

tst

∑L(p)

k¼ 1
[Bikzk(t)l(1)

ik
(t)] dt (9)

where

zk(t) ¼
yjk (t), whenp is q̃

rik (t), whenp is k̃

(
After obtaining the gradients, we can apply a proper
optimization algorithm to derive the adaptation rules for
parameters. Here, a gradient descent approach allows us
to adjust the values of weight parameters according to
p(new)
ı ¼ p(old)

ı þDpı, with:

Dpı ¼ ¹ C
]E
]pı

(10)

where the constantC governs a learning rate. In summary,
for an interconnected neural ensemble model of the
olfactory system described by Eq. (1), if the system para-
meters are updated cyclically att ¼ tnstaccording to Eq. (10)
with the gradients given in Eq. (9), then the connection

Fig. 4. Reformulation of dynamics in Eq. (1) for ensemble activity and activity perturbation from second-order to pairs of first-order ODEs. The upperloops
resulting from the reformulation do not imply self-excitation, which does not occur in cortical neuropil, the dense layered fabric of axons, dendrites and
synapses.
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strength parameters can be locally optimized to give the
output of the model a 1/f-type power spectrum.

The model in Eq. (1) and its parameter optimization rule
[Eqs. (8)–(10)] are generalizations of the multilayer per-
ceptrons and the back-propagation rule. The detail is
shown in Appendix B. This convergence supports the cor-
rectness of the derivations and provides alternative
approach to derive the back propagation rule (Chang and
Freeman, 1996).

3.2. Approach to global optimization of parameters

The parameters which have been determined in the early
stage are fixed to reduce the complexity/dimension of the
parameter searching space. From neurobiological sug-
gestions, we set initial guesses and a global search domain
for these parameters to be optimized. In the global search-
ing, we generate a set of random numbers with certain
distributions for parameters updating and test on the up-
dating whether the updated parameters are in the search
domain (Matyas, 1965; Solis and Wets, 1981). Next, we
numerically integrate Eq. (5) and calculate the correspond-
ing error by Eq. (6). When this error is sufficiently small for
transition to local tuning, we use the local optimization rule
presented in Section 3.1 for the next parameter adaptation.
In the local tuning, we numerically integrate Eq. (5). We set
the boundary for l

(0)
i (tnst) ¼ l

(1)
i (tnst) ¼ 0 and integrate

Eq. (8) from tnst back to tst. At the same time, we also
integrate Eq. (9) to get the gradients for parameters and
thus adapt these parameters according to Eq. (10). When a
difference of the successive error or parameter vector is
small enough, we revert to the global search. The whole pro-
cess continues until a stop criterion (defined in Section 4.1) is
met.

Unlike a traditional random optimization technique, in
which the parameters are always updated randomly, we

update the parameters randomly only if a local optimum
of an error function is reached. We choose the random
distribution as a Gaussian function. Through the experience
of several simulation runs, we are able to locate the
appropriate mean and standard deviation. However, it is,
in general, heuristic to determine the distribution functions
which can quickly direct converge to the basin of a global
optimum.

4. Simulations

The technique developed in Section 3 were used to
optimize the parameters of the olfactory model with four
low-pass filters representing distributed feedback delays.
The numerical integration was performed by Livermore
solver for ODEs with time stepDt ¼ 1.0 ms in all cases.
All the simulations were performed on Macintosh II
computers.

We studied impulse responses with:

ri(t) ¼
1, for i ¼ 1 or nþ 1, and 0# t # Dt,

0, otherwise,

(
which was always used to initiate non zero output from the
low-pass filter model. The initial values ofxi(t) and ẋi(t)
were set zero. We used the fast Fourier transform algorithm
(Ramirez, 1985) to calculateX(l )

i (q) ¼ F [x(l )
i (t)] for time t

from tst to tnst. A least-square fit led us to choose:

F(S(l )
i (q), T(l )

i (q)) ¼
1
2
(S(l )

i (q) ¹ T(l )
i (q))2:

A graph of log(q) versus log(S(0)(q)) of an experimental
EEG power spectrum can be fitted by a ‘‘straight’’ line
for q( ¼

K
f =2p) greater than a minimal valuewmin to

the maximal frequencywmax (see Fig. 5), with slope¹ b i

Fig. 5. (A) An EEG from OB of a non-motivated rabbit; (B) the corresponding log–log plot of spectrum of the OB.
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andy-intercept atx ¼ log(qc) as log(a i). We had the target
pattern asT(0)

i (q) ¼ aiq
¹ bi . h(0)

i (q) ¼ q2bi was set to nor-
malize across high frequency andh(1)

i (q) ¼ 0 because of
no feature to optimize onx(1)

i (t). By the form of Eq. (6),
the objective function for minimizing became:

E¼

∫qmax

qmin

1
2
[qbi S(0)

i (q) ¹ ai ]
2 dq (11)

which gave the ordinary partial derivative

]E
]Xi(t)

¼
K

p(0)
i (t) ¼

����
2
p

r ∫
Q

[wbi S(0)
i (q) ¹ a]qbRe{ X(0)

i (q)

3 exp( ¹ iqt)} dq

For anmth-order differentiable variablex(t) with its Fourier

Fig. 6. (A) The example of time series from G2 of the four-channel low-pass filter model, withw(MP) ¼ 0:779, w(M1M1L) ¼ 2:500, w(E1M1) ¼ 1:300,
w(A1M1) ¼ 1:700,w(G1G1L) ¼ 1:000,w(CB1) ¼ ¹ 1:300,w(B1C) ¼ 1:187, andw(G1D1) ¼ 0:500,w(PD2) ¼ 4:000,w(I1D3) ¼ 0:500,w(G1D4) ¼ 4:000, andT(s)

1 ¼ 20:000,
T(e)

1 ¼ 10:000, T(s)
2 ¼ 26:000, T(e)

2 ¼ 15:000, T(s)
3 ¼ 25:000, T(e)

3 ¼ 12:000, T(s)
4 ¼ 39:000, T(e)

4 ¼ 24:000; (B) the corresponding log–log plot of power spectra
from 867 to 2037 ms.

Fig. 7. (A) The example of time series from G2 of the 16-channel low-pass filter model; (B) The corresponding log–log plot of power spectra from 867 to
2037 ms.
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transform existing:�����F d3x(t)
dt3

� ������¼q2j lF [x(t)]l2

holds for any non-negative integerj # m. Thus, the
above objective function with respect toS(0)

i (q) can be trans-
formed to that with respect toS(1)

i (q) and this result was more
practical especially whenxi(t) was a ‘‘pure’’ 1/f (i.e. b i ¼ 2,
which was often the cases for our simulations). Therefore, the
power spectrum ofx(1)

i (t) was supposed to be a constant and:

E¼

∫qmax

qmin

1
2
[S(1)

i (q) ¹ai ]2 dq, (12)

with the ordinary partial derivative as

]E

]x(1)
i (t)

¼
K

p(1)
i (t) ¼

����
2
p

r ∫
Q

[S(1)
i (q) ¹ ai ]Re{ X(1)

i (q)

3 exp( ¹ iqt)} dq

Thus, the target T(1)
i (q) ¼ ai and h

(0)
i (q) ¼ 0 and

h
(1)
i (q) ¼ 1. From the viewpoint of the Livermore solver

on the olfactory model Eq. (5), bothx(1)
i (t) andx(0)

i (t) were
independent variables to be solved. No further preparation
was needed if using Eq. (12) and the numerical accuracy of
x(1)

i (t) was just as good asx(0)
i (t).

Fig. 8. (A) The example of time series from G2 of the four-channel low-pass filter model with constant stimulus from 1367 to 1537 ms (simulated burst of
inputinduced state transition); (B) the corresponding log–log plot of power spectra from 867 to 1367 ms; (C) the corresponding log–log plot of power spectra
from 1367 to 1537 ms; (D) The corresponding log–log plot of power spectra from 1537 to 2037 ms.
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4.1. Numerical results of parameter optimization

WeoptimizedqCB1
, qB1C, qM1M1L, qG1G1L and connection

strengthsq ij between layers PG, OB, AON, PC and delay
feedback nodesD1, D2, D3 andD4. Appendix C gives the
fixed parameters, which had been determined. A step-by-
step algorithm is listed in Appendix D.

In Fig. 6, the parameters are optimized for a four-
channel low-pass filter model, yielding a 1/f-type power
spectrum from the output time series of OB node (the
granule cellsG2 of the first channel in Fig. 1). To express
scaling invariance of the model, we extended the simulation
to a 16-channel case and kept the parameter values
unchanged. Fig. 7 shows the output of the firstG2 node
having a 1/f-type power spectrum. (Although the initializa-
tion period in the 16-channel model simulation ended

aroundt ¼ 650 ms, we still calculated power spectra from
t ¼ 867 ms for comparison with the four-channel case.)
Both the examples had Eq. (5) numerically integrated
from 0 to 2037 ms. Because 1/f power spectrum is only a
necessary condition to simulate an EEG wave, after finding
possible candidates by way of the parameter optimization
algorithm, we visually checked if the time series was experi-
mentally realistic.

Next, this four-channel model was given a constant
stimulus from 1367 ms to 1537 ms to channel 1 (on node
i ¼ 1 andi ¼ n þ 1). Fig. 8 shows that the first 867 ms is a
warm-up period and the following 500 ms gives a basal
state. The model trajectory then jumps to a near ‘‘periodic’’
state (a burst-like state) in the next couple hundred milli-
seconds due to presenting a 170 ms constant stimulus input
at R with intensity 0.68 and goes back to the same basal

Fig. 9. (A) The example of time series from G2 of the 16-channel low-pass filter model with constant stimulus from 1367 to 1537 ms (simulated burst of
inputinduced state transition); (B) the corresponding log–log plot of power spectra from 867 to 1367 ms; (C) the corresponding log–log plot of power spectra
from 1367 to 1537 ms; (D) the corresponding log–log plot of power spectra from 1537 to 2037 ms.
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state, shown by the another 500 ms, after the stimulus is
ended. Again, the simulation was extended to the 16-
channel model (Fig. 9). An important property of the low-
pass filter olfactory model is revealed by these examples:
the system returns to the previously defined attractor after
termination of the stimulus. Moreover, the 1/f state is stable
in the sense that if the total perturbation amount (external
input) to the model is not more than 0.68 (input intensity)3
170 s (input duration), the 1/f state can persist. Because of
its high nonlinearity, the low-pass filter model is destabi-
lized when either the stimulus duration or the stimulus
intensity becomes too long or too strong. The input stage
of the olfactory system has a neural mechanism for input
range compression by a logarithm transformation (Freeman,
1975), which, if over-ridden or by-passed, can lead to onset
of seizures. Fig. 10 shows the one-channel model with opti-
mized parameters to simulated the olfactory seizure activity.
one-channel model has two connectedP nodes (not a single
P node) to form the layer of periglomerular cells (Freeman,
1987). When we compare the 1/f state shown in Fig. 11(A)
with a non-1/f state shown in Fig. 12(A), these simulation
results also suggest that a 1/f state is less influenced by a tiny
perturbation (e.g. the numerical truncation/round-off).
Thus, we propose that maintenance of the 1/f spectrum is
a good criterion to ‘‘stabilize’’ a biological neural system
and that corresponds to having high correlation of output
time series in numerical simulations of the low-pass filter
olfactory model [see Fig. 11(A)]. Here, ‘‘stabilization’’ for
the model means that sufficiently small perturbations to
parameters, variables, or even the model’s structure will
still permit the trajectory to return to the same attractor.

We cannot expect to reproduce the identical results by

directly using Livermore package with the truncated data
given in Figs. 6–12. When the low-pass filter model is
operated in a domain of aperiodic oscillations, it resembles
a chaotic system, in that tiny perturbations of state variables
or parameters may lead to an exponentially diverging out-
put. The exact parameter values used by the machines
internally were binary representation with double precision
(64 bits) and rounded of to give the decimal values shown.
However, in any programming language with any proper
ODE integrator and on any computer, given the initial
guesses of the parameters and the starting condition, we
can always optimize the values of parameters in respect to
a specified criterion of output.

4.2. Shadowing of the chaotic solution

A chaotic system has the property that a relatively small
numerical noise tends to grow exponentially fast. To inte-
grate ODEs on a current digital computer, a continuous time
function must be converted into a discrete time map. Fol-
lowing an iterated process with a proper time step, we get a
numerical solution. We cannot accept this is ‘‘a true
solution’’ of the original chaotic system. We agree
with Dawson et al. (1993) who stated: ‘‘We believe that
in systems with high-dimensional chaos, trajectories with
intrinsic noise, such as computer-generated pseudo-
trajectories, can be shadowed only for short times.’’

Thus, the extended question we examine is the fuzzy
word ‘‘short’’: Can we control the shadowing time?
Because the normalizing-rounding process in the floating
point arithmetic is a deterministic process occurring at the
least significant bit level, the shadowing lemma to the
digital integration for a chaotic solution is not applicable.
Fryska and Zohdy, 1992 injected controlled amounts of
uniformly distributed random noise to a three-dimensional
chaotic system (a piecewise linear system) during digital
integration and thereby closely approximated the statistics
of the invariant chaotic attractor. Due to simplicity of their
system, an exact analytical solution was obtainable, which
was used as a reference for comparing with numerical
solutions from different precisions.

We have no way to analytically solve the high dimen-
sional neural model. To check the shadowing property and
the numerical sensitivity of the model, here, we gave two
mathematically equivalent formulas for the low-pass filter
model, say Implementation 1 and Implementation 2. Con-
sider the ODE for theM1 node of OB:

1
ab

[M̈1m(t) þ (aþ b)Ṁ1m(t) þ abM1m(t)]

¼q(MP)Q(Pm(T), q(PG)) þ
w(M1M1L)

n¹ 1

∑n

vÞm

Q(M1v(t), q(OB))

þ q(MM)Q(M2m(t), q(OB)) þ q(MG)[Q(G1m(t), q(OB))

þ Q(G2m(t), q(OB))] þ k(MR)rm(t):

Fig. 10. (A) A 2000 ms segment from a rat’s EEG recording during a
seizure [Reprinted from Freeman (1987) by permission of Springer,
Berlin]. (B) A segment 2000 ms in duration from the output of G2 node
of the one-channel low-pass filter model, withw(M1P) ¼ 0:779,
w(E1M1) ¼ 0:600, w(A1M1) ¼ 3:800, w(G1G1L) ¼ 1:000, w(CB1) ¼ ¹ 0:900,
w(B1C) ¼ 1:600, and w(G1D1) ¼ 3:240, w(PD2) ¼ 6:020, w(I1D3) ¼ 3:7803,
w(G1D4) ¼ 0:240, and T(s)

1 ¼ 19:510, T(e)
1 ¼ 10:470, T(s)

2 ¼ 25:790,
T(e)

2 ¼ 14:250,T(s)
3 ¼ 24:870,T(e)

3 ¼ 12:330,T(s)
4 ¼ 37:960,T(e)

4 ¼ 24:160.
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On Implementation 1, the second term of the RHS was
coded by:

1:0
n¹ 1:0

timesq(M1M1L)

∑n

vÞm

Q(M1v
(t), q(OB)):

On Implementation 2, it was coded by:

q(M1M1L)

∑n

vÞm

Q(M1v
(t), q(OB)) divided byn¹ 1:0:

All the other parts on coding the ODEs were identical.
Because of truncation/round-off on terminal bits, the two
formulas are not identically represented by machine code.
The difference can propagate out spatio-temporally and
finally cause two divergent numerical solutions.

By injecting controlled amounts of random noise to the
model, we used:

ẋ(t) ¼ f (x(t), t) þ a tiny Gaussian random variable

for each single equation of Eq. (5) to randomize terminal

Fig. 11. Output waveforms from the four-channel low-pass filter model of G2 cell ensemble. (A) Without terminal bit randomization: (a.1) numerical solution
by Implementation 1 and (a.2) numerical solution by Implementation 2. (B) With terminal bit randomization: (b.1) numerical solution by Implementation 1,
and (b.2) numerical solution by Implementation 2.
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bits. The numerical simulations extended the shadowing
time. For the four-channel model with the identical para-
meter values used in Section 4.1, we still tested theG2 node
in the first channel. Fig. 11(A) shows an obvious divergence
of both implementations fromt ¼ 1527 ms; Fig. 11(B)
shows both implementations start to diverge obviously
around t ¼ 1978 ms. If we then setq(E1M1) ¼

3:300, q(B1C) ¼ 1:700 instead, the resultant trajectory
becomes a ‘‘less chaotic’’ pattern: an obvious divergence
from t ¼ 1320 ms in Fig. 12(A), but fromt ¼ 2127 ms in
Fig. 12(B). Thus, a random noise injection can ‘‘stabilize’’
the model’s trajectories (in the sense that the two numerical
solutions from mathematically equivalent formulas, but not
numerically identical implementations stay close longer).

The key question is how to control the random noise (e.g.
how to set the values of mean and standard deviation for the
Gaussian random variable) to reduce the divergence rate. It

is, of course, parameter dependent because the model
trajectory depends on a given set of parameters. When the
parameter optimization algorithm is applied the values of
parameters are continually updated. To ‘‘entirely stabilize’’
the model with parameter adaptation is still an open
problem. If the shadowing time period can be reasonably
long due to such a ‘‘stabilization’’ process, we have a
relatively high confidence in the numerical results of
parameter optimization from a digital computer. The
expected maximal duration of a stable state between transi-
tions is around 200 ms in the biological neural system (Bar-
rie et al., 1996). The desired safety factor for stability is 10
3 200 ms. For competing with experimental EEGs,
,2000 ms is a fairly good shadowing length for numerical
simulation.

Because of such super sensitivity to numerical truncation/
round-off, before the shadowing problem is ‘‘solved’’ we

Fig. 12. Output waveforms from the four-channel low-pass filter model of G2 cell ensemble (withw(E1M1) ¼ 3:300 andw(B1C) ¼ 1:700 instead). (A) Without
terminal bit randomization: (a.1) numerical solution by Implementation 1 and (a.2) numerical solution by Implementation 2. (B) With terminal bit randomiza-
tion: (b.1) numerical solution by Implementation 1 and (b.2) numerical solution by Implementation 2.
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are obliged to regard it as part of the olfactory model. The
current technology of numerical methods appears to be the
only executable approach, which can give us a closest
pseudo-solution to the true solution of such a high
dimension, nonlinear ODE set.

5. Conclusion

In Chang and Freeman (1996), we optimized parameters
according to an objective function measured in time domain
(i.e. the output pattern is examined in time domain). The
main advantage of this optimization technique is that it can
give us derivatives of an objective function with respect to
system variables under constraints, when we have the
objective function formulated in terms of these variables.
Following this, we can always derive the corresponding
parameter adaptation rules. Here, in a frequency domain,
the objective function which relates variables to the
feature of a 1/f power spectrum is formulated. Thus, the

self-adaptation rule for parameter fine tuning is derived.
To avoid being absorbed into a local minimum, we apply
the random optimization technique for global parameter
searching. How to choose random distribution functions to
quickly locate a global minimum is heuristic. By using this
parameter optimization algorithm, optimized values of
parameters for the low-pass filter olfactory model become
self-adaptively achievable to generate 1/f power spectra and
match experimental data.

Earlier models of olfactory dynamics (Freeman, 1987;
Yao and Freeman, 1990) used a set of differential-delay
equations to model axonal propagation delays between
layers PG, OB, AON and PC. ‘‘Differential’’ accounts for
a discrete set of distributed delays in an array of stored
values at fixed time steps. ‘‘Delay’’ accounts for the time-
delay feedback and the dynamical model made mathemati-
cal analysis difficult by introducing unavoidable numerical
error (inaccuracy) in using existing ODE solvers as
described in Section 2.2. This is a significant problem for
a chaotic system because we cannot tell whether the output
chaotic patterns generated by computer simulations are
from the dynamics or from the numerical error. In this
paper, we simulate the time-delay feedback by using
another second-order ODE. Biologically, this low-pass filter
model is plausible because the onset and offset of delayed
feedback by axonal tracts is smoothed by temporal dis-
persion. Mathematically, the entire model becomes a set
of ODEs, which eliminates the numerical inaccuracy of
differential-delay equations and simplifies the derivation
of parameter optimization rule. However, on embodiment
of the model in software, the ODEs are transformed into
difference equations, in which the size of the digital time
step and the word size discretize the model’s trajectories.
This makes no difference for point and limit cycle attractors,
but it is non-negligible for aperiodic, presumably chaotic,
attractor solutions. The duration and stationarity decrease
with the size of the model in the OB from four to 16 to 64
oscillators, indicating that the instability is due to attractor
crowding (Wiesenfeld, 1989; Tsang and Wiesenfeld, 1990).
Without noise, this is unavoidable in a model of realistic
size operating with aperiodic attractors. Because a bio-
logical system is stable and robust, we would like its
model to be robust in qualitative dynamics to perturbations
in variables and parameters. Except for the injection of
temporal noise as discussed in Section 4.2, the other neuro-
biologically guided method in the future to stabilize the
model may be either to explore the introduction into the
model of controlled random variation of gain and delay
parameters, which simulates the known variation in the
properties of neurons in the olfactory system as multiplica-
tive noise, or to explore the utility of low-level random
variation of state variables in the model in the form of
additive noise, which simulates the presence of axonal
noise in the synaptic inputs to neural ensembles. After add-
ing this spatial noise to the model, we will re-optimize its
parameters.

Fig. 13. Flow chart of parameter optimization algorithm for 1/f power
spectra.
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Appendix A

By the following specification, Eq. (1) implements the
olfactory neural system as shown in Fig. 1.

(1) The total number of neural ensembles,N ¼ 5n þ 13
ði ¼ 1 ton for P; i ¼ n þ 1 to 2n for OB M1; i ¼ 2n þ 1 to 3n
for OB M2; i ¼ 3n þ 1 to 4n for OB G1; i ¼ 4n þ 1 to 5n for
OB G2; i ¼ 5nþ 1 to 5n þ 4 for AON E1, E2, I 1 and I 2;
i ¼ 5nþ 5 to 5nþ 8 for PCA1, A2, B1 andB2; i ¼ 5n þ 9 for
C; i ¼ 5nþ 10 to 5n þ 13 for DL D1, D2, D3 andD4).

(2) TheN-dimensional vector of wave activity variables
(x1 (t),…,xN(t)) is:

(P1(t), …,Pn(t), M11
(t), …,M1n

(t), M21
(t), …,M2n

(t),

G11
(t), …,G1n

(t), G21
(t), …,G2n

(t), E1(t), E2(t),

I1(t), I2(t), A1(t), A2(t), B1(t), B2(t), C(t), D1(t),

D2(t), D3(t), D4(t))T

wherePm(t) denotes the input activity ofP node at timet at
themth channel with 1# m # n, etc.

(3) The N-dimensional vector of external stimuli,
(r 1(t)…r N(t)) is:

(R1(t), …,Rn(t), R1(t), …,Rn(t), 0n, 0n, 0n, 0, 0, 0, 0, 0,

0, 0, 0, 0, 04)T

(4) Let t ¹ T(s)
l and t ¹ T(e)

l be the delay starting time and
the delay ending time with respect to current timet,
respectively, (l [ {1, 2, 3, 4}). The six sets of rate constants
are:

wi ¼ aþ b andFi ¼ ab, i [ LR (1 # i # 5nþ 9)

wi ¼
1

T(s)
i ¹ (5nþ 9)

þ
1

T(e)
i ¹ (5nþ 9)

and

Fi ¼
1

T(s)
i ¹ (5nþ 9)T

(e)
i ¹ (5nþ 9)

, i [ DL

(5nþ 10# i # 5nþ 13, i:e: whenxi(t) is Dl(t)

for l [ {1 , 2, 3, 4}):

8>>>>>>>>>>>><>>>>>>>>>>>>:
(5) The structure of matrix [wij] defines the connection net-
work and the values ofwijs determine the connection
strengths. For the olfactory neural model, we have theN
3 N matrix of [wij]:
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with vectors and matrices as

The [wij] is basically a block diagonal matrix. Each block
starts for the layers of then-channel OB, AON and PC,
respectively. The last row, representing the delay feedback
nodes, together with other sparse elements, form the
connections between layers. When we want to extend the
system, all we need to do is to add another block for a new
layer and sparse elements for connecting it bidirectionally
with the old layers. All results based on Eq. (1) are applic-
able. Each weight represents the strength (gain) of synaptic
action of one group of neurons on another. Experimental
testing has shown that the gains are kept within a small
signal linear range during normal function (Freeman,
1975). They are time-invariant during recording periods of
several seconds and can changes to new values abruptly
during learning or pharmacological manipulation. The
value can be a positive, negative or zero number to represent
an excitatory, inhibitory or no connection from ensemblej
to i Þ j, respectively. Here,w(PmPuL) denotes the connection
strength linkingPm, with Pu Þ m andw(PmD2) is the one from
D2 to Pm, etc. Physically, ‘‘fromD2 to Pm’’ means fromE1(t)
to Pm with time delay implemented by passing the output of
E1 throughD2 node. Because our approach is to break the
olfactory system into small modules, for simplification it is
reasonable to allow:

(a) w(PmPmL) ¼ w(PPL), w(M1m
Pm) ¼ w(M1P), w(PmD2) ¼ w(PD2),

w(M1m
M2m

) ¼ w(M2m
M1m

) ¼ w(MM),

w(M1m
G1m

) ¼ w(M1m
G2m

) ¼ w(M2m
G1m

) ¼ w(MG),

w(G1m
M1m

) ¼ w(G1m
M2m

) ¼ w(G2m
M1m

) ¼ w(GM),

w(G1m
G2m

) ¼ w(G2m
G1m

) ¼ w(GG), w(M1m
M1u

L) ¼ w(M1M1L),

w(G1m
G1u

L) ¼ w(G1G1L), w(G1m
D1) ¼ w(G1D1)

andw(G1m
D4) ¼ w(G1D4)

for all 1 # m, u # n in the PG and OB layers;

(b) w(E1E2) ¼ w(E2E1) ¼ w(EE), w(E1I1) ¼ w(E1I2) ¼ w(E2I1) ¼ w(EI),

w(I1E1) ¼ w(I1E2) ¼ w(I2E1) ¼ w(IE) andw(I1I2) ¼ w(I2I1) ¼ w(II )

in the AON layer;

(c) w(A1A2) ¼ w(A2A1) ¼ w(AA),

w(A1B1) ¼ w(A1B2) ¼ w(A2B1) ¼ w(AB),

w(B1A1) ¼ w(B1A2) ¼ w(B2A1) ¼ w(BA)

andw(B1B2) ¼ w(B2B1) ¼ w(BB)

in the PC layer.
(6) The N-dimensional vector of stimulus intensity

weights, (k1(t)…kN(t)) is:

(k(P1R1), …,k(PnRn), k(M11
R1), …,k(M1nRn), 0n, 0n, 0n, 0, 0, 0,

3 0, 0, 0, 0, 0, 0, 04)T

with positive elements. Similarly,k(PmRm) andk(M1m
Rm) are the

gains fromRm to Pm and toM1m
, respectively, andk(PmRm) ¼

k(PR) andk(M1m
Rm) ¼ k(M1R) for all 1 # m # n.

(7) The output is operated on by:

yi(t) ¼
Q(xi(t), q(LR)) ¼

K
q(LR) 1¹ exp ¹

1
q(LR)[exp(xi(t)) ¹ 1]

� �� �
, i [ LR:

xi(t), i [ DL:

8><>: (A.1)
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The static nonlinearity of the cell ensemble results from the
function Q(xi,q

(LR)). The q(LR) is a constant for all thexis
belonging to one layer of cell ensembles. For later use in
Section 3.1, we also calculate the derivation of the sigmoid
to give the nonlinear gain:

]yi

]xi
¼
K

y9 ¼
exp(xi ¹

1
q(LR)[exp(xi) ¹ 1]), i [ LR:

1, i [ DL:

8<:

Appendix B

To gain an insight into this general mathematical model
and the corresponding parameter optimization rule, we
investigate the relationship to an artificial neural model
and the traditional back propagation learning rule.

A frequently used discrete-time version of the standard
artificial neural model follows from Eq. (1).

1. Let yi(t) ¼ Q(xi(t)). (Remove delay feedback nodes
and assume all the other nodes have identical I/0
transformation.)

2. Let Dt be a small time duration and neglectO (Dt3).
3. Leta þ b ¼ 2=Dt andab¼ 2=Dt2 Following this, take the

Taylor series expansion ofxi(t þ Dt) at time t. Eq. (1)
reduces to:

xi(t þ Dt) ¼
∑N
jÞi

wij Q(xj(t)) þ kiri(t)

This is a discrete-time artificial neural network (Rumelhart
et al., 1986).

Next, we may relate the parameter optimization rule of
the model of Eq. (1) to the weight learning rule of the
artificial neural network. To have a close comparison, con-
sider a multi-layer feed-forward network with error measure
according to:

E¼
1
2
[Q(xi(t)) ¹ U

(0)
i (t)]2 (B.1)

with U(0)
i (t) a teaching signal. When the same three

conditions listed above are satisfied, we have:

l
(1)
i (t) ¼

Dt
2

l
(0)
i (t) (B.2)

from the second half of Eq. (8). Using Eq. (B.2), the first
half of Eq. (8) reduces to:

l
(0)
i (t) ¼

]Q(xi(t))
]xi(t)

Q(xi(t)) ¹ U(0)
i (t)

h i
,

i [ {Output Layer},
]Q(xi(t))

]xi(t)

∑
N
jÞiwji l

(0)
j (t),

i [ {Hidden Layers},

8>>>>>>>><>>>>>>>>:

and Eq. (10) (forp ¼ w) combined with Eq. (9) becomes

Dwij ¼ ¹ CQ(xj(t))l
(0)
i (t),

i.e. the traditional back-propagation learning rule
(Rumelhart et al., 1986). The termp(l )

i (t) dt of Eq. (8) is
from the conventional partial derivative]E=]x(l )

i (t) with E
being an integration, e.g. Eq. (6). SinceE has been taken as
Eq. (B.1), p(0)

i (t) dt and p(1)
i (t) dt should be replaced by

]Q(xi(t))=]xi(t)[Q(xi(t)) ¹U
(0)
i (t)] and 0, respectively.

Appendix C

The rate constantsa ¼ 0.220 andb ¼ 0.720. For
n-channel PG layerq(P) ¼ 1.824,w(PPL) ¼ 0.900,k(PR) ¼

20.000. Forn-channel OB layer,q(OB) ¼ 5.000, w(MM) ¼

1.500,w(MG) ¼ ¹2.063,w(GM) ¼ 2.323,w(GG) ¼ ¹2.445,
k(M1R) ¼ 3:000. For AON layer,q(AON) ¼ 5.000, w(EE) ¼

1.202,w(EI) ¼ ¹1.426,w(IE) ¼ 1.372 andw(II ) ¼ ¹1.571.
For PC layer,q(PC) ¼ 5.000,w(AA) ¼ 0.823,w(AB) ¼ ¹1.938,
w(BA) ¼ 1.947 andw(BB) ¼ ¹ 2.354. These parameters were
used in the simulations. The determination of these values
were presented in reference (Freeman, 1975; Chang and
Freeman, 1996).

Appendix D

In this optimization algorithm, one step means one update
of a parameter set;r1 andr2 are used for transition between
global searching and local tuning;M and e are for stop
criteria;Y1 andY2 store the current and the preceding mini-
mum errors; parameters are those we want to optimize. The
corresponding flow chart is presented in Fig. 13.

1. Set the maximum number of steps in a simulation run to
M and let the initial step countc ¼ 0. Set a sufficiently
small positive number,e and two fractions 0, r1, r2 ,
1. Define a global searching domain,D and select the
initial values of parameters,p(0) to be optimized inD.

2. Run an integrator with the givenp(c) to solve Eq. (1) and
calculateY according to Eq. (11) and assignY1 ¼ Y ¼

(p(c)).
3. AssignY2 ¼ Y1.
4. Run an integrator with thexi(t) obtained in (2) to solve

Eq. (8). By using thel(1)
i (t), p(c)is adapted according to

Eqs. (9) and (10). Increasec ¼ c þ 1. Run an integrator
with the givenp(c) to solve Eq. (1), calculateY according
to Eq. (11) and assignY1, ¼ Y (p(c)).

5. Check ifc ¼ M or Y1 , e?

• Yes→ stop;
• No → continue.

6. Check if�����1¹
lp(c¹ 1)l
lp(c)l

�����, r1?
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or check if

l1¹
Y1

Y2
l , r2?

• Yes→ continue;
• No → go to (3).

7. AssignY2 ¼ Y1.
8. Generate the random numbersg and check if

p(c) þ g(c)eD?

• Yes→ continue;
• No → go to (8).

9. Updatep(c) ¼ p(c) þ g and increasec ¼ c þ 1. Run an
integrator with the givenp(c) to solve Eq. (1), calculate
E according to Eq. (11) and assignY1 ¼ Y(p(c)).

10. Check ifY2 , Y1?

• Yes→ go to (13);
• No → continue.

11. Check ifY1 , e?

• Yes→ stop;
• No → continue.

12. Check ifc ¼ M?

• Yes→ stop;
• No → go to (3).

13. Check ifc ¼ M?

• Yes→ stop;
• No → go to (8).

There are mme variations in random parameters updating
for steps (8) and (9) (Solis and Wets, 1981). We have to
assure the convergence to the global minimum of the objec-
tive function with probability 1 and then compare the con-
vergence rates from modified methods with each other.
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