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Optimization of olfactory model in software to givef power
spectra reveals numerical instabilities in solutions governed by
aperiodic (chaotic) attractors
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Abstract

We present a general connectionist model for an olfactory system. The dynamical behavior of each node (neural ensemble) of the moc
governed by a second-order ordinary differential equation (ODE) followed by an asymmetric sigmoidal function, relating the aggregze
activity of neurons to system parameters and stimuli from an outside environment. A digital implementation of the general connectior
model simulates the characteristics of a mammalian olfactory system having modifiable synaptic connections and spatio-temporal in
actions among neural ensembles. Each of four distributed delay terms is represented by a second-order ODE. A parameter optimiz:
algorithm is an integral component of the model. The parameter optimization discussed in this paper results in aperiodic oscillations havi
near 1f-type power spectrum with a peak in the gamma range, simulating the electro-encephalographic (EEG) potentials from the net
olfactory system. Random optimization is used for a rough search in a global parameter domain and the parameter self-adaptation rule s
for fine tuning within a local domain after the global search. By design the model is started from an unstable zero point by an external impu
input. It requires 650—850 ms to pass through an initializing transient before settling into a strange attractor. The attractor persists for at |
1500 ms, which is 7.5—20 times longer than the duration of the maximal stationary states observed in the EEGs and it is stable ur
perturbation by simulated sensory inputs giving response amplitudes less than 2 times the basal aperiodic activity. However, the optimiza
to 1f-type activity reveals an inherent limit on digital simulation of chaotic states, owing to attractor crowding such that the size of basir
decreases with increasing size of the model, until it approaches the size of digitizing step in computation, here a 64-bil &0 (
Outputs that are not optimized to approacht§pe power spectra transit earlier to limit cycle activity, usually well before 2000 ms. The
duration of stationarity is increased by randomizing the terminal bit of the 64-bit words representing the state variablesydédediitions
are also exquisitely sensitive to parameter truncation; parameter values must be saved in their full binary form for re-starting. T
implications in terms of numerical instability, chaos, attractor crowding and the shadowing theorem are diseuS88iEIsevier
Science Ltd. All rights reserved.

Keywords:1/f Power spectrum; Attractor crowding; Chaos; EEG wave; Neural ensemble; Olfactory system; Shadowing; Pseudo-trajectc

Nomenclature LR set of cell ensemble nodes in one of the layers of the
olfactory model, i.eLR € {PG, OB, AON PC}

n number of channels of an olfactory system, i.e. a distributed Q(x;, *®)  sigmoidal I/O transformation function fo with a system
OB layer withn units parameterg®, defining its least upper bound

Xi(t) wave amplitude activity of cell ensembles {1, 2,...,N} at DL set of four delay feedback nodes
timet € ® a 0.220/ms, which reflects the slower real rate constam of

yi(t) pulse density activity of cell ensemhbies {1, 2,...,N} at b 0.720/ms, which reflects the faster real rate constamt of
timet € ®

ri(t) external stimulus (forcing term) of; at timet

Wi system parameter, which is the connection strength frpm .

! tgy» P gth p 1. Introduction
i#j

k; system parameter, which is the gain foto y;
There are two steps to model a very large-scale neural

* Requests for reprints should be sent to Huang-Jen Chang, Department ofSyStem‘ The _f'rSF IS to construct a S(_at of para_metrlc
Molecular and Cell Biology, University of California, Berkeley, CA 94720, €quations, which incorporate the anatomical synaptic con-
U.S.A.; E-mail: hjchang@icsib28.icsi.berkeley.edu. nections and physiological interactions among neural

0893-6080/98/$19.0@ 1998 Elsevier Science Ltd. All rights reserved.
Pll: S0893-6080(97)00116-0
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ensembles that are perturbed by external inputs. The secondariables or system parameters led to diverse output
is to derive quantitative rules, which direct self-adjustment patterns. The results from computer simulations are thus
of the values of parameters of the model from its searching highly dependent on the numerical precision and differences
history. The automation of parameter optimization in large- in machines, ODE solvers, programming languages, etc.
scale biologically plausible cortical networks opens a new Instead of showing the values of parameters used to simu-
approach to investigate sensorimotor operations in brainslate experimental data, it makes more sense to report the
(Freeman and Shimoide, 1994; Chang and Freeman,optimization algorithm, including specification of per-
1996). By using biological data as the criteria, we optimize formance criteria, for researchers to generate the data by
parameters in a neural ensemble model used to simulateusing their own software and hardware. Both the parametric
output of the olfactory system for specified input and for mathematical model and its parameter optimization
basal activity with no input. algorithm, based on the attendant activity perturbation
An early model simulating a biological neural system was dynamics, should be regarded as integral components of a
a relatively lower dimensional chaotic system (Freeman, realistic neural model.
1987) in which slight variation of initial conditions of The parameter optimization algorithm, which leads the

<—» : Connection to
all lateral nodes
except itself

<<<— : Connection to
all lateral nodes

. External
—=<<< : Connection from Capsule
all lateral nodes (EC)

Fig. 1. This topological diagram specifies the connections among neural ensembles of the olfactory system. The olfactory bulb (OB) and prapsgxiform co
(PC) are distributed layers of coupled oscillators. The anterior olfactory nucleus (AON) is a control nucleus relaying centrifugal modulatmgsonm@se

three oscillators have incommensurate characteristic frequencies. Only the OB is at present modeled as an array. Each node stands for a3&dfiod-order
the single ensemble dynamics. An input from receptors (R) goes to periglomerular (P) and mitral cells (M). The mitral cells transmit to gra@)laratis (

AON and PC, from which the final output is sent to the external capsule (EC) from deep pyramidal cells (C), as well as back to the OB and AON.
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model to operate in a domain of aperiodic solutions simu- within the PG, OB, AON and PC and the feed-forward
lating the olfactory EEG, includes two techniques: random and feed-back gains between them, are the system
optimization (Matyas, 1965) and error propagation (Chang parameters modeling the synaptic interactions of neural
and Freeman, 1996). The first serves for a rough searchingensembles. Other parameters required to model the full set
in a global parameter domain and the second serves for fineare distributed feedback delays. We have been shown
tuning within the local domain from the global search. This empirically that the solutions of the model suffice to simu-

optimization algorithm, including specification of per-
formance criteria should be regarded as an integral com-
ponent of a realistic neural model, although it is not
unigue. The results reported here reveal a significant barrier
to implementation of a digital embodiment of the model,
owing to the instability of numerical solutions of the

late versatile EEG patterns by proper evaluation of all the
parameters (Freeman, 1987, 1992; Yao and Freeman, 1990).
The asymmetric sigmoid function (Fig. 2) has been
derived from the Hodgkin—Huxley equations (Freeman,
1979) and evaluated by fitting it to the normalized prob-
ability density conditional on EEG amplitude of single

and multiple unit firing of neurons in the PG, OB, AON,
PC and entorhinal cortex (Freeman, 1975; Eeckman and
Freeman, 1991). The asymmetry is necessary for the
input-dependent increase in gain that is required to simulate
bursts of oscillation on inhalation. The function has only one
glomerular layer (PG), the bulb (OB), anterior olfactory parameter,q™®, to specify slope, asymptotes and zero
nucleus (AON) and prepyriform cortex (PC). Each part is operating point, whereas alternatives such as the logistics
composed of cell ensembles, which are populations of curve, the arctangent and a cubic spline cell require three
excitatory or inhibitory neurons. Fig. 1 shows a schematic parameters.
diagram of principal types of neurons, pathways and syn-
aptic connections in the olfactory mucosa, bulb and cortex. 1.2. The problem of parameter optimization
Each node represents an ensemble in a local neighborhood.
The dynamics is represented by a linear second-order equa- Because the synaptic connection weights cannot be
tions to model cable delay and passive membrane delay.directly measured from experiments, we optimize these
The linear part is followed by a static sigmoid nonlinear values by simulating with the model the biologically
function. measured activity (endogenous EEG waves) and average
The ensemble rate constardsandb, of each node were  evoked potentials (AEPs impulse response evoked by elec-
fixed throughout at physiologically determined values trical stimulation). Owing to a high dimensional parameter
(Freeman, 1975). Length constants were obviated by usingspace and thus high complexity of parameter controls for the
a globally connected network. Gain constafs?, for the entire system, it is unrealistic to optimize all the parameters
asymptotic maximum of the sigmoidal /O relationship at the same time. We take a step-by-step approach to over-
(Fig. 2) were fixed at a common value (Eeckman and come this difficulty (Freeman, 1975; Freeman and
Freeman, 1991) within the periglomeruld®) (array in the Shimoide, 1994; Shimoide and Freeman, 1995).
PG and at other values in the mitrall and granule @)
arrays in the OB, the excitatorfgfA) and inhibitory (,B)
neurons in the AON and PC and the deep pyramidal cells
(C) in the PC. The connection strengths between nodes

equations.
1.1. Architecture of a model of an olfactory system

The central olfactory system consists of the peri-

1. Fix the values of parameters that can be measured
experimentally, e.g. the values of passive membrane
rate constants and conduction delays in the open loop,
noninteractive state under deep anesthesia (Freeman,
1975).

. Partition the olfactory system (e.g. the PG, OB, AON and
PC) and optimize the values of their internal parameters
with respect to AEPs in their near-linear ranges at their
characteristic frequencies. (Freeman and Shimoide,
1994; Chang and Freeman, 1996).

. Fix the values of parameters which have been deter-
mined and optimize the values of synaptic connection
parameters between the parts with reference to the
EEGs and multiple unit activity of the four parts.

[ Q(x; ,qR))

QIR sl oL
4

3

- In this paper, we focus on the third step. One of observed

characteristics of EEGs is a fiype power spectrum.

. N _ i Averaged auto and cross spectra for the OB and PC at rest
Fig. 2. Asymmetric sigmoidal I/O transformation functiagff? = 5.000]. d of th torhinal t d dentat f hi
This function was derived from the Hodgkin—Huxley system (Freeman, and o e entorninal cortex an entate gyrus or nippo-

1979) and holds for all parts of the central olfactory system (Eeckman C@mpus (DG), show that the log power decreased nearly
and Freeman, 1991). linearly with log frequency. Temporal frequency analysis

-1




452 H.-J. Chang et al./Neural Networks 11 (1998) 449-466

on pre- and post-stimulus of neocortical EEG segments for 2.2. ODEs for the periglomerular cell ensemble
prepyriform, visual, somatic and auditory recordings also
reveal 1f-type power spectra (Barrie et al., 1996). Thus, To show how to evaluate Eqg. (1) in vector—matrix
the 1f Property becomes our criterion for the optimization. representation, we begin with the dynamics of the P cell
Our aim is to derive an analytical rule and determine the ensemble in the PG layer:
values of parameters to match the characteristic from nor- 4 .
mal neuro-physiological data. —[P.(t) + (@+b)P,(t) + abP,(t)]

In Section 2, a mathematical model of the olfactory W |
system is presented. The parameter optimization rule is _ VV(rPy ZQ(Py(t),q(PG)) +kpnR. ()

addressed in Section 3. Simulation results shown in n-1

vFEU
Section 4 employ the mathematical analyses in the previous ¢
sections. (AON)
+ Wrp,) J K(7)Q(E1(7),q"") dr 2
0
2. Dynamics of the olfactory neural ensemble model The RHS of Eq. (2) represents the summed input to a P

neural ensemble from receptor R, from the other
A massively parallel distributed architecture with multi- P-€nsembles in the same layer and from delayed outputs
ple layers can be used to describe the olfactory neural©f €nseémbles in the AON layer. Heré(r) = 0 is used to
system (Freeman, 1974). We first express a vector—matrixSimulate the distributed delay feedback from cell ensemble
representation of the olfactory neural dynamics and next Ei(V). It is @ unimodal and normalized function, which
give an example to show how it is derived. The definitions M&ans that for a current timie= 0 and 0= 7 =, K(r)

of variables and parameters are given in nomenclature. h?s only one maximum witK(0) = K() = 0 and
JoK(7) dr=1. The LHS of Eq. (2) is the inside change of

the ensemble due to the net input.
2.1. Vector—matrix representation of the olfactory model Lett— Tés) andt — Tée) be delay starting time and delay

ending time, respectively, and take the kernel funcki¢r) as:
The dynamical behavior of each cell ensemble of the

(&)
olfactory system can be governed by: 1 il
KSR = —g—g— D 87K
1 i =T+ T
—[%() + ¥ix () + Pix ()] = D wyyi(t) + kiri (), 1
q’i[ i %0 A i i 0 @) i.e. a difference of two discrete step functions. The delay

o feedback term in Eq. (2) becomes
a general connectionist model (Chang and Freeman, 1996),

where®; and ¥; are derived from experimental rate con- wPb2) -1 20

stants. A single (double) dot over a variable means the first o101 Y QE(), g*) (3)
(second) derivative of the variable with respect to time. The 2 2 7=t-Tp

variable,x, represents dendritic potential, as it is evaluated
by extracellular measurements of EEGs. The variaple
represents multineuronal pulse density as it is evaluated
by multiunit recording. Both variables are continuous in
the cortex. They are discretized by experimental measure-
ment. Conversion from pulse density to wave amplitude,

The olfactory model is thus described by a set of
differential-delay equations, which is the dynamics that
Yao and Freeman studied in 1990. It is, however, biologi-
cally implausible, owing to distributed arrival times in mul-
tiaxonal tracts due to distributed conduction velocities and
x, is implicit in the synaptic weights. Conversion from de]ays and itis also numeric.ally error prone in digital simu-
' : . o lations, due to coarse graining of distributed delays by the
wave amplitudex, to pulse densityy, is implicit in the computational time step. By using a numerical solver for an
sigmoidal function, Q(x,q*?) (see Fig. 2 withq'® = P P. By using

e T DE h | i i i is i I
5.000). The pulse—wave conversion is kept in its linear © set, the actual integration time step IS internally

. . , adjusted according to the slope at that moment. To have an
range by the sigmoid (Freeman, 1975). The varialsiands ) . gto P hat mo X
: ) : . . accurate implementation on a numerical integration of Eq. (2)
for an external stimulus. Physiological experiments confirm

. o=l B " with K(7) = K1), we should offer these data Bf(7) at
that a linear second-order derivative is an appropriate s . . :
choice each correct moment, but it is technically impossible.

By the topological diagram of Fig. 1, the-channel In this paper, to model temporal distributed axonal delays

-9, ! : the kernel functidt™*” by a diff ft
olfactory model is implemented by Eq. (1) in vector—matrix \évxe (e))r(gr?tiszz fu?]ctiec:::' unct y a difierence ot two
notation with the specifications listed in Appendix A. This P '
notation allows us to concisely present the olfactory model 1 t—r t—r

: , - o KE( =~ _lexp| — —< | —exp| — —+
and its corresponding dynamics of parameter optimization - Tés) _Tée) Tés) Tée)
(see Section 3).
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K(1)4
200 —

K(step)(f)

|
X103 1

254
20—:
151
10 Kexp)(7)

53

600 620 640 660 680 700 7207 7 T
7 N\

s)
t-T¢ 01

Fig. 3. Kernel function for delayed feedback (at titne: 750 ms,T,® =
20.000,T,® = 11.000 ms).

as shown in Fig. 3. Obviouslyk©®(7) has the unique
maximum atr =t — T, with

T(S)T(e) T(S)
T <Tp= 225 In| 2| <TY
-I—és) - -I—ée) -I—ée)

and K®P(0) = 0 (whent is large) andk®"(t) = 0. In
addition, because of:

t
1 t
(exp _ (e _
l K¥P(r)dr=1+ Tés) — Tée’ [Tz exp( Tge))

t
—_T9 -

K®P(7r) is a normalized function. (The second term
becomes negligible when is large.) K®® is thus a
temporally smooth version &®*°". Through Laplace trans-
formation, we then see that Eq. (2) wik{r) = K®(7) is
mathematically equivalent to:

§1t>[p”(t) + (a+b)P,(t) + abP,(1)]

W, n
=72 D AP, A7)+ ke, (t) + Ween, Dat),
T v

.. 1 1. 1
Do) + [ =+ = | Da(t) + —<—=Ds(t
2( ) (Tés) Tée)) 2( ) TéS)Tée) 2( )1

= Q(Ex(t), g*°M),

with D,(0) = D,(0) = 0.
Moreover, because the Fourier transformatioDg(t) is:

FID2(0] = H@)FIQ(EL(®), a“™)]

Tés) Tée)

with

_ (@=TPTP) — i1 — TP
(1-— TéS)Tée)wz)z + (Tés) _ Tés))ZwZ'

H(w) (4)

the delayed feedback node acts as a low-pass filter. Using
the same procedure to model the other delayed feedback
loops, the “infinite dimensional” differential-delay
equations (Yao and Freeman, 1990) convert into finite
dimensional ODEs. The dynamical model expressed in
Section 2.1 and Appendix A is thus constructed. We call it
the low-pass filter olfactory model.

3. An optimization technique for 1§ power spectra

We combine global and local search processes for para-
meter optimization. The global search has long jumps to
avoid being trapped in a local minimum. The local search
is a gradient descent to a local minimum.

3.1. Parameter optimization rule for local searching

By way of spatio-temporal error propagation, we obtain
the parameter self-adjusting rule (Chang and Freeman,
1996). The criterion is to match the power spectrum of the
model to the desired fttype power spectrum (in the sense
of minimizing a pre-defined error function within a
frequency domaif).

We decompose each second-order ODE to two first-order
ODEs. Let/ € {0, 1} and xi(o)(t) £ x;(t) and reformulate
Eq. (1) as:

%)
) ) s

x(1)

N
—AXY(®) - BxO() + B > wyy; + Bikiri(t)
j#i INX1

)

A time sequenceq([)(t) is then generated by Eq. (5) for
from t; = 0 to t; > t. Its power spectrum
is §(w) £ IXO () with XY (w)=F[xX(t)] (a Fourier
transformation of")(t)) for t from a state transitiomg, =
t; to the next state transitidng < t;.

To derive parameter optimization rules, in the first step
we have to choose an objective functiério be minimized
in terms of power spectra of actual outputs of the mathe-
matical modelS”(w)s and its targetd)(w)s. There are
only two requirements for the choice&:= 0 andE = 0
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if §9(w) = Tff)gw) foralll €{0, 1}, w € Qandi €{1, 2,...,
N}. Here, F(Sf[ (w), Ti([)(w)) is an error function, which can

be from the least-square fit, relative entropy, etc. (Kullback,

H.-J. Chang et al./Neural Networks 11 (1998) 449-466

The perturbation dynamics are then:
N

1978; Chang and Freeman, 1996). We also introduce a )'\i(l)(t) oNxX1

weight function n)(w) for §”(w) achieving T"(w) at

frequencyw. For instance, we may have:

(©—a)*
202

ﬂi(o) (w)= ) and ni(l) (w)=0

! exp(
\/ 210
to suppress the output time seriesxgt) from having too
strong frequency components arouad = & (see also
Section 4 for the;”)(w) we used in the simulations). Thus,
the objective functiorE = E©@ + E® with the form:

N

ay;(t) Z

aXi(O) M=

AN (O N0 - () N1
with boundary conditiona? (t,s) = M (t,s) = 0 for all is.
The complementary relationship of network structures
between the two dynamics is expressed in Fig. 4.
We can next relate the [Eerturbation Bfwith respect to
parametersy; and k; to )\i( (t) by the following Eq. (9).

BAD (1) Biwj )\j(l) ® —p°(t)

8

EO — i J’?i([)(w)':(ﬁ([)(w): Ti([)(w)) do. 6) Because of symmetric property of the network structure,
=19 assume thab; j,, wi,,, ... and Wi oo all have the value
of the ith distinguishable connection strength Similarly,
In the second step, we derive dynamics of the network of k, =k, =...= kiL(k) =k,. Following this, the derivative

perturbation variabla{(t) [Eq. (8)1 from the dynamics of
the network of ensemble variabké () [Eqg. (5)]. We need
to define and distinguish two kinds of partial differentiations
with respect t0<i([)(t).

(1) The derivative which accounts for the corresponding

change ofE due to an arbitrarily small change &f(t) at
some particular timéwith everything else fixed; that is, the
conventional partial derivative:

9E
(1)
with
O — 2 [ 100 FE @), T@)
p| (t) - \/;E[ U ( ) 63([)(00)
X REX (w) exp( — iwt)] de

(7)

=pO(t) dt

from Eqg. (6).
(2) The other derivative which accounts for the corre-
sponding change of due to an arbitrarily small change

of X

which accounts for the corresponding changeEidue to
an arbitrarily small change of the paramegggver the time
interval fromtg to t g, is:

tnst L(P)

oE
—= B z(7 )\i(l) 7)] dr 9
pm {[21[ Z(DN(7)] €)

where

A®={

After obtaining the gradients, we can apply a proper
optimization algorithm to derive the adaptation rules for
parameters. Here, a gradient descent approach allows us
to adjust the values of weight parameters according to
P =5 L Ap - with:
oE
C—
ap,
where the constar® governs a learning rate. In summary,

y;. (1), whenp is &
ri (t), whenp is k

Apl = - (10)

at timet, when this change propagates throughout for an interconnected neural ensemble model of the

the trajectories of other ensembles in the entire time interval olfactory system described by Eq. (1), if the system para-

that is denoted byA"(t)= (" E)/(ox“(t)), an ordered
partial derivative (Werbos, 1974, 1988).

meters are updated cyclicallytat t,;according to Eq. (10)
with the gradients given in Eqg. (9), then the connection

Network of Activity

Network of Perturbation

Fig. 4. Reformulation of dynamics in Eq. (1) for ensemble activity and activity perturbation from second-order to pairs of first-order ODEs. Thepspper
resulting from the reformulation do not imply self-excitation, which does not occur in cortical neuropil, the dense layered fabric of axonss eeadrit
synapses.
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strength parameters can be locally optimized to give the update the parameters randomly only if a local optimum
output of the model a f-type power spectrum. of an error function is reached. We choose the random
The model in Eqg. (1) and its parameter optimization rule distribution as a Gaussian function. Through the experience
[Egs. (8)—(10)] are generalizations of the multilayer per- of several simulation runs, we are able to locate the
ceptrons and the back-propagation rule. The detail is appropriate mean and standard deviation. However, it is,
shown in Appendix B. This convergence supports the cor- in general, heuristic to determine the distribution functions
rectness of the derivations and provides alternative which can quickly direct converge to the basin of a global
approach to derive the back propagation rule (Chang andoptimum.
Freeman, 1996).

3.2. Approach to global optimization of parameters 4. Simulations

The parameters which have been determined in the early The technique developed in Section 3 were used to
stage are fixed to reduce the complexity/dimension of the optimize the parameters of the olfactory model with four
parameter searching space. From neurobiological sug-low-pass filters representing distributed feedback delays.
gestions, we set initial guesses and a global search domainrhe numerical integration was performed by Livermore
for these parameters to be optimized. In the global search-splver for ODEs with time stept = 1.0 ms in all cases.

ing, we generate a set of random numbers with certain Al the simulations were performed on Macintosh Il
distributions for parameters updating and test on the up- computers.

dating whether the updated parameters are in the search e studied impulse responses with:

domain (Matyas, 1965; Solis and Wets, 1981). Next, we

numerically integrate Eq. (5) and calculate the correspond- 1, fori=1orn+1, and O=t=At,

ing error by Eqg. (6). When this error is sufficiently small for ()=

transition to local tuning, we use the local optimization rule

presented in Section 3.1 for the next parameter adaptationwhich was always used to initiate non zero output from the

In the local tuning, we numerically integrate Eq. (5). We set low-pass filter model. The initial values of(t) and x;(t)

the boundary for)\i(o)(tnst)z)\i(l)(tnst)zo and integrate  were set zero. We used the fast Fourier transform algorithm

Eq. (8) from tag back toty. At the same time, we also  (Ramirez, 1985) to calculaté)(w) =7[x"(t)] for time t

integrate Eq. (9) to get the gradients for parameters andfrom tg to t,s. A least-square fit led us to choose:

thus adapt these parameters according to Eq. (10). When a _ 1

difference of the successive error or parameter vector is F(§(w), T (w)) = E(S(Z)(w)—Ti([)(w))z.

small enough, we revert to the global search. The whole pro-

cess continues until a stop criterion (defined in Section 4.1) isA graph of logg) versus logs®(w)) of an experimental

met. EEG power spectrum can be fitted by a “straight” line
Unlike a traditional random optimization technique, in for w( 2 f/27) greater than a minimal valuev,;, to

which the parameters are always updated randomly, wethe maximal frequencw. (see Fig. 5), with slope— 3;

0, otherwise

(a)
0.10
>
= 0.00
0.10
T T T T T —
0 200 400 600 800 1000
ms
(b)
.5:
o 104
107°3
T T LS l'll'l T T Ly L lrl L]
3 4 5 6789 2 3 4 5 6789 2
10 100
Hz

Fig. 5. (A) An EEG from OB of a non-motivated rabbit; (B) the corresponding log—log plot of spectrum of the OB.
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(a)
mv End of initialization period 867
4
0 il
-4 ’
-8 2037
I Ll I T L
0 500 1000 1500 2000
ms
(b)
log(P)
-2
-4

1 T T T
5 2.0 log(f)
2 100 (Hz)

1.0 1
10 3

Fig. 6. (A) The example of time series from,®f the four-channel low-pass filter model, withyp) =0.779, Wy,m,1) =2.500, W, u,) = 1.300,
WEAlMl) = 1'7001W(G1G1L) = 1'000!W(CBl) = — 1'300rW(Blc) =1.187, and»N((G D) = O.SOO,W(pDZ) = 4~0001W(I1D3) = OASOO,W(GlDA) =4.000, andTiS) =20.000,

T{¥ =10000, T = 26,000, T¥ = 15000, T = 25000, T = 12.000, T =39.000, T{ = 24.000; (B) the corresponding log—log plot of power spectra

from 867 to 2037 ms.

andy-intercept atx = log(w.) as logg;). We had the target  which gave the ordinary partial derivative

pattern asT % (w) = ajw . ni(o)(w);égzﬁi was set to nor-

malize across high frequency amgl’(w) =0 because of E »r (0 2 . 0) 8 ©)
no feature to optimize om’(t). By the form of Eq. (6),  ox.@) " =y WS () — a]o’Re X (@)
the objective function for minimizing became: Q

Omax X exp(—iwt)} dw
E= | ot S0 -l o (11)

@min

For anmth-order differentiable variabbgt) with its Fourier

(a)
mv End of initialization 650 ' 2037
4 period
o
0
-4
T T T T T T
0 500 867 1000 1500 2000
) ms
(b)
log(P)
-2
-4
-6
-8 T T T T
0.5 1.0 1.5 2.0 log(f)
3.2 10 32 100 (Hz)

Fig. 7. (A) The example of time series from, ®f the 16-channel low-pass filter model; (B) The corresponding log—log plot of power spectra from 867 to
2037 ms.
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transform existing: with the ordinary partial derivative as
d3x(t)] 2 2

7 = o lF[x(®)]! oE 2

)| = oo i 0=/ 2 1570 - aIREXO (0
holds for any non-negative integey =m. Thus, the . ?
above objective function with respect & (w) can be trans- X exp(—iwt)} dw
formed to that with respect &(1) (w) and this result was more M o
practical especially wheri(t) was a “pure” 1f (i.e. §; = 2, Thus, the target TW(w)=ca and 7;"(w)=0 and

: . . 1 . . .
which was often the cases for our simulations). Therefore, the " (w) =1. From the viewpoint of the Livermore solver

power spectrum of? (t) was supposed to be a constant and: ©n the olfactory model Eq. (5), bott”(t) andx?(t) were
Oman independent variables to be solved. No further preparation

1 2 was needed if using Eg. (12) and the numerical accuracy of
E= J §[S (@) —i]” do, (12) XV (t) was just as good ag?(t).
(a)
mvg End of initialization periodse7 1537 Stimulus off
4 i
0
-4
LB : i 1367 2037
: T T
0 500 1000 Stimulus °n1500 2000
ms
(b)
log(P)
-2
-4
-6
I I I I
0.5 1.0 1.5 2.0 log(f)
3.2 10 32 100 (Hz)
(c)
log(P)
-2.5
-5.0
I I I I
0.5 1.0 1.5 2.0 log(f)
3.2 10 32 100 (Hz)
(d)
log(P)
-2
-4
1 1 I I
0.5 1.0 1.5 2.0 log(f)
3.2 10 32 100 (Hz)

Fig. 8. (A) The example of time series from, ®f the four-channel low-pass filter model with constant stimulus from 1367 to 1537 ms (simulated burst of
inputinduced state transition); (B) the corresponding log—log plot of power spectra from 867 to 1367 ms; (C) the corresponding log—log plotpEqicaver s
from 1367 to 1537 ms; (D) The corresponding log—log plot of power spectra from 1537 to 2037 ms.
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4.1. Numerical results of parameter optimization aroundt = 650 ms, we still calculated power spectra from
t = 867 ms for comparison with the four-channel case.)
We optimizedscg,, wg,c, ww,m,L, @,6,L @ndconnection  Both the examples had Eg. (5) numerically integrated
strengthsw;; between layers PG, OB, AON, PC and delay from 0 to 2037 ms. Becausefldower spectrum is only a
feedback nodeB,, D,, D; andD,. Appendix C gives the  necessary condition to simulate an EEG wave, after finding
fixed parameters, which had been determined. A step-by-possible candidates by way of the parameter optimization
step algorithm is listed in Appendix D. algorithm, we visually checked if the time series was experi-
In Fig. 6, the parameters are optimized for a four- mentally realistic.
channel low-pass filter model, yielding af-type power Next, this four-channel model was given a constant
spectrum from the output time series of OB node (the stimulus from 1367 ms to 1537 ms to channel 1 (on node
granule cellsG, of the first channel in Fig. 1). To express i =1andi =n+ 1). Fig. 8 shows that the first 867 ms is a
scaling invariance of the model, we extended the simulation warm-up period and the following 500 ms gives a basal
to a 16-channel case and kept the parameter valuesstate. The model trajectory then jumps to a near “periodic”
unchanged. Fig. 7 shows the output of the fiBst node state (a burst-like state) in the next couple hundred milli-
having a 1f-type power spectrum. (Although the initializa- seconds due to presenting a 170 ms constant stimulus input
tion period in the 16-channel model simulation ended at R with intensity 0.68 and goes back to the same basal

(a)
mv 867 1537Stimulus off
4
0
-4 I
8 650 Stimulus on 1367 2037
i T "End of initial- _! T T
0 500 .- ~tion period1°°° 1500 2000ms
(b)
log(P)
-2
-4
T T T T
0.5 1.0 1.5 2.0 log(f)
3.2 10 32 100 (Hz)
(c)
log(P)
-2
-4
T T T T
0.5 1.0 1.5 2.0 log(f)
3.2 10 32 100 (Hz)
(d)
log(P),
-2
-4 —
T T T T
0.5 1.0 1.5 2.0 log(f)
3.2 10 32 100 (Hz)

Fig. 9. (A) The example of time series from,®f the 16-channel low-pass filter model with constant stimulus from 1367 to 1537 ms (simulated burst of
inputinduced state transition); (B) the corresponding log—log plot of power spectra from 867 to 1367 ms; (C) the corresponding log—log plotpEqiawer s
from 1367 to 1537 ms; (D) the corresponding log—log plot of power spectra from 1537 to 2037 ms.
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(a)

|

2000-ms duration

T T

T T 1
0 500 1000 1500 2000 Ms

Fig. 10. (A) A 2000 ms segment from a rat's EEG recording during a
seizure [Reprinted from Freeman (1987) by permission of Springer,
Berlin]. (B) A segment 2000 ms in duration from the output of @de

of the one-channel low-pass filter model, withvy,p =0.779,
WEM,) = 0.600, Wam,) = 3.800, WG,GiL) = 1.000, WcB) = — 0.900,
We,c) = 1.600, and W(GlD(lg =3.240, W(PD(%: 6.020, W(|1D(33 =3.7803,
Wi, =0240, and T{?=19510, T;”=10470, T3’ =25790,

T =14250, T = 24870, T = 12330, T =37.960, T = 24.160.

state, shown by the another 500 ms, after the stimulus is
ended. Again, the simulation was extended to the 16-
channel model (Fig. 9). An important property of the low-
pass filter olfactory model is revealed by these examples:
the system returns to the previously defined attractor after
termination of the stimulus. Moreover, the &tate is stable
in the sense that if the total perturbation amount (external
input) to the model is not more than 0.68 (input intensity)
170 s (input duration), the flétate can persist. Because of
its high nonlinearity, the low-pass filter model is destabi-
lized when either the stimulus duration or the stimulus
intensity becomes too long or too strong. The input stage
of the olfactory system has a neural mechanism for input
range compression by a logarithm transformation (Freeman,
1975), which, if over-ridden or by-passed, can lead to onset
of seizures. Fig. 10 shows the one-channel model with opti-
mized parameters to simulated the olfactory seizure activity.
one-channel model has two conneckedodes (not a single
P node) to form the layer of periglomerular cells (Freeman,
1987). When we compare thef tate shown in Fig. 11(A)
with a non-1f state shown in Fig. 12(A), these simulation
results also suggest that d 4tate is less influenced by a tiny
perturbation (e.g. the numerical truncation/round-off).
Thus, we propose that maintenance of thiespectrum is
a good criterion to “stabilize” a biological neural system
and that corresponds to having high correlation of output
time series in numerical simulations of the low-pass filter
olfactory model [see Fig. 11(A)]. Here, “stabilization” for
the model means that sufficiently small perturbations to
parameters, variables, or even the model's structure will
still permit the trajectory to return to the same attractor.
We cannot expect to reproduce the identical results by
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directly using Livermore package with the truncated data
given in Figs. 6—12. When the low-pass filter model is
operated in a domain of aperiodic oscillations, it resembles
a chaotic system, in that tiny perturbations of state variables
or parameters may lead to an exponentially diverging out-
put. The exact parameter values used by the machines
internally were binary representation with double precision
(64 bits) and rounded of to give the decimal values shown.
However, in any programming language with any proper
ODE integrator and on any computer, given the initial
guesses of the parameters and the starting condition, we
can always optimize the values of parameters in respect to
a specified criterion of output.

4.2. Shadowing of the chaotic solution

A chaotic system has the property that a relatively small
numerical noise tends to grow exponentially fast. To inte-
grate ODESs on a current digital computer, a continuous time
function must be converted into a discrete time map. Fol-
lowing an iterated process with a proper time step, we get a
numerical solution. We cannot accept this is “a true
solution” of the original chaotic system. We agree
with Dawson et al. (1993) who stated: “We believe that
in systems with high-dimensional chaos, trajectories with
intrinsic noise, such as computer-generated pseudo-
trajectories, can be shadowed only for short times.”

Thus, the extended question we examine is the fuzzy
word “short”: Can we control the shadowing time?
Because the normalizing-rounding process in the floating
point arithmetic is a deterministic process occurring at the
least significant bit level, the shadowing lemma to the
digital integration for a chaotic solution is not applicable.
Fryska and Zohdy, 1992 injected controlled amounts of
uniformly distributed random noise to a three-dimensional
chaotic system (a piecewise linear system) during digital
integration and thereby closely approximated the statistics
of the invariant chaotic attractor. Due to simplicity of their
system, an exact analytical solution was obtainable, which
was used as a reference for comparing with numerical
solutions from different precisions.

We have no way to analytically solve the high dimen-
sional neural model. To check the shadowing property and
the numerical sensitivity of the model, here, we gave two
mathematically equivalent formulas for the low-pass filter
model, say Implementation 1 and Implementation 2. Con-
sider the ODE for théVl; node of OB:

V03, 0+ (@-+ )WL, (0) + abMh, (0]

M;M,L)

— QP (1,67%) + YYD S o, ),609)

V#u
+ wmmy QUM (1), q°®) + wme) QG (1), q©?)
+ Q(Gy, (1), °)] + ki (0.
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(a.1)
mv 1527Djvergence point
4
0
-4
-8
T T | T T T
0 500 873 1000 1500 2000
End of onset transition period ms
(a.2)
mv 1527 Divergence point
4
0
-4
-8
T 1 I I I
0 500 873 1000 1500 2000
End of onset transition period ms
(b.1)
mv
4
0 ! f
-4 f
-8 Divergence point1978
I I | I I L
0 500 873 1000 1500 2000
End of onset transition period ms
(b.2)
mv
4
0o
-4
-8 Divergence point1978
T T ] T T T
0 500 873 1099 1500 2000
End of onset transition period ms

Fig. 11. Output waveforms from the four-channel low-pass filter model,afeél ensemble. (A) Without terminal bit randomization: (a.1) numerical solution
by Implementation 1 and (a.2) numerical solution by Implementation 2. (B) With terminal bit randomization: (b.1) numerical solution by Imptenientat

and (b.2) numerical solution by Implementation 2.

On Implementation 1, the second term of the RHS was All the other parts on coding the ODEs were identical.

coded by:

n—1.0

n
times o,y . QMy (1), g©9).
VFEp

On Implementation 2, it was coded by:

n
oLy 2. QM4 (1), q©P) divided byn— 1.0.

V#u

Because of truncation/round-off on terminal bits, the two
formulas are not identically represented by machine code.
The difference can propagate out spatio-temporally and
finally cause two divergent numerical solutions.

By injecting controlled amounts of random noise to the
model, we used:

x(t) =f(x(t),t) + a tiny Gaussian random variable

for each single equation of Eqg. (5) to randomize terminal
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(a.1)
mv 4
0
-4 TIY End of onset
-8 transition period [Divergence point
T T | T 1 T T
0 500 796 1000 1320 1500 2000
ms
(a.2)
mv4
0
-4 ‘ End of onset
-8 transition period |Divergence point
I ) I 1 I
0 500 796 1000 1320 1500 2000
ms
(b.1)
mv,
0
-4 ! ‘ End of onset
.8 transition period Divergence poin
T T T T T I
0 500 796 1000 1500 20002130
ms
(b.2)
mv a4
0
-4 ‘ ‘ End of onset
8 transition period Divergence point
T T | T T T
0 500 796 1000 1500 20002130

Fig. 12. Output waveforms from the four-channel low-pass filter model of&ll ensemble (witlwg, v,y = 3.300 andwg,cy = 1.700 instead). (A) Without
terminal bit randomization: (a.1) numerical solution by Implementation 1 and (a.2) numerical solution by Implementation 2. (B) With termirtdizes
tion: (b.1) numerical solution by Implementation 1 and (b.2) numerical solution by Implementation 2.

bits. The numerical simulations extended the shadowingis, of course, parameter dependent because the model
time. For the four-channel model with the identical para- trajectory depends on a given set of parameters. When the
meter values used in Section 4.1, we still tested@h@ode parameter optimization algorithm is applied the values of
in the first channel. Fig. 11(A) shows an obvious divergence parameters are continually updated. To “entirely stabilize”
of both implementations fromt = 1527 ms; Fig. 11(B) the model with parameter adaptation is still an open
shows both implementations start to diverge obviously problem. If the shadowing time period can be reasonably
around t = 1978 ms. If we then setwgwm,)= long due to such a “stabilization” process, we have a
3.300, w@,c)=1.700 instead, the resultant trajectory relatively high confidence in the numerical results of
becomes a “less chaotic” pattern: an obvious divergence parameter optimization from a digital computer. The
fromt = 1320 ms in Fig. 12(A), but front = 2127 ms in expected maximal duration of a stable state between transi-
Fig. 12(B). Thus, a random noise injection can “stabilize” tions is around 200 ms in the biological neural system (Bar-
the model’s trajectories (in the sense that the two numerical rie et al., 1996). The desired safety factor for stability is 10
solutions from mathematically equivalent formulas, but not X 200 ms. For competing with experimental EEGs,
numerically identical implementations stay close longer). ~2000 ms is a fairly good shadowing length for numerical
The key question is how to control the random noise (e.g. simulation.

how to set the values of mean and standard deviation for the Because of such super sensitivity to numerical truncation/
Gaussian random variable) to reduce the divergence rate. Itround-off, before the shadowing problem is “solved” we
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self-adaptation rule for parameter fine tuning is derived.
To avoid being absorbed into a local minimum, we apply
the random optimization technique for global parameter
searching. How to choose random distribution functions to
quickly locate a global minimum is heuristic. By using this
parameter optimization algorithm, optimized values of
parameters for the low-pass filter olfactory model become
self-adaptively achievable to generatéddwer spectra and
match experimental data.

Earlier models of olfactory dynamics (Freeman, 1987;
Yao and Freeman, 1990) used a set of differential-delay
equations to model axonal propagation delays between
layers PG, OB, AON and PC. “Differential” accounts for
a discrete set of distributed delays in an array of stored
values at fixed time steps. “Delay” accounts for the time-
delay feedback and the dynamical model made mathemati-
cal analysis difficult by introducing unavoidable numerical
error (inaccuracy) in using existing ODE solvers as
described in Section 2.2. This is a significant problem for
a chaotic system because we cannot tell whether the output
| chaotic patterns generated by computer simulations are
from the dynamics or from the numerical error. In this
paper, we simulate the time-delay feedback by using
another second-order ODE. Biologically, this low-pass filter
model is plausible because the onset and offset of delayed
feedback by axonal tracts is smoothed by temporal dis-
persion. Mathematically, the entire model becomes a set
of ODEs, which eliminates the numerical inaccuracy of
differential-delay equations and simplifies the derivation
of parameter optimization rule. However, on embodiment
of the model in software, the ODEs are transformed into
difference equations, in which the size of the digital time
step and the word size discretize the model’s trajectories.
This makes no difference for point and limit cycle attractors,
but it is non-negligible for aperiodic, presumably chaotic,
attractor solutions. The duration and stationarity decrease
are obliged to regard it as part of the olfactory model. The with the size of the model in the OB from four to 16 to 64
current technology of numerical methods appears to be theoscillators, indicating that the instability is due to attractor
only executable approach, which can give us a closestcrowding (Wiesenfeld, 1989; Tsang and Wiesenfeld, 1990).
pseudo-solution to the true solution of such a high Without noise, this is unavoidable in a model of realistic
dimension, nonlinear ODE set. size operating with aperiodic attractors. Because a bio-

logical system is stable and robust, we would like its

model to be robust in qualitative dynamics to perturbations
5. Conclusion in variables and parameters. Except for the injection of

temporal noise as discussed in Section 4.2, the other neuro-

In Chang and Freeman (1996), we optimized parametersbiologically guided method in the future to stabilize the
according to an objective function measured in time domain model may be either to explore the introduction into the
(i.e. the output pattern is examined in time domain). The model of controlled random variation of gain and delay
main advantage of this optimization technique is that it can parameters, which simulates the known variation in the
give us derivatives of an objective function with respect to properties of neurons in the olfactory system as multiplica-
system variables under constraints, when we have thetive noise, or to explore the utility of low-level random
objective function formulated in terms of these variables. variation of state variables in the model in the form of
Following this, we can always derive the corresponding additive noise, which simulates the presence of axonal
parameter adaptation rules. Here, in a frequency domain,noise in the synaptic inputs to neural ensembles. After add-
the objective function which relates variables to the ing this spatial noise to the model, we will re-optimize its
feature of a 1/ power spectrum is formulated. Thus, the parameters.

Fig. 13. Flow chart of parameter optimization algorithm fof péower
spectra.
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wherePp(t) denotes the input activity d? node at timet at
the uth channel with 1= u < n, etc.
(3) The N-dimensional vector of external stimuli,

Naval Research ONR-N63373-Nonlinear Neurodynamics (r(t)---rn(t)) is:
of Biological Pattern Recognition. The authors thank Leslie

Kay for preparing Fig. 5.
Appendix A

By the following specification, Eq. (1) implements the
olfactory neural system as shown in Fig. 1.

(1) The total number of neural ensemblbk= 5n + 13
(i=ltonforP;i=n+1tonforOBM;i=2n+1to3n
for OB My; i =3n+ 1to4dnfor OB Gy; i = 4n+ 1to nfor
OB Gy; i=5n+1to 5n + 4 for AON E,, E,, I, andl;
i=5n+5to 5+ 8for PCAy, Ay, By andB,; i =5n+ 9 for
C;i=5n+10to 5 + 13 for DL D4, D,, D3z andDy,).

(2) TheN-dimensional vector of wave activity variables
(X1 (1),... . xn(D) is:

(P1(1), ..., Pn(t), My, (1), ..., My (1), My, (1), ..., My (1),
Gy, (1), ..., Gy (1), Gy, (1), ..., Gy, (1), Eq(t), Ex(V),
l1(1), 12(t), Ac(t), Ao(t), Bu(t), Ba(t), C(t), Da(t),
Dy(t), Ds(t), Da(t))"

ﬂ,,’ﬁl', 0nxn onxn onxn 0 nxn onxl 0 nx1 0nx1
vl "0 ] ol vl ol Oy Oy O

nxn w“‘"’l 0 nxn w“")l 0 nxn 0nxl 0 nxl 0 nxl

W,
0 nxn w«;,,,l w““”I _(?fllﬂ"w‘“’l 0 nxl 0 nxl 0 nxl
onx'l wanl 0nxn woal 0nxn onxl onxl onxl
olxn = ,,' 1 olxn 0I><n 01xn 0 Wz W)
01 Opn 01in 01xn 0 Ixn Vo 0 wa
0 Ixn 0 Ixn 0 Ixn 0l><n 0 Ixn Yo Wun 0
0 Ixn 0 Ixn 0 Ixn 0 Ixn 0 Ixn V@ 0 wa
w,

olxn _u,l,ﬂ)-l 01xn 0l><n 0 Ixn 0 0 0
0 Ixn olxn 0 Ixn 0lxn 0 Ixn 0 0 0
olxn olxn olxn olxn 0Ixn 0 0 0
olxn olxn olxn olxn olxn 0 0 0
olxn olxn 01xn 01xn 0I><n 4 0 0
0 pin 0 4xn Opin Opxn  O4un €1E2 04x1 04x1

(Ry(t), ..., Ry(t), Ry(1), ...,R\(t), O,, O,, 05, 0, 0, 0, 0, O,
0,0, 0 0, 0"

(4) Lett— T andt— T be the delay starting time and
the delay ending time with respect to current tirhe
respectively, (€ {1, 2, 3, 4}). The six sets of rate constants
are:

Yyi=a+band® =ab, ieLR(1=i=5n+9)

1 1
vi= + and
T (Bn+9) T (Bn+9)
1 ,
¢ = , iEDL
T (6n+9) T (Bn+9)

(5n+10=i=5n+13, i.e. whenx;(t) is D,(t)
forl €{1, 2, 3, 4}).

(5) The structure of matrixw;] defines the connection net-
work and the values ofv;s determine the connection
strengths. For the olfactory neural model, we have khe
X N matrix of [wy]:

0,1 onxl 0nx1 0,1 0uxt Opxs WiroyM2
onxl onxl onxl onxl onxl onxl 0nx4
0nxl onxl onxl onxl onxl onxl 0nx4
0t Omxt Onxt Onxt Onxa Ot WicooMi +ic,0,Ma
onxl oan onxl onxl onxl onxl nx4
wey, 0 0 0 0 0 01x4
0 0 0 0 0 0 0,4
way, 0 0 0 0 0 w0, M3
0 0 0 0 0 0 Ixd
0 0 W Wan Wm0 olx4
0 wu 0 wa 0 0 0,4
0 Waa Wy 0 Wan Wao 01x4

0 way 0 wy 0 0 0,14

0 0 0 0 W) 0 01)(4
Opii € 04y 04y 04y € Oy
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with vectors and matrices as

10 . . .0 0 1 1
010 1 0 1
0 1
I = I = _ =11 Dixn
0 1
0 OIIIXH 1 Ionxn
00 0100 0 0 1
00 0100 000
Mi=" ,M2= e 'M3=(0010)1x4’M4=
100 0),,4 0100),,, 000 1),,,
1 0 0 0
0 1 0
e1= , ez= es= ,ande4= 0
0 0 1 0
0/ax1 0/4x1 0/4x1 1)4x1

The |w;] is basically a block diagonal matrix. Each block
starts for the layers of tha-channel OB, AON and PC,
respectively. The last row, representing the delay feedback W, c,) =Wg,,6,,) = WG WMy, My, L) = WiMsMyL)»
nodes, together with other sparse elements, form the

connections between layers. When we want to extend the ~ W(Gy,6,,1) =WG,GL) W(G,,b1) =WG,Dy)

system, all we need to do is to add another block for a new
layer and sparse elements for connecting it bidirectionally
with the old layers. All results based on Eq. (1) are applic- for all 1 < p, v < nin the PG and OB layers;

able. Each weight represents the strength (gain) of synaptic

action of one group of neurons on another. Experimental (0) Wee,,) = We ) = Weer): Wees1n) = W) = Wees1,) = W
testing has shown that the gains are kept within a small  w g\ =W g, =W,e,) =Wy andwg, i,y =W,1,) = W)
signal linear range during normal function (Freeman,

1975). They are time-invariant during recording periods of "N the AON layer;

several seconds and can changes to new values abruptlfc) wa a,) = Wa,a,) =Wan),

during learning or pharmacological manipulation. The

value can be a positive, negative or zero number to represent V(A8 = WiaiB,) = Wiae,) = Wiae),

WG, My,) = WGy, My,) = WGy, My,) = W(GM):

andw, p,) =Wg,0,)

an excitatory, inhibitory or no connection from ensemple W,A) = WE,A) = WB,A) = WA
toi # |, respectively. Herewp p 1) denotes the connection andw . .

strength linkingPy, with P, .. , andwp p,) is the one from (B:8,) = W) = Wep)
D,toP,, etc. Physically, “fromD, to P,” means fromE(t) in the PC layer.

to P, with time delay implemented by passing the output of ~ (6) The N-dimensional vector of stimulus intensity
E; throughD, node. Because our approach is to break the weights, ki(t)---kn(t)) is:

olfactory system into small modules, for simplification it is

reasonable to allow: (kpur): -+ KeoR)r Koy R): -2 Ky R+ One Onv On, 0,0, 0,

X 0,00, 0,0 0 0"
(@) Wp,p,L) =W(ppL), WMy, P,) = Wm;p)s Wep,D,) = W(PD,):
with positive elements. Slmllarlyqp R) andk(M R, are the

Wiy, M) = WMz, My,) = Wimm) gains fromR, to P, and toM, , respectlvely, andt(p R) =
Ker andk(Ml R) = kup forall 1 = w=n.
Wimy, G,,) =Wm,, G,,) = W(m,, Gy,) = W(MG): (7) The output is operated on by:

Q). ) £ o {1-exp( - _iplerts) - 1)}, i€LR

X (1), i €DL.

yi() = (A1)
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The static nonlinearity of the cell ensemble results from the and Eqg. (10) (fop = w) combined with Eq. (9) becomes
function Q(x;,g"®). The q*? is a constant for all the;s o e

belonging to one layer of cell ensembles. For later use in Awj = — CQUGONT(),
Section 3.1, we also calculate the derivation of the sigmoid i.e. the traditional back-propagation learning rule

to give the nonlinear gain: (Rumelhart et al., 1986). The terp)(t) dt of Eq. (8) is
1 from the conventional partial derivativeE/ox"(t) with E
i a exp(x; — W[exp(xi) -1])), i€eLrR being an integration, e.g. Eq. (6). SinEdas been taken as
Pt q _ Eq. (B.1), pO(t) dt and p®(t) dt should be replaced by
1, I € DL. QX ())/ax; ([ QM (1)) — Tito)(t)] and 0, respectively.
Appendix C
Appendix B The rate constant® = 0.220 andb = 0.720. For

. o _ _ n-channel PG layeq® = 1.824,wpp = 0.900,kpr =
To gain an insight into this general mathematical model 20.000. Forn-channel OB Iayerq( B _ 5.000 Wy =

and the corresponding parameter optimization rule, we 1 5gg Wi = —2.063, Wy = 2.323,Weq = —2.445
investigate the relationship to an artificial neural model Kot =?§OC))O For AON (Ia);er qhon _ 55_600 W _
and the traditional back propagation learning rule. 1.210)2 Wiy = —1.426,Wqe) — 1,'372 andwy =, _(1%71'

A frequently used discrete-time version of the standard g, pc layerg®9 = 5.000,w = 0.823Wg = —1.938

artificial neural model follows from Eq. (1). Wy = 1.947 andvgs = — 2.354. These parameters were

1. Let yi(t) = Q(xi(t)). (Remove delay feedback nodes used in the simulations. The determination of these values
and assume all the other nodes have identical I/0 were presented in reference (Freeman, 1975; Chang and
transformation.) Freeman, 1996).

2. LetAt be a small time duration and neglez{At®).

3. Leta+ b = 2/At andab = 2/At? Following this, take the

A ixD
Taylor series expansion of(t + At) at timet. Eq. (1) ppendix

reduces to: In this optimization algorithm, one step means one update
N of a parameter sep;; andp, are used for transition between
% (t+ At) = ZWii QX (1) + k(1) global sSarch|Eg and local tuning4 and e are for stop -
i criteria; &1 and, store the current and the preceding mini-

mum errors; parameters are those we want to optimize. The

This is a discrete-time artificial neural network (Rumelhart corresponding flow chart is presented in Fig. 13,

et al., 1986).
Next, we may relate the parameter optimization rule of 1. Set the maximum number of steps in a simulation run to
the model of Eq. (1) to the weight learning rule of the M and let the initial step court = 0. Set a sufficiently
artificial neural network. To have a close comparison, con-  small positive number and two fractions G< p4, p, <
sider a multi-layer feed-forward network with error measure 1. Define a global searching domain,and select the

according to: initial values of parameterg® to be optimized inp.
1 o s 2. Run an integrator with the givesf’ to solve Eq. (1) and
E= E[Q(Xi ) — 1] (B.1) ca(l)culateE according to Eq. (11) and assigil = & =
@)

with Ti(o)(t) a teaching signal. When the same three

- _ u. . Assignz, = &;.
conditions listed above are satisfied, we have:

. Run an integrator with the(t) obtained in (2) to solve
Eqg. (8). By using thé\i(l)(t), p(c)is adapted according to
Egs. (9) and (10). Increage= c + 1. Run an integrator
with the giverp to solve Eq. (1), calculatg according
to Eq. (11) and assigh,;, = & (p9).

5. Checkifc=Mor g, < €?

Hw

= ZA0 (8.2)

from the second half of Eq. (8). Using Eq. (B.2), the first
half of Eq. (8) reduces to:

aQ(xi(t))
x ét) [Q(Xi 1) - Ti(O)(t)]- « Yes— stop;
! o . « No— continue.
NO(t) = ' & {output Layer 6. Check if
IQXMITN L, 1O
BXi(t) Z];th\/Jl)\j (t), |P(C_l)|
i € {Hidden Layers} p
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or check if

=2

Yes— continue;
No — go to (3).

7. Assignz, = 1.
8. Generate the
79 4 49en?

random numberg and check if

* Yes— continue;
No — go to (8).

©

. Updatep® =p©@ +y and increase = ¢ + 1. Run an
integrator with the given® to solve Eq. (1), calculate
E according to Eq. (11) and assigh = Z().

10. Check ifE, < 21?

* Yes— goto (13);
* No — continue.

11. Check if2; < €?

* Yes— stop;
* No — continue.

12. Check ifc = M?

* Yes— stop;
* No— goto (3).

13. Check ifc = M?

* Yes— stop;
e No— goto (8).

There are mme variations in random parameters updating
for steps (8) and (9) (Solis and Wets, 1981). We have to
assure the convergence to the global minimum of the objec-

tive function with probability 1 and then compare the con-
vergence rates from modified methods with each other.
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