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Statistical analysis of dendritic spine
distributions in rat hippocampal cultures
Aruna Jammalamadaka1*, Sourav Banerjee2, Bangalore S Manjunath1 and Kenneth S Kosik2*

Abstract

Background: Dendritic spines serve as key computational structures in brain plasticity. Much remains to be learned
about their spatial and temporal distribution among neurons. Our aim in this study was to perform exploratory
analyses based on the population distributions of dendritic spines with regard to their morphological characteristics
and period of growth in dissociated hippocampal neurons. We fit a log-linear model to the contingency table of spine
features such as spine type and distance from the soma to first determine which features were important in modeling
the spines, as well as the relationships between such features. A multinomial logistic regression was then used to
predict the spine types using the features suggested by the log-linear model, along with neighboring spine
information. Finally, an important variant of Ripley’s K-function applicable to linear networks was used to study the
spatial distribution of spines along dendrites.

Results: Our study indicated that in the culture system, (i) dendritic spine densities were “completely spatially
random”, (ii) spine type and distance from the soma were independent quantities, and most importantly, (iii) spines
had a tendency to cluster with other spines of the same type.

Conclusions: Although these results may vary with other systems, our primary contribution is the set of statistical
tools for morphological modeling of spines which can be used to assess neuronal cultures following gene
manipulation such as RNAi, and to study induced pluripotent stem cells differentiated to neurons.

Keywords: Dendritic spines, Rat hippocampal culture, Linear network K-function, Morphological modeling, Spatial
statistics, Point processes, Neuronal growth

Background
Spines are protrusions that occur on the dendrites of most
mammalian neurons. They contain the post-synaptic
apparatus and have a role in learning and memory stor-
age. Spine distribution is a critically important question
for multiple reasons. Changes in spine distributions and
shape have been linked to neurological disorders such as
Fragile X syndrome [1]. Spine distributions determine the
extent to which the neuropil will be electrically sampled,
i.e. dense distributions will sample the neural connectiv-
ity map more fully [2]. Furthermore, the nature of optimal
sampling is unknown and likely depends on the surround-
ing anatomy and the total information content available
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to dendrites. Because pruning takes place during develop-
ment in an activity dependent manner, spine distributions
may reflect activity within neural circuits. Distributions of
spine types are biologically important because the electri-
cal properties of spines, such as the spine neck resistance,
promote nonlinear dendritic processing and associated
forms of plasticity and storage [3] to enhance the compu-
tational capabilities of neurons.

The shapes and types of dendritic spines contribute
to synaptic plasticity. Because neighboring spines on the
same short segment of dendrite can express a full range
of structural dimensions, individual spines might act as
separate computational units [4]. Nevertheless, the den-
drite acts in a coordinated manner and thus the spatio-
temporal distributions of different spine types is likely to
be significant. Little is known about this population level
organization of dendritic spines. Our aim was to perform
an exploratory analysis of neuronal data from different
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time periods during the growth of rat dissociated hip-
pocampal neurons, a well-established model system [5].
The observations here pertain only to the culture sys-
tem and not necessarily to in vivo settings although the
analytical tools used here could be adapted to in vivo
analyses.

By quantifying populations of dendritic spines with
automated tools at a global level, we were able to perform
a much larger and more comprehensive analysis than most
previous studies. Many studies only analyze a small region
of interest on the largest dendrites, for example the 50–75
μm closest to the soma [6], or 10 μm segments [7], mak-
ing it easier to measure manually the spine type counts
and dimensions. Other works determine spine lengths
and widths by manually drawing a line along the maxi-
mal length and measuring the length of that line [8], and
therefore are only able to analyze a few neurons and a few
hundred spines at a time.

In this study we determined the ratios of spine types
along the dendrites as a function of time in culture, clus-
tering or repulsion of spines in space, and how best to
model spine type distributions. A model that fits the spa-
tial distribution of spine types in healthy cultured neurons
would be useful to assess neuronal cultures following
gene manipulation such as RNAi and to study features of
induced pluripotent stem cells differentiated to neurons.

Log-Linear Models (LLM) and Multinomial Logistic
Regressions (MLR) are two basic and essential statisti-
cal methods, and have an extensive history of being used
in biological studies. However, these tools have not been
used thus far in the analysis of spine distributions. We
fit a log-linear model (LLM) to the contingency table
of spine features to determine the dependence between
spine types (mushroom, thin, and stubby), distance from
the cell body along the dendrite (in micrometers), the
branch order of the dendritic segment on which it lies
(primary, secondary, tertiary, etc.), and the day in vitro
(DIV) on which it was imaged. Once we determined
which of these attributes contributed to the overall den-
dritic spine model, we then asked whether these attributes
can predict the occurrence of spines and of spine types.
To answer this question we used a Multinomial Logis-
tic Regression (MLR) model, which predicted the spine
type, using the attributes that were found to be important
through the LLM and associated contingency tables.

Finally, to understand how the dendritic spine den-
sity varied over the length of the neuron or whether the
appearance of spines was completely spatially random
i.e uniformly distributed over the neurites, we made use
of spatial point processes. Spatial point processes have
been used before in biological studies to model the loca-
tions of entire neurons [9-11], locations of ants nests
[12] or xylem conduits [13]. There have also been other
more ad-hoc methods created to study the number of

“clustered spines” on each dendritic segment in mon-
key brains, where a cluster is defined as a group of 3 or
more spines [14] however we believe our use of the linear
network K-function [15] is the first work to analyze the
locations of dendritic spines and their clustering proper-
ties in such a principled manner. Our analysis indicated
that the density of spines is generally completely spatially
random (CSR) over the dendritic length probably due to
the absence of instructive directional signals found an in
vivo setting in which spine distributions are unlikely to
be CSR.

Methods
Cell imaging
Dissociated hippocampal neurons from embryonic rat
brains (E18) were plated onto poly-l-lysine coated cover-
slips. Once neurons adhered to the coverslip, they were
placed face-down on glial cells grown in vitro for 15 days.
These neurons were a primary neuronal culture system,
and no cell line was used. Neurons were grown for specific
time periods up to 21 days in a neuronal medium contain-
ing B27. This co-culture of neurons and glia mimic the
physiological conditions of neuronal growth and devel-
opment in mammalian brain [5]. Work with the neu-
ronal cultures was approved by the UCSB animal care
committee.

To fill the neuronal processes including dendritic spines
Green Fluorescent Protein (GFP) was expressed from a
plasmid containing the beta-actin promoter (CAG-GFP)
[16]. Of this plasmid, 2 μg was transfected into each cov-
erslip containing about 50, 000 neurons (including about
20% glial cells). Transfection was performed as described
in the manufacturer’s protocol (Lipofectamine 2000 from
Invitrogen) with minor changes. The transfection mix and
neurons were incubated for two hours to avoid toxic-
ity caused by lipo2000. Following transfection, coverslips
were flipped back onto the glial dish, where they were
originally cultured. GFP-actin transfected into the neu-
rons at DIV4 (Day In Vitro) and neurons were studied at
three time points- DIV7, 14 and 21. These time points sur-
vey the maturation period over which synapses and spines
emerge [17]. Note that these were not the same neurons
studied over time, but each time point represents a differ-
ent population of neurons which were grown in culture
up until the point of imaging. In this way our analysis
represents a study at the population level. At each time
point the number of images taken per plate depended
on the transfection efficiency of that plate. On average
approximately 1% of cells were transfected. The plating
density was set so that neurons were relatively isolated
in order to capture one neuron per image. An Olympus
FluoView laser scanning confocal microscope was used.
Image slices were 2048 by 2048 pixels at 154nm per pixel
resolution. There were 7–33 z-slices per stack depending
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on the depth of the neuron, taken at 200nm steps. This
means that the stacks were 315.39 μm × 315.39 μm ×
1.4–6.6 μm. The z dimension slices were used to capture
each depth level at the optimal focus, however we can-
not claim to have accurate volumetric information at this
resolution. A 40X oil objective lens with no optical zoom
was used. Numerical Aperture (NA) was 1.3, and illumina-
tion conditions were kept constant. Deconvolution of the
raw data before processing was not necessary because the
images were clear enough to manually annotate the neu-
ron traces and manually edit all the spine detections and
types as described in the following section. We performed
three biological replicates, the results of which are detailed
below.

Although there are other higher resolution, full volume
methods, the analysis of this data is broadly applicable to
imaged neurons in other systems [5]. We attempted to
capture the entire neuron in each image, however because
of limits in available imaging techniques we found that
this does not always happen. In the cases where den-
drites were truncated at the end of the image plane we
assumed that the proportion of spines in the missing
data was similar to what had already been observed, and
therefore the resulting distributions did not change. We
verified this assumption visually by taking tiled mosaics
of a few neurons imaged in their entirety from each DIV
and checking that the branch orders, distances to soma
and spine type counts were unchanged as compared to
those of the same DIV. There was an observed increase
in the dendritic length truncated by the image plane as
the DIV increased. However in our particular analyses
the methods used, such as the Log-Linear Model and
Multinomial Logistic Regression, were focused on trends
between spine characteristics such as distance to soma
and type and these trends are innately unaffected by the
truncation of dendrites given the above assumption. In
addition, spatial point process analyses such as the lin-
ear network K-function always include the specification
of an observation window [18], which in our case was
the image plane. We verified (see Results and discussion
section) that the overall spine density and the density of
each spine type did not vary with distance from the soma
so that we could assume spine density at the ends of the
dendrites which were truncated was similar to the den-
dritic length which was observed. We recognize that we
cannot see the proximity of labeled cells to other neurons
which haven’t taken up the GFP labeling. These unlabeled
neighboring neurons may cause some difference in spine
distributions which we cannot quantify. For this reason we
have attempted to quantify our biological findings statisti-
cally over entire experiments and DIV time points instead
of by individual neurons, although in certain cases show-
ing results from individual randomly sampled neurons
was necessary.

Neuronal reconstruction
There exist many automated methods for studying neu-
ronal growth and morphometry and therefore we present
a brief review of available software for tracing dendrites
and detecting and classifying spines. In particular, Neu-
ronJ [19] is a widely used software; however it is only
semi- automatic and one must click several points to trace
each neurite. The labeling is done manually and the statis-
tics output only include lengths of neurites and not spine
data. HCA-Vision [20] is a costly software with similar
goals, however the parameters of the neurite tracing are
set manually with a sliding bar and thus results require
much hand-tuning. In addition, it is also focused on trac-
ing neurites as opposed to spine analysis. For a full review
of existing methods and softwares for neuron tracing and
spine detection see [21]. We found NeuronStudio [22-24]
to be the most user-friendly, and for this reason we used it
to annotate dendrites and spines for this analysis.

Despite the abundance of automated softwares, neu-
ronal reconstructions are still largely performed by hand
[25] and this is is especially essential for a study like this
one, where the traversed distance of the dendrites and
number of spines and their shapes were analyzed in such
detail. Using automated reconstruction algorithms on raw
data is prone to both false positive and false negative
detections of spines, as well as misleading spine shape
measurements. In cases where neurites from neighbor-
ing neurons enter into an image (e.g. Figure 1 panes B
and C), NeuronStudio often incorrectly traces these neu-
rites as belonging to the neuron of interest. For this reason
we manually traced each dendritic branch and soma of
each neuron, ran NeuronStudio’s automated spine detec-
tion/classification algorithm and then manually inspected
and verified each spine’s location and type. The verifica-
tion and tracing were done by the primary author and
an undergraduate biology student working in the Kosik
Lab (see Acknowledgements). They were both familiar
with dendrite and spine morphology and the resulting
annotations from each were cross-checked by the other.

Relevant spine attributes output from the NeuronStu-
dio software include branch order (BO), type (stubby,
mushroom or thin), distance to soma along dendrite (SD),
length (tip of spine to dendrite) and width at widest
point (head diameter or HD). However since NeuronStu-
dio uses the length and width of the spines to determine
the spine type, we chose to make use of spine type and
discard the other 2 measurements. NeuronStudio uses
centrifugal labeling for branch orders, meaning it starts at
1 at the cell body and moves outwards, incrementing at
every y-shaped bifurcation regardless of the diameter of
the daughter branches. Note that the entire image stack
with z-dimension information was loaded into Neuron-
Studio for the spine classification, and that the software
has interpolation algorithms to estimate the spine type
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Figure 1 Examples of cell imaging results. This figure shows example images from each DIV (in order from top to bottom: DIV7, DIV14, DIV21)
along with corresponding close-up images of dendritic segments where spines were clearly visible. Scale bars are shown in red in panels A-C and
the yellow rectangular boxes in panels A-C show the region of interest which has been zoomed in on in panels D-F respectively. Panels D-F are all
at the same resolution.



Jammalamadaka et al. BMC Bioinformatics 2013, 14:287 Page 5 of 20
http://www.biomedcentral.com/1471-2105/14/287

in 3D. For spine detection the default cut-offs were used,
i.e. a required spine height between 0.2–3 μm, a max-
imum spine width of 3 μm, a minimum stubby size of
10 voxels (at the imaging resolution given above), a mini-
mum non-stubby size of 5 voxels, and automatic z-smear
compensation. For spine classification, the default set-
tings were also used, i.e. a head-to-neck ratio threshold
of 1.1 μm, an aspect ratio (spine height-to-width) thresh-
old of 2.5 μm and a minimum mushroom head size of
0.35 μm. NeuronStudio delineates spine types by these 3
thresholds. It is generally known that mushroom spines
have a large head and a narrow neck, thin spines have a
small head and a narrow neck, and stubby spines display
no obvious subdivision in head and neck. If the head-
to-neck ratio is above the threshold and the minimum
mushroom head size is met, the spine is considered mush-
room. If both the head-to-neck and aspect ratios are lower
than the respective thresholds then the spine is consid-
ered stubby. The remaining cases result in thin spines.
For further information on NeuronStudio reconstruction,
detection, and spine classification algorithms please refer
to [22,23]. In addition to the spine information, a trace
file is output which labels the cell body, branch points and
end points of the dendrites. The trace provides a skele-
tonization, or centerline, of the dendrite which we used
to compute the linear network distances in the following
analyses.

Log-linear model as a tool for exploring important features
and their dependencies
To find the most influential attributes with regard to pre-
diction and spatio-temporal modeling of spines we fit a
log-linear model to the feature data, which is a type of gen-
eralized linear model [26]. The co-occurrence frequencies
of the features in question are essentially a large multi-
dimensional contingency table of counts. The standard
linear models assume that data is normally distributed
around a certain mean, which means that the observa-
tions can take any real value, positive, negative, integer or
fractional. Log-linear models, on the other hand, assume
that data is intrinsically non-negative, typically counts
that could be Poisson distributed, and allow us to model
the association and interaction patterns among categori-
cal variables. The attributes under consideration are BO,
Type, SD and DIV. Again, since the type of spine was quite
directly dependent on the length and the head diameter of
the spine, we left these latter variables out of the modeling.

In order to analyze the data using a log-linear model,
the various features must be in a categorical form or
discretized. In an exploratory analysis such as this, one
does not know what dependencies among features to
expect; however we would like to note that these depen-
dencies were not lost in the discretization process since
trends in increasing and decreasing feature values would

be preserved. To ensure that there were a reasonable num-
ber of observations at the higher branch orders, we pooled
BO values of 5 or higher into a single category called
“higher-order branches”. We created a categorical variable
to represent the continuous variable soma distance (SD)
where categories were determined using the 4 quartiles of
the SD spine data pooled over all 3 experiments. Specifi-
cally, SD values of less than 65.65 μm were classified into
the first group, from this value to less than 108.99 μm the
second, from this to less than 157.04 μm the third, and the
rest (less than the most distal spine which lay at 413.25 μm
from the cell body) fell in the fourth group. Binning the
observed data for the continuous variables is the best way
to get a general feel for how these quantities relate to each
other. After this post-processing of the data we arrived at 5
categories of branch order, 4 categories of soma distance,
3 spine types (mushroom, stubby, and thin), and 3 DIVs
(7, 14, and 21 days).

Using the observed frequencies for the aforementioned
attributes, we created a four-way contingency table and
fit the model using the ‘glm’ function in the R package
‘stats’. The table of the frequency of occurrences of the
four attributes was modeled as Poisson with each entry
being a simple count of the co-occurrences of that bin. We
called this count fijkl with each of the subscripts i, j, k, l cor-
responding to a different attribute. The method uses the
link function yijkl = log(fijkl), and treats the model as a
regular linear model. Each entry yijkl is modeled by a com-
bination of coefficients: the intercept, plus main effects,
plus every combination of interactions between these four
attributes, as shown below.

yijkl = μ + αi + βj + γk + δl + (αβ)ij + (αγ )ik

+ (αδ)il + . . . + error.
(1)

We estimated this full interaction model using the least-
squares maximum-likelihood approach. We also used a
stepwise fit algorithm, which begins with a model that
includes only the constant term, and at each step chooses
whether or not to add one additional term. The algorithm
begins with the main effects then tries each possible 2-way
interaction, aiming to minimize the Akaike Information
Criterion (AIC). The AIC is defined as

AIC = 2k − 2ln(L(θ |y, x)) (2)

where k is the number of parameters i.e the total number
of coefficients being estimated, and

L(θ |y, x) = max
θ

N∏
n=1

eynθ ′xn e−eθ ′xn

yn!
(3)

is the maximized value of the likelihood function for the
estimated Poisson model. In the above equations x =
x1, . . . , xN ∈ R

4 are the input vectors, θ = θ1 . . . θk
are the parameter values (one per term in eqn. 1), and
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y = y1, . . . , yN ∈ R is the output. The AIC is a com-
monly used goodness-of-fit measure for a model given
the observed data. Adding or subtracting terms, whether
they be main effects, pairwise interactions, or up to 3-way
interactions between attributes, will change the AIC value
for the model. A lower AIC criterion indicates a better fit
to the data and therefore a better model. To compute the
stepwise fit we used the R function ‘step’. For more infor-
mation on the stepwise fit algorithm as well as the AIC
criterion we ask that the readers refer to the ‘step’ func-
tion reference ([27], Chapter 6). We ran both of these LLM
fitting procedures for all 3 experiments separately expect-
ing to find general agreement between coefficients of the
corresponding models created.

Multinomial logistic regression to predict spine type from
neighbor types
In order to predict spine type we first determined which
attributes contributed most to spine type prediction.
Given the complexity of the multidimensional LLM and
the various interactions and conditional frequencies that
would impinge on this issue, we decided to determine
these attributes by analyzing 2-way contingency tables
for spine type vs. SD, BO, DIV, as well as the spine
types of the 3 nearest neighbors. This analysis helped us
pick attributes that would be useful as the predictors in
the multinomial logistic regression (MLR) [28] explained
below.

When the response variable of a regression takes binary
values “Logistic Regression” is used. This is an approach
which uses a linear combination of the predictor variables
to predict the log-odds of a success (the “logit” of the
probability). Since our response variable was spine type
and it can take 3 values (mushroom, stubby or thin), we
needed to use a “Multinomial Logistic Regression” (MLR)
which attempts to model the probability of any of multi-
ple possible outcomes. We did not use the attributes SD
or BO as predictors variables since the results of both the
LLM analysis and 2-way contingency tables mentioned
above told us that these quantities were not as relevant
for spine type prediction. Therefore our model consisted
of spine type as the output variable and the DIV, 1st,
2nd and 3rd nearest neighbor type along the dendrite as
the predictor variables. We tried using only 1 or 2 near-
est neighbors, however the results proved inconclusive
because the prediction probabilities for each of the 3 types
were predominantly close to 1/3. If we used more than
the 3 nearest neighbors we sometimes ended up spanning
a segment of dendrite which we did not consider to be
“local” , so we decided that 3 nearest neighbors provide the
most useful information in the case of this study.

The MLR analysis we performed in this paper does dis-
regard the actual inter-spine distances, meaning that if the
3 nearest neighbors are very close or very far apart we still

treat them the same. We did this partially because adding
the distance variables would complicate the model signifi-
cantly, but also because we believe that over a large popu-
lation of spines such as the one we have, these differences
in distance will average out and we will still get a general
picture of the trends between neighboring spine types. To
verify that this was true we computed a histogram show-
ing the distribution of 3rd nearest neighbor distances for
each spine, shown in Figure 2. Although the maximum
distance to any 3rd nearest neighbor is extremely high
(248.31 μm) we can see from the histogram as well as
the fact that the median 3rd nearest neighbor distance
was 5.34 μm that this distance is clearly an outlier case
and that the majority of 3rd nearest neighbor distances lie
below 25 μm.

Suppose the output variable categories are denoted by
0, 1, 2 corresponding to mushroom, stubby or thin spines,
with 0 being the reference category. If yi denotes the
observed outcome of the output variable (spine type), and
Xi is the corresponding vector of the 3 neighbor types and
DIV for the ith observation, one regression is run for the
logit probability of each category k, with βk representing
the vector of regression coefficients in the kth regression
(eqns. 4,5). This is done for all but the reference category,
whose probability is then obtained by subtracting all other
probabilities from one (eqn. 6). Note that because the pre-
dictor variables were spine types, which were nominal as
opposed to ordinal variables, the predictor variables Xi
must be represented with a “dummy coding”. This means
each neighbor type was represented by 2 predictor vari-
ables, where (1, 0) corresponded to mushroom type, (0, 1)

corresponded to stubby type and (0, 0) corresponded to
thin type. This does not need to be done for the output
variable y. With the addition of the DIV, which does not
have to be dummy coded since it is an ordinal variable,
this made each Xi vector of length 7.

The regressions are then written as:

P(yi = 1) = exp(β1Xi)

1 + exp(β1Xi) + exp(β2Xi)
(4)

P(yi = 2) = exp(β2Xi)

1 + exp(β1Xi) + exp(β2Xi)
(5)

and
P(yi = 0) = 1 − P(yi = 1) − P(yi = 2)

= 1
1 + exp(β1Xi) + exp(β2Xi)

(6)

The parameters are estimated typically by using an
iterative procedure such as “iteratively re-weighted least
squares” (IRLS) or, more commonly by a numerical
approach (a quasi-Newton method) such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method. In our case
we create an MLR using the command multinom in the
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Figure 2 Histogram of 3rd nearest neighbor distances. This figure shows the distribution of 3rd nearest neighbor distances in order to get an
idea of the physical neighborhood of spine types used for the MLR. It shows that although the maximum distance to any 3rd nearest neighbor was
extremely high (248.31 μm) this distance was clearly an outlier case.

R package nnet [29] which uses BFGS by calling the R
function optim. It can be seen that

log(
P(yi = 1)

P(yi = 0)
) = β1Xi (7)

log(
P(yi = 2)

P(yi = 0)
) = β2Xi (8)

so that the beta coefficients represent the change in the
log odds of the dependent variable being in a particular
category with respect to the reference category i.e. the
thin type, for a unit change of the corresponding inde-
pendent variable. To check if the models created from all
three experiments were in agreement, we ran the MLR
separately for each experiment.

To satisfy one of the major assumptions of this anal-
ysis, namely that the data must be a set of independent
observations, we took 200 randomly sampled spines of
each type from each experiment (600 spines per experi-
ment total) to use for the parameter estimation. We chose
to select equal proportions of each spine type in order
to remove any bias in the model towards the less fre-
quent thin spines, and 200 was the largest number we
could justify using since there were only 649 thin spines
in experiment 3. We verified that these randomly sam-
pled spines did not lie within 10 μm of the image border
so that we were fairly certain their nearest neighbors did
not fall outside of the image plane. Note that due to the

tortuosity of the dendritic structure this did not mean that
our sample was necessarily biased towards spines which
were proximal to the soma. We did not verify explic-
itly that the sampled spines were not neighbors of each
other, since we assumed that the variation captured by
the random sampling was enough to ensure some level of
independence. The idea was to aim for an independent
set of observations which represented the entire “popula-
tion” of spines in that experiment. To be clear we used all
30, 285 spines for the LLM model and K-function analysis,
only the MLR model required random sampling since we
were using neighbor information which would have been
redundant if we considered every spine.

To verify that the prediction of spine type provided by
the MLR was better than what we would get purely by
their relative abundance i.e. without neighboring spine
type information, we computed something similar to a
“Bayes Factor” [30]. Bayes factor is a method of choos-
ing between two models on the basis of the observed
data. In our case, the first prediction model was simply
the prior global probability of finding a given spine type
based on its frequency in the particular experiment under
consideration. The second model was the MLR prediction
model using the neighbor type information. We computed
P(Y = i|X)/P(Y = i) and reasoned that values consider-
ably larger than one indicated the neighboring spine type
information was helpful in the prediction of the central
spine type.
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Linear network K-function as a tool for testing spatial point
patterns
Originally proposed by Ripley in 1981 [31], the purpose of
the K-function is to estimate whether or not there is clus-
tering or repulsion present in a given spatial point process.
The common null hypothesis is that the points within
the observation window are distributed as a homogeneous
Poisson process, which is also termed “completely spa-
tially random” or CSR. This means that the density of
points does not vary depending on the spatial parameters
i.e. x and y in the 2D Euclidean case, or the location along
the dendritic network in our case. In order to determine
if this is a valid null hypothesis for our data, we created
Q-Q plots [32] for individual dendrites which compared
the quantiles of the SD values of observed spines to the
theoretical quantiles for the CSR case. If the two distri-
butions (observed and CSR) being compared were similar,
the points in the Q-Q plot would approximately lie on the
line y = x. In order to create the theoretical quantiles it
is necessary to know the values of SD at any location on
the given network, not just at the spine locations. Once we
have this we can partition the network into epsilon small
segments and assign each segment a value 1 if it contains
a spine and 0 otherwise based on the CSR assumptions.
We did this using code provided to us by Adrian Baddeley
and Gopal Nair at the Commonwealth Scientific and
Industrial Research Organization (CSIRO), Australia.

The K-function computes the expected number of
points within a distance t of an arbitrary point p, therefore
the empirical value in 2D Euclidean space for the CSR case
will be proportional to the circular area, λπ t2. The pro-
portionality constant λ represents the density of points in
the homogeneous Poisson case, and can be estimated by
finding the total number of points N divided by the total
area of the observation window A. Ripley’s K-function,
which is a function of t, is a very useful tool because it
describes the 2nd order characteristics of the point process
at several scales t. If we ignore the edge effects due to the
observation window, the observed K̂(t) can be written as:

K̂(t) = |A|
N2

∑
i

∑
j �=i

I(dij < t) (9)

where I stands for the indicator function, and dij stands
for the Euclidean distance between two points pi and pj.
In the above equation, we see that the expectation is nor-
malized by 1/λ since λ = N

|A| , so we infer that theoretically
K(t) = π t2 implies spatial independence of points, or
a CSR point process. Therefore, if K(t) is the theoretical
CSR value of the function and K̂(t) is the observed func-
tion, then K̂(t) > K(t) implies clustering between points
and K̂(t) < K(t) implies repulsion. It is possible to extend
this function to multi-type point patterns (i.e. to find clus-
tering or repulsion between specific spine types) or to

higher dimensional data (i.e. space-time, or 3D Euclidean
space).

Since our particular point process consists of spines
which lie along the “linear network” of the dendritic tree
we were primarily concerned with inter-spine distances
along the dendrite as opposed to in Euclidean space.
Therefore we used a version of the K-function devel-
oped recently for linear networks by Okabe and Yamada
[15]. This modified version of the K-function takes into
account the structure of the linear network on which the
point process resides and imitates the Euclidean space K-
function described above. The linear network K-function
is calculated as follows:

K̂(t) = 	T
N2

N∑
i=1

∑
j �=i

I(dij < t) (10)

where 	T is the length of the total network LT . The
theoretical CSR for this case is described as follows:

K(t) = 1
	T

∫
p∈LT

	p(t)dp (11)

where p is a point belonging to the set of all points P =
{p1, . . . , pN }, and 	p(t) is the length of the subset of the
network Lp(t) where the distance between p and any other
point is ≤ t. Note that here the distance dij stands for
the linear network distance along the dendrite. Account-
ing for variability in the length 	p(t) means the formula
takes into account the edge effects due to the observation
window (in our case the image plane) inherently, but at the
cost of added complexity. The computation of the theoret-
ical linear network K-function requires us to find Lpi(t),
the subset of LT where the network distance between a
specific point pi and any other point is ≤ t, and 	pi(t), the
length of that subset, for every point pi. A visualization
of the quantities dij, LT , 	T , Lpi(t), and 	pi(t) is shown in
Figure 3.

Note that although many biological applications of point
processes treat individual observations as replicate pat-
terns coming from the same underlying distribution, we
cannot do that using the above definition of the network
linear K-function due to the change in linear network
structure from dendrite to dendrite. The term “dendrite”
here refers to the entire dendritic tree resulting from a
single root branch of a neuron. Other in-vivo studies
[33,34] focus on clustering of spines which lie on the same
unbranched section of the dendrite, however we focus
on the entire dendritic tree under the hypothesis that it
follows rule-based distributions of spines due to anatom-
ical constraints and integration of the a signal over the
entire dendrite. One can infer from Figure 3 that since the
geometry of the linear network changes from dendrite to
dendrite, so do the total lengths of the networks 	T , the
ranges of possible t-values and the amount of dendritic
length that is present within a given distance of any point.
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Figure 3 Visualization of the linear network K-function. This figure
clarifies what is meant by the quantities dij , LT , 	T , Lpi (t), and 	pi (t)
which were used to compute the linear network K-function. Here dij is
the linear network distance shown by the gray line between points pi

and pj . LT (in black) is the entirety of the single dendritic network and
	T is the length of LT . Similarly, Lpi (t) (in blue dashed lines) is subset of
the network where the distance between a point pi and any other
point is ≤ t and 	pi (t) is the length of Lpi (t). In this particular example
there are 2 spines which fall within Lpi (t) and would be counted in
determining the empirical function value K̂(t), however point pj falls
outside this radius and would therefore not be counted.

We did not simply normalize the lengths of the networks
to a [0, 1] scale because it is desirable for the t-axis to
retain its real physical values in order to make conclusions
about the scale (in μm) of clustering or repulsion among
spines. However, we did desire to compare the linear net-
work K-functions of various dendrites in a meaningful
way. For this reason we used a corrected version of the
network K-function that intrinsically compensates for the
geometry of the network called Ang’s correction [35].
The observed K-function then becomes:

K̂(t) = 	T
N(N − 1)

N∑
i=1

∑
j �=i

I(dij ≤ t)
m(i, dij)

(12)

where m(i, dij) is the number of points of L lying at the
exact distance t away from the point i measured by the
shortest path. That is, the contribution to the function
from each pair of points (i, j) is weighted by the reciprocal
of the number of points that are situated at the same dis-
tance from i as j is. As a result, the theoretical CSR case
is simply K(t) = t for all 0 ≤ t < T . This enables direct
comparison of t-values across dendrites, as we will see in
the results section.

Simulations and q-values
To test the null hypothesis that the locations of spines on
the dendrites were indeed CSR, we created a summary
statistic which encompasses the difference between the
empirical K̂(t) and the theoretical K(t) under CSR. The
summary or “test statistic” we used, is the max absolute
difference (MAD) over t, viz.

d = max
t

|K(t) − K̂(t)|.

One method for obtaining a distribution of d proposed
by Diggle [36] is to bootstrap the residuals, or differences
between the observed and theoretical values. However a
more heuristic and intuitive way is to simulate the CSR
case for each dendrite, compute the K-function for each
of these simulations, and find the simulated distribution
of our test statistic. We then found the p-value of the
observed difference d from this simulated distribution.

Specifically, we carried out 1000 CSR simulations for
each dendrite by placing uniform points on a line [0, 	T ],
and mapping them to that specific dendrite’s linear net-
work structure. The number of points simulated per den-
drite equaled the number of observed spines for that
dendrite, thus preserving the overall density λ. This means
the same number of spines that existed on each dendrite
were randomly placed along the linear network specific to
that dendrite. We used these simulations to obtain 1000
values of the summary statistic, say d[i]. Then the p-value
for each dendrite was simply the proportion of simulated
values that fell above the observed or experimental value
of d, i.e. the rank of this d within the 1000 values of d[i],
or nrank/(nsim + 1).

This p-value approach is similar to the test which rejects
the null hypothesis if the graph of the observed K-function
lies outside the “point-wise simulation envelope” at any
value of t. A simulation envelope is essentially a graphi-
cal measure of how far a function can deviate from the
theoretical value without being considered significant at a
given level. As mentioned above in our case the envelope
is calculated by first creating the 1000 CSR simulations of
a point pattern on a given dendritic network with the same
observed network intensity, then calculating the linear K-
function for each of these 1000 simulations. To perform
a two-sided significance test at the 10% level, the 5% and
95% percentiles are then calculated based off the 50 lowest
and 50 highest linear K-function values per t-value, hence
the term “point-wise”. Plotting these values as a function
of t gives one a visual idea of the spread that is produced by
chance mechanisms alone. If the observed K-function for
a given t-value does not fall outside these percentiles, it is
considered insignificant for that t-value at the 10% signif-
icance level. We make use of the R package ‘spatstat’ [18]
for obtaining the point-wise simulation envelope.
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Because we have a multitude of hypothesis tests and p-
values (one for each dendrite), to reach a conclusion about
the general trend for each DIV and experiment, we used
the concept of False Discovery Rate (FDR) [37]. The FDR
is defined as

π0 = # true null tests
# total tests

(13)

Controlling the overall FDR, or expected proportion
of incorrectly rejected null hypotheses termed “false
discoveries”, is a statistical method commonly used in
multiple hypothesis testing which increases the statisti-
cal power of each test. What is more general and useful
however, is a test-specific FDR measure. This essentially
allows us to look at all possible significance thresholds
at once, as well as provide each test with a measure of
significance that can be easily interpreted. This is accom-
plished by calculating an analogue of the p-value for each
test called a “q-value” [38]. A p-value of 0.05 implies that
5% of all tests will result in false positives, whereas a q-
value of 0.05 implies that 5% of significant tests will result
in false positives. Since the latter is clearly a far smaller
quantity, q-values generally indicate fewer significant tests
than p-values for a given significance threshold and pro-
vide a far more accurate indication of the level of false
positives in the case of multiple hypothesis testing. For
q-value estimation we used the qvalue package available
from [39].

Results and discussion
Data analyzed
We performed three biological replicate experiments
resulting in a total of 75 neurons from the following
time points: DIV 7, DIV 14, and DIV 21 (Table 1). This
provided a rich and complete data set resulting in 485
dendritic branches and 30,285 spines. Example images
from each DIV along with zoomed in dendritic segments
where spines and annotations are visible are shown in
Figure 1. Scale bars are shown in red in panels A-C
and the yellow rectangular boxes in panels A-C show
the region of interest which has been zoomed in on in
panels D-F respectively. Panels D-F are all at the same
resolution.

Table 1 Number of neurons collected per experiment and
DIV

EXP DIV7 DIV14 DIV21

1 8 9 7

2 10 10 10

3 7 7 7

The number of spines per μm, or λ, for each den-
drite in different experiments and time points is shown
in Figure 4. We chose to include this in order to help the
reader compare these neuronal culture results with other
experimental paradigms with which they may be more
familiar. It is clear from the histograms that the distri-
bution of spine density for DIV7 is skewed toward lower
values as compared to the density for DIV21, as expected.
The image data as well as spine and trace annotations
are made publicly available through the BISQUE system
[40] and the URL is given in the section titled “Availabil-
ity of Supporting Data” . We chose BISQUE over other
databases like NeuroMorpho.Org [41] because it allows
us to upload multiple layers of annotations as opposed to
only the digital reconstruction files.

We calculated a 2-way contingency table over all exper-
iments and spine types and obtained Table 2. From this
table we note the high frequency of mushroom and stubby
spines as compared to thin spines, and also the fact
that the ratio of types does not remain the same per
experiment even though they were indeed biological repli-
cates. In fact, a Pearson’s Chi-Squared test on Table 2
shows dependence between the spine type counts and
experiment number, χ2(df = 4, N = 30285) = 659.87,
p < 0.0001.

We believe that the large experimental variation
between spine type proportions and counts in each exper-
iment was a positive result because this meant that
statistical agreement across all 3 experiments relating to
spine type clustering and density estimation carries heav-
ier weight than if the 3 experiments were more uniform
in these quantities, or if we had pooled data from all
3 experiments together. Also, if all 3 experiments were
unusually homogeneous there could be a possibility that
it is a result of our specific culturing, imaging or spine
extraction methods rather than a true representation of
the underlying biological process. The various biological
systems to which these techniques will be applied will
certainly have this type of variability.

Spine type is independent of distance from soma
As described in the Methods section, we calculated a
stepwise-fit of the log-linear model starting with just a
constant term, and at each step choosing to add the
main effects (div, type, bo and sd) and possible 2-way
interactions between main effects one-by-one if they
decreased the corresponding AIC value. The captions
above Tables 3, 4 and 5 show the final models arrived
at for each of the 3 experiments as well as their corre-
sponding AIC values. The tables indicate the change in the
AIC value that would occur from adding or omitting each
of the terms in the first column. This gives us an idea of
how important that term was to the model. The rows of
the table are ordered by their overall contribution to the
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Figure 4 Histograms of spine density per dendrite for each experiment and DIV. This figure shows histograms of the number of spines per
μm, or λ, for each dendrite in different experiments and time points.

model, i.e. the term in the first column of the first row
of each table had the lowest AIC value and was there-
fore the most important to the overall model. If the reader
requires further information on the AIC criterion or how
to interpret this table we ask them to refer to Chapter 6
of [27].

Despite the fact that they were included in the final step-
wise fit model for experiments 1 and 3, the AIC values in
Tables 3, 4 and 5 show that in all 3 experiments the inter-
action between spine type and soma distance (“type·sd”)
as well as spine type and branch order (“type·bo”) were the
least important in modeling the overall frequency table
of occurrences. This implies that the correlation between
these quantities was not very high, therefore we reason

Table 2 Number of each type of spine per experiment

EXP Mushroom Stubby Thin

1 4035 3224 1915

2 5400 6619 2570

3 2388 3485 649

that it was not necessary to use either SD or BO to predict
the spine type in the MLR created in the following section.
We also noticed that the term marking the interaction
between BO and SD was the most important pairwise
term in all stepwise fit models. It is expected that BO
and SD are correlated because both necessarily increase
as we move away from the cell body. Indeed, running a

Table 3 EXP 1 stepwise final model: freq ∼ div + type + bo
+ sd + bo·sd + div·bo + div·type + div·sd + type·bo +
type·sd, AIC = 1557.05

Df Deviance AIC

None 530.4 1557.1

Omit type·sd term 6 545.0 1559.6

Omit type·bo term 8 558.8 1569.4

Omit div·sd term 6 569.6 1584.2

Omit div·type term 4 648.0 1666.6

Omit div·bo term 8 1324.1 2334.7

Omit bo·sd term 12 4142.4 5145.0
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Table 4 EXP 2 stepwise final model: freq ∼ div + type + bo
+ sd + bo·sd + div·bo + div·sd + div·type, AIC = 1243.13

Df Deviance AIC

None 470.2 1243.1

Add type·sd term 6 461.3 1246.3

Add type·bo term 8 465.5 1254.4

Omit div·type term 4 610.4 1375.3

Omit div·sd term 6 696.0 1456.9

Omit div·bo term 8 906.5 1663.5

Omit bo·sd term 12 5208.2 5957.1

2-way Chi-square test on the contingency table of the dis-
cretized versions of these variables showed us high depen-
dence, χ2(df = 12, N = 30285) = 11635.19, p < 0.0001.
We also saw a high level of dependence between DIV
and SD (χ2(df = 6, N = 30285) = 681.76, p < 0.0001)
and between DIV and BO (χ2(df = 8, N = 30285) =
1604.75, p < 0.0001). This was intuitive as well since we
expect both BO and SD to generally increase with DIV.

It is possible that the Type vs. SD relationship could
have also been estimated using a Sholl-type analysis ([42])
where we count the number of each type occurring within
concentric circles from the soma and verify that it is con-
stant, however this would not necessarily produce the
same results. The crucial difference between our approach
and the Sholl approach is that in our approach the
“distance from soma measures” the actual distance along
the centerline of the dendrite instead of the radial dis-
tance from the cell center. This is especially important for
dendrites with high tortuosity (which we find prevalent in
our data), since the radial distance in those cases will not
correspond to the dendritic distance from the cell body.
Many studies of cultured neurons use Sholl analysis, how-
ever they use it in its original form for counting dendritic
intersections and do not comment on the relation to spine
density or type. To our knowledge this is the first study

Table 5 EXP 3 stepwise final model: freq ∼ div + type + bo
+ sd + bo·sd + div·sd + div·type + div·bo + type·sd +
type·bo, AIC = 1441.29

Df Deviance AIC

None 482.24 1441.3

Omit type·bo term 8 522.95 1466.0

Omit type·sd term 6 542.08 1489.1

Omit div·bo term 8 606.34 1549.4

Omit div·type term 4 630.62 1581.7

Omit div·sd term 6 715.38 1662.4

Omit bo·sd term 12 2825.69 3760.7

to quantify the spine density vs. distance to the soma in
dissociated neuronal cultures.

Three-way and 4-way interactions are generally known
to be weak (not as explanatory as the main effects and
2nd order interactions) and difficult to interpret, however
in the interest of exploring all possibilities we computed
the maximum likelihood fit using all 4 attributes as well as
a stepwise fit model which allows for 3-way interactions
between attributes. The table presented in Additional
file 1 results from the LLM which models all possible
interactions of all 4 attributes, i.e. up to the fourth order.
The coefficients presented in the table are those which
were significant at the 0.1% level, and the corresponding
p-values are shown in the last column. The table contains
the interactions which were more important to the model,
and shows that of these interactions only one (highlighted
in green) between type and either BO or SD, was shown as
being significant over all experiments. This verifies once
again that neither BO nor SD were highly correlated with
the spine type. In addition to this, the stepwise fit mod-
els in Additional file 2 show that if we did allow 3rd order
interactions, the strongest 3rd order correlation over all
experiments was that of DIV, SD and BO, again affirm-
ing that all 3 of these quantities should intuitively increase
together.

Spines tend to cluster with other spines of the same type
In creating a regression model, we first ascertain that the
predictor variables used are not only useful in predict-
ing the output variable, but also that they do not provide
redundant information as this can throw off the model
fitting process. Using all spines in the dataset, we per-
formed a Chi-square test on the 2-way contingency tables
of spine type versus binned SD and BO, DIV, and the types
of the 3 nearest neighbors (N1, N2, N3) as described in
the Log-Linear Model section above. Due to the afore-
mentioned dependence between the type and experiment
number we performed the test separately for each exper-
iment and the results are shown in Table 6. From the
table we can see that the DIV and the 3 nearest neighbors
showed clear dependency with spine type in all experi-
ments, whereas SD and BO showed independence at the
5% significance level in experiments 1 and 2 respectively.
Since we expected SD and BO to have a similar rela-
tionship with type due to the high correlation mentioned
above, and we had found this was not a very strong rela-
tionship, we chose to use only DIV, N1, N2 and N3 as
predictors for spine type in the MLR model.

The resulting beta coefficients for each of the predic-
tor variables are shown in Table 7. Here “N1-Var1” refers
to the beta coefficent of the first dummy variable for the
type of the first nearest neighbor; “N1-Var2” refers to the
second dummy variable, and so on. The “mushroom” row
is omitted because it is the reference category and its
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Table 6 Chi-square results for spine type vs. other attributes

EXP1, N = 9174 EXP2, N = 14589 EXP3, N = 6522

Type·SD, df = 6 χ2 = 9.13, p = 0.1665 χ2 = 33.64, p < 0.0001 χ2 = 25.08, p = 0.0003302

Type·BO, df = 8 χ2 = 29.02, p = 0.0003147 χ2 = 12.39, p = 0.1348 χ2 = 26.53, p = 0.0008516

Type·DIV, df = 4 χ2 = 119.78, p < 0.0001 χ2 = 358.25, p < 0.0001 χ2 = 139.28, p < 0.0001

Type·N1, df = 4 χ2 = 225.93, p < 0.0001 χ2 = 212.87, p < 0.0001 χ2 = 246.74, p < 0.0001

Type·N2, df = 4 χ2 = 163.67, p < 0.0001 χ2 = 226.31, p < 0.0001 χ2 = 127.91, p < 0.0001

Type·N3, df = 4 χ2 = 90.33, p < 0.0001 χ2 = 153.11, p < 0.0001 χ2 = 131.96, p < 0.0001

probability is obtained as shown in eqn. 6. We computed
the prediction probabilities for each spine type given each
combination of neighbor types for each experiment sepa-
rately to determine the agreement between experiments.
A selected set of results are shown below in Tables 8, 9
and 10. The highest probability for each row is marked by
an asterisk. Note that in these tables all DIVs in all exper-
iments predicted the spine type to be mushroom when
its 3 nearest neighbors were mushroom type, and stubby
when the 3 nearest neighbors were stubby type. Thin types
were the most probable when the three nearest neighbors
were thin type in all but experiment 2 DIV14 and DIV21.
The probabilities for cases where all 3 of the nearest
neighbors were not of the same type have been omit-
ted for brevity and because they did not show any clear
trends.

The Bayes factor results in Table 11 show that the pro-
portional gain in information for the spine type in ques-
tion was always greater than one for the prediction of a
particular type when the neighborhood types were all of
that same type. Due to the low frequency of thin spines,
their corresponding Bayes factors were higher than that
of other types, meaning that their prediction probabilities
benefit more than other types from neighborhood type
information.

Dendritic spine densities are completely spatially random
We created Q-Q plots as described above based on the
quantiles of spine counts vs. distance from the soma and

found that upon visual inspection almost all dendrites fol-
low the theoretical uniform distribution closely enough to
assume that the density of the spines was homogeneous
and therefore the CSR case was a viable null hypothe-
sis. We selected 9 (out of 485) example dendrites and
their Q-Q plots are shown in Figure 5. We randomly
selected 1 dendrite from each DIV and each biological
replicate (experiment) to ensure the diversity of the set.
The y = x line is marked in red, and the observed Q-
Q values are marked as black circles. Note that because
this is a graphical method for comparing two probabil-
ity distributions there was no p-value or significance level
associated.

Of all the 485 dendrites analyzed, only three of them
(Exp. 1 DIV 21, Exp. 2 DIV 14, and Exp. 2 DIV 21) were
considered non-CSR at the 5% significance level. Figure 6
shows histograms of the p-values of all 485 dendrites sep-
arated into each DIV and experiment number. The 5%
significance level is shown by the red vertical line in each
case. We then computed the q-values for each dendrite
and found that they are all equal to 1. This is not sur-
prising according to the explanation of the q-value above.
Recall that q-values equal to 1 imply that 100% of the
significant tests resulted in false positives, i.e. there were
no significant tests. We therefore conclude that regard-
less of the maturity of the neuron, or the variation over
biological replicate experiments, the locations of spines
along all of the dendrites we analyzed were completely
spatially random.

Table 7 MLR beta coefficients for all 3 experiments

EXP1 (Intercept) N1-Var1 N1-Var2 N2-Var1 N2-Var2 N3-Var1 N3-Var2 DIV

Stubby 0.06 0.04 0.47 -0.52 0.10 0.09 0.25 -0.01

Thin 1.05 -0.57 -0.34 -0.84 -0.57 -0.23 -0.32 0.00

EXP2 (Intercept) N1-Var1 N1-Var2 N2-Var1 N2-Var2 N3-Var1 N3-Var2 DIV

Stubby 0.08 0.03 0.67 -0.14 0.05 -0.20 -0.09 -0.02

Thin 0.25 -0.76 -0.17 -0.61 -0.37 -0.06 -0.05 -0.02

EXP3 (Intercept) N1-Var1 N1-Var2 N2-Var1 N2-Var2 N3-Var1 N3-Var2 DIV

Stubby -0.36 -0.24 0.33 -0.14 0.19 -0.03 0.30 0.01

Thin 0.35 -0.66 -0.58 -0.33 -0.28 -0.25 -0.33 -0.02
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Table 8 Prediction Probabilities: N1 = mushroom, N2 =
mushroom, N3 = mushroom

DIV7 EXP P(mushroom) P(stubby) P(thin)

1 0.45* 0.30 0.25

2 0.51* 0.35 0.13

3 0.54* 0.27 0.20

DIV14 EXP P(mushroom) P(stubby) P(thin)

1 0.45* 0.28 0.26

2 0.55* 0.33 0.12

3 0.54* 0.28 0.18

DIV21 EXP P(mushroom) P(stubby) P(thin)

1 0.46* 0.27 0.27

2 0.59* 0.30 0.11

3 0.54* 0.30 0.16

* denotes the highest probability per row.

As mentioned above, the K-function is a function of
the inter-point distance, t, that we consider around each
observed point. The range of t-values is determined by
the total length of the network 	T , therefore because each
dendrite has a different network length it also has a dif-
ferent range of t-values. Our chosen summary statistic
throws away this information by computing the maximum
absolute deviation (MAD) over all t in order to deter-
mine whether that value deviates significantly from the
spatially random case. However it may be of interest to
determine whether clustering or repulsion between spines
occured at specific inter-point distances t. Ang’s correc-
tion normalizes the K-function such that the theoretical
K(t) = t for all t, so we can easily use this as a refer-
ence point. Figure 7 shows the K-function for the same
9 example dendrites used for the Q-Q plots of Figure 5.

Table 9 Prediction probabilities: N1 = stubby, N2 = stubby,
N3 = stubby

DIV7 EXP P(mushroom) P(stubby) P(thin)

1 0.24 0.55* 0.21

2 0.30 0.52* 0.18

3 0.32 0.55* 0.12

DIV14 EXP P(mushroom) P(stubby) P(thin)

1 0.25 0.53* 0.22

2 0.33 0.50* 0.17

3 0.32 0.58* 0.11

DIV21 EXP P(mushroom) P(stubby) P(thin)

1 0.26 0.51* 0.23

2 0.37 0.47* 0.16

3 0.31 0.60* 0.09

*denotes the highest probability per row.

Table 10 Prediction Probabilities: N1 = thin, N2 = thin,
N3 = thin

DIV7 EXP P(mushroom) P(stubby) P(thin)

1 0.20 0.20 0.60*

2 0.33 0.31 0.36*

3 0.33 0.25 0.42*

DIV14 EXP P(mushroom) P(stubby) P(thin)

1 0.20 0.19 0.61*

2 0.37* 0.30 0.34

3 0.34 0.27 0.39*

DIV21 EXP P(mushroom) P(stubby) P(thin)

1 0.20 0.17 0.62*

2 0.41* 0.28 0.32

3 0.34 0.30 0.36*

* denotes the highest probability per row.

Each graph shows the observed K̂(t) function (black), the
theoretical K(t) function (red) as well as the two-sided
5% and 95% point-wise simulation envelopes as a function
of the radius t. Following the description of the point-
wise simulation envelope above we calculated these lower
and upper envelopes at the 5% and 95% percentiles per
t-value in the interest of checking if any t-value fell out-
side of this range. Since the black curves do not leave the
gray shaded area for any value of t, the deviation from
spatially random was insignificant at the 10% level for
every t-value and is in agreement with our previous con-
clusion using the MAD statistic. This observation holds
for almost all of the 485 dendrites we inspected visu-
ally, with no specific t-value evidencing either repulsion
or clustering.

Table 11 Bayes factors

BF(mushroom): N1 = mushroom, N2 = mushroom, N3 = mushroom

EXP DIV7 DIV14 DIV21

1 1.02 1.03 1.05

2 1.39 1.49 1.60

3 1.47 1.47 1.47

BF(stubby): N1 = stubby, N2 = stubby, N3 = stubby

EXP DIV7 DIV14 DIV21

1 1.56 1.50 1.44

2 1.15 1.10 1.05

3 1.03 1.08 1.12

BF(thin): N1 = thin, N2 = thin, N3 = thin

EXP DIV7 DIV14 DIV21

1 2.85 2.91 2.98

2 2.04 1.92 1.79

3 4.22 3.87 3.54
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Figure 5 Q-Q Plots of spine density vs. soma distance for a set of 9 example dendrites. This figure presents the Q-Q plots of spine density vs.
distance from soma for 9 (of the 485) example dendrites. We randomly selected 1 dendrite from each DIV and each biological replicate (experiment)
to ensure the diversity of the set. The y = x line is marked in red, and the observed Q-Q values are marked as black circles. Visual inspection of these
plots show that they follow the line y = x closely enough to assume that the spine locations being CSR was a viable null hypothesis.

Conclusions
The models used in this work allow spatial prediction
of spine types, which has not previously been studied.
The conclusions presented here relate to qualities of neu-
rons in dissociated culture. We acknowledge that some of
these results will most likely not hold for in vivo settings
due to neuronal interactions not modeled here, but main-
tain that the statistical methods used here will be useful
and easily applicable. Specifically, we found here that
spine type and density are not dependent on the distance
from the cell body, and these observations are likely to
change for in vitro slices or micro-injection of fixed brain
tissue.

We also note that we chose not to deconvolve our data
because of its high contrast. We acknowledge that this
choice may have precluded the image analysis software
from detecting some stubby spines among the halo of
the bright dendrites, but we do not feel this significantly

impacted our results. As a partial compensation for this
effect we used NeuronStudio’s in-built automatic z-smear
compensation, and for more details on this we refer the
reader to [22,23].

Although in this study the spine distributions seemed to
be completely spatially random it is possible that we will
find studies using different neuronal types and treatments
where this is not true. In these cases, where spine den-
sity may vary with distance from the cell body, it would be
interesting to test for inhomogeneous patterns of points
such as the hard core Strauss Process used in [43]. We
could also place an exponentially decaying function to
model the interaction between spine types within a cer-
tain radius or experiment with other pairwise interaction
functions such as those used by Diggle, Gates and Stibbard
[44] or Diggle and Gratton in [45].

We find it an interesting result that spines were not
spatially clustered when type was disregarded, as shown
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Figure 6 P-values of linear network K-function MAD statistic for each experiment and DIV. This figure shows histograms of all dendrite
p-values per experiment and DIV before FDR was applied. In each case the 5% significance level is marked by a red vertical line. Q-values were not
included as a separate figure because they were all zero.

by the linear network K-function analysis, however spine
types do tend to group together as shown by the MLR
analysis. We would like to note that these results are not
contradictory because they are in fact measuring differ-
ent quantities. The MLR results tells us that, regardless of
their densities along the dendrite, if we have a spine which
is of a given type, its 3 nearest neighbors are likely to be
of the same type. The K-function, on the other hand, tells
us that regardless of type the spines’ locations along the
dendritic network are spatially random. These two results
provide complementary information and together could
aid us in future modeling tasks such as simulation of neu-
ronal growth. For example, we could first place spines
uniformly along the dendritic network, and then decide
the types of those spines based on the type of informa-
tion given by the MLR model. As future work we plan to
analyze the network cross K-function [15] of the dendritic
network, which models the spine distribution as a multi-

type point process and therefore provides information
about repulsion and clustering of each spine type with
each other spine type, modeling both density and type
simultaneously.

Generally previous studies such as [46-49] have relied
on physiology or biochemical markers to validate their
neuronal properties. The quantitative morphological fea-
tures described here provide an additional phenotypic
dimension for these analyses. Likewise these approaches
can be applied to phenotypic analyses of neuronal cul-
tures following over-expression or suppression of specific
genes to capture their effect on a complex phenotype.
As mentioned in the Introduction section, the only other
study we are aware of which analyzes clustering of den-
dritic spines in monkey brains is [14]. The authors of this
work study the number of “clustered spines” on each den-
dritic segment, where a cluster is defined as a group of 3
or more spines. The method used here defines clustering
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Figure 7 Theoretical and observed K-functions and simulation envelopes for a set of 9 example dendrites. This figure shows the K-function
for the same 9 (of 485) example dendrites used for the QQ-plots of Figure 5. We randomly selected 1 dendrite from each DIV and each biological
replicate (experiment) to ensure the diversity of the set. Each graph shows the observed K̂(t) function (black), the theoretical K(t) function (red) as
well as the two-sided 5% and 95% point-wise simulation envelopes as a function of the radius t. We see here that the black curves do not leave the
gray shaded area for any value of t, which means that the deviation from spatially random is insignificant at the 10% level for every t-value.

as a statistically significant positive deviation in the lin-
ear K-function from the theoretical value of the spatially
random linear K-function. We believe our method to be
more principled and our results easier to interpret than
those of [14] due to the more formal statistical definition
of clustering.

We chose to use dissociated hippocampal cultures
because they are widely used and they allow us to perform
an in-depth and automated analysis with larger spine pop-
ulations than most previous studies. These approaches
will be important in assessing features of neurons derived
from human induced pluripotent stem cells which have
so far not been characterized by detailed morphological
features. Our paper utilized a highly simplified neuronal
culture system to develop the statistical and computa-
tional tools for more advanced in vivo studies needed to

address the aforementioned bigger biological questions.
Our overall hypothesis was that we can utilize imag-
ing and statistical analyses to capture features of spine
distributions that can be used for testing hypotheses in
in-vivo settings. Indeed, we have been conservative about
hypotheses and findings concerning spine type clustering
because any conclusions we might reach on the specifics
of spine distribution would be limited to the neuronal
culture system we studied.

Availability of supporting data
All the image stacks and NeuronStudio annotation files
supporting the results of this article are available in the
BISQUE repository, http://bisque.ece.ucsb.edu/client_
service/view?resource=http://bisque.ece.ucsb.edu/data_
service/dataset/2653471.

http://bisque.ece.ucsb.edu/client_service/view?resource=http://bisque.ece.ucsb.edu/data_service/dataset/2653471
http://bisque.ece.ucsb.edu/client_service/view?resource=http://bisque.ece.ucsb.edu/data_service/dataset/2653471
http://bisque.ece.ucsb.edu/client_service/view?resource=http://bisque.ece.ucsb.edu/data_service/dataset/2653471


Jammalamadaka et al. BMC Bioinformatics 2013, 14:287 Page 18 of 20
http://www.biomedcentral.com/1471-2105/14/287

Additional files

Additional file 1: Table of 4-way LLM coefficients. This table shows the
4-way interaction LLM coefficients which are significant at the 0.1% level.
Note that only one interaction between type and either branch order or
soma distance (highlighted in green) is significant in the entire table. This
further proves the result that these interactions are not very important to
the overall model of frequencies.

Additional file 2: AIC Stepwise models for 3-way LLM. This table shows
the results of the AIC stepwise algorithm using an LLM with up to 3-way
interactions. The models arrived at by this method are shown in the
caption above the table. From this table we can see that if we do allow 3rd
order interactions, the strongest 3rd order correlation over all experiments
is that of DIV, SD and BO, which makes sense because all three of these
quantities should intuitively increase together.
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