
UC Davis
IDAV Publications

Title
Meshless Methods for Volume Visualization

Permalink
https://escholarship.org/uc/item/8639q4n1

Author
Co, Christopher S.

Publication Date
2006

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8639q4n1
https://escholarship.org
http://www.cdlib.org/

Christopher S. Co
June 2006

Computer Science

Meshless Methods for Volume Visualization

Abstract

A revolution in sensor technology is introducing new problems that must be addressed by

visualization research. These technologies will enable earthquake engineers to monitor

tectonic plate activity, park rangers to respond more effectively to wildfires, and marine bi-

ologists to uncover mysteries from the ocean depths using a network of small, lightweight

sensors collecting data in real-time. Visualizing data from these sensor networks is cru-

cial to understanding the information the data represents. However, data collected from

such networks are scattered through space and time without explicit connectivity informa-

tion, posing difficult challenges to researchers and engineers. While past research on such

meshless data has focused primarily on interpolation schemes, we propose the develop-

ment of visualization algorithms and processing frameworks in which existing interpola-

tion schemes can be applied. This work not only plays a significant role in supporting the

continued development of sensor network technology; it fills a major gap in visualization

research, since effective direct methods for meshless data visualization did not previously

exist. Meshless methods can be applied to existing problems encountered in visualizing

data with a mesh, giving a set of common techniques that can be applied to a broad class

of data sets.

Professor Kenneth I. Joy
Dissertation Committee Chair

Meshless Methods for Volume Visualization

By

CHRISTOPHER S. CO

B.S. (University of California, Davis) 2001
M.S. (University of California, Davis) 2002

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in charge

2006

–i–

Meshless Methods for Volume Visualization

Copyright 2006

by

Christopher S. Co

–ii–

For my family, especially my beloved Yunn.

–iii–

Acknowledgments

This document represents the cumulative effort of several people, all of whom had a profound

impact on the work presented here and on me. In fact, there have been so many people who have

contributed to this work that I hesitate to list them, for fear that my poor memory will overlook

some people. Nevertheless, those I do happen to remember deserve mentioning.

First, I wish to thank my advisor, Ken Joy, who took a chance on me on as an undergraduate

researcher so long ago and has served as my primary source of guidance and inspiration. I have

learned so much from Ken academically, professionally, and personally, and for that I am deeply

indebted to him. He inspired me to be the best student I could be. But even during the hard times,

Ken always showed patience, support, and uplifting enthusiasm. He has been the best boss I have

ever had, providing me excellent resources and a large amount of freedom (perhaps more than I

needed or deserved). A large part of this accomplishment belongs to Ken, a great mentor and an

even greater friend.

Second, I wish to thank all those who have served as mentors and colleagues through the years.

Everyone in the Visualization and Graphics Research Group at the Institute for Data Analysis and

Visualization (IDAV) have helped me grow intellectually. In particular, I would like to thank my

other committee members, Bernd Hamann and Nina Amenta. Hans Hagen helped jump start my

career in research, leading me to my first research publication. Wes Bethel, John Shalf, and Terry

Ligocki of Lawrence Berkeley Lab and Nelson Max offered me my first opportunities to solve

application-driven research in a large-scale research environment. N. Sukumar, Oliver Staadt, and

John Owens often provided sound advice and voices of encouragement. Aaron, Adam, Alex Pomer-

anz, Ben, Bjoern, Brett, Brian, Christian, Christof, Conrad, David, Deb, Gunther, Haeyoung, Ikuko,

Janine, Jaya, Joerg, Karim, Ken Waters, Lars, Lok, Louis, Nameeta, Oliver Kreylos, Ralph, Serban,

Shubho, Soon Tee, Timo, Yong—they and countless others made my time in the lab not only intel-

lectually stimulating but also a heck of a lot of fun. Pat, Jamie, Maria, Grace, Lu—although they

work tirelessly and thanklessly behind the scenes, I know that this work could not have been done

without them.

Third, I would like to thank the generous funding agencies that supported my research. The Na-

–iv–

tional Science Foundation, the National Partnership for Advanced Computational Infrastructure,

the National Institutes of Health, Lawrence Livermore National Laboratory, and Lawrence Berke-

ley National Laboratory—without their financial backing, this work would not have been possible.

Most importantly, I am forever grateful to my family and friends for sharing my successes (and

failures) with me. Mom, Dad, Patrick, Mark, Michele, Dominic, Grace, Grandma Hsu, Grandpa

Hsu, Mama Hsu, Papa Hsu, Emily, Stanley, Lee, Eddie, Adriane, Fabien, Sophie, Alden—they have

given me strength by showing me that my success in life is also their own. My wife Winnie shares

the largest part of this accomplishment, as our life together makes all of this worthwhile.

–v–

Contents

Abstract viii

1 Introduction 1

2 Related Work 3
2.1 Scattered Data Interpolation . 3

2.1.1 Multiquadrics and Partition of Unity . 4
2.2 Point-Based Computer Graphics . 5
2.3 Isosurface Visualization . 6

3 Point-Based Isosurface Extraction 8
3.1 Introduction . 8
3.2 Previous Work . 9
3.3 Projection . 10

3.3.1 Exact Projection . 10
3.3.2 Approximate Projection . 11

3.4 Sampling . 13
3.5 Implementation Issues . 15
3.6 Results . 17
3.7 Summary . 19

4 Isosurfaces from Multiblock Data 22
4.1 Introduction . 22
4.2 Previous Work . 24
4.3 Approximation . 26
4.4 Isosurface Generation . 27
4.5 Results . 29
4.6 Discussion . 30

5 Isosurfaces from Scattered Data 33
5.1 Introduction . 33
5.2 Previous Work . 35
5.3 Regularization . 35
5.4 Local Tetrahedral Mesh Generation . 36
5.5 Interpolation . 38
5.6 Isosurface Generation . 39

–vi–

5.7 Results . 40
5.8 Discussion . 42

6 Meshless Volumetric Hierarchies 43
6.1 Introduction . 43
6.2 Previous Work . 44
6.3 Clusters . 46
6.4 Level-of-Detail Extraction . 49
6.5 Multiresolution Representation . 50
6.6 Results . 51

7 Future Work 55
7.1 Improvements to Isosurface Sampling . 56
7.2 Arbitrary Point Distributions . 56
7.3 Field Complexity Analysis Tools . 57
7.4 Additional Volume Visualization Tools . 57

8 Conclusions 58

Bibliography 59

–vii–

Abstract

A revolution in sensor technology is introducing new problems that must be addressed by visualiza-

tion research. These technologies will enable earthquake engineers to monitor tectonic plate activity,

park rangers to respond more effectively to wildfires, and marine biologists to uncover mysteries

from the ocean depths using a network of small, lightweight sensors collecting data in real-time.

Visualizing data from these sensor networks is crucial to understanding the information the data rep-

resents. However, data collected from such networks are scattered through space and time without

explicit connectivity information, posing difficult challenges to researchers and engineers. While

past research on such meshless data has focused primarily on interpolation schemes, we propose the

development of visualization algorithms and processing frameworks in which existing interpolation

schemes can be applied. This work not only plays a significant role in supporting the continued

development of sensor network technology; it fills a major gap in visualization research, since ef-

fective direct methods for meshless data visualization did not previously exist. Meshless methods

can be applied to existing problems encountered in visualizing data with a mesh, giving a set of

common techniques that can be applied to a broad class of data sets.

Professor Kenneth I. Joy
Dissertation Committee Chair

–viii–

1

Chapter 1

Introduction

Today we are capable of collecting massive amounts of highly sophisticated data. To use this data

effectively, our ability to derive meaningful information from this data must also evolve in sophisti-

cation. Visual analysis methods will play a key role in helping us accomplish this.

Visualization is about visual communication and visual data analysis. To date, visualization tech-

niques have predominantly focused on structured data, where samples are aligned in a controllable

and predictable fashion. We are on the verge of an unstructured data revolution, where samples are

scattered in time and space without an underlying mesh. Imagine every cell phone or digital camera

equipped with GPS technology and sensors. Imagine wireless sensor networks [14, 39] actively

monitoring the structural soundness of a building during an earthquake. Imagine micro-machines

navigating patients’ bodies collecting real-time medical information for surgical planning. The

impact of these technologies relies on accurate visual communication of the data, which implies

visualization and analysis methods for this meshless unstructured data must be developed. The

research presented here focuses on the development of fundamental algorithms for meshless data

visualization.

Until recently, state-of-the-art algorithms in this field globally resampled meshless unstructured data

to a structured format and used conventional structured-data display techniques. The main draw-

back of this approach is that the resampling step introduces several approximation (or interpolation)

2

steps resulting in accumulated error. Obscured by error, meaningful information becomes lost.

Resampling to a high-resolution mesh can reduce the error, but increases storage cost. Little the-

ory has been provided to determine sampling parameters necessary to provide accurate results. In

most scenarios, domain-specific knowledge is applied to estimate these parameters, however, such

domain-specific knowledge does not always exist. The goal of this research is to remove guesswork

from meshless data visualization by focusing on methods that work directly with the original data.

The work presented takes important first steps toward building a viable solution to meshless data

exploration and lays some theoretical foundation for continued research in this area. It is likely that

meshless representations will become more attractive with the availability of algorithms to produce

visual representations of the data. Subsequently, these methods will foster the continued develop-

ment of meshless data collection technologies, such as sensor networks. The meshless methods

described in some cases solve existing problems in the visualization of non-meshless data and thus

are broadly applicable to a wide variety of data sets.

Our development and study of meshless methods for scientific visualization primarily focuses on

isosurface generation. After providing the necessary background in Chapter 2, we discuss a point-

based isosurface generation algorithm designed for data sets containing a mesh called iso-splatting

in Chapter 3. In Chapter 4, we describe how this point-based technique is adapted to compute

continuous isosurfaces from multiblock data sets. The flexibility of these two mesh-based methods

enable their application to computing isosurfaces from arbitrary meshless data sets, which we de-

scribe in Chapter 5. Aside from isosurface visualization, meshless hierarchical representations for

volumetric data have been developed and are described in Chapter 6. A description for how future

work can build upon the concepts outlined in this exposition is provided in Chapter 7. Though not

a major focus of this project, scattered data approximation remains a central component of visual-

ization, so the basic approximation method used in this work is presented in Section 2.1.1.

3

Chapter 2

Related Work

Many existing meshless methods were developed in the context of scattered data analysis. The

study of scattered data has primarily focused on the development of robust interpolation and ap-

proximation methods for reconstructing a continuous function over the data points. A related topic

is point-based computer graphics, which has matured into an active area of research concerned with

the use of point primitives containing little or no connectivity information to synthesize computer-

generated images. Much of the work we have developed uses isosurface contouring methods and

practices employed by the point-based computer graphics community to produce visualizations of

volumetric data.

2.1 Scattered Data Interpolation

Numerous publications have been devoted to the study of scattered data interpolation and fitting.

Traditional methods for scattered data approximation include Shepard’s method, radial basis func-

tions (RBFs), tessellation-based methods, tensor-product methods, and blended local methods. A

complete review of all of these techniques is beyond the scope of this dissertation. Instead, we

refer the reader to past and recent survey papers [4, 22, 23, 26] for more information. We note,

however, that RBFs [7,24,31] and local methods have proven effective, particularly in reverse engi-

4

neering and surface reconstruction. There has been a renewed interest in the application of moving

least-squares [1, 3, 42, 44] as a local method for fitting smooth approximations to point cloud data.

Partition of unity blending functions [25, 53, 64, 76] have promoted the use of local approximations

used to construct a globally continuous approximation.

2.1.1 Multiquadrics and Partition of Unity

Although the major focus of the work presented in this dissertation is on visualization algorithms

and processing frameworks, it is important to describe the interpolation and data approximation

techniques that are employed by these methods. We use a multiquadric radial basis function (RBF)

originally proposed by Hardy [33]. In some cases, local RBF constructions are generated and

blended together using partition-of-unity blending functions. In the work presented, many other

choices for interpolation and approximation can generally be used without modification to the orig-

inal algorithms.

Hardy’s multiquadric method [33] offers high interpolation quality for a relatively low computa-

tional cost. Given a set of sample points S defined by a set of points {pi}, i = 1,2, . . . , |S|, let fi be

the scalar value associated with pi. Let x be an arbitrary location at which we wish to evaluate the

interpolant. We construct Hardy’s interpolant

H(x) =
|S|

∑
i

λiφi(x), where φi(x) =
√
|x−pi|2 + c2

by solving the system of equations

H(pi) = fi, i = 1,2, . . . , |S|

for the coefficients λi, often called the blending coefficients. Here, c denotes Hardy’s constant,

which is set to 0.025 in our implementation, a value we have observed to be good in previous

experimentation for data sets we have used [17]. Traditionally, S consists of all data points in a

given scattered data set, forming a global interpolation scheme. When S is allowed to be a subset

of data points in a given scattered data set, we obtain a local interpolant that must be blended with

other neighboring local interpolants to form a global approximation.

5

The partition-of-unity method is frequently used to compose local approximations into a single

continuous global approximation. Let {Qi(x)} be a set of local approximations each with a spherical

domain of influence of radius Ri. Let {wi(x)} be a set of nonnegative functions defined over a

bounded domain Ω. A set of partition of unity functions {ϕ j(x)} can be defined as

ϕ j(x) =
w j(x)

∑
n
k wk(x)

,

where n is the number of local approximations to blend whose spherical domains contain the point

x. The union of these n domains form Ω. Thus, the global approximation F(x) takes the form

F(x) =
n

∑
j

ϕ j(x)Q j(x).

For partition of unity blending functions, the inverse distance singular weights of Franke and Niel-

son [25]

w j(x) =
[
(R j −|x− c j|)+

R j|x− c j|

]2

, where (a)+ =

 a if a > 0

0 otherwise
,

are used where the radius R j and the center point c j define the sphere of influence of the j-th local

approximation that contributes to the interpolated value at x.

2.2 Point-Based Computer Graphics

Researchers have investigated the use of point primitives as a rendering and representation alterna-

tive, and this topic has received much attention in recent years. The use of points as a rendering

primitive can be traced back to 1985, when Levoy and Whitted [45] described its advantages and

limitations. Grossman and Dally [29] revisited the notion of using points more than ten years later.

The use of points to represent a surface was also promoted by Rusinkiewicz and Levoy [66], who

proposed a hierarchical surface splatting technique for rendering surfaces of large complexity. Pfis-

ter et al. [59] proposed the use of surfels for the representation and rendering of surfaces. The

surface splatting algorithm was later formalized and improved using elliptical weighted averaging

(EWA) to support texturing, hidden surface removal, edge anti-aliasing, and transparency [81]. Ren

et al. [63] developed a hardware-accelerated approach based on an object space formulation of the

EWA surface splatting algorithm. (We refer the reader to [62] for an overview of splatting theory

6

and implementation issues.) Besides surface splatting, many other techniques were developed using

points to render surfaces. Kalaiah and Varshney [40] developed an approach to rendering a surface

through the use of differential points. Alexa et al. [1] used a point set and moving least-squares

techniques to define a surface that can be down-sampled and up-sampled as needed to meet ren-

dering and modeling requirements. Fleishman et al. [21] extended this point-set-surface approach

using multiresolution methods. Botsch et al. [5] use octrees and a point-based hierarchical encod-

ing scheme to compress large models consisting of point-sampled geometry. Pauly et al. [57] use

point primitives and moving least-squares methods to interactively create and edit point-sampled

geometry.

2.3 Isosurface Visualization

Isosurface visualization is an extremely valuable method for the exploration of volumetric scalar

fields. An isosurface is an implicit surface defined as the intersection between a trivariate scalar

function and a threshold value, often called the isovalue. Isosurfaces can be directly rendered but are

frequently approximated, stored and rendered as polygonal meshes, usually triangle meshes. A large

number of publications propose various methods for optimizing the extraction and rendering phases

of isosurface visualization. Isosurfacing algorithms can be classified as either output-sensitive or

input-sensitive.

Output-sensitive approaches focus on the resulting image and therefore attempt to perform compu-

tation mainly in regions that contribute substantially to the final image. At approximately the same

time when Lorensen and Cline published their well-known Marching Cubes (MC) paper [50], they

developed a lesser known method called Dividing Cubes (DC) [15]. Based on viewing parameters,

the DC algorithm renders grid cells as points after iteratively or recursively subdividing cells to a

pixel or sub-pixel level in screen space. Later, ray tracing was employed to render isosurfaces of

large data sets interactively [54]. This method is attractive since it is relatively insensitive to input

data size and thus scales well. Output-sensitive approaches are attractive in general as no interme-

diate form of the isosurface needs to be stored explicitly, which greatly decreases storage require-

7

ments. One drawback of output-sensitive approaches is that each time a new view is specified the

isosurface extraction process must be repeated. For interactive applications, where viewing parame-

ters are being changed frequently, such methods perform a relatively large number of computations.

Output-sensitive approaches often offer excellent image quality, but frequently no geometric rep-

resentation of the isosurface is generated, making them undesirable for use in geometric modeling

applications, for example.

Input-sensitive approaches in general generate geometry approximating the isosurface. Most meth-

ods are based on the MC method and use triangles to approximate an isosurface [8, 9, 11, 32, 38,

41, 49]. The use of interval trees [11] and the span space [49] domain decomposition can greatly

decrease the amount of work necessary to identify cells intersected by an isosurface (also called

active cells), a major bottleneck in the extraction process. One advantage of generating geometry is

that extraction need not be performed for each view. However, storing geometry becomes a burden

as data resolution increases. Dual contouring methods were introduced to preserve sharp features

and to alleviate storage requirements by reducing triangle count [38, 41]. Such methods produce

high-quality polygonal models, but are not ideal for interactive visualization of large data due to the

added computation and intermediate data storage requirements.

8

Chapter 3

Point-Based Isosurface Extraction

Figure 3.1: Iso-splatting applied to a fuel injection simulation data set. Left: point samples gen-
erated near the isosurface; middle: points projected onto the isosurface; right: resulting point set
rendered using surface splatting.

3.1 Introduction

A large fraction of isosurface visualization research has followed one methodology: a user specifies

an isovalue of interest, portions of the domain intersected by the isosurface are determined, geomet-

ric representations are computed, and geometric primitives are rendered. The process is performed

for each new isovalue specified by the user.

This basic methodology is quite straightforward, but it is also wasteful. A relatively large amount of

computation must be performed to produce geometry specific to each isovalue. One set of geometric

primitives created by this method can only be used to represent one specific isosurface. The situation

is made worse when considering the cost involved in storing polygonal meshes.

9

Iso-splatting provides an alternative to this paradigm by splitting the work of extraction into two

independent steps. In the first step, discussed in Section 3.4, point samples are generated. In the

second step, these point samples are projected onto the isosurface of interest, which we discuss in

Section 3.3. The resulting point set is rendered using a surface splatting technique. Figure 3.1 illus-

trates the iso-splatting technique applied to a fuel injection data set. The crucial difference between

this approach and “standard” polygon-based methods is that the point geometry can be used to rep-

resent a range of isosurfaces. Geometry must be slightly adjusted only to a relatively small degree

to represent a slightly different isosurface. By virtue of this fact, we greatly decrease computation

time. The use of points, in many cases, can also decrease storage requirements. Furthermore, this

new isosurface visualization paradigm can be tailored to meet application-specific needs, which is

discussed in Section 3.5. The discussion centers around the use of regular grid data and is later

generalized for arbitrary meshes.

3.2 Previous Work

Many point-based techniques [1, 5, 40, 59, 63, 66, 81] deal primarily with static surface models. Iso-

surfaces can exhibit vast geometric and topological changes when changing the isovalue of interest.

Due to this “dynamic” nature, the idea of using points to represent isosurfaces seems daunting.

However, points provide a large degree of flexibility and therefore are often more suitable than

triangles when dealing with such changing surfaces.

The method we present focuses on improving interactivity through storage and computational ef-

ficiency via the use of point samples. Iso-splatting is an output-sensitive approach, as it generates

the isosurface geometry once per isovalue and does not require repeated extraction when viewing

parameters change. We show how large storage and computational savings can be achieved through

the use of points as a basis for surface representation and rendering. We employ surface splat-

ting techniques, although other point-based rendering techniques can be used without altering core

aspects of our algorithm.

10

(a) (b)

Figure 3.2: Projection of sample point pλ onto isosurface fI , producing point p′
λ

using (a) exact
projection and (b) approximate projection.

3.3 Projection

Given the trilinear function

f (x,y,z) =
1

∑
i, j,k=0

ρi jkxiy jzk ,

where ρi jk denote the eight polynomial coefficients associated with one trilinearly interpolated cell,

we are interested in the isosurface defined by the isovalue

fI =
1

∑
i, j,k=0

ρi jkxiy jzk. (3.1)

We project a sample point pλ , which is inside an active cell, to obtain p′
λ

, a point on or near the

isosurface.

3.3.1 Exact Projection

Given a ray in parametric line equation form

~r(t) = p+ t~d,

where p is a point on the ray and~d is an associated direction vector, the exact intersection between

~r and the isosurface defined implicitly by Equation (3.1) can be determined by solving

fI = f (p+ t~d)

=
1

∑
i, j,k=0

ρi jk(px + tdx)
i(py + tdy)

j(pz + tdz)
k (3.2)

11

for the parameter t. Once t is known, the sample on the exact isosurface is p′
λ

= p + t~d. For an

arbitrary ray direction, Equation (3.2) leads to a cubic equation in t of the general form

At3 +Bt2 +Ct +D = 0 . (3.3)

Cardan’s solution [51] can be used to determine the roots of Equation (3.3). (For details on imple-

menting ray-isosurface intersections, we refer the reader to [54].)

The key to computing this intersection is defining the ray~r. From the sample point pλ , rays can be

shot to a subset of the eight corners of the cell, using the MC case table to determine which corners

should be considered. One can also use the gradient of the scalar function computed at pλ as a

direction vector for~r. However, a ray defined in such a way may not intersect the isosurface inside

the cell. Figure 3.2 (a) illustrates exact projection.

This approach produces points that lie on the isosurface but at a high computational cost. Roots of a

cubic polynomial must be determined in order to obtain ray intersections, thereby slowing down the

projection phase of this method. An approximation can be performed to alleviate this computational

burden.

3.3.2 Approximate Projection

We use one iteration of the Newton-Raphson [61] root-finding method to compute an approximation

of p′
λ

. First, we describe how this formula is used to find an approximate isopoint of a univariate

scalar function and then describe an extension to find a point approximately near the isosurface of a

trivariate scalar function.

The Newton-Raphson method essentially uses the first two terms of the Taylor series expansion of

a function h(x) near a root. Given a univariate function f (x) and an isovalue fI , we seek the roots of

h(x) = f (x)− fI .

The Taylor series of h(x) at a point x0 + ε is defined as

h(x0 + ε) = h(x0)+h′(x0)ε +
h′′(x0)

2
ε

2 +

12

Figure 3.3: Displacement criterion. The square symbolizes the cell, the black dot the sample
location pλ . The sample point pλ may be projected onto an arbitrary isosurface that intersects the
cell as long as the projection does not exceed the displacement boundary, defined by the sphere of
radius ∆d, which is determined by cell dimensions sx and sy.

The first iteration of the Newton-Raphson method considers only the first-order terms and solves

h(x0 + ε) = h(x0)+h′(x0)ε = 0 . (3.4)

If we consider x0 + ε to be a line parameterized by t, where ε = h′(x0)t, we obtain

h
(
x0 +h′(x0)t

)
= h(x0)+h′(x0)h′(x0)t = 0 ,

which, when we solve for t, results in

t =
−h(x0)

h′(x0)h′(x0)
.

Since h(x0) = f (x0)− fI and h′(x) = f ′(x) we obtain

t =
fI − f (x0)

f ′(x0) f ′(x0)
.

We now consider Equation (3.4) for a trivariate function h(x) at a point x0 +~ε , i.e.,

h(x0 +~ε) = h(x0)+∇h(x0) ·~ε = 0 .

If we consider x0 +~ε to be a line parameterized by t, where~ε = ∇h(x0)t, we obtain

h
(
x0 +∇h(x0)t

)
= h(x0)+∇h(x0) ·∇h(x0)t = 0 ,

which leads to

t =
−h(x0)

∇h(x0) ·∇h(x0)
.

13

By substituting h(x0) = f (x0)− fI and ∇h(x0) = ∇ f (x0), one obtains

t =
fI − f (x0)

∇ f (x0) ·∇ f (x0)
. (3.5)

By setting x0 = pλ , we can evaluate f (pλ) and ∇ f (pλ) efficiently at the same time using trilinear

interpolation. By computing t according to Equation (3.5), the approximation of p′
λ

is given as

p′
λ

= pλ +∇ f (pλ)t .

Figure 3.2 (b) illustrates this approximate projection.

The developers of Kizamu [58] used a similar approach to project arbitrary point samples onto

the zero-set of an adaptive distance field. Their technique was meant as a method to preview a

surface defined by a volumetric distance field, while iso-splatting is a method designed to visualize

isosurfaces of arbitrary scalar field data.

The Newton-Raphson method converges quadratically, provided that the initial guess x0 is suffi-

ciently close to a root. This method may result in roots far away from the “desired” root when x0 is

near a local maximum or minimum. For this reason, we discard “far-away” solutions when encoun-

tered using a displacement criterion. After a single iteration of the Newton-Raphson procedure, if

the point is “too far” from the initial guess, we do not consider the point. A displacement threshold

∆d is computed based on the size of the cell. Given cell edge lengths sx, sy, and sz, we define the

maximum displacement threshold as ∆d = 1
2

√
sx

2 + sy
2 + sz

2. Geometrically speaking, when the

sample point pλ is the center of the cell, this displacement criterion is the same as restricting the

location of p′
λ

to reside inside the sphere of radius ∆d with center pλ , see Figure 3.3. Figure 3.4

illustrates the difference between unprojected and projected point samples.

3.4 Sampling

Often, the contribution to the isosurface of a given cell can be approximated cheaply without sac-

rificing overall rendering quality. In a standard triangle-based isosurfacing method, active cells are

determined. For these cells, edge intersection points are computed, triangulated and added to a

14

(a) Unprojected (b) Projected

Figure 3.4: Impact of point sample projection. Shown is an isosurface of a skull rendered with
quadrilateral surface splats. (a) Samples are grid-aligned when unprojected. (b) Same iso-splatted
surface using projection.

polygonal model. In iso-splatting, instead of generating a set of triangles inside a cell, we generate

a point sample. Although a given cell may contain several disjoint components of the same isosur-

face, we have found that many high-resolution data sets only rarely exhibit this phenomenon. In

fact, restricting the amount of geometry to one point per cell is a common technique used in large

model simplification [46, 65].

A surface rendering algorithm requires certain information necessary to synthesize an image. For

surface splatting, a fairly regular sampling of the surface is required in order to produce a proper

rendering. Each sample should be characterized by location, normal, and a local variance matrix,

which indicates roughly the average distance to neighboring samples. Uniform rectilinear volume

data implicitly provides locations of volume samples. For this type of data, gradients are often used

for computing local illumination properties. The variance matrix can be derived by knowing the grid

spacing. We can therefore derive all the elements required to define a surface splatting primitive.

Point samples may not lie on the desired isosurface and must be projected onto that surface. If

an exact projection is used, the cell corner values are necessary to compute the projection of this

sample point onto the isosurface. If our approximation is used, a function value and gradient must

be computed for this sample point. The gradient can be reused for shading purposes in the rendering

phase.

In general, iso-splatting requires that each point sample consist of sample location, function value,

15

gradient, and a local variance matrix. For gridded data sets, several methods exist to obtain location,

function value, and gradient. The local variance matrix can be derived by analyzing the spatial

distribution of the volume samples or from the size and shape of grid cells. Thus, iso-splatting is

applicable, in principle, to any type of grid.

3.5 Implementation Issues

The use of the point as a representation and rendering primitive for isosurfaces results in many

desirable features. One primary advantage is its flexibility at the application level. Computations

necessary for iso-splatting can be performed in different stages of the visualization pipeline, provid-

ing more flexibility than many triangle-based approaches.

There are three stages of any geometry-based isosurfacing pipeline:

1. Preprocessing

Data reorganization or data structure initialization is performed to improve the extraction

and/or rendering stages.

2. Extraction

Geometry approximating an isosurface is computed.

3. Rendering

The isosurface geometry is rendered.

Two phases characterize the iso-splatting algorithm:

1. Point generation

Sample points are selected, and key information for the projection and rendering phases are

computed.

2. Point projection

Sample points are projected onto the isosurface.

16

Stage (A) (B) (C) (D)
Preprocessing G G

Extraction P G,P G
Rendering P P

G = point generation P = point projection

Table 3.1: Iso-splatting paradigms.

In iso-splatting, point sample generation and projection can be performed in different stages of

the isosurface visualization pipeline to satisfy application-specific needs. We recognize four basic

application paradigms, shown in the columns of Table 3.1.

The paradigms described in Table 3.1 illustrate the quintessential trade-off between computational

efficiency and memory consumption. Paradigms (A) and (B) are useful when a high level of in-

teractivity is desired but can be storage-intensive, since point samples are pre-generated and must

be stored for later use. Using the approximate projection scheme, location, function value, gradi-

ent, and the value interval spanned by the cell must be stored for each point sample. Extraction in

this case consists primarily of collecting point samples in active cells. Several isosurface extraction

techniques exist to perform active cell lookups efficiently out-of-core [8, 9, 32]. Performing point

sample generation in the preprocessing stage can be thought of as a “partial evaluation” of the iso-

surface. Paradigms (C) and (D) require more computation but provide better storage efficiency than

paradigms (A) and (B). These two paradigms require only the original data set, from which we can

compute the information needed for projection and rendering.

Programmable hardware on modern graphics cards makes the efficient computation of point pro-

jections feasible in the rendering phase, as in paradigms (B) and (D). The approximate projection

procedure consists of a single floating-point division and a vector dot product, both operations sup-

ported by existing graphics hardware. Point location and gradient will already be transferred to the

hardware for rendering the surface splat. The only additional piece of information that must be

sent is the function value approximated for the point and the isovalue, which can be sent once per

frame. The displacement criterion can be implemented with the use of texture lookups. However,

the next generation of graphics processing units (GPUs) will also support branches (i.e., conditional

17

statements), thereby allowing a more straightforward implementation of the displacement criterion.

Discarded points can be rendered outside of the viewing frustum.

We believe that iso-splatting leads to computational efficiency, while using a geometric primitive

that is highly storage-efficient. In many cases, iso-splatting offers improved extraction efficiency

over standard triangle-based schemes. A standard MC implementation performs several edge inter-

sections and perhaps computes a gradient for each point for smooth shading. In the method of Ju

et al. [38], a quadratic error function must be minimized in addition to computing these edge inter-

sections in order to place a single point inside the cell. In iso-splatting, a single function value and

gradient computation, which can be computed simultaneously, is followed by one iteration of the

Newton-Raphson procedure. In terms of storing geometric primitives to represent the isosurface,

consider n cells that contribute to an isosurface. Let us assume that each vertex has an associated

normal vector used for shading purposes. Suppose a triangle-based isosurfacing algorithm generates

one triangle per cell, and, moreover, outputs the entire mesh as one triangle strip, offering the most

compact storage representation. Such a surface requires n+2 vertices of storage. Iso-splatting gen-

erates one point per cell, producing at most n vertices. While the benefit is small, one must consider

that many current triangle-based isosurfacing methods generate “triangle-soup” representations ef-

ficiently, which requires 3n vertices assuming one triangle per cell. (Standard MC implementations

generate on average more than one triangle per cell.) Producing more memory-efficient triangle

representations—such as a triangle strip in the ideal case—would most likely require more compu-

tation and thus slow down extraction time.

3.6 Results

We have performed tests on a Pentium4 PC with 2 GB of main memory and an nVidia GeForce4

Ti video card with 128 MB of memory on a motherboard supporting a 4× accelerated graphics

port (AGP). We implemented paradigms (A) and (C), see Table 3.1. QSplat-style surface splatting

[66, 67] was chosen due to its rendering efficiency. However, EWA surface splatting [81, 63] could

easily be incorporated into the system without affecting our algorithm.

18

We have used quadrilateral and elliptical surface splatting kernels, which offer different degrees

of quality and efficiency. Bandwidth to the graphics card is currently a bottleneck in geometry-

intensive applications. Quadrilateral splats can be more efficient, since they can often be imple-

mented by passing a single vertex to the graphics hardware, which usually rasterizes this vertex as

a quadrilateral. Hardware extensions exist to automatically scale the size of this rasterized quadri-

lateral based on viewing parameters. Elliptical splats offer better image quality, but, since they are

often rendered using alpha-textured polygons, more geometry must be sent to the graphics hard-

ware, thereby reducing rendering efficiency. When better support for surface splatting in graphics

hardware exists, this need to balance the trade-off between quality and efficiency may disappear.

To quantitatively compare a triangle-based approach with iso-splatting, we extracted 16 isosurfaces

10 times for four data sets, measuring average extraction time and memory usage for a standard

MC implementation and a paradigm-(C) iso-splatting implementation. In addition, we measured

average framerate considering 36 frames for each isosurface, each time rotating the model by 10

degrees about the y-axis. For both implementations, interval trees were used to accelerate active

cell lookup. We chose a standard MC implementation over a dual-contouring implementation, as it

offers the most competitive extraction times. Figure 3.5 summarizes extraction time, memory usage,

and framerate information. For our framerate calculations, we used quadrilateral kernels due to their

rendering efficiency. In the graphs, two curves of the same color represent measurements collected

for the same data set. Of these two curves, the dotted curve corresponds to measurements made for

the MC implementation, and the solid curve corresponds to measurements made for the iso-splatting

implementation. The left-most graph in Figure 3.5 indicates that iso-splatting generally performs

extraction in approximately half the amount of time used by a standard MC implementation, even

when both point generation and projection are performed in the extraction stage. The fact that fewer

primitives are generated and that these primitives are more storage-efficient is shown in the middle

graph. This storage efficiency accounts for framerates that can exceed those achieved by rendering

an isosurface represented by triangles, as seen in the right-most graph of Figure 3.5. This graph

indicates that iso-splatting generally provides quadruple the framerates using quadrilateral splats

when compared with a standard MC implementation.

Figure 3.6 provides side-by-side comparisons of an implementation of MC and iso-splatting. Some

19

Data set Dimensions
Fuel injection 64×64×64

Skull 68×256×256
Bucky ball 128×128×128
Aneurysm 256×256×256

Primate lung 266×512×512
Stanford bunny CT 361×512×512

Lobster 80×324×301
Engine 128×256×256

Boston teapot 178×256×256
Argon bubble 640×256×256

Table 3.2: Data set sizes.

Extraction Time

0
100
200
300
400
500
600
700
800
900

1000

8 25 41 58 74 90 107 123
Isovalue

Ti
m

e
(m

s)

Memory Usage

0
20
40
60
80

100
120
140
160
180
200

8 25 41 58 74 90 107 123
Isovalue

M
em

or
y

(M
B)

Framerate

0
20
40
60
80

100
120
140
160
180
200

8 25 41 58 74 90 107 123
Isovalue

Fr
am

er
at

e
(fp

s)

Argon MC Argon IS Engine MC Engine IS
Lobster MC Lobster IS Teapot MC Teapot IS

Figure 3.5: Extraction time (left), memory usage (middle), and framerate (right) comparisons. A
standard Marching Cubes (MC) implementation and a paradigm-(C) iso-splatting (IS) implementa-
tion are compared. (See also Section 3.5 and Table 3.1.)

detail in the aneurysm data set is lost due to the fine structure of the arteries, but the overall essence

of the isosurface is not lost. Details could be recovered by using an adaptive sampling scheme.

Figure 3.7 shows images from an out-of-core implementation of iso-splatting using paradigm (A).

We used a Morton-order indexing scheme to perform lookups efficiently on disk. The dimensions

of all data sets used in our experiments are provided in Table 3.2. All data sets consist of values in

the range [0,255].

3.7 Summary

We have presented a new algorithm called iso-splatting for isosurface visualization. Improved ex-

traction, storage, and rendering efficiency can be obtained through the use of points. The point

20

Marching Cubes Iso-splatting Marching Cubes Iso-splatting

Figure 3.6: Comparisons of Marching Cubes and iso-splatting rendering results of a Buckminster-
fullerene (“bucky ball”) data set and an aneurysm data set.

0.8M splats
extracted in 0.38 s

2.2M splats
extracted in 0.52 s

2.1M splats
extracted in 0.52 s

Figure 3.7: Images generated with an out-of-core implementation of iso-splatting applied to a
computed tomography (CT) scan of a primate lung (left and middle images) and a CT scan of the
Stanford bunny (right image).

21

samples are, in general, more cheaply stored than triangles, and they require little connectivity in-

formation, opening up possibilities for parallelism. Our results indicate that iso-splatting performs

well in out-of-core settings. Since computation can be divided in various ways, implementations

can be tailored relatively easily to meet resource limitations or to take advantage of emerging GPU

technology. These characteristics make iso-splatting suitable for large, high-resolution data sets,

when a geometry-based isosurface visualization algorithm is desirable. We point out that the point

set generated by our method is useful not only for rendering purposes. Many techniques, such as the

point-set-surface method [1, 21], have been developed to support geometric modeling using point

sets. Iso-splatting extends well to data represented by any type of mesh. An additional strength of

iso-splatting is its simplicity and ease of implementation.

22

Chapter 4

Isosurfaces from Multiblock Data

(a) (b) (c) (d)

Figure 4.1: Illustration of our isosurface generation method. (a) Marching Cubes triangles are gen-
erated inside each cell. (b) The point samples are generated in each triangle and then (c) projected
onto the isosurface. (d) The point set is rendered using a surface splatting algorithm.

4.1 Introduction

Much of the research in isosurface generation has focused on regular grid data sets, but relatively

little research has addressed isosurfacing data represented by multiple grids of arbitrary layout and

orientation. We refer to such data as multiblock data sets. Multiblock data representations arise in

many important applications. In particular, flow simulations used in computational fluid dynamics

(CFD) very frequently use multiple grids (see Figure 4.2). Moreover, these grids often overlap

one another, a situation not addressed by standard isosurfacing techniques. Multiblock data sets

appear in the form of hierarchical data representations as well, such as octrees [80] or adaptive

mesh refinement (AMR) [79] grids. Volumetric data represented by such adaptive grid structures

23

can be thought of as a specific class of multiblock data sets.

A major issue encountered when contouring multiblock data is the appearance of undesirable cracks

or self-intersections, which result from a naive application of methods designed for single grid data

sets. There are several reasons why it is important to resolve these discontinuities in the surface.

Generally, the original object being sampled is continuous, and the cracks appear only as an artifact

of a poor reconstruction. Moreover, many applications require watertight surface models. This issue

has been treated to some extent in the study of adaptive grids for representing volume data, but such

techniques frequently do not generalize to arbitrary multiblock data sets. The fundamental problem

is two-fold. First, interpolation across the boundaries of these grids is often not well-defined or not

easily dealt with. For instance, it is not well-defined how a trilinear interpolant defined in one grid

should incorporate data samples from another grid overlapping it (see Figure 4.3(d)). We refer to this

as the interpolation problem. Second, it is not clear how to extract continuous isosurface geometry

across grid boundaries. In particular, a direct application of the Marching Cubes algorithm [50]

to each separate grid will often produce a triangle-based surface containing triangles that do not

meet up (forming cracks) and triangles that intersect one another. We refer to this as the isosurface

generation problem.

Meshless techniques for scientific computation have been introduced to alleviate mesh generation

requirements by supplying robust interpolation methods that do not rely heavily on mesh connec-

tivity. We use principles of meshless methods to address the interpolation problem by defining

a continuous interpolation across grid boundaries. This continuous interpolation is used in con-

junction with a flexible point-based surface sampling approach to solve the isosurface generation

problem.

Our contribution is a general approach for the construction of isosurfaces from arbitrary multiblock

data through the use of meshless techniques. We define a continuous interpolation scheme based

on a set of radial basis functions, discussed in Section 4.3. The isosurface generation problem is

addressed by first computing the triangles of a Marching Cubes surface in each grid. Inside the

generated triangles, points are sampled and then projected onto the isosurface of interest using

our continuous interpolant and principles of the iso-splatting method [16]. Isosurface generation

24

Figure 4.2: An example of a multiblock data representation used in the simulation of flow around a
space shuttle launch vehicle. Notice that the red and blue grids overlap one another. (The data set is
available online at http://www.nas.nasa.gov/Research/. Visualization courtesy of Edward A. Mayda
of the Department of Mechanical and Aeronautical Engineering at UC Davis.)

is discussed in Section 4.4. What results is a point set representation suitable for rendering and

geometry processing.

4.2 Previous Work

The Marching Cubes technique of Lorensen and Cline [50] generates triangles to approximate an

isosurface of interest for regular grid data sets using a case-driven approach. The elegance and

relative simplicity of the method make it a desirable technique to apply to data sets composed of

hexahedral cells, such as multiblock data sets. However, few have successfully managed to extract

continuous isocontours from arbitrary multiblock data. Although few have addressed this issue

directly, several have treated a similar problem in attempting to reduce the amount of geometry gen-

erated by the standard Marching Cubes approach. Namely, the use of adaptive resolution volumetric

representations [43, 70, 73, 80] often introduces discontinuities in the interpolation that ultimately

result in surface cracks that must be patched. This area of research essentially addresses a specific

instance of a broader class of multiblock isosurfacing problems. Solutions to the “crack problem”

resolve discontinuities in situations where two grids semi-conform at the interface where the grids

meet (see Figure 4.3(b)).

Several strategies exist to address the crack problem. Polygons residing in the plane of the crack

can be computed to cover the hole [73]. Cracks can be patched by aligning vertices of triangles

http://www.nas.nasa.gov/Research/

25

(a) Conforming (b) Semi-conforming (c) Non-conforming (d) Overlapping

Figure 4.3: Grid layouts in multiblock data sets. Many techniques exist to generate isocontours
from (a) conforming grids and (b) semi-conforming grids, where some sample points are shared
among grids at the interface. Relatively few techniques exist to generate isocontours from (c) non-
conforming grids or from (d) overlapping grids. In these environments, common methods for inter-
polation are not well defined, and it is unclear how to extract a continuous isosurface representation.

obtained from the high-resolution grid to the contour of the lower-resolution grid [70]. Coarse

triangles can be replaced with an alternative triangulation that stitches the triangles from the two

resolutions together [43, 80]. Another option is to avoid the generation of a volumetric mesh that

would introduce a discontinuity in the volume [28,79]. In this way, the interpolation and isosurface

generation remain continuous.

These methods work well for conforming and semi-conforming grids, where all or some of the

sample points along the interface between the grids are shared. These methods do not address prob-

lems with non-conforming or overlapping grids, sometimes called overset grids in computational

mechanics. The fundamental issue here is that grid-based interpolants are not well defined in these

domains, or, in the case of overlapping grids, it is not clear how to extract continuous geometry

from this irregularly sampled subdomain. Our method specifically addresses non-conforming and

overlapping grids and generalizes to conforming and semi-conforming grids without modification.

Figure 4.3 shows various possible grid layouts for multiblock data.

We overcome the interpolation problem by disregarding the grid connectivity and defining a contin-

uous RBF approximation over the data points. In order to generate geometry to represent the iso-

surface, we extend principles from the iso-splatting method [16] to obtain a set of oriented points.

The resulting point set is rendered using a surface splatting algorithm [5, 57, 66, 81] and is suitable

for further geometry processing. The simplicity and generality of our method make it an attractive

solution for obtaining high-quality isosurfaces from arbitrary grid data.

26

(a) (b) (c) (d)

Figure 4.4: Local RBF Construction. (a) The input is multiblock data. (b) The grid connectivity is
disregarded. (c) Data points (shown as black dots) are binned into RBF grid cells. (d) Local RBFs
are computed with centers placed at the center of the cells. An RBF center is shown here as a square
point, and its radius of influence is shown as a shaded circle. To avoid visual clutter, only the three
middle RBFs are shown.

4.3 Approximation

Let Hk(x) be a local multiquadric interpolant, as defined in Section 2.1.1. To define a local interpo-

lation Hk(x), we first disregard the connectivity of the grid and consider only the data points. These

data points are then binned into a global regular grid, which we call the RBF grid, defined by the

bounding box around the data points. We associate a local interpolant Hk(x) with each cell center

point ck of this grid. We refer to this point as an RBF center. We define a radius of influence Rk

around each RBF center to be

Rk = 2
√

sx
2 + sy

2 + sz
2,

where sx, sy, and sz define the edge lengths of a single cell in the RBF grid. The coefficients of the

local RBF associated with ck are computed by considering all points within the sphere defined by

the RBF center ck and the radius of influence Rk. The points necessary to compute these parameters

are obtained by checking each point in the neighboring 26 cells—the eight vertex neighbors, twelve

edge neighbors, and six face neighbors—to see if the point is inside the sphere. If this region

happens to be empty, we do not construct an RBF center. The RBF construction process is illustrated

in Figure 4.4.

In creating the RBF grid, we attempt to make the cells as close to cubes in shape as possible. This

27

is achieved by computing the RBF grid’s dimensions nx ×ny ×nz using

s =
(

m
wxwywz

n

)1/3
,

nx = round
(wx

s

)
,

ny = round
(wy

s

)
,

nz = round
(wz

s

)
,

where n is the number of data points in the entire data set, (wx,wy,wz) is the size of the bounding

box enclosing all the data grids, and m is a user-defined parameter roughly specifying the number

of data points to place in each cell. We refer to m as the binning constant. These equations are

commonly used to create a grid for the accelerated ray tracing of complex scenes [72].

When evaluating the function at an arbitrary point x, we determine in which RBF grid cell the

point x resides to obtain the local RBF interpolant Hk(x). We collect the 26 neighboring local RBF

interpolants adjacent to this cell in the RBF grid. At the point x, these 27 local interpolants are

evaluated and blended together using the partition of unity functions described in Section 2.1.1 to

obtain a final function value and gradient. If a cell does not have an associated local interpolant, we

do not consider it for our calculation.

4.4 Isosurface Generation

To generate geometry to represent the isosurface, we first compute triangles inside each cell of

the original multiblock grids according to the Marching Cubes algorithm. Inside these triangles,

we compute a set of points at which we sample our volume for function value and gradient using

our approximation scheme. We generate a uniform lattice of samples inside the triangle using

barycentric coordinates and determine the number of samples to generate by specifying the number

of samples to compute in the u- and v-directions. We do not sample along the edge of a given

triangle to avoid redundant computation, since the triangle’s edge neighbor will duplicate the same

exact points. Each sample point, its function value, and associated gradient are used as input to a

Newton-Raphson root-finding procedure to project the point onto the isosurface of interest. Newton-

Raphson iteration finds approximate roots of a function by using function value and first derivative

28

(a) (b)

(c) (d)

Figure 4.5: Illustration of our isosurface generation method. (a) Marching Cubes triangles are gen-
erated inside each cell. (b) The point samples are generated in each triangle and then (c) projected
onto the isosurface. (d) The point set is rendered using a surface splatting algorithm.

information to move an initial guess closer to the actual solution. The Newton-Raphson procedure

converges to the isosurface quadratically when given a reasonably good initial guess, which the

triangles inside cells intersected by the isosurface provide. The result is a set of points and normals

which collectively define the isosurface. Figure 4.5 illustrates our isosurface generation scheme.

For rendering and geometry processing, we define the radius of each point sample to be proportional

to the area of the triangle in which it was sampled and the distance it traveled from the original point

sample taken. Let A denote the area of the triangle, n be the number of samples taken uniformly

in the u- and v-directions inside the triangle, l be the length of the diagonal of the cell in which

the triangle exists, and d be the Euclidean distance between the original sample point and its final

computed location. The number of points sampled inside a triangle is n(n+1)
2 . The radius r of a point

29

sample is computed to be

r = 2
(

1+
d
l

)√
2A

πn(n+1)
.

Thus we compute the size of each point to be large enough such that if no displacement of the points

occur, the original triangle is rendered without holes. However, when the point is displaced from the

original sample location, we scale the size of the point linearly with respect to the distance it travels

from that point. The premise is that as a point moves further from its original sample location, the

surface sampling becomes less dense, and thus the point must be made larger to compensate for

gaps evolving between it and the neighboring points.

4.5 Results

To test the effectiveness of this approach, we used a set of synthetic data sets created by sam-

pling available scalar data sets on multiple grids. The “bucky ball” data set was sampled using

semi-conforming grids. The “fuel injection” and “neghip” data sets were sampled using multiple

overlapping grids. Our test machine was a 2.8 GHz Pentium4 PC with 2 GB of memory. We fixed

the multiquadric parameter to 0.025. The binning constant was set to five. The RBF construction

computation is dominated by the linear system solver for computing the blending coefficients. The

time complexity of this computation is O(n3), where n is the number of data points used to compute

the local interpolant. Each local RBF used approximately 150-300 data points. Information about

the data sets as well as the RBF construction performance are provided in Table 4.1.

Figure 4.6 demonstrates how our method can be used on semi-conforming multiblock data sets, such

as those which result from octree subdivisions. Again, the cracks exhibited by a naive application

of Marching Cubes (seen in the left and middle images) are not realized in the isosurface extracted

using our approach (right-most image).

Figure 4.7 shows the neghip data set sampled by two overlapping grids. The rendering of the

isosurfaces obtained from a naive application of Marching Cubes are color-coded to match the color

of the grids. Cracks and self-intersections in the isosurface are observed, since the blue surface

30

Data Set # of Grids # of Data Points # of RBF Centers RBF Construction Time
bucky ball 2 21,114 4,096 1 min 42 s

fuel injection 5 2,688 496 5 s
neghip 2 16,000 3,060 50 s

Table 4.1: RBF construction statistics performed on a 2.8 GHz Pentium4 with 2 GB of memory.

intersects the pink one, and vice versa. This shows that the trilinear interpolant of one grid does

not agree with the other grid as to the location of the isosurface. The bottom images of Figure 4.7

provide a side-by-side comparison of Marching Cubes versus our method.

Figure 4.8 illustrates our approach applied to the fuel injection data set consisting of several over-

lapping grids. The isosurfaces are color-coded to match the grid in which the geometry was sam-

pled. Note that the Marching Cubes result (middle image) also contains several self-intersections

and cracks. Again, this is an indication of a discontinuous interpolation scheme combined with

an isosurface generation method that makes it difficult to extract a continuous surface. The same

isosurface using our approach (right-most image) offers improved representation quality by using a

continuous approximation scheme along with a flexible geometry generation method.

4.6 Discussion

One major advantage to sampling the isosurface using points is that the point samples are not ad-

versely affected by the overlap of nearby samples. For instance, triangles generated in one grid may

be extremely close to triangles generated in an overlapping grid. When we sample these triangles

for points and project them onto the isosurface, it is likely that many points will end up overlapping

one another significantly. While this usually causes problems when using other geometric primi-

tives, such as triangles, point geometry is less sensitive to this redundancy. Since all of these points

snap to the same surface, redundancy is not a problem. As long as there is consistency among the

point samples as to where the isosurface exists, no cracks or self-intersections will appear. This

consistency is provided by our continuous interpolation scheme. The right-most image of Figure

4.8 shows an example where significant point sample overlap occurs due to overlapping grids.

31

Figure 4.6: Isosurface visualization of a semi-conforming multiblock representation of the bucky
ball data set. Left: Marching Cubes results in cracks at the coarse-fine boundary. Right: Our method
applied to the same data set produces a continuous closed isosurface representation.

Another major advantage to sampling the isosurface using points is that we can adjust our sampling

in a flexible manner to meet application-specific requirements. The surface onto which we wish

to map points is implicitly known and can be sampled less densely, for instance, in areas of low

curvature and more densely in areas of high curvature. Similarly, it is possible to steer the generation

of point samples based on viewing parameters, as in the point-set-surface method by Alexa et al.

[1], where a moving least-squares surface is dynamically sampled to meet screen space resolution.

While this feature is not a major focus of our work, we feel that this added flexibility makes our

approach valuable for a variety of application domains.

32

Figure 4.7: Isosurface visualization of a multiblock representation of the neghip data set. Top-
left: Axis-aligned view showing two overlapping grids representing the data. Top-right: Marching
Cubes triangles color-coded by grid. Notice the self-intersections and cracks in the isosurface.
Bottom: Side-by-side comparison of Marching Cubes versus our approach.

Figure 4.8: A fuel injection data set represented by five overlapping grids. Left: A visualization
of the five grids. Middle: A naive application of Marching Cubes produces several cracks and
self-intersections in regions of overlap. Right: Our method generates a single continuous surface.
Overlapping points are not a problem, as they project to a globally defined isosurface.

33

Chapter 5

Isosurfaces from Scattered Data

Figure 5.1: Demonstration of our volumetric scattered data sampling framework applied to gen-
erating an isosurface from a silicium data set. Left: Visualization of the point distribution. The
axis-aligned bounding box of the data is shown in green. Middle: Axis-aligned view of an early
stage of isosurface generation using a “marching stencil,” shown in red. The binning grid is shown
in blue. Right: Later stage of contouring.

5.1 Introduction

We build upon the devised in Sections 3 and 4 to contour scattered data sets. In the method de-

scribed in Section 4, point geometry representing the isosurface is derived from an initial triangle

representation extracted from the original cells of the data set, even in the presence of cell overlap.

This process can be similarly performed for data defined by multiple tetrahedral meshes with the

same insensitivity to cell overlap. Given a field described by a set of sample points scattered arbi-

trarily in 3D space, the same process can be used provided that a set of conforming or overlapping

local triangulations can be defined over the points. Special care must be taken to ensure that the

union of these triangulations cover the domain of the field. In this section, we describe how these

34

Point-Based Isosurface

Stencil Creation Tetrahedrization

Local

Tetrahedrization

Stencil

Point Set

Domain Cover Problem

Scattered Data

Scattered Data Isosurface Generation

 Isosurface Generation

Figure 5.2: Overview of our algorithm. Given a scattered data set, our method constructs stencil
point sets. A tetrahedrization is computed over each stencil point set. The local tetrahedrizations
provide a domain cover. The portion highlighted in yellow (left) represents the portion that solves
the domain cover problem. Isosurface generation is accomplished using point-based techniques.

local triangulations are constructed.

The major contribution of this chapter is a new localized approach to visualize scattered data that

uses direct sampling. Specifically, we extract isosurface geometry by directly point-sampling the

scalar field. Our algorithm has several desirable features. First, the locality of our method reduces

the amount of memory necessary during processing and makes a parallel implementation possible.

Second, since no resampling step is employed in the extraction of isosurface geometry, rendering

artifacts are avoided. Finally, the sampling and interpolation procedures are decoupled, allowing

application-specific interpolations to be incorporated without modifying the sampling procedure.

This chapter introduces a novel way of approaching the visualization of scattered data and represents

a significant step to building effective visualization tools for scattered data sets. Figure 5.2 illustrates

our method for isosurface extraction from scattered data, highlighting our solution to the domain

cover problem.

35

5.2 Previous Work

Meshing algorithms for point clouds play an important role in computational science, parameteri-

zation, and surface reconstruction. In particular, the Delaunay tetrahedrization [12,20], and its dual,

the Voronoi tessellation, are standard tools often used in natural neighbor interpolation [74, 76] and

3D surface reconstruction [2]. However, global tessellations often become undesirable in practice

as data sets grow in size and complexity.

Our work is a visualization system in which various interpolation methods can be incorporated.

Rather than construct a global tessellation of the data points, we define a set of local tetrahedrizations

that are guaranteed to cover the domain. Inside each local tetrahedrization, point-based contouring

is applied to extract isosurface geometry. This work differs from previous work in that we make very

few assumptions about the density of the point distribution, and we construct direct visualizations

of the data without global tessellation or resampling. The contribution of this direct approach is a

relatively general method that produces faithful scientific visualizations.

5.3 Regularization

To facilitate the construction of local tetrahedral meshes, we first regularize the point distribution.

We add data points to the data set such that the resulting point distribution is quasi-uniform. We

create a regular grid around the data points and distribute the points among the cells of this grid.

Empty cells are filled with a single data point at the center of the cell whose function value is

determined by interpolating. (Interpolation is discussed in Section 5.5.) These additional points are

used for creating local tetrahedrizations and are not considered when evaluating the approximation.

We refer to the resulting grid as the binning grid.

The properties of a desirable binning grid balance two competing desires. First, the grid should be

coarse enough to minimize the number of evaluations of the scattered data interpolant. Since the

interpolant is evaluated at points added to empty cells of the binning grid, the number of interpolant

evaluations is equal to the number of empty cells in the binning grid. Second, the grid should be

36

fine enough to minimize computation time of the local tetrahedrizations.

The properties of the binning grid are determined by using an octree to balance these competing

constraints. The data points are rescaled to fit inside an axis-aligned unit cube, the root node of the

octree. This cube is refined adaptively until each leaf cell contains at most one data point of the data

set. The binning grid is a set of cells resulting from one full level of octree subdivision. We refer to

this level as the binning grid level lb, which corresponds to a 2lb × 2lb × 2lb grid. The binning grid

is computed in two steps. In the first step, lb is determined by traversing the octree in a depth-first

fashion. In the second step, the binning grid is obtained by trimming or augmenting the grid such

that a single layer of cells of the binning grid surrounds the axis-aligned bounding box of the data

points.

To compute lb, the octree is traversed in a depth-first fashion until a node is reached that contains at

least one empty child node. The level of this node is appended to a list. If a leaf cell is encountered,

its level is also added to the list. (A leaf node is a node containing only empty children.) The median

level of the resulting list of node levels is selected as lb. It is possible to choose the average level of

this list, however we have found that the resulting binning grid is often too fine.

5.4 Local Tetrahedral Mesh Generation

Points inside a given 3× 3× 3 stencil of binning grid cells are used to construct a local tetra-

hedrization. The stencils are centered in alternate cells to avoid excessive tetrahedrization overlap,

see Figure 5.3. We use Delaunay methods to tetrahedrize the stencil point set. We note that the

tetrahedrization provides starting point information for sampling the isosurface and not a globally

consistent interpolating function.

Constructing local tetrahedrizations in this manner solves the domain cover problem. Consider that

points are added to the outer layer of binning grid cells. The convex hull of these outer layer points

form an axis-aligned box that contains the domain of the data points. After regularization, each cell

of the binning grid contains at least one point. The union of the stencil tetrahedrizations cover the

37

O
v
e
rla
p
p
in
g
C
o
n
fo
rm
in
g

Figure 5.3: Illustration of boundary conditions in stencil triangulations. Top: Local triangulations
are constructed from points inside 3×3 stencil of cells, shown in blue and red. Middle: An example
of two neighboring stencil triangulations that overlap. Three triangles from the blue triangulation
overlap three triangles of the red triangulation; the overlap is shaded in light orange. Bottom: An
example of two neighboring stencil triangulations conforming at their boundaries, shaded in light
orange. The fact that local triangulations either overlap or conform guarantee domain cover.

box formed by the outer layer points, since these tetrahedrizations span the space covered by the

grid cells. This remains true for non-stencil-center cells since the tetrahedrizations either conform

or overlap at their boundaries. Thus, since the union of the stencil triangulations cover the outer

layer grid, and the outer layer grid contains the domain of the scattered data, the domain of the

scattered data is appropriately covered.

Figure 5.3 shows 2D examples of conforming and overlapping local triangulations. Our algorithm

naturally produces meshes that conform. However, it is not necessary for the local meshes to con-

form to achieve domain cover. The local tetrahedrizations do not need to be computed a priori, but

rather are generated on-the-fly and later discarded when the stencil is no longer needed. This greatly

reduces the memory requirement for storing tetrahedrizations and enables a distributed implemen-

tation.

38

(a)

255

0

(b)

Figure 5.4: (a) A visualization of the irregular data point distribution for the silicium data set. (b)
Point-based isosurface extracted from the scattered data.

5.5 Interpolation

For interpolation, we reuse the octree data structure computed for regularization. Our interpolation

method uses the algorithmic structure of the multi-level partition-of-unity (MPU) implicits method

of Ohtake et al. [53]. This method constructs a global approximation by blending local quadric

approximations placed with the aid of an octree. Instead of using piecewise quadric approximations

at octree nodes, we use local radial basis function (RBF) interpolants. During octree construction,

we compute at each node information about the number of points contained in each cell as well as

the radius of a sphere of influence centered at the centroid of the cell. The radius is computed to be

αd, where d denotes the length of the octree node’s diagonal. (We use α = 0.75, which was shown

to be an effective choice of α in the MPU implicits method.)

We use partition-of-unity weight functions to construct a global approximation of the scalar field

by blending together local RBF interpolants. We use the multiquadric RBF discussed in Section

2.1.1. The local RBF interpolants are placed adaptively using our octree by associating them with

the centroids of selected octree nodes, called interpolation nodes. We partition the data points into

clusters manageable by the matrix solver [19]. At a given node, we collect the points inside the

node’s sphere of influence for the local interpolant. If the number of collected points is above a

user-defined threshold N, we traverse the octree deeper until the matrix problem size is less than or

39

equal to N. It is possible for the sphere of a leaf node in the octree to contain “too many” points,

in which case, we augment the tree with further subdivisions until the threshold is satisfied. (In our

implementation, we chose N to be 100 because the linear system can be solved relatively quickly

while still produce high-quality results.)

Evaluation of the approximation is performed using a recursive routine in O(log m) time, where m

is the number of interpolation nodes in the octree [53]. The contribution of each local interpolation

is calculated, the sum of the weights is accumulated, and the final value is normalized by dividing

the sum of the contributions by the sum of the weights. It is important to note that only the original

sample points are used for interpolation.

5.6 Isosurface Generation

To construct isosurfaces from scattered data sets, we adapt the point-based, meshless isosurface

generation method [19] outlined in Section 4. Our adaptation uses marching tetrahedra to obtain

an initial triangle approximation for the isosurface of interest. These triangles are decomposed

into points and projected to the actual isosurface as defined by the interpolation scheme. Since the

triangles are derived from data points using the original data set, we believe the triangles serve as a

reasonable initial approximation to the final surface.

The resulting surfaces are continuous point-based representations. The initial set of triangles result-

ing from the local tetrahedrization may be discontinuous. Once these triangles are decomposed into

points and projected to the implicit surface defined by the interpolating function and the isovalue,

the discontinuities disappear, and the surface defined by the interpolating function can be seen.

Isosurfaces are accurately approximated by computing points via Newton-Raphson iteration. Con-

vergence of the iteration scheme is achieved when the displacement of the point between iterations

is less than a user-defined threshold. (In our results, this threshold was set to 0.01.) In this way,

isosurfaces accurate to within a user-defined threshold are produced.

The isosurface generation process is performed in a streaming fashion, such that only the current

40

(a)

255

0

(b)

Figure 5.5: (a) A visualization of the irregular data point distribution for the buckyball data set. (b)
Point-based isosurface extracted from the scattered data.

stencil tetrahedrization needs to be stored in main memory at any given time. A marching stencil

generates the tetrahedrization, the triangles approximating the isosurface, and the resulting point-

based isosurface on-the-fly.

5.7 Results

We implemented a parallel version of the isosurface contouring method, where the machines con-

currently generate isosurface fragments while marching through separate stencils. We implemented

a simple master-slave architecture, where a single master monitors the progress of slaves generating

the isosurface geometry. We used a cluster of eleven desktop PCs communicating through MPI over

a 100 Mb/s line. We employed a hybrid computing network consisting of computers with processors

ranging from 2.80 GHz to 3.20 GHz and memory ranging from 1 GB to 4 GB. Given this configu-

ration, we performed isosurface generation for a variety of data sets, measuring preprocessing time

(octree construction, local RBF construction, and regularization) to assess the effectiveness of the

approach. Timing results for the preprocessing are given in Table 5.1.

To test the method, we utilized four data sets from a variety of sources. The buckyball data set was

obtained by sampling a 1283 buckyball data set for 20,000 points using a uniform random distribu-

tion. For many of the data sets, we used levels of detail obtained from a meshless multiresolution

41

(a)

255

0

(b)

Figure 5.6: (a) A visualization of the irregular data point distribution for the HighResHead data
set. (b) Point-based isosurface extracted from the scattered data. We note that the bumpiness in the
isosurface is part of the data and not an artifact of our reconstruction.

hierarchy [17]. Data points in the hierarchy are determined using an iterative refinement process

based on principal component analysis and binary space partitioning. While the original data sets

are regular grid structures, the point distributions resulting from the meshless hierarchy are irregu-

larly spaced. We used the meshless multiresolution hierarchy to generate the silicium data set, the

“LowResHead” data set, and the “HighResHead” data set. Table 5.1 provides the sizes of all data

sets. Visualizations of the data distributions as well as of the point-based isosurfaces extracted in

the timing experiments are shown in Figures 5.4, 5.5, and 5.6. We note that the “bumpiness” in the

isosurfaces of Figure 5.6 is part of the data and not an artifact of our surface reconstruction.

In the case of HighResHead, regularization increases the number of data points by over a factor of

five. This observation is indicative of the high density regions of data points focused around fine

features in the data (see Figure 5.6), which influence the binning grid level in favor of a higher

resolution binning grid. One remedy to avoid storing a large number of additional samples is the

generation of samples in the empty cells on-the-fly. Nevertheless, regularization allows our system

to easily generate local tetrahedrizations that are guaranteed to cover the domain. This is an impor-

tant advantage of our algorithm, since it opens up the possibility to exploit the computational power

of several machines by processing local tetrahedrizations in parallel.

42

Data set
Number of
data points

Number of
local RBFs

Number of
empty cells

silicium 17,532 4,180 2,519
buckyball 20,000 4,096 31

LowResHead 203,359 66,961 199,206
HighResHead 345,452 92,022 1,758,408

Data set
Octree

construction
Local RBF

construction Regularization
Preprocess

Total
Isosurface
generation

silicium 0.1 s 3.2 s 0.1 s 3.4 s 176.3 s
buckyball 0.2 s 3.1 s 0.1 s 3.4 s 69.2 s

LowResHead 1.4 s 26.9 s 4.9 s 33.2 s 364.2 s
HighResHead 1.9 s 48.8 s 45.5 s 96.2 s 375.1 s

Table 5.1: Summary of data sets and results of the timing experiments.

5.8 Discussion

Octree construction time is O(n log n), where n is the number of points in the data set. The time

complexity of the local RBF construction depends heavily on the distribution of the data points.

Regularization is proportional to the number of cells in the binning grid that are empty. The stencil

containing the largest number of data points determines an upper bound for the construction of

the stencil tetrahedrizations. While pathological point distributions can be artificially generated

causing the tetrahedrization of a possibly large number of points, our method works well for data

sets commonly encountered in practice.

Our system’s performance is sensitive to the computational requirements of the interpolation method,

which in the case of scattered data is slow. However, the quality of the images is better. While the

speed advantage of resampling techniques and trilinear interpolation may justify the potential lack

of accuracy in the visualized result in certain applications, we attempt to retain the information

and the related context of the original data to the greatest degree possible and not introduce any

biases into the visualization. Our technique scales to large parallel computational systems and can

be easily modified to utilize new interpolation methods as they become available.

43

Chapter 6

Meshless Volumetric Hierarchies

Figure 6.1: Scatter plots of cluster center points visualizing three levels of detail of a head data set.

6.1 Introduction

Multiresolution techniques are commonly used in computer graphics to manipulate objects at dif-

ferent levels of detail. It is a topic also intimately related to object simplification and compression.

While most multiresolution techniques developed thus far for surfaces and volumes require the use

of connectivity information, relatively few methods exist that can be directly applied to meshless

data sets.

We propose a new approach for the construction of a hierarchical representation of any volumetric

scalar data set. In a preprocessing step, we iteratively refine an initially coarse representation using

44

clustering techniques to generate a hierarchy. At runtime, we extract levels of detail from this

hierarchy to support interactive exploration.

We start with a coarse data representation, consisting of a single cluster containing all the sample

points of the data set. This cluster is partitioned into two sub-clusters, which are inserted into a

priority queue sorted by error. This procedure is applied iteratively; in each step, the cluster with the

highest error is partitioned, and its sub-clusters are placed into the queue. Refinement terminates

when a maximum number of iterations have been completed or when the maximum error in the

priority queue is below some user-defined threshold. A hierarchy of clusters is built using the natural

parent-child relationship created by this splitting procedure. We refer to the resulting hierarchy as a

cluster binary tree (CBT). Cluster partitioning is discussed in Section 6.3.

The level-of-detail extraction phase consists of a depth-first traversal over the CBT. We discuss

two traversal methods: level-based and error-based. The level-based approach collects data in the

hierarchy in a depth-first fashion, traversing the tree down to a user-defined maximum depth. The

error-based approach gathers data in the cluster hierarchy based on an error threshold. The set of

nodes collected by CBT traversal constitutes a level-of-detail representation of the original data. As

a result, multiple resolutions are represented by one compact binary tree. Level-of-detail extraction

is discussed in Section 6.4.

Our goal is to build a multiresolution hierarchy without specific knowledge of the source of the

volumetric scalar data. Although this information can often be employed to design more effective

algorithms, it reduces the applicability of the method. The strength of our approach is that it can be

applied to any volumetric scalar data set and avoids the costly generation of a grid.

6.2 Previous Work

Although many simplification and multiresolution efforts have focused primarily on surface meshes,

many techniques have been developed for volumetric data. Typically, multiresolution methods or-

ganize volumetric data based on regular or irregular grid structures. Regular grid structures in-

45

clude octrees, which have been used to provide adaptive levels of detail, see [27, 60, 70]. Linsen et

al. [47,48] used wavelets and subdivision connectivity to represent and visualize regular grid data in

a hierarchical fashion. Adaptive mesh refinement (AMR) techniques use a set of nested regular grids

of varying resolution to represent volumes [52, 79]. With respect to irregular grid methods, tetra-

hedral meshes have played an important role in constructing multiresolution hierarchies. Cignoni

et al. [10, 13] described a system based on tetrahedral meshes to represent and visualize volumetric

scalar data. Trotts et al. [77] and Staadt and Gross [75] used edge-collapse techniques to extend

Hoppe’s work [36] for building progressive tetrahedrizations. Grosso and Greiner [30] built hierar-

chical adaptive meshes using tetrahedra and octahedra.

Unfortunately, most of these methods cannot be applied directly to scattered data, i.e., data with

no connectivity information, without first meshing the scattered data points or resampling the data

to a regular grid. Triangulations can be expensive to compute and store, especially considering the

increasing size of modern scientific data. Weber et al. [78] proposed creating local triangulations

at runtime in a given region of interest. While this approach provides a good solution for run-

time visualization of scattered data, it does not lend itself to the construction of a multiresolution

representation of volume data. Further, triangulation algorithms can be difficult to implement in

practice [71], as they require complex mesh data structures to be maintained [56].

Resampling to a regular grid can produce many unnecessary redundancies, although adaptive sam-

pling via an octree or an AMR representation can help. Regular grids typically sample in an axis-

aligned fashion, which, though simple to implement and store, may not always produce a desirable

partitioning of the volume. Grid data and multiresolution methods for grid data offer several advan-

tages when exploring large data spaces, but these methods are not always easily generalized for all

types of volume data. For example, methods for tetrahedral meshes can be applied to hexahedral

meshes by decomposing hexahedra into tetrahedra, but the reverse is not true. The most general

type of volumetric data is scattered data. Thus, any multiresolution method for scattered data could

be applied to any gridded data by simply ignoring the mesh.

To create a multiresolution hierarchy for scattered scalar data, it is desirable to use methods that use

“simple” connectivity, or no connectivity at all. Similar methods have been developed in surface

46

simplification, surface reconstruction, and vector field hierarchy creation. These methods partition

data points into similar sets, or clusters. Inspired by vector quantization methods, Brodsky and

Watson [6] used principal component analysis (PCA) to simplify models by refining an initially

coarse representation. Their work prompted Shaffer and Garland [69] to apply PCA-based vertex

clustering and the dual quadric error metric to simplify models adaptively in an out-of-core fashion.

Pauly et al. [56] developed several extensions of multiresolution methods for point-sampled sur-

faces. Heckel et al. [34] used PCA to determine near-planar polygonal tiles for the reconstruction

of surfaces from point cloud data. Vector field hierarchies were constructed using PCA in a similar

way by clustering vectors that are locally similar [35].

In our approach, we refine clusters of scattered data points using PCA to define partitioning planes

intelligently. While the use of PCA is not new in surface simplification [6, 56, 69], we extend PCA

for use in volumetric scalar field simplification. We maintain a point hierarchy, similar in spirit to

many multiresolution representations of surfaces [56,66] with the exception that our points represent

samples of a scalar field and not samples on a surface. We use RBFs defined using levels of detail

from this point hierarchy for field reconstruction and value approximation.

6.3 Clusters

We define a cluster C to be a subset of points in the data set. The center of this cluster, pc, is

pc =
1
|C| ∑

p j∈C
p j.

We associate with each pc of each cluster a function value fc approximating the entire cluster.

This function value is computed by evaluating a locally defined multiquadric H(x) as defined in

Section 2.1.1 at pc using only the N nearest neighbors to pc to construct the coefficients of the

approximation. We define N = min(|C|,k), where k is some threshold.

Given a cluster C, we define its error σc as

σc = max
p j∈C

| f j − fc |

47

where f j is the scalar value associated with point p j, and fc is the value approximated at cluster

center pc. In other words, the error σc is the maximum deviation in scalar value between the ap-

proximated value and the values of all points in C. This error measure is simple to compute and

suffices to identify clusters to be refined.

In each refinement step, the cluster with the highest error is obtained from the queue. We partition

it into two smaller clusters by defining a splitting plane that divides the cluster into two distinct

subsets. Center points, value approximations at center points, and errors are computed for the two

resulting sub-clusters. The sub-clusters are then inserted into the queue. A binary tree is maintained

during refinement by setting the sub-clusters to be children of the cluster just split. In this hierarchy,

each cluster is interpreted as a data point of a given resolution in the hierarchy whose location is the

cluster center pc.

One possible refinement strategy uses an axis-aligned scheme. In this method, the cluster center and

one coordinate axis determine the splitting plane. This kd-tree style splitting scheme [68] is efficient

and allows us to determine the splitting plane simply, but it may not produce a good decomposition

of the data set. Figure 6.2 demonstrates this effect. Furthermore, we wish to define a splitting

plane that reduces the error in the sub-clusters the most. We use the cluster center and a normal

vector obtained from principal component analysis (PCA) on all four components of the scalar field

(xi,yi,zi, fi) to define a more adaptive splitting plane. For a detailed explanation of PCA, we refer

the reader to [6, 34, 37, 69].

We first discuss how 3D PCA can be used for bivariate scalar fields. For bivariate scalar field

data (xi,yi, fi), we can perform PCA in 3D to obtain an orienting normal for a splitting line. PCA

performs an eigen-decomposition of the covariance matrix of a set of samples producing, in the 3D

case, eigenvalues

λ1 ≥ λ2 ≥ λ3

and corresponding eigenvectors

~e1,~e2, and ~e3,

which define a local orthogonal coordinate system related to an ellipsoid induced by the data points.

We use the vector corresponding to the dominant axis of this ellipsoid, i.e., ~e1, as the splitting

48

Y

X

Y

X

(a) (b)

Figure 6.2: Comparison of splitting schemes. Black dots represent points with scalar value one, and
white dots represent points with scalar value zero. (a) Non-optimal splitting using an axis-aligned
scheme, (b) near-optimal splitting.

plane’s normal. However, to partition the 2D points in the domain, we require a 2D normal vector.

We project the 3D eigenvector to xy-space, see Figure 6.3. In most cases, we obtain a suitable

normal by simply dropping the last component of the eigenvector.

We must consider the case when ~e1 is a multiple of the vector 〈0,0,1〉. Such a vector projected to

xy-space produces the null vector. In this case, we choose the second dominant eigenvector~e2 which

is guaranteed to be non-null when projected to xy-space, since it is orthogonal to ~e1. In practice,

this occurs infrequently. (This never occurred in the results presented in Section 6.6.) Figure 6.4

illustrates the progression of the cluster splitting procedure.

This technique generalizes to trivariate scalar field data (xi,yi,zi, fi). PCA returns eigenvalues λ1 ≥

λ2 ≥ λ3 ≥ λ4 with corresponding eigenvectors~e1,~e2,~e3, and~e4. Again, we use the projection of~e1

to xyz-space to define a splitting plane normal. When projection of ~e1 maps to the null vector in

xyz-space, we choose~e2 as our orienting normal.

Defining the splitting plane in this way divides a cluster across the axis of its greatest variation,

thereby decreasing the cluster’s error. Geometrically speaking, this partitioning splits one ellipsoid

into two “rounder” child ellipsoids with reduced eccentricity. This shape can have an important pos-

itive side-effect on subsequent partitioning. When clusters become very thin in the split direction, it

is possible that splitting a cluster produces a sub-cluster with no data points due to numerical error.

Splitting across the dominant axis as defined by PCA avoids the creation of thin clusters by produc-

ing sub-clusters that are as “round” as possible. This numerical issue cannot be avoided completely;

when it occurs, the “problem cluster” is not re-inserted into the error queue.

49

F(x,y)

Y

X

Figure 6.3: Example of 3D PCA normal projected to xy-space. The white dots are data points in
the xy-plane. The height of each black dot indicates the scalar value at the data point. The ellipsoid
represents the local coordinate system computed by 3D PCA. The dominant eigenvector~e1 is shown
with its projection onto the xy-plane.

Cluster size can also have an effect on splitting. Eventually, clusters contain only a few data points.

A minimum cluster size can be defined to set a “pseudo-compression ratio” for the finest resolution

in the data hierarchy. Defining a minimum cluster size can also reduce the occurrences of the zero-

size cluster problem.

6.4 Level-of-Detail Extraction

Extraction of levels of detail from the CBT is performed by traversing the tree in a depth-first

fashion, using either a level-based traversal that obtains the clusters in the hierarchy at a given

level of the tree, or an error-based traversal that returns clusters in the hierarchy that have an error

below a threshold. If a leaf node is encountered in the CBT during extraction, we use the cluster at

the leaf and continue traversal. When traversing the CBT in a level-based manner, levels of detail

are specified by the maximum depth to traverse the binary tree. When traversing the CBT in an

error-based manner, levels of detail are specified by a maximum error that the level-of-detail should

exhibit. (The hierarchy can only guarantee clusters with an error less than or equal to the maximum

error at the termination of the preprocessing.) With the error metric we have defined, a low error

threshold returns a high fidelity representation. Conversely, a higher error threshold returns a less

faithful but memory efficient representation.

50

(a) (b)

(c) (d)

Figure 6.4: Example of clustering of 2D scattered data. Black dots indicate points with scalar value
one, and white dots indicate points with scalar value zero. Squares represent cluster centers, which
become new data points in the generated hierarchy. (a) CBT generation begins with one initial
cluster; (b) cluster is split into two sub-clusters; only the right cluster is chosen for splitting; (c)
right cluster is split into two sub-clusters; (d) final split; all clusters have zero error.

Error-based traversal offers a more compact representation, whereas the level-based approach pro-

vides better spatial distribution by covering the space spanned by the hierarchy with more data

points. This phenomenon can be seen in the examples shown in Figure 6.5 and is further discussed

in Section 6.6. In Figure 6.5, two levels of detail are shown for each traversal method. Between

two resolutions of the hierarchy traversed in a level-based way, additional points are added in a

spatially uniform manner. Between two resolutions of an error-based hierarchy, the distribution of

the additional points depends more strongly on the nature of the field. Figure 6.5 demonstrates this

effect for a silicium data set. In the error-based traversal examples (Figure 6.5, right column), only

a few clusters are extracted to represent the volume outside the silicium structure, whereas several

more clusters are used in that same region using a level-based approach (Figure 6.5, left column).

6.5 Multiresolution Representation

The clusters extracted from the CBT define a level-of-detail representation of the volume by con-

sidering the pc and fc for each cluster as locations and values of a scattered scalar field. This set

51

Level-based Traversal

128 points

1024 points

Reference View
of Silicium Data Set

Error-based Traversal

133 points

1026 points

Figure 6.5: Demonstration of the difference between level- and error-based CBT traversal. Shown
are 3D cluster center point scatter plots visualizing levels of detail extracted from a CBT. The vol-
ume rendering (center) is provided for reference. Level-based CBT traversals (left column) provide
better spatial data point distribution while error-based CBT traversals (right column) provide more
detail using roughly the same number of data points.

of data points, in conjunction with the field reconstruction basis functions allows us to evaluate the

function at any arbitrary location, and thus construct visualizations.

6.6 Results

We generated CBT hierarchies for three data sets. We extracted low- and high-resolution levels of

detail from each CBT and volume rendered the fields to inspect the quality of the representation.

Table 6.1 summarizes the preprocessing results to generate the CBTs. For value approximation at

the cluster centers and for sampling the data, we used 25 nearest neighbors and fixed the multi-

quadric parameter to 0.025. The minimum splittable cluster size was set to two. All function values

are between zero and 255.

Figure 6.6 shows volume rendered visualizations of different levels of detail represented by the

CBTs. The first column shows a volume rendering of the original data. Columns two and three

provide volume visualizations of high and low resolutions, respectively. Information concerning

52

Original High Low

(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 6.6: Quality comparisons for various resolutions of three data sets.

53

the parameters used to extract these levels of detail and the number of data points used for rendering

is provided in Table 6.2. To illustrate the quality of the various resolutions, “zooms” are given for

the argon bubble data set in Figures 6.6 (l), (m), and (n), and difference images are provided for the

silicium data set in Figures 6.6 (d) and (e). The difference images were obtained by differencing

images in Figure 6.6 (b) and (c) against image (a) of the original data set.

This method lends itself to data and computation parallelism. Once a cluster is split, its sub-clusters

can be further split on separate machines. Since the hierarchy is based on a binary tree, merging the

final results is low in cost. For each data set, preprocessing was performed in parallel on a hybrid PC

cluster consisting of three machines with Pentium4 2.8 GHz processors with 2 GB of main memory,

and one machine with a Pentium4 2.2 GHz processor with 1 GB of main memory.

As mentioned in Section 6.3, eventually clusters either converge to the granularity of the data set

or suitable partitioning is not possible due to lack of precision. “Skipped splits” can result in the

refinement, and their numbers are listed in Table 6.1.

Naturally, lower resolutions are less faithful to the original data set. This fact is seen in the results

for the head data set, shown in Figures 6.6 (f), (g), and (h). A low-resolution representation produces

a low-quality volume rendered result as seen in Figure 6.6 (h), where the entire back plate from the

scan is not represented in detail. Although less than one percent of the number of data points (17,528

data points) was used to construct the image, salient features of the head, such as the eye sockets

and spikes around the teeth, are still discernible. Deficiencies of low resolutions are eliminated in

higher resolutions, as seen in Figure 6.6 (g).

The images shown in Figure 6.6 of the silicium data set demonstrate some of the differences be-

tween error-based and level-based hierarchies. The argon bubble and head results were generated

using an error-based approach, whereas the silicium data set results were generated using level-

based extraction. As can be seen in the difference images, Figures 6.6 (d) and (e), successively

higher resolutions of the data set improve the overall quality of the field representation but not any

particular region. By contrast, the images of the head demonstrate that successively higher reso-

lutions of the error-based hierarchy adaptively improve specific regions. The back plate and nose

appear “blobby” in Figure 6.6 (h) and not in (g), while the regions around the teeth and eye socket

54

Data set Number of splits Skipped splits CBT depth Processing time
Silicium 64,084 2 19 50 s 735 us

Head 300,663 19 23 44 min 32 s
Argon bubble 224,009 6 25 8 min 11 s

Table 6.1: CBT hierarchy generation statistics.

Data set Figure Extraction Threshold Size (points) % Size
Silicium (b) level 15 20,982 18.52 %

(c) level 16 39,324 34.71 %
(original) (a) n/a n/a 113,288 100 %

Head (h) error 60.00 17,528 0.84 %
(g) error 4.50 300,648 14.34 %

(original) (f) n/a n/a 2,097,162 100 %
Argon bubble (k), (n) error 50.00 11,397 0.22 %

(j), (m) error 1.00 224,003 4.27 %
(original) (i), (l) n/a n/a 5,242,880 100 %

Table 6.2: Statistics for visualizations shown in Figure 6.6. Column two lists the location(s) of
images in Figure 6.6 to which a row’s information applies.

remain fairly consistent across resolutions.

Levels of detail of the argon bubble data set exhibit high-quality using few data points. In the low

and high resolutions of the data set, shown in Figures 6.6 (i), (j), and (k), less than five percent of

the number of the original data points was used to reconstruct the field. Zooms shown in Figures

6.6 (l), (m), and (n) illustrate the quality of the representation.

55

Chapter 7

Future Work

While much has been accomplished through the techniques presented in Chapters 3–6, many open

problems exist, and there are several areas that should be explored.

• First, point-based isosurface sampling methods need to be extended to improve convergence

to the isosurface.

• Next, refinements to the sampling framework are necessary to cope with the possibility of

pathological point distributions.

• Appropriate tools to analyze the “field complexity” of a given meshless data set are necessary

in order to ensure that a faithful visual representation of the data is constructed.

• Finally, volume visualization algorithms that build upon the existing framework are necessary

to realize a complete suite of meshless data exploration tools.

We address each of these issues briefly in the following sections.

56

7.1 Improvements to Isosurface Sampling

The iso-splatting method makes use of an approximate projection scheme that relies on a “good”

initial guess for isosurface geometry. This sensitivity to the initial guess causes the single Newton-

Raphson step to produce an approximate projection to the isosurface that can possibly be far from

the isosurface. The situation is aggravated by the existence of vanishing gradients, gradients that

degenerate to the null vector in certain areas of the field. In the application of iso-splatting to multi-

block data sets and scattered data sets, additional iterations were employed to address this issue.

We strongly believe that these problems can be ameliorated by examining the gradient behavior

and using spatial subdivision strategies to determine the maximum displacement realizable by a

sample point. Such a sampling strategy will improve the convergence of this method and possibly

other point-projection methods [1, 3]. We feel that improved sampling strategies are necessary and

important, since the extraction of isosurfaces continues to be an important area of research.

7.2 Arbitrary Point Distributions

The scattered data isosurfacing technique [18] presented in Chapter 5 consists of methods to define

effective local tetrahedrizations. It works well in many cases, however, pathological point distribu-

tions can occur causing the system to perform a large amount of work in the regularization process.

Since the target application is sensor network data, where point distributions will not always be

controllable, it is important to develop strategies to cope with even pathological cases. Ideally, each

local tetrahedrization produced by the system would consist of tetrahedra forming a subset of a

global Delaunay triangulation over the original data points. Producing such local tetrahedrizations

such that the entire domain of the field is covered is a largely unsolved problem. Alternatively,

other fast local meshing strategies that can guarantee domain cover while simultaneously guaran-

teeing a specific sampling accuracy are desired. In general, methods for processing volumes defined

by arbitrary point distributions is an immensely challenging problem that will occupy the research

community for years to come.

57

7.3 Field Complexity Analysis Tools

Resampling meshless data sets to a regular grid and subsequently performing visualization on the

resampled grid is an unacceptable solution. It is possible to overlook important features that cannot

be reconstructed accurately if the grid is not defined properly. Furthermore, error can be introduced

by attempting to visualize a double resampling of the data. However, if a resampling grid could be

defined such that features could be preserved faithfully and error tolerably controlled, this approach

would become extremely attractive. Visualization algorithms designed for grid data are highly opti-

mized by taking advantage of the implicit connectivity of the grid, and several options for interactive

visualization of this type of data exist. Ideally, the “complexity” of the field can be characterized

by analyzing the field in frequency domain as Pauly and Gross [55] did in their spectral analysis of

surfaces defined as a point cloud.

7.4 Additional Volume Visualization Tools

While most of the work presented concerns isosurface generation, many other techniques for vol-

ume visualization are possible. Such visualization methods could leverage the tetrahedrization

component of the scattered data isosurfacing algorithm. For instance, volume slicing could be

accomplished by collecting stencils intersected by a slice of interest and using the local tetrahedra

associated with each stencil to adaptively sample in the plane of the slice. Volume rendering could

be achieved by computing several such slices, where each slice is view-aligned, and blending them

together. Another possible approach to volume rendering is the generation of volume splats inside

the cells of each local triangulation, although special care must be taken in dealing with regions of

overlap. We firmly believe that the sampling framework will support the development of these and

other visualization algorithms for volumetric scattered data exploration.

58

Chapter 8

Conclusions

In summary, the main contributions of this dissertation are (1) a flexible point-based isosurface

generation algorithm; (2) a general solution to multiblock isosurface generation; (3) an accurate

isosurface generation algorithm for meshless data; and (4) a meshless multiresolution method.

Exploring meshless data sets is a problem of growing importance that has its roots in scattered data

visualization. The rapid development of sophisticated sensor networks and other meshless data col-

lection technologies is increasing the need for visualization algorithms and processing paradigms

that operate directly on the data without relying heavily on an underlying mesh representation. The

work presented thus far takes important first steps toward accomplishing this goal. There are several

contributions of the work already accomplished, namely the isosurface and multiresolution tech-

niques developed in this dissertation specifically for meshless data. Because many non-meshless

data representations can be considered meshless data sets augmented with connectivity informa-

tion, the methods described are broadly applicable to a wide variety of data. In some cases, meshless

methods solve existing problems in processing non-meshless data, as was seen in the application of

meshless isosurface generation to multiblock data. Most importantly, through the use of powerful

visualization tools, the algorithms described will foster the continued development of meshless data

collection and simulation technology, both in sensor networks and in other areas of science and

engineering.

59

Bibliography

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Point Set Surfaces.
In IEEE Visualization ’01 (VIS ’01), pages 21–28, Washington - Brussels - Tokyo, October
2001. IEEE.

[2] N. Amenta, M. Bern, and M. Kamvysselis. A New Voronoi-Based Surface Reconstruction
Algorithm. In M. Cohen, editor, Proceedings of SIGGRAPH 98, Annual Conference Series,
Addison Wesley, pages 415–422. Addison Wesley, 1998.

[3] N. Amenta and Y.J. Kil. Defining point set surfaces. In ACM, volume 23 of ACM Transactions
on Graphics (TOG), pages 264–270, 1515 Broadway, New York, NY 10036, 8 2004. ACM,
ACM Press.

[4] I. Amidror. Scattered Data Interpolation Method for Electronic Imaging Systems: a Survey.
Journal of Electronic Imaging, 11(2):157–176, 4 2002.

[5] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of point sampled
geometry. In S. Gibson and P. Debevec, editors, Proceedings of the 13th Eurographics Work-
shop on Rendering (RENDERING TECHNIQUES-02), pages 53–64, Aire-la-Ville, Switzer-
land, June 26–28 2002. Eurographics Association.

[6] D. Brodsky and B. Watson. Model simplification through refinement. In Proceedings of
the Graphics Interface 2000, pages 221–228, Toronto, Ontario, May 15–17 2000. Canadian
Information Processing Society.

[7] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and
T. R. Evans. Reconstruction and Representation of 3D Objects with Radial Basis Functions.
In Proceedings ACM SIGGRAPH 2001, pages 67–76, Los Angeles, CA, August 2001. ACM
SIGGRAPH.

[8] Y. J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In R. Yagel and H. Hagen,
editors, IEEE Visualization ’97, pages 293–300. IEEE, 1997.

[9] Y. J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core isosurface extraction. In
D. Ebert, H. Hagen, and H. Rushmeier, editors, IEEE Visualization ’98, pages 167–174. IEEE,
1998.

[10] P. Cignoni, L. De Floriani, C. Montoni, E. Puppo, and R. Scopigno. Multiresolution mod-
eling and visualization of volume data based on simplicial complexes. In A. Kaufman and

60

W. Krueger, editors, 1994 Symposium on Volume Visualization, pages 19–26. ACM SIG-
GRAPH, October 1994.

[11] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding up isosurface ex-
traction using interval trees. IEEE Transactions on Visualization and Computer Graphics,
3(2):158–170, April 1997.

[12] P. Cignoni, C. Montani, and R. Scopigno. DeWall: A Fast Divide and Conquer Delaunay
Triangulation Algorithm in Ed . Computer-Aided Design, 30(5):333–341, 1998.

[13] P. Cignoni, E. Puppo, and R. Scopigno. Multiresolution representation and visualization of
volume data. IEEE Transactions on Visualization and Computer Graphics, 3(4):352–369,
October 1997.

[14] Center for Information Technology Research in the Interest of Society (CITRIS). URL:
http://www.citris.berkeley.edu/.

[15] H. E. Cline, W. E. Lorenson, S. Ludke, C. R. Crawford, and B. C. Teeter. Two algorithms
for the three-dimensional reconstruction of tomograms. In Medical Physics, volume 15, pages
320–327, June 1988.

[16] C. S. Co, B. Hamann, and K. I. Joy. Iso-splatting: A Point-based Alternative to Isosurface
Visualization. In J. Rokne, W. Wang, and R. Klein, editors, Proceedings of the Eleventh
Pacific Conference on Computer Graphics and Applications - Pacific Graphics 2003, pages
325–334, October 8–10 2003.

[17] C. S. Co, B. Heckel, H. Hagen, B. Hamann, and K. I. Joy. Hierarchical Clustering for Un-
structured Volumetric Scalar Fields. In G. Turk, J. J. van Wijk, and R. Moorhead, editors,
Proceedings of IEEE Visualization 2003, pages 325–332. IEEE, October 19–24 2003.

[18] C. S. Co and K. I. Joy. Isosurface Generation for Large-Scale Scattered Data Visualization.
In G. Greiner, J. Hornegger, H. Niemann, and M. Stamminger, editors, Proceedings of Vi-
sion, Modeling, and Visualization 2005, pages 233–240. Akademische Verlagsgesellschaft
Aka GmbH, November 16–18 2005.

[19] C. S. Co, S. D. Porumbescu, and K. I. Joy. Meshless Isosurface Generation from Multiblock
Data. In O. Deussen, C. D. Hansen, D. A. Keim, and D. Saupe, editors, Proceedings of VisSym
2004. Eurographics, May 19–21 2004.

[20] B. Delaunay. Sur la sphère vide. Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie Matem-
aticheskii i Estestvennyka Nauk, 7:793–800, 1934.

[21] S. Fleishman, M. Alexa, D. Cohen-Or, and C. T. Silva. Progressive point set surfaces. ACM
Transactions on Computer Graphics, 2003. In press.

[22] T. Foley and H. Hagen. Advances in Scattered Data Interpolation. Surveys on Mathematics
for Industry, 4:71–84, 1994.

[23] R. Franke. Scattered Data Interpolation: Tests of Some Methods. Mathematics of Computa-
tion, 38(157):181–200, January 1982.

61

[24] R. Franke and H. Hagen. Least Squares Surface Approximation Using Multiquadrics and
Parametric Domain Distortion. Computer Aided Geometric Design, 16:177–196, 1999.

[25] R. Franke and G. Nielson. Smooth Interpolation of Large Sets of Scattered Data. International
Journal for Numerical Methods in Engineering, 15(11):1691–1704, 1980.

[26] R. Franke and G. M. Nielson. Scattered Data Interpolation and Applications: A Tutorial and
Survey. In H. Hagen and D. Roller, editors, Geometric Modelling, Methods and Applications,
pages 131–160. Springer-Verlag, 1991.

[27] L. A. Freitag and R. M. Loy. Adaptive, multiresolution visualization of large data sets using
a distributed memory octree. In Proceedings of SC99: High Performance Networking and
Computing, Portland, OR, November 1999. ACM Press and IEEE Computer Society Press.

[28] B. F. Gregorski, M. A. Duchaineau, P. Lindstrom, V. Pascucci, and K. I. Joy. Interactive view-
dependent rendering of large isosurfaces. In Proceedings of the IEEE Visualization 2002.
IEEE, IEEE, 10 2002.

[29] J. P. Grossman and W. J. Dally. Point sample rendering. In G. Drettakis and N. Max, editors,
Rendering Techniques ’98, Eurographics, pages 181–192. Springer-Verlag Wien New York,
1998.

[30] R. Grosso and G. Greiner. Hierarchical meshes for volume data. In F. E. Wolter and N. M.
Patrikalakis, editors, Proceedings of the Conference on Computer Graphics International 1998
(CGI-98), pages 761–771, Los Alamitos, CA, June 22–26 1998. IEEE Computer Society.

[31] H. Hagen, R. Franke, and G. Nielson. Repeated Knots in Least Squares Multiquadric Func-
tions. Computing Suppl. 10, pages 177–187, 1995.

[32] C. D. Hansen and P. Hinker. Massively parallel isosurface extraction. In Proceedings Visual-
ization ’92, pages 77–83. IEEE, October 1992. LANL.

[33] R. L. Hardy. Multiquadric Equations of Topography and Other Irregular Surfaces. Journal of
Geophysical Research, 76:1906–1915, 1971.

[34] B. Heckel, A. E. Uva, B. Hamann, and K. I. Joy. Surface reconstruction using adaptive cluster-
ing methods. In G. Brunnett, H. Bieri, and G. Farin, editors, Geometric Modelling: Dagstuhl
1999 ,Computing Suppl, volume 14, pages 199–218. Springer-Verlag, 1999.

[35] B. Heckel, G. H. Weber, B. Hamann, and K. I. Joy. Construction of vector field hierarchies.
In D. S. Ebert, M. Gross, and B. Hamann, editors, Proceedings IEEE Visualization ’99, pages
19–26, San Francisco, CA, October 1999. IEEE, IEEE.

[36] H. Hoppe. Progressive meshes. In H. Rushmeier, editor, SIGGRAPH 96 Conference Proceed-
ings, Annual Conference Series, pages 99–108. ACM SIGGRAPH, Addison Wesley, August
1996.

[37] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, NY, 1986.

[38] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. In S. Spencer,

62

editor, Proceedings of the 29th Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH-02), volume 21, 3 of ACM Transactions on Graphics, pages 339–346, New York,
July 21–25 2002. ACM Press.

[39] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile Networking for Smart Dust. In ACM/IEEE
Intl. Conf. on Mobile Computing and Networking (MobiCom 99), Seattle, WA, August 1999.

[40] A. Kalaiah and A. Varshney. Differential point rendering. In S. J. Gortler and K. Myszkowski,
editors, Rendering Techniques ‘01, pages 139–150. Springer-Verlag, August 2001.

[41] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H. P. Seidel. Feature-Sensitive surface extrac-
tion from volume data. In S. Spencer, editor, Proceedings of the Annual Computer Graphics
Conference (SIGGRAPH-01), pages 57–66, New York, August 12–17 2001. ACM Press.

[42] P. Lancaster and K. Salkauskas. Surfaces Generated by Moving Least Squares Methods. Math-
ematics of Computation, 37(155):141–158, July 1981.

[43] R. S. Laramee and R. D. Bergeron. An Isosurface Continuity Algorithm for Super Adaptive
Resolution Data. In J. Vince and R. Earnshaw, editors, Advances in Modelling, Animation, and
Rendering: Computer Graphics International (CGI 2002), pages 215–237, Bradford, UK, July
1-5 2002. Computer Graphics Society, Springer.

[44] D. Levin. The Approximation Power of Moving Least-Squares. Mathematics of Computation,
67(224):1517–1531, October 1998.

[45] M. Levoy and T. Whitted. The use of points as a display primitive. Technical Report 85-022,
University of North Carolina at Chapel Hill, 1985.

[46] P. Lindstrom. Out-of-Core simplification of large polygonal models. In S. Hoffmeyer, editor,
Proceedings of the Computer Graphics Conference 2000 (SIGGRAPH-00), pages 259–262,
New York, July 23–28 2000. ACMPress.

[47] L. Linsen, J. T. Gray, V. Pascucci, M. A. Duchaineau, B. Hamann, and K. I. Joy. Hierarchical
large-scale volume representation with 3

√
2 subdivision and trivariate B-spline wavelets. In

G. Brunnett, B. Hamann, H. Müller, and L. Linsen, editors, Geometric Modeling for Scientific
Visualization. Springer-Verlag, Heidelberg, Germany, to appear, 2003.

[48] L. Linsen, V. Pascucci, M. A. Duchaineau, B. Hamann, and K. I. Joy. Hierarchical represen-
tation of time-varying volume data with 4th-root-of-2 subdivision and quadrilinear B-spline
wavelets. In S. Coquillart, H.-Y. Shum, and S.-M. Hu, editors, Proceedings of Tenth Pacific
Conference on Computer Graphics and Applications - Pacific Graphics 2002. IEEE Computer
Society Press, 2002.

[49] Y. Livnat, H. Shen, and C. R. Johnson. A Near Optimal IsoSurface Extraction Algorithm
Using the Span Space. IEEE Transactions on Visualization and Computer Graphics, 2(1):73–
84, 1996.

[50] W. E. Lorensen and H. E. Cline. Marching Cubes: A high resolution 3D surface recon-
struction algorithm. In M. C. Stone, editor, Siggraph 1987, Computer Graphics Proceedings,

63

volume 21, pages 163–169. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, July
1987.

[51] R. W. D. Nickalls. A new approach to solving the cubic: Cardan’s solution revealed. In
Mathematical Gazette, volume 77, pages 354–359. 1993.

[52] M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested grids. Com-
puting, 59(4):365–385, 1997.

[53] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level Partition of Unity
Implicits. In J. Hart, editor, Siggraph 2003, Computer Graphics Proceedings, volume 22,
pages 463–470, July 2003.

[54] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive ray tracing for isosurface
rendering. In IEEE Visualization ’98 (VIS ’98), pages 233–238, Washington - Brussels -
Tokyo, October 1998. IEEE.

[55] M. Pauly and M. Gross. Spectral processing of Point-Sampled geometry. In S. Spencer, editor,
Proceedings of the Annual Computer Graphics Conference (SIGGRAPH-01), pages 379–386,
New York, August 12–17 2001. ACM Press.

[56] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-sampled surfaces. In
R. Moorhead, M. Gross, and K. I. Joy, editors, Proceedings of the 13th IEEE Visualization
2002 Conference (VIS-02), pages 163–170, Piscataway, NJ, October 27– November 1 2002.
IEEE Computer Society.

[57] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape Modeling with Point-Sampled Ge-
ometry. In J. Hart, editor, Siggraph 2003, Computer Graphics Proceedings, volume 22, pages
641–650, July 2003.

[58] R. N. Perry and S. F. Frisken. Kizamu: A system for sculpting digital characters. In SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pages 47–56, Los
Angeles, CA, August 12–17 2001. ACM Press / ACM SIGGRAPH.

[59] H. Pfister, J. van Baar, M. Zwicker, and M. Gross. Surfels: Surface elements as rendering
primitives. In S. Hoffmeyer, editor, Proceedings of the Computer Graphics Conference 2000
(SIGGRAPH-00), pages 335–342, New York, July 23–28 2000. ACMPress.

[60] D. V. Pinskiy, E. S. Brugger, H. R. Childs, and B. Hamann. An octree-based multiresolution
approach supporting interactive rendering of very large volume data sets. In H. R. Arab-
nia, R. F. Erbacher, X. He, C. Knight, B. Kovalerchuk, M. M. O. Lee, Y. Mun, M. Sarfraz,
J. Schwing, and M. H. N. Tabrizi, editors, Proceedings of The 2001 International Conference
on Imaging Science, Systems, and Technology, volume 1, pages 16–22, Athens, Georgia, 2001.

[61] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C.
Cambridge University Press, Cambridge, England, second edition, 1992.

[62] J. Räsänen. Surface splatting: Theory, extensions and implementa-
tion. Master’s thesis, Helsinki University of Technology, May 2002.
URL:http://www.hybrid.fi/research/splat/thesis01.pdf.

http://www.hybrid.fi/research/splat/thesis01.pdf

64

[63] L. Ren, H. Pfister, and M. Zwicker. Object space EWA surface splatting: A hardware acceler-
ated approach to high quality point rendering. In Eurographics 2002, 2002.

[64] R. J. Renka. Multivariate interpolation of large sets of scattered data. ACM Transactions on
Mathematical Software, 14(2):139–148, June 1988.

[65] J. Rossignac and P. Borrel. Multi-resolution 3D approximation for rendering complex scenes.
In Second Conference on Geometric Modelling in Computer Graphics, pages 453–465, June
1993. Genova, Italy.

[66] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system for large
meshes. In K. Akeley, editor, Siggraph 2000, Computer Graphics Proceedings, pages 343–
352. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[67] S. Rusinkiewicz and M. Levoy. Streaming QSplat: a viewer for networked visualization of
large, dense models. In Proceedings of the 2001 Symposium on Interactive 3D Graphics,
pages 63–68, New York, NY, 2001. ACM Press.

[68] H. Samet. The Design and Analysis of Spatial Data Structures. Series in Computer Science.
Addison-Wesley, Reading, MA, reprinted with corrections edition, April 1990.

[69] E. Shaffer and M. Garland. Efficient adaptive simplification of massive meshes. In T. Ertl,
K. Joy, and A. Varshney, editors, Proceedings of the Conference on Visualization 2001 (VIS-
01), pages 127–134, Piscataway, NJ, October 21–26 2001. IEEE Computer Society.

[70] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill. Octree-based decimation of marching
cubes surfaces. In R. Yagel and G. M. Nielson, editors, Proceedings of the Conference on
Visualization, pages 335–344, Los Alamitos, October 27–November 1 1996. IEEE.

[71] J. R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA, May 1997. Available as Technical Report
CMU-CS-97-137.

[72] P. Shirley. Realistic Ray Tracing. AK Peters Limited, first edition, 2000.

[73] R. Shu, C. Zhou, and M. S. Kankanhalli. Adaptive marching cubes. The Visual Computer,
11(4):202–217, 1995. ISSN 0178-2789.

[74] R. Sibson. A Brief Description of the Natural Neighbour Interpolant. Technical report, Math
Department, U. of Bath, 1980.

[75] O. G. Staadt and M. H. Gross. Progressive tetrahedralizations. In D. Ebert, H. Hagen, and
H. Rushmeier, editors, Proceedings of IEEE Visualization ’98, pages 397–402, Research Tri-
angle Park, NC, October 1998.

[76] N. Sukumar. Meshless Methods and Partition of Unity Finite Elements. In V. Brucato, editor,
Proceedings of the Sixth International ESAFORM Conference on Material Forming, pages
603–606, Salerno, Italy, April 2003.

[77] I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of tetrahedral meshes with error bounds.

65

IEEE Transactions on Visualization and Computer Graphics, 3(5):224–237, July/September
1999.

[78] G. H. Weber, B. Heckel, B. Hamann, and K. I. Joy. Procedural generation of triangulation-
based visualizations. In A. Varshney, C. M. Wittenbrink, and H. Hagen, editors, Proceedings
of IEEE Visualization ’99 (Late Breaking Hot Topics). IEEE, 10 1999.

[79] G. H. Weber, O. Kreylos, T. J. Ligocki, J. M. Shalf, H. Hagen, B. Hamann, and K. I. Joy.
Extraction of crack-free isosurfaces from adaptive mesh refinement data. In D. S. Ebert, J. M.
Favre, and R. Peikert, editors, Data Visualization 2001 (Proceedings of “VisSym ’01”), pages
25–34, Vienna, Austria, 2001. Springer-Verlag.

[80] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of regular volume data by
adaptive reconstruction of iso-surfaces. The Visual Computer, 15(2):100–111, 1999.

[81] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In E. Fiume, editor,
Siggraph 2001, Computer Graphics Proceedings, pages 371–378. ACM Press / ACM SIG-
GRAPH, 2001.

	Abstract
	Introduction
	Related Work
	Scattered Data Interpolation
	Multiquadrics and Partition of Unity

	Point-Based Computer Graphics
	Isosurface Visualization

	Point-Based Isosurface Extraction
	Introduction
	Relationship to Previous Work
	Projection
	Exact Projection
	Approximate Projection

	Sampling
	Implementation Issues
	Results
	Summary

	Isosurfaces from Multiblock Data
	Introduction
	Relationship to Previous Work
	Approximation
	Isosurface Generation
	Results
	Discussion

	Isosurfaces from Scattered Data
	Introduction
	Relationship to Previous Work
	Regularization
	Local Tetrahedral Mesh Generation
	Interpolation
	Isosurface Contouring
	Results
	Discussion

	Meshless Volumetric Hierarchies
	Introduction
	Relationship to Previous Work
	Clusters
	Level-of-Detail Extraction
	Multiresolution Representation
	Results

	Future Work
	Improvements to Isosurface Sampling
	Arbitrary Point Distributions
	Field Complexity Analysis Tools
	Additional Volume Visualization Tools

	Conclusion
	Bibliography

