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METHOD Open Access

GLiMMPS: Robust statistical model for regulatory
variation of alternative splicing using RNA-seq data
Keyan Zhao1,2, Zhi-xiang Lu1,2, Juw Won Park1,2, Qing Zhou3 and Yi Xing1,2*

Abstract

To characterize the genetic variation of alternative splicing, we develop GLiMMPS, a robust statistical method for
detecting splicing quantitative trait loci (sQTLs) from RNA-seq data. GLiMMPS takes into account the individual
variation in sequencing coverage and the noise prevalent in RNA-seq data. Analyses of simulated and real RNA-seq
datasets demonstrate that GLiMMPS outperforms competing statistical models. Quantitative RT-PCR tests of 26
randomly selected GLiMMPS sQTLs yielded a validation rate of 100%. As population-scale RNA-seq studies become
increasingly affordable and popular, GLiMMPS provides a useful tool for elucidating the genetic variation of
alternative splicing in humans and model organisms.
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Background
Alternative splicing (AS) is the process by which exons
from precursor mRNA transcripts are differentially
included during splicing, resulting in different mature
mRNA isoforms from a single gene locus [1]. AS is a
major contributor to the control of gene expression and
protein diversity. More than 90% of human genes are
alternatively spliced [2]. Changes in the relative ratio of
alternatively spliced isoforms of a single gene can have
significant phenotypic consequences and cause various
diseases [3,4].
The control of AS is mediated through extensive protein-

RNA interactions involving cis regulatory elements and
trans acting factors [5]. Genetic polymorphisms that alter
cis splicing regulatory elements can result in difference of
alternative splicing among human individuals and sub-
sequently affect gene expression or protein activity.
Increasing evidence suggests that such natural variation of
alternative splicing can influence complex traits or modify
disease risks [6]. For example, genetic variation of alterna-
tive splicing in the sodium channel gene SCN1A can influ-
ence the response to antiepileptic drugs [7]. To date, most
genome-wide surveys of alternative splicing variation in
human populations were carried out on the HapMap

lymphoblastoid B cell lines (LCLs), whose genomic variants
have been extensively characterized by the HapMap [8]
and 1000 Genomes projects [9]. The first few studies
utilized the Affymetrix exon array with approximately
6 million exon-targeted probes [10-12]. In these studies,
the microarray probe intensities of individual exons were
compared to those of whole genes to quantify exon inclu-
sion levels and then associations with single-nucleotide
polymorphisms (SNPs) were tested to identify splicing
Quantitative Trait Loci (sQTLs). Another study used the
same exon array platform to characterize tissue-specific
control of alternative splicing in brain and peripheral blood
mononuclear cell samples [13]. These studies have shed
light on the prevalence and functional importance of
alternative splicing variation in human populations. The
development of the high-throughput RNA sequencing
(RNA-seq) technology has provided a powerful alternative
to splicing sensitive microarray for exon level expression
quantification. RNA-seq has several advantages compared
to microarray, including a greater dynamic range of exon
expression levels, the ability to detect novel transcripts not
probed on the array, the ability to better quantify exon
inclusion levels, single nucleotide level resolution, and less
confounding effects from polymorphisms on the target
exons [14,15]. Several studies have used the RNA-seq tech-
nology to characterize transcriptome variation in HapMap
LCLs at the whole-gene and/or individual exon level.
Pickrell et al. and Montgomery et al. used low-coverage
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(4-25 million short reads per individual) single-end and
paired-end RNA-seq to characterize gene expression and
splicing in LCLs derived from 69 Nigerian [16] and 60
CEU (Utah residents of European descent from CEPH-
Centre d’Etude du Polymporphisme Humain) [17] indivi-
duals. Cheung et al. independently generated an RNA-seq
dataset on 41 CEU individuals at a deeper coverage of
28.4-66 million single-end reads per individual, although
the authors restricted their data analysis to expression
QTLs [18].
Despite the novel findings in these pioneering RNA-

seq studies, the statistical models applied for sQTL
detection were simple linear regression models (lm) and
did not model all the relevant information contained in
the complex RNA-seq data. Montgomery et al. used the
exon read counts as the phenotype and carried out
spearman correlation analysis with the genotypes [17],
while Pickrell et al. used the percentage of the exon
read counts over total gene read counts as the quantita-
tive trait and carried out linear regression over geno-
types [16]. Neither approach directly estimated the
percent inclusion levels of target exons. Moreover, by
treating the exon expression measurement as a point
estimate, neither approach considered the variability of
RNA-seq read count that strongly affects the uncertain-
ties in estimates of exon splicing activities [14]. Here we
report a novel method GLiMMPS (Generalized Linear
Mixed Model Prediction of sQTL) for robust detection
of sQTLs from RNA-seq data. The GLiMMPS model
takes into account the individual variation of exon-
specific read coverage as well as the prevalent overdis-
persion of simple statistical models when applied to
RNA-seq data [19,20]. Importantly, GLiMMPS uses the
reads information from both exon inclusion and skip-
ping isoforms to model the estimation uncertainty of
exon inclusion level, instead of treating the exon inclu-
sion level as a point estimate in sQTL analysis (see
Materials and methods and Figure 1 for details). Using
both simulated and real RNA-seq datasets, we demon-
strate that GLiMMPS outperforms competing statistical
models (linear model and generalized linear model), and
identifies sQTLs at a low false positive rate as indicated
by extensive RT-PCR tests.

Results
AS in the human population measured from RNA-seq
data
We obtained the RNA-seq data from two published stu-
dies on the CEU population (of European ancestry) by
Cheung et al. [18] and Montgomery et al. [17]. Cheung et
al. generated 28.4-66 million 50 bp single-end reads per
individual on 41 CEU samples, while Montgomery et al.
generated 3.5-17.1 million 37 bp paired-end reads per
individual on 60 CEU samples. Twenty-nine individuals

were shared between the two datasets. Because of the
higher sequencing depth in the Cheung et al. dataset, the
analysis in this manuscript was primarily conducted on
the Cheung et al. data (referred to hereafter as the CEU
dataset). We also used the low-coverage Montgomery et
al. data (referred to hereafter as the CEU2 dataset) to
evaluate the concordance of results between the two
CEU sample datasets.
The RNA-seq reads were mapped to the human genome

(hg19) and transcriptome (Ensembl gene annotation r65)
using the software Tophat [21]. To estimate the exon
inclusion level (denoted as ψ for PSI, that is Percent
Spliced In) from RNA-seq data, we used sequence reads
mapped to splice junctions compiled from both the splice
junctions in Ensembl gene annotations as well as the novel
junctions found by Tophat. Based on the AS patterns, we
classified the AS events into four categories (Figure S1 in
Additional file 1): skipped exon (SE), alternative 5’ splice
site (A5SS), alternative 3’ splice site (A3SS), and mutually
exclusive exons (MXE). Using all splice junction reads, we
can obtain a point estimate of the exon inclusion level
( ψ̂ ). We illustrate the estimate of ψ in our model using
the SE event as the example (Figure 1a). Suppose IJ and SJ
represent read counts of inclusion and skipping splice
junctions, respectively, because IJ can come from both the
upstream junction and the downstream junction, we treat
the effective read count from the exon inclusion isoform
y = IJ/2 and the effective read count from the exon skip-
ping isoform as SJ. Given an observed total junction read

count of n¬ = IJ/2+SJ, the point estimate of ψ̂ = y/n . The

median and coefficient of variation (CV) of ψ̂ of skipped

exons from CEU and CEU2 (with |�ψ | ≥ 0.1 within
each of the two populations, see Materials and methods)
are highly correlated with a Pearson correlation coefficient
of 0.99 and 0.90, respectively, suggesting that the point
estimate of ψ̂ provides a reasonable approximation to the
exon inclusion level. However, we also noted that the total
counts of splice junction reads for the same alternatively
spliced exon typically vary substantially across different
individuals (Figure S2 in Additional file 1), possibly due to
the intrinsic randomness of RNA-seq technology as well
as individual variation in gene expression levels. Such
variability of read depth is expected to differentially affect
the reliability of ψ̂ estimates across individuals. This
motivated us to develop an improved statistical model that
explicitly considers the variation of RNA-seq read depth
across individuals.

Statistical model and simulation study of GLiMMPS
We first attempted to handle the individual variation of
RNA-seq read depth by extending the previously used
linear model (lm) [16] to a generalized linear model
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(glm) with a logit link function, which assumes the read
count from the exon inclusion isoform (y) follows a bino-
mial distribution y|ψ ∼ Binomial(n,ψ) , and logit(ψ) is
linearly modeled by the SNP effect. This simple logistic
regression model assumes that ψ is correctly modeled
and thus: E(yi) = niψi , and Var(yi) = niψi(1 − ψi) . How-
ever, we found that overdispersion (inflation of variance)
is widespread in the experimental data (Supplementary
Methods in Additional file 1). For the top sQTLs (Type I
error <1% based on permutation) identified from glm in
the CEU dataset, >90% sQTLs have significant overdis-
persion (Figure S3 in Additional file 1).
To model the overdispersion, we developed GLiMMPS,

a generalized linear mixed model for detecting sQTLs. To
deal with the overdispersion in the generalized linear
model, we model the extra variance of ψ as a random
effect for each individual i in the regression model with

random effects, uij ∼ N(0, σ 2
uj) [22]. Let uij = σujzij ,

where zij ∼ N(0, 1) , bj denoting the fixed effect for SNP j,
the second level of the model can be written as:

ψi = logit−1(β0 + βjgij + σujzij) . GLiMMPS is essentially a

hierarchical model that considers both the read depth var-
iation and the exon inclusion level variation within the
same genotype groups (Figure 1b). Details of the lm, glm,
and GLiMMPS models were described in Materials and
methods and Supplementary Methods in Additional file 1.
We first conducted simulation studies to compare the

power and robustness of GLiMMPS to lm and glm. We

simulated splice junction read counts with various levels
of read depth, difference of exon inclusion levels among
genotype groups, and overdispersion mimicking the
parameter distributions in the CEU dataset (Figure S4 in
Additional file 1). We simulated 10,000 data points for
each read depth with mean total splice junction reads
ranging from 5 to 80. Data were simulated with 20%
data points having genotype effects as distributed from
the CEU dataset and the remaining 80% having no dif-
ference in exon inclusion levels among genotypes (see
details in Supplementary Methods in Additional file 1).
Note that the simulation data generated through this
procedure are not inherently biased towards any of the
statistical models tested. Using the 80% simulated data
points with no SNP effect under various read depth, we
evaluated the false positive rates (type I errors) at 5%
significance level. The false positive rates of GLiMMPS
and lm are always close to the nominal significance
level, while glm has a highly inflated false positive rate,
especially for data with large total splice junction reads
(Figure 2a). This confirms that it is essential to incorpo-
rate overdispersion in the hierarchical model to avoid
the inflation of P values. We also computed the receiver
operating characteristic (ROC) curves by combining all
the simulated data with or without SNP effects. The
ROC curves show that GLiMMPS outperforms the lm
and glm models (Figure 2b), especially in the most criti-
cal part of the ROC curve where the false positive rate is
low. The true positive rate of GLiMMPS is approximately

Figure 1 Schematic outline of GLiMMPS. (a) RNA-seq reads mapped to splice junctions of alternatively spliced exons are used for estimating
exon inclusion levels ψ. Shown here is a schematic illustration using the skipped exon (SE) type of alternative splicing events as the example.
White, sQTL target exon; black and gray, flanking exons. The inclusion junction (IJ) reads consist of reads mapped to the upstream and
downstream splice junctions of the exon inclusion isoform, while the skipping junction (SJ) reads are reads mapped to the skipping splice
junction of the exon skipping isoform. (b) Illustration of the GLiMMPS statistical model. SNP genotype effect is modeled as fixed effect bj. The
overdispersion is modeled as individual level random effect uij .
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5% to 20% higher than those of lm and glm when the
false positive rate ranges from 0.01 to 0.1 (Figure 2b,
inset). Furthermore, to model the non-uniformity and
bias in sequence-specific sequencing preferences in
RNA-seq data, we performed an additional simulation
analysis. Specifically, for each exon inclusion or skipping
splice junction we rescaled the original simulated count
by a random scaling factor ranging from 0.5 to 2, with
10% variation in the scaling factor for the same splice
junction across different individuals. We observed no
change in the performance of GLiMMPS as compared
to lm and glm (data not shown).

Performance of GLiMMPS in real human RNA-seq data
To further assess the performance of GLiMMPS, we ana-
lyzed the two human RNA-seq datasets on CEU LCL
samples (CEU and CEU2) using the GLiMMPS, lm, and
glm models. As previous studies suggested that the signal
SNPs for most sQTLs are near the target exons [11,16],
we carried out sQTL analysis for all common SNPs
(minor allele frequency >0.05) within 200 kb from alter-
natively spliced exons with a median of at least 5 total
splice junction reads in both CEU and CEU2 samples.
We used permutation to determine the null distribution
of minimal P values of SNPs near exons. Subsequently
we applied the false discovery rate (FDR) correction to
establish a cutoff P value corresponding to the FDR level

of 0.1 (see details in Supplementary Methods and
Figure S5 in Additional file 1). This yielded 140 unique
AS events in 106 genes with significant sQTL signals in
the CEU dataset (Additional file 2). Because of the lower
sequencing depth, there were a smaller number (56) of
significant sQTLs identified by GLiMMPS in the CEU2
dataset. Nonetheless, the significant sQTL signals identi-
fied by GLiMMPS are strongly correlated between the
two datasets (Figure 3a). Among the 56 significant
sQTLs (FDR ≤0.1) in CEU2, 39 (70%) are also significant
in CEU. Although there is a larger proportion of signifi-
cant sQTLs in CEU showing no significance in CEU2, it
is most likely due to the lower sequencing depth in
CEU2. To quantitatively compare the relative rankings of
sQTLs identified by different models (GLiMMPS, lm,
and glm) in CEU and CEU2, we calculated the propor-
tion of sQTL exons among the top n most significant
in CEU that were also among the top n in CEU2
(n ranges between 20 and 160). Compared to lm and
glm, GLiMMPS produces a much higher concordance of
rankings between the two datasets, especially for the top
60 sQTLs which correspond to approximately 10% FDR
in the CEU2 dataset (Figure 3b).
To experimentally assess the robustness of GLiMMPS
predictions, we randomly selected 24 SE (skipped exon)
type and 2 A5SS (alternative 5’ splice site) type of
sQTLs out of the 140 significant sQTLs detected in the

Figure 2 Performance evaluation of different statistical models using simulated data. (a) The observed false positive rate at the
significance level of 0.05 for the linear model (lm), generalized linear model (glm), and GLiMMPS. Data were simulated with different sequencing
depth with mean total junction reads ranging from 5 to 80, as described in Supplementary Methods in Additional file 1. (b) Receiver operating
characteristic (ROC) curve analysis demonstrates that GLiMMPS outperforms the lm and glm models. The ROC curve plots the fraction of true
positives called correctly and the fraction of false positives called incorrectly using P-values from each model. The zoomed-in figure shows the
part of the ROC curve where the false positive rate is in the range of (0, 0.2).
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CEU dataset and performed RT-PCR validation using
quantitative fluorescent RT-PCR (Materials and meth-
ods). For the validation experiments, we used an inde-
pendent panel of 86 HapMap LCLs covering diverse
worldwide populations (Additional file 3). All 26 sQTLs
were validated, yielding a validation rate of 100% (Addi-
tional file 4; Figure S6 in Additional file 1). In eight indi-
viduals analyzed by both RNA-seq and RT-PCR, the
exon inclusion levels estimated by RNA-seq were highly
correlated with RT-PCR measurements (Pearson corre-
lation coefficient r = 0.87). It is noteworthy to mention
that these 26 selected sQTLs have a wide range of
P value rankings among the 140 significant sQTLs, as
opposed to being selected from the top of the significant
sQTL list. The interquartile range of their rankings is 38
to 95. This suggests that the vast majority of the sQTLs
identified by GLiMMPS represent true signals of spli-
cing variation in human populations.

GLiMMPS reveals positional features of sQTLs
Next we examined the positional distribution of SNPs
associated with significant sQTL signals in the CEU data-
set. It should be noted that the genotype information for
the CEU dataset came from both HapMap and 1000
Genomes project data, thus they capture the vast major-
ity of common SNPs in the human genome. Consistent

with previous sQTL studies using arrays and lower-den-
sity HapMap SNPs [11,12], sQTL signal SNPs with a
GLiMMPS P value ≤3.70E-06 (corresponding to FDR
≤0.1) are centered around the splice sites (SS) of target
exons. A local examination of the SNP positions for the
140 significant GLiMMPS sQTLs indicates that the pre-
cise locations of these SNPs are strongly correlated with
their potential impacts on splicing. As we increased the
stringency of the P value cutoff for significant sQTLs, we
observed a steady increase of the proportion of sQTLs
with at least one significant signal SNP within 300 bp of
the splice sites (Figure 4a). The turning point is around
FDR = 0.1, where only around 20% of sQTLs have no sig-
nificant signal SNPs discovered within 300 bp of the
splice sites. To further evaluate the correlation between
SNP positions and potential impacts on splicing, we clas-
sified all cis SNPs within 200 kb of the sQTL exons into
five categories according to the SNP location relative to
the splice site, where 5’ SS represent the nine bases of the
5’ splice site including six bases in intron and three bases
in exon, and 3’ SS represent the 23 bases of the 3’ splice
site including 20 bases in intron and three bases in exon
[23]. We observed a striking difference in the distribution
of sQTL P values for cis SNPs located in different regions
(Figure 4b). Specifically, cis SNPs located within the 5’ SS
have the smallest overall P values, followed by SNPs

Figure 3 Concordance of sQTLs in two RNA-seq datasets of the Caucasian (CEU) population as obtained by different statistical
models. (a) Comparison of GLiMMPS P values for the most significant SNP of each alternatively spliced exon in the CEU and CEU2 datasets.
X-axis shows the -log10(P value) in CEU. Y-axis shows the -log10(P value) in CEU2. Red lines show the FDR cutoff of 10%. (b) Concordance of
sQTL rankings between CEU and CEU2 based on different statistical models. The x-axis represents the number of top n ranked sQTLs in each
dataset, while the y-axis represents the percentage of sQTLs in common between the two datasets among the top n sQTLs in CEU, based on
P value rankings calculated by the linear model (lm), generalized linear model (glm), and GLiMMPS.
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within the 3’ SS and exons, and intronic SNPs within
300 bp of the splice sites. SNPs located in the distal intro-
nic regions (>300 bp from the splice sites) have the big-
gest overall sQTL P values, suggesting that they are least
likely to affect splicing. This trend is consistent with the
observation by Pickrell et al. showing the enrichment of
sQTL signal SNPs in splice sites [16], but with a finer
classification of SNP locations.
To definitively identify causal SNPs underlying signifi-

cant sQTLs, we tested the effects of individual SNPs on
splicing using minigene reporter assays. It should be
noted that since multiple SNPs can be in high linkage
disequilibrium (LD) with each other, an sQTL signal SNP
with high association to exon splicing may not necessa-
rily be the causal SNP that affects splicing regulation. In
fact, the 140 significant sQTLs (FDR ≤0.1) have on aver-
age 63 significant SNPs. Of the 26 RT-PCR validated
sQTLs, the causal SNPs in four genes (CAST, DHRS1,
HMSD, and ATP5SL) were confirmed previously in work
by us [24] and others [11]. The causal SNPs in CAST,
DHRS1, and HMSD are located in the 5’ SS [24], while
the causal SNP in ATP5SL is located in the exon and dis-
rupts two putative exonic splicing enhancers [11]. For
the remaining RT-PCR confirmed sQTLs, we randomly
selected 14 for minigene experiments. Briefly, the target
exon and 350-500 bp of surrounding intronic sequences
on each side of the exon were sub-cloned into the mini-
gene expression vector and site-directed mutagenesis was

carried out to generate the alternative alleles. After tran-
siently transfecting these plasmids into HEK293 cells, we
performed quantitative RT-PCR analysis of wild-type and
mutant minigene reporters to determine the effect of the
SNPs on exon inclusion levels (see details in Materials
and methods). In 10 of the 14 exons analyzed (NTPCR,
KIAA1841, SP140, ITM2C, PARP15, PTK2B, BCL2A1,
SHMT1, ITPA, and ARFGAP3), the minigene experi-
ments identified at least one SNP that caused >10%
change of the minigene exon inclusion levels, with the
direction of change matching the RNA-seq/RT-PCR data
(Figure S7 in Additional file 1). These include two exons
where we found multiple SNPs with additive effects on
splicing within one LD block (KIAA1841) or multiple LD
blocks (ITPA). In another two exons (PPIL3 and
NCAPG2), the minigene experiments failed to identify
any SNP with strong effect on splicing. For PPIL3, the
SNP rs111292412 in the 3’ SS affected splicing of the
minigene reporter in the same direction as in the RNA-
seq data, but the change was minor (from 9% in AA to
5% in GG). In NCAPG2, the closest sQTL SNP was an
intronic SNP 347 bp away from the splice sites, and it did
not have any measurable impact on the splicing of the
minigene reporter. It is possible that another proximal or
distal SNP or indel not genotyped yet is responsible for
this sQTL signal. Finally, in the last two exons analyzed
(CLEC2D and MX1), the minigene exon inclusion levels
were close to 100% for all alleles, suggesting that the

Figure 4 Positional distribution of sQTL SNPs. (a) The fraction of sQTL exons with significant SNPs within 300 bp of the splice sites as a
function of the P value cutoffs for significant sQTLs. X-axis is the -log10(P value) for cutoffs to define significant sQTLs. Y-axis is the fraction of
sQTL exons with any SNP called significant within 300 bp of the splice sites. (b) The boxplot of GLiMMPS P values for all SNPs around the 140
significant sQTLs (FDR ≤0.1), grouped into five categories based on the positions of SNPs with respect to the splice sites.
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cloned minigene reporters transfected to the HEK293
cells did not faithfully recapitulate endogenous exon spli-
cing activities in the LCLs. Taken together, despite the
inherent limitations of minigene reporter systems [25],
we were able to use minigene experiments to identify the
causal SNPs underlying 10 of the 14 sQTL signals ana-
lyzed. In all 10 exons, the causal SNPs confirmed by
minigene analysis were located proximal to the alterna-
tively spliced exons (that is, within 300 bp of the splice
sites).

sQTLs explain GWAS signals of human traits and diseases
A powerful application for characterizing human tran-
scriptome variation such as eQTLs and sQTLs is to inter-
pret signals from GWAS studies [26-28]. Although
GWAS have had great success in identifying numerous
disease susceptibility loci, the peak signal SNPs identified
by GWAS provided little information about the underly-
ing causal variants or the molecular mechanisms respon-
sible for the observed association [29]. Compelling
evidence indicates that a large fraction of the underlying
causal variants affect phenotypes via non-coding (for
example, influencing gene regulatory processes such as
transcription and RNA processing) as opposed to coding
(direct amino acid changes) mechanisms [30,31]. The
important role of alternative splicing in shaping the
human transcriptome diversity suggests sQTL SNPs may
represent the causal variants underlying many observed
GWAS signals. Indeed, previous studies of alternative
splicing variation using RT-PCR, array, and sequencing
based technologies have identified candidate sQTLs
linked to GWAS signals [11-13,32-36]. We investigated
all significant sQTL SNPs (GLiMMPS FDR ≤0.1) in high
(r2 >0.8) linkage disequilibrium (LD) with GWAS signal
SNPs listed in the Catalog of Published Genome-Wide
Association Studies [37] (see Materials and methods).
We identified 10 sQTLs strongly linked to GWAS SNPs
of human traits or diseases (Table 1). The list include
known splicing altering SNPs for CAST, ERAP2, and
ATP5SL, as well as novel findings with intriguing biologi-
cal and medical implications.
In a previous GWAS study, the SNP rs13160562 near

CAST was discovered to be significantly associated with
alcohol dependence [38]. However, no functional impli-
cation of this SNP was discussed in the original study.
Here, GLiMMPS identified this SNP as an sQTL signal
SNP in CAST. It is significantly associated with the spli-
cing of CAST exon 13 located 45 kb upstream of the
SNP position. It is also in an LD block (r2 = 0.53) with
another SNP rs7724759 located in the 5’ SS of exon 13,
which has been confirmed experimentally to alter the
splicing of this exon [11,24]. Thus, genetic variation of
alternative splicing is the likely causal mechanism
underlying the reported association of CAST and alcohol

dependence. In ERAP2, GLiMMPS identified SNP
rs2248374 as an sQTL signal SNP for exon 10. This
SNP disrupts the activity of the 5’ SS [11]. This sQTL
SNP is in high LD (r2 = 0.83) with a GWAS SNP
rs2549794, previously identified as significantly asso-
ciated with Crohn’s disease [39]. The skipping of this
alternatively spliced exon from ERAP2 introduces a pre-
mature stop codon, resulting in nonsense-mediated
decay of the exon skipping isoform and a dramatic
reduction of overall transcript levels, which subsequently
impacts antigen representation [40]. Haplotype analysis
of the sQTL SNP and its linked SNPs revealed evidence
of strong balancing selection during human evolution
[40], suggesting the functional and evolutionary impor-
tance of this sQTL. A third example is ATP5SL, identi-
fied as a GWAS locus associated with height in multiple
populations [41]. The peak signal SNP reported by
GWAS is rs17318596 but the mechanism of this SNP
was unclear in the original study. GLiMMPS identified a
significant sQTL for exon 5 of ATP5SL. The sQTL SNP
rs1043413 is strongly linked to the GWAS signal SNP
rs17318596 (r2 = 0.84) (Figure S8 in Additional file 1).
This sQTL SNP rs1043413 is located in exon 5 and dis-
rupts two exonic splicing enhancers (ESEs) [11].
Together, these data indicate that even at a very modest
sequencing depth (28.4-66 million 50 bp single-end
reads per individual), GLiMMPS recovered previously
reported associations between SNP and splicing that
may contribute to phenotypic variation in humans.
We also identified novel sQTL signals with interesting

functional and disease implications. For example, we
identified a novel sQTL signal in SP140 associated with
previously identified GWAS signals for chronic lympho-
cytic leukemia [42], multiple sclerosis [43], and Crohn’s
disease [39]. SP140 is a tissue-specific gene whose expres-
sion is restricted to lymphoid cells [44]. Its protein
domain structure suggests a role in chromatin-mediated
regulation of gene expression [45]. A previous GWAS
analysis of chronic lymphocytic leukemia identified a risk
SNP rs13397985 located in intron 1 of SP140. It was pro-
posed that this GWAS signal SNP affects SP140 gene
transcription [42], but a recent replication study indicates
that the association of this SNP to SP140 steady state
gene expression levels is only marginal (FDR = 0.157
after adjusting for multiple testing) [46]. It should be
noted that the difference in gene expression levels among
genotype groups is minor and marginal according to the
CEU RNA-seq data as well (P value = 0.07). On the other
hand, GLiMMPS found a novel significant sQTL signal
for exon 7 of SP140 (Figure 5a). The peak sQTL signal
SNP rs28445040 (GLiMMPS P value = 1.69E-14) located
in exon 7 is in high LD with the GWAS signal SNPs for
chronic lymphocytic leukemia (rs13397985, r2 = 1),
multiple sclerosis (rs10201872, r2 = 0.92), and Crohn’s
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Table 1 The list of sQTL signals linked to GWAS signals.

Gene AS typea Target exonb (hg19) sQTL SNPc SNP type GWAS trait (SNP) GWAS references

ACADM SE +chr1:76194085-76194173 rs7524467 < = 300 bp Metabolic traits (rs211718) [78]

DRAM2 SE -chr1:111682122-111682288 rs3762374 5’ SS Liver enzyme levels (gamma-glutamyl transferase) (rs1335645) [79]

SP140 SE +chr2:231110577-231110655 rs28445040 Exon Chronic lymphocytic leukemia (rs13397985) [42]

Multiple sclerosis (rs10201872) [43]

Crohn’s disease (rs7423615) [39]

CAST SE +chr5:96076448-96076487 rs7724759 5’ SS Alcohol dependence (rs13160562) [38]

ERAP2 A5SSd +chr5:96235824-96235949 rs2248374 5’ SS Crohn’s disease (rs2549794) [39]

Ankylosing spondylitis (rs30187) [80]

MRPL11 A5SSd -chr11:66206102-66206319 rs11110 Exon Bipolar disorder (rs2242663) [81]

ARL6IP4 A3SSe +chr12:123466117-123466426 rs55742290 3’ SS Platelet counts (rs7296418, rs1727307) [82]

ULK3 MXEf -chr15:75130091-75130139 rs12898397 5’ SS Coffee consumption (rs6495122) [83]

Coronary heart disease (rs2472299) [84]

ATP5SL SE -chr19:41939176-41939339 rs1043413 Exon Height (rs17318596) [41]

ITPA SE +chr20:3193814-3193872 rs1127354 Exon Response to hepatitis C treatment (rs11697186, rs6139030) [50]

Ribavirin-induced anemia (rs1127354) [85]
aAS type: SE, skipped exon; A5SS, alternative 5’ splice site; A3SS, alternative 3’ splice site; MXE, mutually exclusive exons.
bExon coordinates are in hg19 with the start position 0 based and the end position 1 based. The direction (+/-) of transcription is denoted before the coordinates.
cThe significant sQTL SNP (FDR≤0.1) closest to the target exon. SNP position and P value from GLiMMPS can be found in Additional file 2.
dAlternative 5’ SS: ERAP2, chr5:96235893; MRPL11, chr11:66206180.
eAlternative 3’ SS: ARL6IP4, chr12:123466141.
fMutually exclusive alternative exon: ULK3, chr15:75130492-75130533.

Zhao
et

al.G
enom

e
Biology

2013,14:R74
http://genom

ebiology.com
/2013/14/7/R74

Page
8
of

15



disease (rs7423615, r2 = 1). The C to T mutation in
rs28445040 does not lead to any amino acid change.
However, according to RNA-seq data, the average exon
inclusion levels for the CC, CT, and TT genotypes were
96%, 77%, and 44%, respectively (Figure 5b). This trend
was robustly validated by RT-PCR experiments (Figure 5c).
Furthermore, minigene assays confirmed the causal role of
rs28445040 in regulating the splicing of SP140 exon 7
(Figure S7 in Additional file 1). Collectively, these data
strongly suggest that the SNP that alters the splicing of
SP140 exon 7 is the causal genetic variant responsible for
the reported associations with these diseases. The skipping
of exon 7 causes an in-frame deletion of a 26 amino acid
peptide segment from the SP140 protein product. Interest-
ingly, this peptide segment is located within an intrinsically
disordered region as predicted by IUPred [47]. Intrinsically
disordered regions are enriched for sites of post-transla-
tional modifications and protein-protein interactions, and
two recent studies [48,49] show that alternative splicing of
exons encoding disordered protein sequences frequently
rewires protein-protein interaction networks in the pro-
teome. In the future, it will be interesting to determine
how alternative splicing of SP140 exon 7 regulates SP140
protein functions and influences downstream cellular
phenotypes.

The identification of sQTLs can also help resolve appar-
ent confusions about the causal mechanisms of GWAS
signals. For example, the SNP rs11697186 located in gene
DDRGK1 near the ITPA gene (Inosine Triphosphate Pyro-
phosphohydrolase) was significantly associated with
response to hepatitis C treatment in a GWAS study, and
later was found to be in high LD with SNP rs1127354 on
ITPA exon 2 by fine mapping [50]. Of note, this C-to-A
SNP (rs1127354) on exon 2 has been well established in
the pharmacogenetics field to be associated with ITPA
enzyme deficiency or low-activity [51,52], but the molecu-
lar mechanism was unclear. This non-synonymous SNP
causes a proline to threonine change (P32T) in the IPTA
protein product. However, based on the crystal structure
of the human ITPA protein, the proline residue was far
away from the active site of the enzyme [53]. Moreover,
recent biochemical studies of ITPA showed that the puri-
fied mutant protein with the P32T change has the same
activity as the wild-type protein [54]. Others have pro-
posed the alternative mechanism that this exon 2 SNP
causes mis-splicing of ITPA [55], but the properties of the
gene product resulting from mis-splicing have not been
examined. Our analysis of the CEU RNA-seq data identi-
fied the same ITPA exon 2 SNP as a significant sQTL sig-
nal SNP (P value = 5.80E-09) associated with the

Figure 5 An example of sQTL signal overlapping with GWAS signal near gene SP140. (a) The distribution of GLiMMPS P values around the
sQTL exon (exon 7) in gene SP140. The black horizontal dashed line reflects the 10% FDR cutoff and red vertical lines mark the location of the
sQTL exon. SNPs in linkage disequilibrium (r2 >0.8 in the CEU population) with the GWAS SNPs (blue asterisks) are shown in solid black dots,
while other SNPs are shown in grey circles. The causal splicing SNP in exon 7 is shown in red triangle. Exon-intron structure is shown in the
bottom with GWAS SNPs and the causal splicing SNP (rs28445040) marked at corresponding locations. (b) Boxplot showing the significant
association of rs28445040 with exon inclusion level (ψ) of the SP140 exon 7 estimated by the CEU RNA-seq dataset. The size of each dot is
scaled by the total number of splice junction reads for that individual. (c) The same boxplot using exon inclusion level (ψ) measured by
quantitative RT-PCR.
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combined skipping of exons 2 and 3. This prediction is
robustly validated by RT-PCR (Figure S9 in Additional
file 1). Minigene experiments further confirmed that
this exonic SNP as well as an adjacent intronic SNP
(rs7270101) both reduced the inclusion levels of exons 2
and 3 (Figure S7 in Additional file 1). These results rein-
force the proposed effect of this ITPA SNP at the RNA
level [55], and suggest that future studies on the causal
mechanism of this ITPA gene variant should compare the
activities of the full-length protein isoform to the trun-
cated isoform that lacks exons 2 and 3.

Discussion
We have developed GLiMMPS, a generalized linear
mixed model to detect genotype-splicing associations
from RNA-seq data. The key advantage of GLiMMPS
over previously used methods is that it models: (1) varia-
tion in exon-specific read coverage across individuals;
and (2) overdispersion in RNA-seq read counts. Both
issues are important for accurate exon-level expression
quantitation. The coverage of RNA-seq reads for any
given alternative exon is a critical factor for the precision
of the exon inclusion level estimate [14,56]. The impor-
tance of accounting for overdispersion in RNA-seq data
analysis has also been well recognized [57]. Methods
based on the negative binomial model [58,59] or the gen-
eralized linear model with Cox-Reid dispersion estimators
[19,20] have been developed for modeling dispersion in
detecting differential gene or exon expression between
biological states. Here in the sQTLs analysis, by modeling
these two levels of variation in RNA-seq read counts,
GLiMMPS achieves superior performance over compet-
ing statistical models, as demonstrated by analyses of
simulated and real RNA-seq data. Importantly, even at a
low coverage we observed a high level of concordance in
the GLiMMPS results between the two human datasets
(CEU and CEU2). Additionally, RT-PCR tests of 26 ran-
domly selected significant sQTLs yielded a validation rate
of 100%. Together, these results demonstrate that
GLiMMPS is a robust and improved method to detect
sQTLs from RNA-seq data.
Fine-scale analysis of sQTLs reveals positional features

of SNPs that alter exon splicing. We found that the loca-
tion of the SNPs is strongly correlated with potential
impact on splicing (Figure 4b). Specifically, SNPs located
within the 5’ and 3’ splice sites have the smallest (most sig-
nificant) overall GLiMMPS P values, consistent with the
importance of the splice sites in exon recognition during
pre-mRNA splicing. Interestingly, the significance level of
sQTLs is positively correlated with the proximity of the
sQTL signal SNPs to target exons. As we increased the
significance level cutoff for sQTLs, we observed a progres-
sive increase of the proportion of sQTLs with at least one
significant signal SNP within 300 bp of the splice sites

(Figure 4a). The causal roles of these proximal sQTL
SNPs on exon splicing were further confirmed by mini-
gene splicing reporter assays. Collectively, these results
support the hypothesis that the majority of cis regulatory
information controlling alternative splicing is encoded in
close proximity (for example, within 300 bp) of the target
exons, consistent with a recent analysis of the mammalian
splicing code [60]. Nonetheless, it should also be noted
that 20% of the significant sQTLs (FDR ≤0.1) lack any sig-
nificant signal SNP within 300 bp of the splice sites,
including sQTLs confirmed experimentally by RT-PCR (in
NCAPG2 and PIGQ, see Figure S6 in Additional file 1).
For such sQTLs, it is possible that the causal SNPs are
indeed proximal, but are missing from current SNP anno-
tations or fail to reach the significance level cutoff due to
small sample size. Alternatively, we cannot rule out the
possibility that a small fraction of sQTLs are indeed due
to SNPs disrupting distal splicing regulatory elements,
given that the physical binding sites of splicing factors on
the pre-mRNA can be located deep into the introns [61].
In the future, it would be interesting to confirm the iden-
tity and elucidate the regulatory mechanisms of causal
sQTL SNPs acting in introns distal to target exons.
The detection of sQTLs is useful for interpreting signals

from GWAS studies. Despite the success of GWAS in
revealing the genetic basis of complex traits and diseases,
elucidating the mechanistic implications of GWAS find-
ings remains a major challenge [29]. As many functional
SNPs may affect gene expression and regulation instead of
the final protein sequence, integrating transcriptome infor-
mation with GWAS signals has proven to be an effective
approach for pinpointing the functional causal variants
underlying GWAS signals [62-64]. Here, from the CEU
RNA-seq dataset we identified 140 unique sQTLs, includ-
ing 10 significantly linked to previously identified GWAS
signals (Table 1). This is probably only scratching the sur-
face of trait-associated sQTLs, due to the low sequencing
depth (28.4-66 million single-end reads per individual)
and the small sample size (41 individuals). We anticipate
that with more and deeper RNA-seq data generated for
diverse human tissues and cell types, the catalog of sQTLs
linked to phenotypic traits and diseases will rapidly expand
in the near future.
The GLiMMPS framework provides the basis for several

aspects of future extensions. Currently, GLiMMPS uses
reads mapped to splice junctions to estimate exon inclu-
sion levels. This is a commonly used approach in alterna-
tive splicing quantitation from RNA-seq data [56,65,66].
However, with proper normalization for lengths of iso-
form-specific segments, it is feasible to also incorporate
reads mapped within the exons, which may further
improve the power in detecting sQTLs. This could be
particularly useful for strand-specific RNA-seq, where the
origins of exon body reads can be unambiguously assigned
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to sense or antisense transcripts. Additionally, in paired-
end RNA-seq data with tight distribution of insert size,
reads that map to flanking constitutive exons can also pro-
vide useful information about the exon inclusion level [14].
Furthermore, RNA-seq reads often display non-uniform
distribution along mRNA transcripts due to sequence-
specific bias in RNA sequencing, and several methods
have been developed to model and correct for such biases
[67-70]. In principle, we can use a suitable bias correction
method to adjust the raw RNA-seq read counts, prior to
analysis by GLiMMPS. However, we tested two well-
known bias correction methods [67,68] using a deep
RNA-seq dataset with matching quantitative RT-PCR data
for over 100 exons in two cell lines [66,71], but did not
observe improvement in the RNA-seq estimates of exon
inclusion level as judged by the correlation of RNA-seq
estimates with the RT-PCR measurements. Another area
of improvement is to consider the potential impact of spe-
cific SNPs on exon splicing as the prior in the statistical
model, an idea previously used for detecting expression
QTLs [72-74]. For example, our results show a significant
association between the SNP position and the potential
impact on splicing (Figure 4), with SNPs located in the 5’
and 3’ splice sites most likely to influence exon splicing. It
is possible to incorporate such positional information or
more advanced predictive models of exon splicing [60] as
the prior information to guide the detection of sQTLs.

Conclusions
RNA-seq has become a powerful and increasingly afford-
able technology for population-scale analysis of transcrip-
tome variation. Here we report GLiMMPS, a robust
statistical method for detecting splicing quantitative trait
loci (sQTLs) from RNA-seq data. GLiMMPS is applicable
to all major patterns of alternative splicing events. The
GLiMMPS source code and user manual are freely avail-
able for download at [75]. As the cost of high-throughput
sequencing continues to decline, we anticipate that com-
bined sequencing of genomes and transcriptomes will
become a popular design in large-scale studies of traits
and diseases. GLiMMPS provides a useful tool for gen-
ome-wide identification of sQTLs from population-scale
RNA-seq datasets.

Materials and methods
RNA-seq datasets
We downloaded the RNA-seq datasets produced by [18]
and [17]. Both datasets came from the lymphoblastoid B
cell lines from the Caucasian (CEU) population in the
HapMap project [8]. There were 28.4-66 million 50 bp
single end reads sequenced for 41 individuals by Cheung
et al., while there were only 3.5-17.1 million 37 bp paired
end reads for 60 individuals by Montgomery et al. We
denote the datasets from Cheung et al. and Montgomery

et al. as CEU and CEU2, respectively. Because the
sequencing depth in CEU is much higher than in CEU2,
we focused our analysis on the CEU dataset, but also car-
ried out comparison between CEU and CEU2. RNA-seq
sequence reads were mapped to the reference human
genome (hg19) using Tophat [21] with Ensembl gene
annotations (Ensembl genes r65). The CEU and CEU2
datasets were mapped with the single end or the paired
end mode respectively. Only uniquely mapped reads
were retained for downstream analysis.
To search for sQTLs, we first identified all alternative

splicing events and RNA-seq reads mapped to splice
junctions using the MATS pipeline as described pre-
viously [66]. We then focused our analysis on four types
of alternative splicing events: skipped exon (SE), alterna-
tive 5’ splice site (A5SS), alternative 3’ splice site (A3SS),
and mutually exclusive exons (MXE). Using splice junc-
tion reads, we can obtain a point estimate of the exon
inclusion level (ψ). Given that we have an observed
number of splice junction reads for one isoform (y) and
total splice junction read counts (n), then ψ = y/n (see
Figure S1 in Additional file 1). We then filtered out
exons with no or little change in exon inclusion level
( |�ψ | < 0.1) or few total junction read counts (median
n <5) in the population, and obtained 18,267 AS events
from CEU and 7,747 AS events from CEU2 for the
downstream sQTL analysis.

Genotype data
The genotype data for the 41 individuals in the CEU
dataset were taken from the latest HapMap3 release
(#28). Of these 41 individuals, 23 were also genotyped in
the 1000 Genomes project [9]. For SNPs uniquely
reported by the 1000 Genomes project, we imputed the
genotypes for individuals not in the 1000 Genomes pro-
ject using Beagle [76]. We filtered out low frequency
SNPs with MAF (minor allele frequency) <0.05. For each
alternatively spliced exon, we tested cis SNPs within 200
kb upstream or downstream of the target exon splice
sites when searching for sQTLs. For the CEU2 dataset,
the 60 individuals were all included in the 1000 Genomes
project. Fifty-eight of them were sequenced in low cover-
age and two were in high coverage. To avoid genotype
calling bias, we only included the 58 low-coverage indivi-
duals with genotypes taken directly from the 1000 Gen-
omes project data (10/2010 release). The same MAF
filtering was used as in the CEU dataset.

Statistical models for sQTL analysis
All statistical analyses were done in the R statistical
environment [77]. We evaluated three different models
for sQTL analysis: linear model (lm), generalized linear
model (glm), and our proposed generalized linear mixed
model (GLiMMPS). The model details were provided in
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Supplementary Methods in Additional file 1. Here we
only briefly describe the GLIMMPS model. GLiMMPS
is a hierarchical model that uses the reads information
from both exon inclusion and skipping isoforms instead of
only a point estimate of exon inclusion level (as in the lm
model used in [16,17]) in sQTL analysis. Given the
observed junction read counts as in Figure S1 in Addi-
tional file 1 we assume that these junction reads support-
ing two alternative isoforms follow a binomial distribution:
yi|ψi ∼ Binomial(ni,ψi) . To deal with the overdispersion
in the generalized linear model, we model the extra var-
iance of ψ as a random effect for each individual i in the

regression model with random effects, uij ∼ N(0, σ 2
uj)

[22]. Let uij = σujzij , where zij ∼ N(0, 1) , bj denoting the
fixed effect for SNP j, the second level of the model can be

written as: ψi = logit−1(β0 + βjgij + σujzij) . Thus the joint

likelihood for b, σuj is given by:

L(β , σuj) =
m∏

i=1

(
ni

yi

) ∫
exp

{
(β0 + βjgij + σujzij)

}yi

[
1 + exp

{
(β0 + βjgij + σujzij)

}]ni
N(zij)dzij

where N(·) is the standard normal density. Function
glmer() from R package lme4 was used to fit the model,
where Laplace approximation is used for the parameter
estimations and a likelihood ratio test was used to
obtain the P values for the fixed effect bj for each SNP j.
For both the CEU and CEU2 datasets, using each of

the statistical models (lm, glm, and GLiMMPS) men-
tioned above, we carried out the analysis for each exon
with SNPs within 200 kb of the exon. To estimate the
false discovery rate, we used the same permutation
approach as in [16] to obtain the null distribution of the
P values. The details are in Supplementary Methods in
Additional file 1.

RT-PCR validation
To validate the sQTLs found in the CEU datasets, we ran-
domly selected 26 significant sQTL exons (FDR ≤0.1) for
RT-PCR validation. We performed the validation experi-
ments on an independent panel of 86 lymphoblastoid cell
lines from the HapMap3 project (Additional file 3), which
were purchased from the Coriell Institute for Medical
Research, Camden, NJ, USA. Total RNA was extracted
using TRIzol (Invitrogen, Carlsbad, CA, USA) and reverse
transcribed by the High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, CA, USA).
Fluorescently labeled RT-PCR was carried out as described
before [24]. Capillary electrophoresis (Georgia Genomics
Facility, Athens, GA, USA) and 5% Urea TBE-PAGE were
used for resolving PCR products. In capillary electrophor-
esis, band peak area was generated by GeneMapper 4.0
software (Applied Biosystems, Carlsbad, CA, USA). In 5%
Urea PAGE, the signal was captured by Fujifilm FLA-7000

(Fuji Photo Film Co. Ltd., Tokyo, Japan) and quantified
using the ImageQuant TL7.0 software (General Electric
Company, Waukesha, WI, USA). Final exon inclusion
level was calculated as the peak area or band intensity of
the exon inclusion band(s) divided by the total peak areas
or band intensities of all bands. To test the association of
genotypes with the RT-PCR estimated exon inclusion
levels, we used the most significant HapMap3 sQTL SNP
for each target exon. A linear regression on the estimated
exon inclusion levels with the SNP genotypes of the SNP
was used to calculate P values and those with P value
<0.05 were called as validated. All RT-PCR primer
sequences are listed in Additional file 4 and individual
exon inclusion levels are listed in Additional file 5.

Minigene analysis
We used the hybrid construct pI-11-H3 (provided by
Dr. Russ P. Carstens, University of Pennsylvania, Phila-
delphia, PA, USA) for our minigene splicing reporter
assays. Genomic DNAs were extracted from LCLs using
UltraClean™ Tissue&Cells DNA Isolation kit (MO BIO
Laboratories, Carlsbad, CA, USA). The target exon and
its flanking 350-500 bp intronic regions were amplified
by PCR (see Additional file 6 for the primer sequences).
In-Fusion™ Advantage PCR Cloning Kit (Clontech,
Mountain View, CA, USA) or restriction enzyme diges-
tion and ligation strategy were used to clone PCR pro-
ducts into the vector. Site-directed mutagenesis was
carried out following the manufacturer’s instructions.
The integrity of all constructs was confirmed by sequen-
cing. To test minigene splicing, plasmids were transi-
ently transfected into HEK293 cells. Fluorescently
labeled RT-PCR was performed to evaluate the splicing
impact of specific polymorphisms as described before
[24].

GWAS signals
We obtained 7,523 GWAS SNPs at genome-wide signifi-
cance level of P value <10-5 from the Catalog of Pub-
lished Genome-Wide Association Studies (accessed 03/
30/2012) [37]. Using all the 1000 Genomes SNPs from
the CEU population, we obtained all SNPs that are in
high linkage disequilibrium with the GWAS SNPs
(r2>0.8 in the CEU population and within 200 kb win-
dow of the GWAS SNP). Because of the high SNP den-
sity and high recombination rate around the MHC
region, we excluded genes from this region in this part
of the analysis. We then identified sQTL signal SNPs
overlapped with this expanded list of GWAS linked
SNPs.

Data access and source code availability
The GLiMMPS model has been implemented and
released in an easy to use package. The splice junction
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read counts, genotypes, and validation datasets, as well
as the source code used for sQTL processing and analy-
sis are provided at the companion website of this article
[75].

Additional material

Additional file 1: Supplementary Methods and Supplementary
Figures S1-S9.

Additional file 2: Supplementary table S1. sQTL exons (FDR ≤0.1) and
information of the most proximal sQTL SNPs.

Additional file 3: Supplementary table S2. HapMap3 samples used for
RT-PCR validation of sQTLs.

Additional file 4: Supplementary table S3. Primers and RT-PCR results
for validation of sQTLs.

Additional file 5: Supplementary table S4. The individual exon
inclusion levels for RT-PCR validation of sQTLs.

Additional file 6: Supplementary table S5. Primers used for
constructing minigene splicing reporters.
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