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WELLBORE STORAGE EFFECTS I N  GEOTHERMAL WELLS 

Constance W. Miller 
Earth Sciences Division 

Lawrence Berkeley Laboratory 

ABSTRACT 

The ear ly  t i m e  response i n  the w e l l  t es t ing  of an 
homogeneous reservoir  is expected t o  give a u n i t  slope 
when log (pressure) is plo t ted  versus log (time). 
is shown t h a t  t h i s  response is a spec ia l  case, and 
t h a t  i n  general  another non-dimensional parameter must 
be defined t o  describe the set of curves t h a t  could . 
take place f o r  each value of CD. 
tRw, is t h e  t i m e  response of the reservoir  divided 
by the  t i m e  response of the  w e l l .  
l a rge ,  a u n i t  slope r e s u l t s  (as i n  o i l  and gas f i e l d s  
where kh/p is r e l a t i v e l y  low) while no u n i t  slope 
should be measured f o r  small values of taw (as  
i n  geothermal f i e l d s  where kh/v is much la rger  than i n  
an o i l  f i e l d ) .  Using a numerical model of t rans ien t  
two-phase flow, the  predicted ear ly  t i m e  behavior i n  
w e l l  t e s t i n g  has been plot ted f o r  % - 25, 100, and 
f o r  values of taw = 10, 1, 0.1 i n  each case. 
is shorn t h a t  both CD and taw are needed t o  
c o r r e l a t e  the behavior. In addition, t h e  e f f e c t  of 
heat  t ransfer  on the downhole pressure change with 
t i m e  has been calculated using the assumption of 
thermodynamic equilibrium. If  the w e l l  test data  
is analyzed without taking i n t o  account the  heat loss, 
the  calculat ions f o r  kh/v are wrong. 
postulated t h a t  non-equilibrium e f f e c t s  i n  the w e l l  
may lead t o  abrupt changes i n  the pressure versus t i m e  
curve. Such changes have been observed i n  f i e l d  tests 
of flashed geothermal systems. 

INTRODUCTION 

It 

This parameter, 

When tRw is 

It 

It is a l s o  

s tabl ished techniques of w e l l  t es t ing  
petroleum industry,  t h a t  are used t o  assess the 
charac te r i s t ics  of o i l  and gas reservoirs ,  has 
been extended t o  the geothermal f i e l d  by a number of 
workers 1,2*3. However, there  are several  impor- 
t a n t  differences between a geothermal f i e l d  and an o i l  
o r  gas f i e l d ,  and it is necessary t o  understand how 
these differences influence the analysis  of w e l l  
test data. lbese differences include: (1) the value 
of kh/v of a geothermal f i e l d  is usually much la rger  
than t h a t  of an o i l  or gas f i e l d  (because the  reser- 
voir  thickness is grea ter  i n  a geothernal f i e l d  
and the v iscos i ty  is smaller); 2) heat  loss  i n  the 
wellbore must be considered in the analysis  of 
References and i l l u s t r a t i o n s  a t  end of D a D e r .  

the  w e l l  test data  from geothermal w e l l s ;  and (3) 
non-equilibrium e f f e c t s  could be important when the 
geothermal br ine f lashes  or  condenses. 

Wellbore s torage has been considered q u i t e  
extensively 4,5. 
de ta i led  s tudies  6-8 
is treated as a ioundary condition on the reservoir  
flow. 

Although there  have been many more 
the concept of wellbore s torage 

The boundary condition used is 

- = 1 + c -  9s f dP 
9 d t  

where dP/dt is the  flowing pressure change with t i m e  
i n  the wellbore. 
independent of posi t ion i n  the w e l l  and when dP/dt is 
dependent on the measurement point,  a p l a t  of log (P) 
versus log (t) w i l l  not r e s u l t  i n  an u n i t  slope a t  
ear ly  times. "his study w i l l  consider wellbore 
s torage by looking a t  the flow i n  the w e l l  i t s e l f  
while t rea t ing  the reservoir  as simple homogeneous 
r a d i a l  flow. 

However, dP/dt is not necessar i ly  

Heat l o s s  from the w e l l  has a l s o  been ignored 
because oil and gas f i e l d s  can be treated as isother- 
mal. 
slow process and one might be inclined t o  ignore it. 
But because it is slow, the heat t ransfer  e f fec t  can 
be important f o r  very long t i m e s .  Once the ear ly  
t rans ien t  behavior is over and a semilog s t r a i g h t  l i n e  
of P vs log (t) is expected, the  heat  t ransfer  from 
the w e l l  can alter the slope of t h a t  l i n e ,  so tha t  the 
slope would no longer be qp/4nkh. The duration and 
importance of t h i s  heat  t ransfer  w i l l  be considered. 

Heat t ransfer  from the well is usually a very 

The th i rd  important e f f e c t  i n  the geothermal 
well test is t h a t  condensation o r  evaporation does not 
necessarily occur i n  an equilibrium manner. The 
pressure changes can appear t o  be'a changing wellbore 
storage say from a high compressibil i ty t o  a low 
compressibility, but  it is important to recognize the 
difference between non-equilibrium e f f e c t s  and w e l l -  
bore s torage changes as defined in the petroleum 
industry. 
non-equilibrium, then heat t ransfer  is sti l l  very 
important, and the semilog p lo t  of P versus log ( t )  
w i l l  be a l te red  from t h a t  predicted i n  current  w e l l  
test analysis.  

If the abrupt change i n  pressure is due t o  
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A numerical model of t rans ien t  two-phase flow i n  
the  wellbore with heat and mass t ransfer  has been 
developed. It is  used t o  invest igate  the i t e r ac t ion  
of the  w e l l  flow with that of the  reservoir ,  and the 
non-uniform behavior in the w e l l .  

CONCEPT OF WnLBORE STORAGE 

Wellbore s torage is the capacity f o r  the w e l l  t o  
absorb o r  supply any par t  of the mass flowrate out of 
the  w e l l .  When the mass flowrate is increased (or 
decreased), the change i n  pressure w i l l  be i n i t i a l l y  
f e l t  only i n  the well. 
time, depending on the propert ies  of the  reservoir  and 
the conditions i n  the w e l l ,  the  reservoir  wi l l  start 
t o  supply pa r t  of the flow. The sandface flow rate 
wil l  increase and approach the surface flow rate as 
the  t rans ien t  changes i n  the w e l l  d i e  out. One can 
think of the  time f o r  the reservoir  t o  supply the  
surface mass flowrate as the time constant of t ha t  
reservoir. 

After a cer ta in  amount of 

If the  pressure changes with t i m e  i n  the w e l l  are 
not a function of position, then a graph of pressure 
versus t i m e  on a log-log p lo t  w i l l  have uni t  slope. 
This un i t  slope indicates  t h a t  AP a A t  with the w e l l  
supplying the flowrate changes i n  a uniform manner. 
In t h i s  case, f o r  a s tep  change in flowrate a t  the 
surface, t he  sandface mass flowrate is 

(Mass is conserved i n  a w e l l ,  not volume.) When 
t - E,  the  sandface rate is  zero, and it is usually 
assumed tha t  the slope of the curve dP/dt w i l l  give 
the s torage coeff ic ient .  However, i f  P is  the downhole 
pressure, then dP/dt must a l so  be zero a t  t = E , 
because there  is a f i n i t e  t i m e  fo r  changes a t  the 
surface t o  a r r ive  downhole. A correct  in te rpre ta t ion  
of C dP/dt is tha t  it is the average of C(dP/dt) over 
the whole length of the w e l l .  

rate at the surface is important, changes i n  pressure 
i n  the w e l l  are not uniform. Nevertheless, wellbore 
storage curves are generated assuming tha t  the f lu id  
in the w e l l  is fu l ly  mixed. Before one can assume 
that t h i s  uniform mixed condition is va l id ,  t he  wave 
nature of the  or ig ina l  disturbance must be damped out. 
If the time fo r  the reservoir  t o  respond t o  a change 
nade a t  wellhead is much longer than the time for  
these changes in the well t o  be described by one 
pressure measurement, then the e f f ec t  of the non- 
uniform behavior i n  the w e l l  w i l l  not be important. 
This condition is t rue  when o i l  or  gas reservoirs  are 
tested. 
nd-m). Also, t he  viscosi ty  of o i l  is r e l a t ive ly  high 
resul t ing i n  small values of HI/IJ (say 10-6 m3/~a-s). 
Under these circumstances, the  time response of the 
reservoir is orders of magnitude slower than the t i m e  
response of the w e l l  and the non-uniform behavior i n  
the w e l l  w i l l  damp out before the reservoir  can 
respond. However, there  are cases when the reservoir  
can supply f lu id  before dP/dt i n  the w e l l  is uniform, 
and the f u l l y  mixed w e l l  is not a good approxination. 

(1oaOOomd-m). and U i s  l o w  (9  x 10-5 Pa-s a t  300 C). 
Because of the high value of kh/U , the reservoir is 
capable of supplying a much 
than an o i l  rerervoir for a given pressure drop. 
there non-uniformities of Wldt  i n  the ve l1  are 
coaridend,  s ignif icant ly  different  vellbore storage 

when the wave nature of the s tep  change i n  flow 

Typical kh values are 2 x 10-13 m3 (200 

I n  geothe-1 wlls, kh can be very -large, say 10 -11,3i 

larger  quantity of f luid 
When! 

~~ 

curves are generated. The curves w i l l  depend on 
another non-dimensional parameter defined as the  
t i m e  response of the reservoir  divided by the  t i m e  
response of the  w e l l .  
determined i n  terms of the conditions of the reservoir  
and those of the f lu id  in the w e l l .  

These time constants are 

For a pressure change a t  wellhead, the dis tur-  
bance w i l l  move a t  the loca l  speed of sound through 
the  w e l l .  (The f lu id  moves a t  a veloci ty ,  v ,  but  a 
disturbance propagates a t  the speed of sound, a) .  
The t i m e  fo r  the disturbance t o  reach the bottom of 
the w e l l  is approximately L/a or  

where (aP/aP)i'2 is the average speed of sound in the 
w e l l .  The charac te r i s t ic  t i m e  of the w e l l  w i l l  be 
defined as t h i s  value. The t i m e  constant of the 
reservoir  w i l l  be defined as the  time when the reser- 
voi r  can supply the surface miss flowrate. The 
expression fo r  t R  can be determined from the  
spec ia l  case of t R  = k,. 
the or ig ina l  pressure drop tha t  propagates down 
the w e l l  is exactly the pressure drop needed at the 
wel l / reservoir  boundary t o  have the sandface -8s rate 
equal t o  the surface mass flowrate, (Pq),.f. = ( ~ q ) ~ .  
When the flowrate a t  the surface is changed, there  
w i l l  be a pressure pulse of some s i ze  APw tha t  
wil l  propagate down the w e l l .  The ini t ia l  sandface 
r a t e  is 

This s i t ua t ion  occurs when 

kh ap kh "w ) = 2nr - p-- = 2nr  - p ( y )  (2) 
w p  w (%.f. i w u ar 

I f  (pq,.f.)i is j u s t  equal t o  the surface flowrate, 
(pq)s, then the reservoir  w i l l  be supplying the 
desired flowrate. 
the time fo r  the pulse t o  propagate down the w e l l  in 
t h i s  spec ia l  case, o r  t R  = tW. If (Pq,.f.)i is less 
than (pq),, the  reservoir  is taking longer to  
respond than the t r a n s i t  t i m e  in the w e l l ,  and i f  
( pqs.f.)i i s  greater  than (pq)8, the reservoir  can res  
pond f a s t e r  than the w e l l .  I n  general, one can esti- 
mate t R / t w  as (Pq)s/(pqs.f.)i- To obtain the latter 
r a t io ,  i t  is necessary t o  determine the pressure drop, 
APw . 

The t i m e  for  t h i s  t o  occur is j u s t  

For a given surface flow rate, a l l  the mass is 
taken i n i t i a l l y  from the w e l l  o r  v in  = 0 and vout = 
q/nr$. The decrease i n  the mass i n  the w e l l  must 
equal the t o t a l  mass out, (A~)(A)(AX) = PAAtq/nr: 
where x is the distance down the w e l l  t ha t  the mass 
is taken from. 
s igna l  has propagated. 
constant (an approximation), then 

This dis tance is j u s t  how f a r  the 
Assuming the enthalpy is 

Ax AX ap (AP) E (-1 aP h AP(-) A t  = p(*) n r  
W 

or 

The disturbance t rave ls  a t  the loca l  speed of sound so 
(Ax/At) = a - (ap/ap)g/2 
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ind the pressure drop APw is approximated as 

king Eq. 2 and the above estimate fo r  APrJ, 

be r a t i o  tR/t,,, is j u s t  - 

n many cases, (aP/aP)h %(aP/aP), Over the region of 
n t e re s t  so 

h i s  lat ter form vi11 be used to  
he calculat ions below. 

Now, tRw (as derived) is the  quant i ty  along 
l t h  CD necessary to character ize  the flow i f  the 
n i t i a l  pressure disturbance made a t  the wellhead is 
o t  changed s ign i f i can t ly  as it propagates through t h  
e l l .  This s i t ua t ion  is t rue  if the  compressibility 
f the f lu id  is approximately constant i n  the well. 
owever, even i n  t h i s  case, the  i n i t i a l  flowrate 
rom the reservoir  w i l l  not exactly equal the surface 
ass  flow rate because the i n i t i a l  pressure change 
oes not propagate as a s t ep  function, and because the 
eservoir  has a f i n i t e  helght h. When tuw - 1 
as calculated i n  Eq. 31, (Pqs.f.)i w i l l  s t i l l  be less 
han (pq), as w i l l  be seen in the next section. 
o r  two phase w e l l s ,  t he  compressibility changes 
onsiderably between the two-phase region and the 
iquid water region so the  pressure pulse becomes 
i s tor ted .  The f r i c t i o n  in the two-phase region, 
hough, helps t o  dampen these la rge  pressure fluctua- 
ions. The pressure pulse is a l so  a l t e r ed  i f  there  
s any heat t ransfer .  
sual ly  more important a t  later times when dpD/dtD 
B small. 
eriving tRw are no a l i d  i n  a l l  cases, the para- 
e te r  can still  be d t o  Characterize the 
ctir in te rac t ion  i n  many circumstances. 

However, heat losses  are 

Even though the approximations made i n  

e nonuniform changes i n  the we 
n d e t a i l ,  a numerical model t o  simulate compressible 
ransient  flow i n  a wellbore has been developed. Th 
ode1 is capable of handling single-phase as vel1 as 
wo-phase flow with mass t ransfer  ( for  example, 
team-water flow). The heat t ransfer  between the  
round and the w e l l  is also included. To be able  to  
ook a t  the in te rac t ion  between the reservoir  and the 
e l l ,  a r ad ia l  equation fo r  a homogeneous, single- 
hase reservoir  is included. To solve the one-dimen- 
ional  flow i n  the w e l l ,  the  equations of mass, 
omentum, and energy vere solved. 
re  

The equations 

ap a - + - (pv) a t  ax - 0 (4) 

2 
fpv  O (5) Z(PV) + - ax (PV ) + ;i;; + Pg + 1/2 D = 

a a 2 ap 

An equation of state is used t o  relate density t o  
pressure and energy. A descr ipt ion of the numerical 
model is avai lable  i n  reference 9. For the calcula- 
tions presented here, a constant f r i c t i o n  f ac to r  w a s  
used. Many in te res t ing  and meaningful t rans ien t  
resu l t s  are possible without going to a more elaborate  
description of the f r i c t i o n  and s l i p .  
used t o  invest igate  the i n i t i a l  t rans ien t  nature  of 
the wellbore and t o  determine the durat ion of heat 
loss ef fec ts .  I n i t i a l l y ,  the behavior of dpD/dtD 
w i l l  be investigated assuming no heat loss. 
e f f ec t  of heat loss w i l l  be considered i n  the  fo- 
llowing section. 

The program is 

The 

Adiabatic Flow 

Using the developed numerical model, ca lcu la t ions  
were performed t o  generate the deviation of the 
drawdown (or  buildup) curve from the  uni t  slope fo r  
d i f f e ren t  values of taw and CD. 
were done fo r  CD - 25, 100, with tb - 0.1 to  
10.0. For a l l  the calculat ions,  t he  length of the 
well was 200Om and the radius was 0.082m. The mass 
flow rate out was kept constant a t  500 kg/m2-sec. 
No heat loss was assumed. 
adjusted to  obtain f lashing or  no flashing. 
reservoir  parameters used f o r  the calculat ions are: 
(1) i n  Fig. la,  p - 2~lO-~Pa-s ,  Och=3.2x104dPa 
downhole pressure - 2.9x107Pa, reservoir temperature * 
2oO°C and kh - 6 . 4 ~ 1 0 ' ~ ~  t o  6.4~10'~~rn3, and (2) I n  
Fig. lb, )J= 9x10'5Pa-s, $chi 5.3x1Od7m/Pa, down- 
hole rcssure - 2x107Pa reservoir temperat.ure 

Included 'on each p lo t  is both the t r ad i t i ona l  wellbore 
storage curve derived assuming (dpD/dt) # funct ion 
ctf posi t ion i n  the w e l l  and the CD - 0 curve. 
For t D  > 1, t h i s  latter curve is j u s t  the Theis 
curve. The general behavior of the  t rans ien t  flow i n  
the w e l l  can be described using these figures. 

The calculations 

The downhole pressure was 
The 

- 320 t C and Ish - 4x10'11 t o  4 ~ 1 0 ' ~ ~  #u3. 

In  Figure la, l iqu id  water was. assumed to  flow 
snder a pos i t ive  head to  generate the curves fo r  the 
i i f f e ren t  values of tb. 
(ap/aP)h i n  the w e l l  w a s  7 x 10'7 and the CD f ac to r  
Eor Chis p lo t  is 25. Included in the f igure  are 
points calculated f o r  a flashed system where the 
average value of (adaP)h is 4 x 10-5 (of course, i n  
a flashed w e l l ,  the  compressibility va r i e s  by orders 
,f magnitude. However, t he  average compressibility 
:an still  be used t o  character ize  the flow i n  many 
zases.) Figure l b  and some points i n  Fig la give 
:alculations assuming t h a t  the water is f lashing a t  
ibout 500 m down the w e l l ,  but  the f lu id  is st i l l  
Elowing under a pos i t ive  head. A f r i c t i o n  fac tor  
,f 0.04 was used f o r  a l l  calculat ions except fo r  one 
case in Fig lb. To generate the d i f fe ren t  curves, 
kh, p ,  and Qch were varied. The a r r i v a l  time of the 
i n i t i a l  pulse downhole is the  same i f  the average 
compressibility is not changed. However, the  t i m e  has 
been non-dimensionalized by (k/pc+rt)  t, so the non- 

The average value of 
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dimensionalized a r r i v a l  t h e  w i l l  be d i f fe ren t  
when the reservoir  parameters are varied. 

f l u id  in the w e l l  may not be very compressible but 
because the reservoir  is unresponsive, the  w e l l  m u s t  
supply the surface flowrate. The i n i t i a l  pressure 
drop that a r r ives  downhole w i l l  cause a flowrate from 
the reservoir  tha t  i s  less than the surface flowrate. 
As the pressure in the w e l l  drops, the reservoir  
starts t o  supply the f lu id ,  the PD vs t D  curve approa- 
ches the un i t  slope plot  on the log log scale. There 
w i l l  always be some i n i t i a l  delay but many t i m e s  the 
delay w i l l  be a very =all  portion of the i n i t i a l  
curve. 
the  pressure change with t i m e  increases abruptly, and 
it approaches the wellbore storage curve based on the 
uniform theory. This s i t ua t ion  occurs in the o i l  and 
gas f i e l d  tests. The value of k h / V  is so small that 
thk un i t  slope persists fo r  long t i m e s .  

The f i r s t  case to  consider is when tRw > 1. The 

Once the pressure disturbance a r r ives  downhole, 

The s igna l  t ha t  the w e l l  w a s  shut-in takes about 1-2 
seconds to  a r r ive  downhole. The pressure then builds 
up very quickly and approaches the curve tha t  would 
ex i s t  i f  the w e l l  behaved uniformly. Using the measu- 
red propert ies  of the reservoir ,  (4ch = x n/Pascal 
kh f 15 D-m,y" .2 cp) ,  the  wellbore storage coef f ic ien t  
i s  about 0.35 and tRw = 0.2. 
tRw one should see osc i l l a t ions  in the p~ vs t D  curve. 
However, these osc i l l a t ions  are damped out i f  t h e  
flowrate change is less than a "step function." 
the case plot ted i n  Figure 2, i t  would probably be 
hard to  achieve a "step rate change" because the 
typ ica l  time needed t o  c lose  a valve is longer than 
the time fo r  a pressure s igna l  t o  propagate to  the 
bottom of the w e l l .  Even without a "step rate" change 
i n  flowrate, the plot  is sti l l  not a uni t  slope, 
emphasizing w e n  more that the uni t  slope is only a 
spec ia l  case when the reservoir  is less responsive than 
the w e l l .  

For t h i s  low value of 

For 

A p lo t  of the pressure pulse as it propagates 
i n t o  the w e l l  and in t e rac t s  with the reservoir  gives 
more insight  in to  the behavior of the well and reser- 
voir  interact ion.  Figurea 3a, 3b and 3c plot  the 
pressure d is t r ibu t ion  in the w e l l  as a function of 
time fo r  a drawdown test and f o r  d i f fe ren t  values of 
tRw. The f i r s t  two calculat ions are done with 
water throughout the w e l l  and the th i rd  case is fo r  
water tha t  has flashed about 500 m down the well. 

When tb - 1, the  pressure drop needed to  
achieve a s t ep  change i n  flow-rate a t  the surface is 
close to  the pressure drop needed to  obtain t h i s  same 
Elowrate from the reservoir. 
t i m e  is i n i t i a l l y  zero but once the disturbance 
reaches downhole, i t  rises abruptly u n t i l  it reaches 
the expected drawdown curve. Since (pqs.f.)i = (pqIs 
t h i s  occurs a f t e r  the expected wellbore s torage curve 
is almost wer. 
t b  = 1. 
Dbtained from t h i s  curve. 
the propert ies  of the f lu id  in the w e l l ,  one can 
estimate (p/kh) as 

The pressure change with 

The p lo t  is shown i n  the f igures  by 
The near wellbore value of khhcan be 

I f  t b  = 1, and knowing 

For case 3a and 3b, the  propagation of the s igna l  
is the same u n t i l  the pulse a r r ives  a t  the formation/ 
w e l l  boundary. Then the pressure d is t r ibu t ion  i n  the 
w e l l  w i l l  s t a r t  to  d i f fe r .  The value of kh/u is 
grea te r  in case (3a) than i n  (3b), so tRw w i l l  be 
smaller i n  case 38. The pressure changes with time 
and posi t ion have been plot ted i n  a non-dimensional 
manner. Figure 3a has been s p l i t  i n to  3 successive 
graphs t o  i l l u s t r a t e  the osc i l l a t ions  i n  the w e l l  as a 
function of t i m e .  Figure 3b is only one graph because 
the pressure change with t i m e  quickly becomes uniform. 
To i l l u s t r a t e  tha t  there  is no difference in the 

' i n i t i a l  propagation of the pressure pulse, the f i r s t  
graph of Figure 3a and the  graph of Figure 3b have 
been plot ted so the  dimensional un i t s  coincide. 
the pulse a r r ives  at the reservoir ,  the  two cases 
start t o  d i f fe r .  For case (3a). the  reservoir  
supplies more f lu id  than is being taken out a t  the 
surface and an increase in pressure t rave ls  up the 
bore canceling out par t  of the  i n i t i a l  pressure 

Once 

The th i rd  Intersect ing case is when t b  < 1. 
h e n  the  given pressure drop ar r ives  downhole, the  
reservoir wi l l  be so responsive tha t  it can supply 
nore f lu id  than the w e l l  could f o r  the same pressure 
hop. This s i tua t ion  produces an osc i l l a t ion  i l l u s -  
t ra ted i n  the Figure la by t b  - 0.1. The pres- 
sure drop is too la rge  so the  reservoir  supplies more 
Eluid than is being taken out a t  the  surface. 
pressure i n  the w e l l  w i l l  be increased and t h i s  
increase w i l l  be propagated up the w e l l .  The in te r -  
action between the reservoir  and the w e l l  produces the 
Dscillation which slowly d ies  out. For the l iqu id  
Eilled w e l l  in Figure la, the  t i m e  of the osc i l l a t ions  
1s a couple of seconds. 
tions seen i n  Figure la fo r  tRw = 0.1 are not ob- 
served i n  Figure l b  where a flashed system w a s  used 
Eor the calculations. The osci_llations have been 
iamped out by f r i c t i o n  effects .  
term is dependent on the flow ve loc i ty  squared, so 
there  w i l l  be more dampening i n  the flashed system 
than the unflashed system f o r  the same mass flowrate 
because the veloci ty  is greater .  
influence of the f r i c t i o n  fac tor  i n  Figure l b  where 
one calculat ion was done with f - 0 i n  the case t b  - 0.1. llhe e f f ec t  of the f r i c t i o n  fac tor  decreases as 
th increases. 

The 

However, the  la rge  osc i l la -  

The f r i c t i o n  

One can see the 

One last  observation tha t  must be made in Figures 
la, Ib is the f a c t  that the drawdown curve approaches 
the vell*ore s torage curve based on the uniform 
theory4 but does not coincide with it. The CD values 
used were calculated assuming t ha t  the enthalpy 
is' constant. 
without heat l o s s  because of the accelerat ion or  
deceleration of the  flow. In  a drawdown case, the  
f lu id  accelerates ,  the  k ine t i c  energy increases so the  
spec i f ic  enthalpy decreases. The f lu id  w i l l  compress 
because of t h i s  decrease so less f lu id  can be extrac- 

This s i t ua t ion  is not s t r i c t l y  t rue  even 

TS IN GEOTHERMAL WELLS 

ted from the w e l l  f o r  a given pressure drop. 
drawdown pressure must be s l i g h t l y  grea te r  than the 
typ ica l  CD curve predicts. 
the  enthalpy increases because of the deceleration. 
Less mass can enter  the w e l l  than expected, so 
again, the  curve w i l l  "overshoot" the  CD curve t h a t  
assumes constant enthalpy. 
is less fo r  a l iqu id  f i l l e d  w e l l  than a two-phase 
system because the accelerat ion or  deceleration is 
less. 

The 

For the buildup case, 

The amount of "overshoot" 

Alack  of one-to-one slope a t  ear ly  times has 
been observed i n  the f i e ld .  
obtained from a f i e l d  test of a l iquid f i l l e d  w e l l  a t  

Figure 2 p lo t s  data  

I 
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decrease. 
that is too la rge  in the w e l l .  
pressure a r r ives  at the surface, the  pressure must 
decrease again t o  sustain the flowrate. 
pressure osc i l l a t ion  in the w e l l  which slowly d i e s  
out. For case (3b). t he  reservoir  has a relat- 
ive ly  low value of kh/u. Even when the i n i t i a l  
pressure drop ar r ives  downhole, the  reservoir  cannot 
supply very much f lu id .  
t o  drop i n  the w e l l  and dP/dt w i l l  be a very weak 
function of posi t ion i n  the w e l l .  

This pulse produces an increase in pressure 
When t h i s  increase in 

There is a 

The pressure must continue 

& *  
For case ( 3 4 ,  t he  s igna l  propagation is diffe-  

rent  because there  is a boundary between the two-phase 
system and the liquid. The boundary tends t o  d i s t o r t  
the  or ig ina l  pressure pulse because most of the pulse 
is  ref lected from the  boundary while a small port ion 
is transmitted. The pulse then o s c i l l a t e s  i n  the two 

D 

phase region. It is dampened by viscous d iss ipa t ion  
and by the in te rac t ion  with the wel l / reservoir  boun- 
dary. 
in t h e  two-phase region being about 70-150m/sec 

The sound speed is low i n  a two phase region because 
of the r e l a t ive ly  high densi ty  and high compressibil- 
i ty .  However. once the pulse reaches the l iqu id ,  the 
s igoa l  is propagated about 10 times f a s t e r  because the 
compressibility is lower. Because of t h i s  increase in 
the propagation speed, the  changes I n  the l iqu id  are 
r e l a t ive ly  uniform. 
pressure w i l l  drop f a s t e r  in the Liquid region, and 
the pressure change in the  w e l l  w i l l  become more 
uniform quicker. 
be closer  t o  Figure 3b, even though there  is a two- 
phase region. 

The proagation of the s igna l  is r e l a t ive ly  slow 

For la rger  values of tRw, t he  

For tRw 2 1 the pressure drop w i l l  

One question is whether o r  not tRw can be used 
as a non-dimensional t i m e  t o  describe t h i s  in te rac t ion  
phenomenon when d i f fe ren t  f l u ids  are used i n  the w e l l ,  
1.e. i f  CD and tRw are kept the same value but the 
f l u i d  conditions i n  the w e l l  and the reservoir  proper- 
ties are changed w i l l  the  same curve be generated. 
It might be thought t ha t  changes i n  the two phase 
region could never be correlated by a term taw which 
was derived assuming no abrupt changes i n  the i n i t i a l  
pressure pulse. 
of the  in te rac t ion  with the boundaries and because of 
viscous diss ipat ion.  In  a two phase mixture, the  
in te rac t ion  with the boundary is slow but the f r i c -  
t i ona l  e f f ec t s  are large,  while the opposite is t rue  
i n  the single phase region. Because the two e f fec t s  
tend t o  compensate f o r  one another, tRw can be used 
t o  co r re l a t e  the behavior f o r  both two phase a d  
s ingle  phase flow i n  many cases. 

However, a pulse dampens both because 

If the f l u i d  in the w e l l  is not varied, but  U, k, 
h are changed i n  a way such tha t  kh/p remains constant, 
the  generated curve is the same. The calculat ion de- 
pends on kh/p and i f  t h i s  is not var ied,  t he  interac- 
t i o n  of the w e l l  and reservoir  w i l l  not change. 
(There is a very s l i g h t  difference i n  the calculat ion 
as h is varied but the sire of the change is too 
small t o  be of any use.) 
if the  f lu id  propert ies  in the  w e l l  are varied but 
the reservoir  propert ies  are adjusted to  give the 
38me tRw and CD. 
lame curve be generated. 
;on when CD - 100 and taw - 1.0. 
Eor a l iqu id  f i l l e d  w e l l  and the th i rd  one is fo r  a 
Elashed s tern. The reservoir  values used were = 
5.4 x lo-{! m3. $ch .I 8 x 10-9 m/Pa u= 2 x 104Pa-s 
For one l i au id  w e l l :  kh = G.5 x 10-13 m3, @ch -2.3 x 

A more In te res t ing  case is 

Under these circumstances w i l l  the 
Figure 4 shows t h i s  compari- 

Two calculations are 

l iqu id  f i l l e d  w e l l s ,  ( a p /  ap) = 7 x 10-7 kg/m3~a and 
1.4 x kg/Q3 Pa and f o r  the flashed system, (ap/aP: 
= 4 x lom5. 
where taw and CD will be the same when the average com- 
r e s s i b i l i t y  in the w e l l  var ies  as much as it does 
between these two cases. Some of the reservoir  
propert ies  used may be a l i t t l e  extreme. 
can see tha t  there  is excellent agreement between the 
three d i f fe ren t  cases. 
f ac to r  of 0.04 was used. 
the w e l l  are the same as those ysed f o r  the calcu- 
la t ions  done f o r  Figure 1. 
when taw 2 1- As t b  decreases, pressure changes i n  the 
w e l l  become more non-uniform and the assumptions 
used in deriving t a w  are less val id .  
flashed w e l l  with two d i f fe ren t  regions. one s ingle  
phase and the second a two-phase region, w i l l  d i s t o r t  
the f luctuat ions more. The p~ vs t D  curve fo r  t h i s  
latter case w i l l  start t o  deviate a t  ear ly  times 
from the s ingle  phase case tha t  has the  same value 
of tRw and CD. 
compensated f o r  b 
proportional t o  V3. The main difference in the two 
cases I s  t ha t  the f lash  leve l  acts as a second boun- 
dary. As the  in te rac t ion  a t  t h i s  boundary becomes 
more Important, the  pressure change wfth t i m e  w i l l  not 
be described very accurately with the s ing le  phase 
case. This s i tua t ion  exists h e n  taw << 1. However, 
Erom the  very rough analysis  used t o  estimate tb 
it can describe the f low f o r  both two phase and 
s ingle  phase flow over a wide range of cases. 

Keat Loss Effects  

It is a l i t t l e  hard t o  contrive a case 

However, one 

Again the constant f r i c t i o n  
The other propert ies  of 

The agreement is good 

A par t ly  

This deviation w i l l  be par t ly  
the f r i c t i o n  e f fec ts  which are 

The heat loss  from the f lu id  i n  the w e l l  can have 
B s igni f icant  e f f ec t  on the downhole pressure change 
with t i m e .  Heat t ransfer  is especial ly  important when 
B new w e l l  is tes ted,  because the rock surrounding the  
bore is still re la t ive ly  cool. Even after the ea r ly  
time wellbore storage changes are Over, heat t ransfer  
:an alter the slope of the semilog p l o t  of P vs log t 
Erom qU/4rrkh in a drawdown test, requir ing a d i f fe ren t  
malys is  of the data than has been developed in the  
petroleum industry. The value of kh w i l l  be calculated 
to be too small i f  heat t ransfer  is ignored and i f  
:hangea i n  phase occur i n  an equilibrium fashion. 
(This latter assumption may not be valid.) 
numerical model of the  t rans ien t  behavior of the f lu id  
i n  the w e l l  has been used to  model the flow with heat 
t ransfer .  
between the phases and tha t  the f l u i d  is i n  equi l i -  
b r i m .  The e f f ec t  of non-equilibrium o r  la rge  changes 
i n  the heat t ransfer  coef f ic ien t  w i l l  be discussed a t  
the end of t h i s  section. 

The 

The analysis  is done assuming no s l i p  

Heat t ransfer  is important in two-phase geothermal 
wells because of the la rge  temperature changes t h a t  
occur when the f lash  leve l  rises or  f a l l s .  
is a p lo t  of P vs .t f o r  a buildup and a subsequent 
drawdown test. To simulate the heat l o s s  from the  
well, a typ ica l  geothermal temperature gradient was 
assumed f a r  from the  w e l l ,  and a small temperature 
buildup was used near the bore. Anon-dimensional 
representat ive temperature p ro f i l e  is. given by the , 

i n se r t  in Figure 5. This is a typ ica l  temperature 
buildup. 
pressure buildup and then drawdown when the heat loss  
is ignored and graph (b) is  when heat t ransfer  is 
allowed t o  take place. The f lu id  flowed i n t o  the w e l l  
Erom a simple homogeneous reservoir  with a kh value 
of 6.7 x m3. The heat t ransfer  coef f ic ien t  used 
between the f lu id  and the  wellbore was a function of 

Figure 5 

In the f igure,  graph (a)  is  a p lo t  of the 

LOi8 m/Po, 9 x lO’5.Pa-s for  he second liquid 

J - 9 x 10-5 Pa-. for  the par t ly  flashed well. 
5 
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)i e Nu f 0.023 Reoo8 (Pr = l ) ,  and H = 0 . 0 2 3 ( p ~ ) ~ o ~  
p g=4do*2. I n  the two-phase region the heat transfer 
:oefficient vas averaged between the steam and l iquid 
Jhich could be improved. 

.It can be seen from the  f igure tha t  t he  heat 
t ransfer  causes the presure t o  i n i t i a l l y  'change at a 
slower rate both f o r  the buildup and the  drawdown 
test. During a buildup test, the  enthalpy of the  
ex i t ing  f lu id  decreases because of the increased t i m e  
t ha t  the f lu id  is i n  the w e l l .  
decreases, the  f lu id  can condense o r  compress more for  
the same pressure so more f lu id  flows in to  the well 
with a smaller pressure rise. In a drawdown, the  
enthalpy of the f lu id  increase in t i m e  and the density 
will decrease. For the same pressure, more f lu id  w i l l  
exit the w e l l  so the initial drawdown pressure is 
less. As the  enthalpy change s teadies  out, the 
drawdown o r  (buildup) curve with heat l o s s  must 
approach the  curve without heat loss. The enthalpy 
changes because of acceleration o r  deceleration are 
not important i n  the pseudo steady region because 
these changes have already taken place. It is only 
the  changes because of heat loss  tha t  e f f ec t  the 
slope of the p~ VS. t D  curve in t h i s  region. 

As the enthalpy 

Figure 6a shows the e r ro r  in the Irh value i f  the 
test is analyzed assuming heat loss  is not important. 
Figure 6a is a p lo t  of P v s  log [(t + A t ) / A t ]  f o r  the 
buildup test. 
the  slope of the  s t r a igh t  l i n e  r t ion ,  then the kh 
obtained is about 6.5 x 10-l2 m y i n  the buildup and 
about 6.9 x 
The actual  value used was  6.7 x 10'12 m3. However, 
if the same analysis  is used when heat loss  is impor- 
t a n t  d i f f e ren t  values for  kh are obtained, Le., 4 x 
lom1$ m3 i n  the buildup and 5.3 x 10-l2 m3 i n  the draw 
down. The longer the test is run, the  less signif ican 
the  heat loss  is. One sees tha t  the two slopes start 
t o  approach one another a t  later times. However, the  
s t r a igh t  l i n e  semilog p lo t  is seen a f t e r  about 10 min- 
u tes  when heat loss  is zero but only a f t e r  20 minutes 
when there  is heat loss. 

Assuming tha t  kh = qp/4nm, where m is 

m3 i n  the drawdown for  no heat loss. 

As indicated, the calculat ions made assume the 
changes i n  the w e l l  occur in a smooth, equilbrium 
fashion. 
t ha t  t h i s  is not true. 
w e l l  i n  the French Terr i tory of M a r s  and Issas  was 
presented. 
the buildup tests. 
i n  pressure was  because of a changing wellbore s tor-  
age from a l iqu id  leve l  controlled s torage to  a com- 
r e s s i b i l i t y  control led storage. 
reasoning of whether t h i s  s i t ua t ion  was physically 
possible. 
because of condensation (or evaporation) and because 
of an increase (or decrease) i n  the f lash  l eve l  are 
not very d i f fe ren t .  Condensation i t s e l f  w i l l  r e su l t  
i n  an increase in the f lash  level .  Also, a wellbore 
storage coef f ic ien t  based on a changing l iquid leve l  
assumes tha t  the density above the leve l  is much 
smaller than the l iquid and can be ignored, and t h a t  
the pressure above the l iquid leve l  is constant. 
two-phase system, t h i s  is not qu i te  true. 
above the f l a sh  leve l  is only s l i gh t ly  less than the 
l iquid (although the compressibility has changed by 
many orders  of magnitude), and the pressure changes 
with time throughout the w e l l .  
fu r ther  and fur ther  down the w e l l ,  the  wellbore 
storage coeff ic ient  approaches the storage coeff ic ient  
based on a changing l iquid level. 

However, ac tua l  w e l l  tests seem t o  indicate  
In 1978, w e l l  test data from a 

Abrupt changes in pressure were seen in 
It was postulated tha t  the change 

There was no detai led 

The difference i n  the wellbore s torage 

In a 
The density 

As the l iquid f lashes  

Figure 7 p lo t s  a buildup curve from a vel1 test 
of M-91 at the Cerro Pr ie to  site. The data was 
provided by the Comisi6n Federal de Electr ic idad de 
Mexico. Note that f i r s t  there  is a sudden buildup in 
pressure and then the pressure changes at a slwer 
rate. After a couple of more minutes, another abrupt 
change in pressure is observed which leve ls  out to a 
f l a t t e r  pressure change with t i m e .  
might be  explained as a two-layer reservoir ,  which is 
qu i t e  possible although the w e l l  i t s e l f  is though t o  
tap only one r e s e v o i r .  However, the changes may be 
due t o  the  conditions i n  the  wellbore i t s e l f .  

This  behavior 

(1) When the flow rate is decreased, the  l iqu id  
l eve l  w i l l  slowly rise because the pressure 
has been increased. The brine w i l l  be able  to  
flow fur ther  up the wellbore before the pres- 
sure  is reduced t o  the satuat ion pressure 
corresponding t o  the downhole temperature. 
This increase in l iqu id  leve l  is the init ial  
change in the pressure. 

Because the br ine f lashes  higher up i n  the 
w e l l ,  t he  temperature of the br ine w i l l  be 
greater  than the surrounding rock. The 
brine w i l l  lose  heat t o  the rock. Under 
equilibrium conditions, t he  brine would stead- 
i l y  lo se  heat, and it would condense a t  the 
walls. 
in an equilibrium manner. The brine must 
supercool u n t i l  a threshold is reached. 
The amount of supercooling needed depends on 
the wellbore conditions. Once t h i s  thres- 
hold is reached, t he  f lu id  condenses suddenly 
and continues t o  condense u n t i l  the f lu id  is 
i n  equlibrium. 
increase a t  a lower rate o r  w e n  might de- 
crease when the condensation took place. 
Also the f lu id  might "over condense" f o r  the 
equilibrium conditions. As the condensa- 
t ion  decreases, the pressure would start t o  
increase again. 

(2)  

However, condensation does not occur 

The downhole pressure would 

(3) O r  it is possible tha t  the heat t ransfer  at the 
w a l l  of the w e l l  is a l te red  s igni f icant ly  
when the flow rate is changed. 
flow s teadies  out, a l iqu id  f i lm may reform 
increasing the heat t ransfer  abruptly. 

If t h i s  s i t u t a t ion  occurred, the pressure curve would 
have d i s t i n c t  changes as observed. The numerical model 
developed does not include these latter two e f fec t s  
ye t .  It I s  important tha t  it be investigated, though, 
fo r  the w e l l  test data  to  be analyzed correctly. 

When the 

CONCLUSION 

The ear ly  time response of a uni t  slope when log 
(P) is  plot ted vs log ( t )  is  a special  case and actu- 
a l ly  there  are a whole series of curves fo r  each value 
Df CD which can be defined by the  non-dimensional 
time tgw. An expression f o r  tgw was determined which 
1s applicable when the compressibility i n  the w e l l  is 
re la t ive ly  constant. However, even in two-phase vells 
&ere  the compressibility changes by orders  of magni- 
tudes, taw can still  be used t o  cor re la te  the flow f o r  
LRw close t o  1 and t b  > 1. As taw decreases, the  
pressure f luctuat ions in a two-phase w e l l  increase and 
the expression derived f o r  tgw becomes less appli- 
:able. 

0 '  

4 . 
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In  addition, it has been shown that heat transfei  
can both (1) al ter the slope of the s t r a igh t  l i n e  plol 
of P vs l og  (t) and (2) increase the t i m e  before a 
s t r a i g h t  l i n e  is seen on the semilog plot.  It i s  alst 
postulated t h a t  the rate of condensation and evapora- 
t i o n  i n  a wellbore may not occur in an equilibrium 
manner o r  t h a t  the heat t r ans fe r  between the f l u i d  
and the w a l l  of the w e l l  may change considerably when 
a flow rate change is made. Either of these condi- 
t ions may lead t o  changing slopes when P is plot ted 
versus log t which might be analyzed as the response 
of the reservoir i t s e l f  if these e f f ec t s  are not 
understood bet ter .  

NOMENCLATURE 

Area of wellbore 
isothermal compressibility, (1/ p) ( a d  @I 
compressibility of reservoir  
wellbore s torage coeff ic ient  
diameter of w e l l  
spec i f i c  energy 
f r i c t i o n  f ac to r  
gravity 
spec i f i c  enthalpy 
reservoir thickness 
heat t r ans fe r  coe f f f i c i en t  
permeability 
length of wellbore 
pressure in  w e l l  
non-dimensional downhole pressure 
ini t ia l  pressure drop in w e l l  
volume surface flow rate 
volume sandface flow rate 
i n i t i a l  change in sandface mass flow rate 
surface mass flow rate 
sandface mass flowrate 
radius of wellbore 
spec i f i c  entropy 
t i m e  
t i m e  constant of wellbore 
t i m e  constant of reservoir  
t R / t W ,  non-dimensional t i m e  
non-dimensional t i m e ,  (k/+wr$ t 
temperature in reservoir  of wellbore 
temperature of f l u i d  in wellbore 
veloci ty  
porosity 
density 
absolute v i scos i ty  
small  number 
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