
UC Berkeley
UC Berkeley Previously Published Works

Title
Advancing an interdisciplinary framework to study seed dispersal ecology

Permalink
https://escholarship.org/uc/item/8623m7z6

Journal
AoB Plants, 12(2)

ISSN
2041-2851

Authors
Beckman, Noelle G
Aslan, Clare E
Rogers, Haldre S
et al.

Publication Date
2020-04-01

DOI
10.1093/aobpla/plz048

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8623m7z6
https://escholarship.org/uc/item/8623m7z6#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Copyedited by: SU

1

Received: 17 November 2018; Accepted: 26 July 2019

© The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License  
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,  
provided the original work is properly cited.

Viewpoint
special issue: the role of seed dispersal in plant populations: 
perspectives and advances in a changing world
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Abstract

Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding 
of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting 
dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and 
interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple 
phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence 
and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of 
any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental 
variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance 
on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve 
our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We 
synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse 
subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing 
challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal 
and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better 
understand how global change will impact seed dispersal processes, and potential cascading effects on plant population 
persistence, spread and biodiversity.

Keywords:  Analytical models; demography; global change; individual-based models; long-distance seed dispersal; 
population models; seed dispersal.

  

Introduction
Dispersal influences individual fitness (Saastamoinen et  al. 
2018), population persistence (Kendrick et  al. 2012) and 
biodiversity across scales (Vellend 2010), as well as a population’s 
ability to track shifting habitats, deal with large-scale 
environmental variability and adapt to novel environments 
in response to global change (Zhou and Kot 2011; Clobert 
et al. 2012; Travis et al. 2013). Global change, including climate 
change, habitat fragmentation and overharvesting, affects the 
ecology and evolution of dispersal, in turn altering the ability 
of species to move or adapt to global change events (Travis 
et al. 2013). For sessile organisms such as plants, dispersal of 
propagules—defined as the movement away from the parent 
location—may be the sole opportunity to escape changes in 
local environmental conditions. Ecological understanding of 
dispersal has progressed by describing patterns of dispersal 
and the conditions under which they arise (Nathan and Muller-
Landau 2000; Nathan et  al. 2012), advancing dispersal theory 
for populations and communities (Levin et  al. 2003; Levine 
and Murrell 2003) and determining the effectiveness of seed 
dispersal (Schupp 1993; Schupp et al. 2010, 2017). Nevertheless, 
the role of seed dispersal in the long-term spatial dynamics of 
plant populations remains poorly understood. The complexity 
and context dependence of seed dispersal ecology challenges 
our ability to generalize across different systems and predict 
responses of plant diversity to global change. To move towards 
the predictive understanding necessary to inform conservation 
strategies requires a systematic examination of dispersal 
mechanisms and their influence on the persistence and spread 
of populations.

Seed dispersal ecology is complex and context-dependent 
(Schupp 2007; see Figure 1 in Beckman et al. 2020). Plants exhibit 
a diverse array of strategies to disperse their propagules using 
biotic and abiotic vectors. The majority of plants are dispersed 
by animals (56  %; Aslan et  al. 2013), including mammals, 
birds, reptiles and ants; some self-disperse, such as through 
ballistic action, and the rest are dispersed by abiotic means, 
including wind, water and gravity. Dispersal vectors affect 
seed viability and the temporal and spatial patterns of seed 
rain, which influences the ‘seedscape’, i.e. the abiotic and 
biotic environments surrounding a seed that influence later 
recruitment stages (Beckman and Rogers 2013). The pattern 
of seed deposition determines a plant’s interactions with 
neighbours competing for limiting resources, the likelihood of 
mortality due to natural enemies, the possibility of avoiding 
catastrophic losses due to disasters and the potential of 
reaching microsites suitable for survival, growth and future 
reproduction (Howe and Smallwood 1982; Schupp and Fuentes 
1995; Nathan and Muller-Landau 2000; Beckman and Rogers 
2013). For most plants, mortality is highest during the early 
stages of the life cycle, and the vast majority of seeds do not 
lead to a reproductive adult (Terborgh et  al. 2014). Ecological 
processes from seed production to recruitment thus determine 
gene flow and the colonization of new areas, ultimately 
influencing the spatial distribution of species, community 
diversity and ecosystem functioning.

Our incomplete understanding of seed dispersal’s role in 
plant populations stems from seed dispersal ecology being 
largely based on short-term, local-scale empirical studies for 
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a small number of species, on the one hand, and, on the other 
hand, theoretical dispersal models that often make simplified 
assumptions, bringing into question their suitability for making 
quantitative and system-specific predictions. These barriers 
exist for several reasons. First, seed dispersal is only one process 
in the chain of events within a plant’s life cycle (from flower to 
reproductive adult), and it interacts with several other processes 
over multiple spatiotemporal scales. Consequently, it is difficult 
to quantify the demographic importance of dispersal relative 
to processes affecting survival and growth at later life-history 
stages. Second, options for controlled experiments are limited 
because of the difficulty of manipulating dispersal at the spatial, 
temporal or organizational scales relevant to assess its complete 
demographic impact (e.g. Augspurger and Kitajima 1992; Coulson 
et al. 2001; Poulsen et al. 2012). Third, uncovering spatial processes 
from available observational data on spatial patterns of plant 
recruitment necessitates the collection of detailed field data to 
isolate different processes that result in similar patterns (e.g. 
Wiegand et al. 2009). Fourth, analysing mathematical or simulation 
models based on realistic assumptions of processes occurring 
across multiple spatiotemporal and organizational scales and 
in heterogeneous environments requires mathematical and 
statistical rigor within an interdisciplinary context (e.g. Harsch 
et al. 2014). To overcome these challenges and improve our ability 
to understand and predict the contributions of seed dispersal 
to populations requires a comprehensive framework that 
quantitatively integrates dispersal and demography. In other 
words, we need to evaluate the impact of any single seed dispersal 
event within the full spatial, temporal and environmental context 
of a plant’s life history to fully understand the contribution of 
seed dispersal to population dynamics, thereby closing the seed 
dispersal loop (Wang and Smith 2002).

Here, we discuss how the above goal can be reached (Fig. 1). 
We begin by providing a general perspective on integrating 
empirical and theoretical methods for addressing the context 
dependency of seed dispersal to generalize and predict across 

systems. We then highlight two knowledge gaps that could 
benefit from such an integrative approach. First, we present 
advances and challenges in the movement ecology of seeds, 
considering the multitude of seed dispersal mechanisms and 
vectors that influence spatial patterns of seed dispersal. Second, 
we discuss potential pathways for integrating dispersal and 
demography to reach an improved understanding of population 
persistence and population spread. Throughout, we demonstrate 
that advancing the study of seed dispersal and its influence on 
population dynamics requires increased collaboration among 
researchers that examine disparate life-history stages of plants 
from a variety of disciplinary, geographic and organismal 
perspectives. Such studies will be even more powerful if they take 
advantage of advances in empirical, statistical, computational 
and mathematical methods, in tandem with global initiatives 
and standardized experiments over large geographic extents. 
We propose promising multidisciplinary and interdisciplinary 
advances, including opportunities to apply existing frameworks 
and approaches from other disciplines to advance seed 
dispersal ecology (Fig.  2). We synthesize suitable theoretical 
frameworks for this work and discuss concepts, approaches and 
available data from diverse subdisciplines to help operationalize 
concepts, highlight recent breakthroughs across research areas 
and discuss ongoing challenges and open questions. We end 
with specific strategies to guide future research.

A general approach for studying context 
dependence of seed dispersal
The large number of processes and agents that constitute 
dispersal (see Figure 1 in Beckman et al. 2020) create a distinct 
paradox: to predict the consequences of dispersal, we need to 
simultaneously reduce complexity to generalize across systems 
and embrace complexity to be able to make system-specific 
predictions (see also Evans et  al. 2013). Reducing complexity 
can (i) aid in scaling across ecological organizational levels, (ii) 

Figure 1. To advance current knowledge gaps in seed dispersal ecology requires interdisciplinary collaboration in which researchers simultaneously and iteratively 

collect empirical data and develop mechanistic models that are integrated with statistics.
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reduce the need for data that may not be logistically feasible 
to collect and (iii) increase the efficiency of the computational 
models necessary for answering pressing conservation and 
management issues. By contrast, embracing complexity can 
(i) provide quantitative predictions for specific conservation 
and management issues and (ii) allow for a more faithful 
representation of a particular ecological system. The approach 
a researcher uses depends on their aim, that is, generalization 
across systems or specific forecasts, the question of interest and 
knowledge about the system, including available data.

How to reduce complexity?

To move towards a more fundamental understanding of seed 
dispersal, we need to know when and how we can generalize 
dispersal and its impacts on populations. This requires both 
advances in the theory of dispersal ecology and standardized 
empirical methods to test and inform theory. Theory can take 
the form of conceptual, statistical, simulation or mathematical 
models and allows us to clearly formulate our assumptions and 
the expected first principles underlying observed patterns while 
necessarily simplifying the system of interest (Marquet et al. 2014). 

Theory and standardized data collection will aid us in finding 
differences and commonalities across systems and can help 
determine if, when, and how we can scale from local empirical 
studies to predict qualitative or quantitative responses to global 
change at larger temporal, spatial or organizational scales. Building 
and collaborating with international networks of researchers 
(Frugivory and Seed Dispersal: e.g. Estrada and Fleming 1986; Levey 
et  al. 2002; Hardesty 2007, CoDisperse: e.g. Beckman et  al. 2020) 
we can integrate theory with data from existing studies, long-
term data sets and future data collection initiatives developed by 
an interdisciplinary network of researchers to answer the most 
pressing questions in seed dispersal ecology.

How to embrace complexity?

To enhance system-specific predictions, we need to address 
uncertainty, boost simulation capacity and collect relevant 
ecological and natural history data. Systems-based approaches 
can be used to understand a system as a whole and to 
incorporate the complexity of ecosystems as well as uncertainty 
related to data, model structure and model selection (e.g. Hartig 
et  al. 2012; Milner-Gulland and Shea 2017). We can include 

Figure 2. Examples of the differing empirical and modelling approaches used to quantify dispersal and estimate the impacts of dispersal. We suggest that studies 

combining multiple approaches are likely to provide greater insight into dispersal dynamics.
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mechanistic representations of reproduction, dispersal, growth 
and survival that allow predictions of dynamic responses to 
future global change and novel conditions, without assuming 
static relationships under current environmental conditions. 
Connecting these models to data requires statistical advances, 
such as Bayesian Inference or Approximate Bayesian Computation 
(ABC; Hartig et  al. 2011, 2012), that incorporate heterogeneous 
data into process-based models to reduce uncertainty and test 
model output with data. Additionally, development of systems-
based approaches to study seed dispersal requires computational 
advances to deal with multi-scale problems, mathematical 
advances that can approximate complexity and reduce 
computational expenses, and integration of empirical data across 
systems and subdisciplines that study the movement of seeds, 
their corresponding vectors (e.g. wind, water, animals, etc.) and 
the fitness contributions of seed dispersal.

Confronting complexity with models and data

We believe that a promising approach to confront the complexity 
and context dependency of seed dispersal is to allow for feedbacks 
between empirical observations and the exploration of dynamics 
by simultaneously and iteratively collecting data and developing 
models. This approach would allow for data to inform the 
development and refinement of model assumptions, parameters 
and structure, and for models to elucidate mechanisms driving 
empirical patterns. By collecting data on dispersal processes 
simultaneously with model development, we can use models 
to develop hypotheses and predictions that can be tested 
empirically, and with an iterative approach, we can refine models 
based on empirical results to develop and test new hypotheses 
and predictions. Proper incorporation of stochasticity can help 
determine the limits to prediction as well as experimental 
challenges. In addition, models can be developed based on 
the results from manipulative experiments and project the 
consequences of dispersal for higher organizational levels (e.g. 
populations, communities) or over a larger spatial and temporal 
extent than is possible with manipulative experiments alone. 
Results of these models can be compared to observational data 
to help discern whether and how dispersal processes lead to 
empirical patterns observed over larger spatiotemporal scales. 
Finally, mechanistic models can predict responses to different 
scenarios of novel conditions anticipated from global change 
models. Mechanistic models range from analytical models to 
complicated simulation models (Box 1; Dieckmann et  al. 2000; 
Jongejans et al. 2008). In addition, phenomenological models can be 
useful in describing dispersal patterns (e.g. Bullock et al. 2017) and 
approximating mechanistic models of dispersal for inclusion in 
process-based models. Data collection efforts can include synthesis 
of existing knowledge or collection of data from manipulative 
experiments and observations from the field, greenhouse and 
laboratory. The most appropriate modeling approach depends on 
research questions, assumptions and type of data available (Box 1).

In summary, seed dispersal is a complex and context-
dependent process, but we assert that the seed dispersal loop 
can be closed and the contribution of seed dispersal to plant 
population dynamics can be quantified from multidisciplinary 
and interdisciplinary perspectives. We can achieve this by 
synthesizing recent advances in analytical mathematical 
models, computational simulation models, statistics, data 
synthesis and coordinated data collection on dispersal and 
recruitment processes. Such an integration will ultimately help 
balance necessary complexity with tractability.

Next, we discuss advances and challenges in confronting 
this context dependency with data and models in the context of 

two knowledge gaps: (i) mechanisms underlying the movement 
ecology of seeds and resulting dispersal patterns and (ii) 
demographic consequences of this movement.

Gap 1: Understanding the movement 
ecology of seeds
This first knowledge gap focuses on improving our mechanistic 
understanding of the movement of individual seeds in order to 

Box 1. Overview of models
Developing and evaluating process-based models requires 
empirical studies to identify the processes to be included 
(model structure), the descriptions used for those processes 
(model selection) and data on parameters (Grimm and 
Railsback 2011). Based on the purpose of the model, 
researchers will need to decide how to balance generality, 
realism and precision (Fig. 3).

Analytical mathematical models offer conceptual 
insights on the qualitative behaviour of the system by 
using simplifying assumptions that allow the general 
contribution of different processes and parameters to be 
evaluated. This can be particularly helpful when data are 
limited (Bullock et  al. 2012). Analytical models can also 
facilitate scaling from individual seeds to populations by 
approximating computationally expensive simulations 
while retaining key dispersal mechanisms (e.g. Travis et al. 
2011). More complicated models that are fine-tuned for a 
specific system are thought to have greater predictive power 
(Evans et al. 2013), though this requires further investigation 
as adding more complicated model structure increases 
uncertainty (Sun et  al. 2016). Simulation models, such 
as individual-based models (also known as agent-based 
models), are becoming more sophisticated as computing 
power increases and can be quite useful for suggesting how 
individual-level processes give rise to complex population-
level phenomena. However, complicated simulations trade 
analytical tractability, computational inexpensiveness and 
fewer data requirements for direct incorporation of natural 
complexity, real-world variability and uncertainty (Fig. 3).

Further assumptions to consider during model 
development are whether, and how, to incorporate time, 
space, stochasticity and individuals. Does the question of 
interest involve static relationships or changes over time (i.e. 
static vs. dynamic models)? If researchers are interested in 
changes over time, do the entities in the model experience 
time continuously (e.g. overlapping generations) or discretely 
(e.g. seasonality), and what temporal scales are relevant? Is 
space important; should it be continuous or discrete, and 
what spatial scales are relevant? How important is it to 
consider deterministic vs. stochastic model versions? Can 
the system be modelled assuming large population sizes or 
are interactions among discrete individuals important to 
consider? Other questions to consider involve the detail of 
processes to be included. For example, does dispersal need 
to be represented by detailed movement pathways or are 
phenomenological dispersal patterns sufficient? What is 
the importance of demographic variation? How important 
are interactions with mutualists (e.g. mycorrhizae) and 
antagonists (e.g. competitors, natural enemies) at the site of 
deposition?
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generalize dispersal mechanisms and patterns across systems 
and to predict dispersal under novel conditions. Studies 
uncovering spatial patterns of seed dispersal have tended to 
focus on population-level patterns (e.g. Eulerian methods), 
but are becoming increasingly mechanistic by focusing on the 
movement of individual seeds (e.g. Langrarian approaches; 
Turchin 1998). To describe population-level spatial patterns 
of seed dispersal, ecologists have estimated dispersal kernels 
(probability density function of dispersal distances; Nathan 
et  al. 2012) by combining seed traps with inverse modeling 
(Nathan and Muller-Landau 2000) and incorporating genetic 
information from seeds and parents (e.g. Hardesty 2007; Jones 
and Muller-Landau 2008). While these analyses increase our 
understanding of the variation in seed dispersal patterns, 
dispersal kernels tend to be phenomenological (Nathan et  al. 
2012; but see Katul et al. 2005; Codling et al. 2008 for examples 
of mechanistically derived dispersal kernels) and therefore 
have limited capability for forecasting changes in dispersal 
itself under novel conditions resulting from global change. In 
addition, these phenomenological models tend to describe 
the spatial patterns of seeds arising from the final outcome of 
dispersal and not the process of dispersal, while a mechanistic 
understanding can only be achieved by partitioning the 
contributions of different dispersal vectors (see Rogers et  al. 
2019 for solutions to this issue).

A more mechanistic understanding of the movement of 
individual seeds requires explicitly quantifying the action 
and movement of different seed dispersal vectors and their 
interactions with plants. A  challenge will be measuring 
the extent of long-distance dispersal (LDD), rare events 
that are particularly difficult to study but likely critical to 
the establishment of new populations, colonization after 
disturbance and rapid plant migration in response to climate 
change (Nathan 2006). Finally, we need to be able to scale up 
movements of individual seeds to effectively generalize and 
predict spatial patterns that emerge at the population level. 
Development of models informed by empirical data will help 
us incorporate the necessary level of complexity for dispersal 
vectors and their interactions with plants, measure the extent 

of LDD and scale from the movement of individual seeds to 
describe population-level spatial patterns.

Action/movement of seed dispersal vectors

Across species, plants are dispersed by a range of dispersal 
vectors; even an individual seed may be dispersed by a suite 
of abiotic and biotic means. These vectors have different 
consequences for seed dispersal patterns and require a range 
of empirical and mathematical methods to uncover and 
describe associated processes (Fig.  4). Investigating all the 
actions, movements and processes influencing the journey of a 
seed at the plant, population or species level is daunting but a 
mechanistic understanding is possible by integrating empirical 
and theoretical approaches. One approach is to describe 
functional groups to generalize across species as discussed 
by Aslan et al. (2019). Another is to draw general lessons from 
analysis of total dispersal kernels for key species (Rogers et al. 
2019). Here, we highlight data-driven quantitative approaches 
that enable researchers to describe these complex processes 
and advance a mechanistic understanding of different vectors, 
focusing on wind, water and animals, including humans.

For abiotically dispersed plant species, we can gain an 
increased mechanistic understanding of dispersal processes 
from physics and hydrology. The physics of the transport of 
propagules—such as spores, pollen and seeds—due to the action 
of wind or water is a vast field in its own right (e.g. Okubo and 
Levin 1989; Isard and Gage 2001; Katul et al. 2005; Nathan et al. 
2011b; Aylor 2017). For wind dispersal, a typical seed dispersal 
event first involves release of a seed from the plant canopy. For 
plants in the herbaceous layer, seeds are generally dispersed 
above the canopy, and any seeds released under the canopy 
settle immediately due to very low wind speeds (Soons et  al. 
2004). For trees and shrubs, the seed will experience dispersal 
within the canopy due to canopy-scale turbulence, sometimes 
followed by escape from the canopy and transport via the 
surface layer or even higher levels of the atmospheric boundary 
layer, before being deposited (Augspurger 1986). Each of these 
steps involves turbulence and advective flows with different 
properties. Hence, one of the challenges is to connect dispersal 
processes that dominate at different scales (Pauchard and Shea 
2006). A  variety of numerical simulation methods have been 
developed, including Lagrangian stochastic models (Katul et al. 
2005; Kuparinen 2006; Aylor 2017) and large eddy simulations 
(Chamecki et  al. 2009; Nathan et  al. 2011b). These mechanistic 
models, varying in levels of complexity, have given us insights 
on the importance of seed abscission, canopy structure, plant 
height and land surface heterogeneity on LDD through effects 
on turbulence and wind speed, but additional advances in theory 
are required to generalize across systems (Nathan et al. 2011b). 
For seed dispersal by water, obtaining a fine-scale resolution of 
flow requires numerically solving 3-D fluid-structure interaction 
equations, which is extremely expensive computationally. In 
other scenarios, 1-D analytical porous models may suffice to 
resolve flow through vegetative beds including sea grasses, 
reefs and macrophytes (e.g. Brinkman 1949; Strickland et  al. 
2017). These modeling approaches for abiotically dispersed 
plant species can be further developed with advances in data 
collection. For example, remote sensing now enables 3-D 
characterizations of vegetation (e.g. Lefsky et al. 2002; Eitel et al. 
2016), and meteorological sensors (FLUXNET; Baldocchi et  al. 
2001) allow monitoring speeds and turbulence of wind and 
water at high spatial and temporal resolutions.

The dispersal of a seed by an animal depends on the vector’s 
life-history strategy, local abundances and distributions of 

Figure 3. Trade-offs in model building as discussed by Levins (1966): the goals 

of models are to maximize generality, realism and precision but trade-offs 

exist such that only two of these three goals can be captured. While there is 

philosophical doubt on whether these trade-offs exist (Evans 2012), maximizing 

all three goals will likely result in a model that is intractable and impossible to 

analyse (Silverman 2018).
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dispersers and fruiting trees, landscape structure, and individual 
characteristics of the animal and fruit themselves (Nathan et al. 
2008; Cortes and Uriarte 2012; Schupp et al. 2019; Snell et al. 2019). 
Spatially explicit individual-based models (IBMs) can integrate 
data on dispersal processes, such as gut retention time, animal 
movement and number of seeds dispersed, to determine the 
spatial locations of seeds and contribution to long-distance 
seed dispersal. For example, Kleyheeg et  al. (2017) predicted 
seed dispersal patterns by the mallard (Anas platyrhynchos), 
an important dispersal vector of wetland plants, by using a 
spatially explicit, mechanistic simulation model developed 
from high-resolution data on gut-passage times and landscape-
scale movements of the mallard. Pires et  al. (2018) estimated 
that LDD reduced by at least two-thirds following extinctions 
of mammals in specific Pleistocene assemblages using a 
mechanistic simulation model incorporating seed ingestion, 
gut retention, animal movement and seed deposition. Animal 
movement relevant to seed dispersal can occur across multiple 
spatiotemporal scales; for example, an animal may forage at 
fine spatial and temporal scales but search for foraging sites at 
long distances. The movement path of an individual arises from 
an animal’s internal state, navigation capacity, motion capacity 
and the environment (Nathan et al. 2008). Multiple behaviours 
of animal movement are quantified using observational data on 
the locations of individual animals collected at predetermined 
fixed time intervals, and some of the derived quantities used to 
describe movement are sensitive to the choice of sampling rate. 
These sampling rates should be guided by the research question 
and the movement process under investigation. Fleming et al. 
(2014) recently developed an approach using a semi-variance 
function of a stochastic movement process that enables 
identification of multiple modes of animal movement that vary 
across spatiotemporal timescales (e.g. foraging, simple random 
search and home range) and provides a solution to the sampling 
rate problem. Using this approach, they were able to incorporate 
foraging behaviour into existing animal movement models. 
Finally, understanding the preference and avoidance of certain 

habitats within the landscape by animal seed dispersers will be 
necessary for determining subsequent growth and survival of 
plants after deposition. For example, Kleyheeg et al. (2017) found 
that landscape configuration governs mallard movements, and 
transport of seeds to core areas may help maintain connectivity 
of wetland plant populations.

To better understand the mechanisms of seed dispersal in 
socioecological systems, we need to consider both accidental 
and deliberate seed dispersal by humans (e.g. Wichmann et al. 
2009; Taylor et  al. 2012), which can occur over great distances 
that are potentially global in scale (Bullock et al. 2018). Methods 
are being developed to quantify and model seed dispersal 
by humans. Relevant advances in invasion biology include 
genetic analysis to identify seed sources (e.g. Eriksen et al. 2014), 
transportation/shipping route mapping (e.g. Miller and Ruiz 
2014; Chapman et al. 2017) and socioecological studies of human 
behaviours and movements (e.g. Wilson et  al. 2016). From the 
results of these studies, some of these interactions may be 
generalizable and predictable (e.g. based on plant traits; Bullock 
et  al. 2018). For example, vehicles were observed to disperse 
seeds in a directional manner in Berlin, in which seed traps near 
outbound lanes tended to have native seeds and exotic non-
crop seeds, while inbound lanes tended to have exotic crops 
(von der Lippe and Kowarik 2008).

Recent empirical advances can aid a mechanistic 
understanding of seed dispersal and the development of 
mechanistic models described above (e.g. Nathan et  al. 2011b; 
Cortes and Uriarte 2012). These advances include detailed data 
on seed movement (e.g. stable isotopes: Carlo et al. 2009; radio 
transmitters: Hirsch et al. 2012; DNA barcoding: González-Varo 
et al. 2014), animal movement (e.g. Movebank: Kranstauber et al. 
2011; integrating GPS tracking with remote sensing: Kays et al. 
2015; animal-borne sensors: Wilmers et al. 2015) and the abiotic 
environment (Baldocchi et al. 2001; Davies and Asner 2014). For 
example, using telemetric thread tags (Hirsch et al. 2012), Jansen 
et al. (2012) found that secondary dispersers have a greater role 
in LDD than previously thought. In addition, future research can 

Figure 4. Examples of processes influencing abiotically and biotically dispersed seeds.
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link trait data (e.g. TRY: Kattge et al. 2011; D3: Hintze et al. 2013; 
KEW: Royal Botanic Gardens Kew 2016) to dispersal processes to 
help reduce complexity of interactions and models (Aslan et al. 
2019). The quantity of data relevant for dispersal is increasing 
into the realm of big data (Allan et al. 2018), and rapid access 
is eased through curated repositories. These repositories can 
be used to improve our ability to incorporate intraspecific 
variation in seed dispersal (Schupp et al. 2019), which can have 
important consequences for plant populations, communities 
and evolution (Snell et  al. 2019; Schreiber and Beckman 2020). 
While current advances allow us to study dispersal vector 
characteristics at very fine spatial and temporal resolution, the 
question remains whether this also captures variation among 
and within populations and species.

Long-distance dispersal

Long-distance dispersal—often a rare event—is critical to the 
spread of populations (Ferrandino 1993; Kot et al. 1996; Hastings 
et  al. 2005). Advances have been made in operationalizing the 
concept of LDD, but challenges remain concerning how to 
measure these rare events. Jordano (2017) recently introduced 
operative definitions of LDD using a demographic perspective in 
which propagules can contribute to LDD by expanding a species’ 
range when they colonize new areas outside of the source 
population or disperse away from close relatives outside of the 
genetic neighbourhood in which parents mate. He identified 
three types of LDD: (i) LDD within the genetic neighbourhood, (ii) 
short-distance dispersal outside of the genetic neighbourhood 
and (iii) strict-sense LDD (i.e. LDD outside the genetic 
neighbourhood). The question remains: once operationalized, 
how do we measure such rare events? This remains a major 
challenge in empirical ecology, but perspectives from population 
genetics, statistics, and physics are improving our ability to 
empirically measure the importance of LDD in gene flow and 
species distributions.

Genetic analysis of populations can link individuals to their 
source populations and has been a useful tool for understanding 
the importance of rare, long-distance events in colonizing new 
areas. Using genetic information from 25 species, Alsos and 
colleagues found that multiple dispersal events from several 
source regions contributed to post-glacial colonization of five 
islands in the Arctic; source regions were 280 to >3000 km away 
and were frequently not the closest ones—suggesting a greater 
role for deterministic rather than stochastic factors resulting 
in LDD (Alsos et  al. 2007, 2015). Landscape genetics reveal 
that multiple LDD events were also responsible for mountain 
hemlock colonization on Alaska’s Kenai Peninsula (USA) 
following Pleistocene glaciation (Johnson et  al. 2017). Using 
molecular techniques, observations of fruit consumption, and 
data from seed traps and faeces, Jordano et al. (2007) were able 
to quantify the contribution of different dispersal vectors to LDD 
for the mahaleb cherry (Prunus mahaleb) and found that LDD of 
this plant species is driven by a small subset of large frugivores. 
Citizen science projects can also shed light on the extent and 
magnitude of LDD events. For example, in Sweden, Auffret 
and Cousins (2013) found that humans dispersed meadow 
species, especially those with hooked or appendaged seeds and 
persistent seed banks, from 1.3 to 110 km.

Extreme value theory, introduced by Gumbel (1958), can 
be applied to dispersal distances obtained from molecular 
tools, tracking dispersal vector movement and censored data 
(e.g. the maximum observed distance moved from a fruiting 
tree) to estimate the frequency and extent of rare dispersal 
events. This statistical technique has been widely used in 

other disciplines such as climatology, hydrology, engineering, 
insurance, finance and, more recently, ecology to estimate 
the frequency and extent of rare events, for example, the 
return interval of large floods (e.g. Gaines and Denny 1993; 
Gutschick and BassiriRad 2003). Extreme value statistics 
have been applied to the study of plant dispersal only very 
recently, likely due to limited data in the past (García et  al. 
2017). Using data on seed dispersal distances obtained from 
genetic analyses of the vertebrate-dispersed mahaleb cherry, 
García et al. (2017) found that seeds could be dispersed outside 
of the focal population with low, but non-zero probability (Pr(X 
≥ 1 km) = 0.10, Pr(X ≥ 5 km) = 4 × 10−4 and Pr(X ≥ 10 km) = 7 × 
10−5). Extreme value statistics can give insight into invasions, 
the loss of dispersal services or the likelihood of populations 
tracking suitable habitat (García et al. 2017), and may therefore 
be useful for generalizing across systems. However, these 
methods are phenomenological models fit to existing data and 
assume stationarity, while extreme value statistics are likely 
to shift under global change.

Physics can contribute insights on measuring rare events 
mechanistically, which can help in predicting LDD under global 
change. In nature, there are two types of rare events: (i) discrete 
and uncorrelated, such as an unusually long pause between two 
consecutive events in a Poisson process, and (ii) a sequence of 
cumulative rare events. Long-distance dispersal by animals is 
most likely of the first type. Long-distance dispersal by wind 
is most likely of the second type, as an unlikely sequence of 
turbulent events sustain the seed in the air for an unlikely 
long period of time (all the while being pushed by wind in the 
direction parallel to the ground). Physicists have developed 
a powerful approach for understanding the statistics and 
dynamics of a sequence of cumulative rare events. A  rare 
chain of events connects the initial and final state. In the case 
of a LDD event, the initial and final states would be the source 
and destination locations of a propagule. An event would be 
considered rare, if the dispersal event was much longer than a 
typical dispersal event (quantified, for instance, by the standard 
deviation of dispersal distances). The key insight behind this 
approach is that a very unlikely chain of events (e.g. a dispersal 
event that is much longer than a typical dispersal event) 
unfolds along an essentially deterministic realization—the 
least unlikely out of all unlikely realizations connecting these 
initial and final states. The more unlikely the chain of events, 
the more it will be dominated by this least unlikely realization 
(or chain of events). Deviations around this ‘optimal path’ 
quickly decrease in probability, even though the probability of 
this least unlikely path is also small (given some fixed waiting 
time). The Wentzel, Kramers, Brillouin (WKB) theory—originally 
developed for calculating the rates of (rare) tunnelling events 
in Quantum Mechanics—has found applications in fields as 
diverse as population biology and epidemiology in recent years 
(Ovaskainen and Meerson 2010). This WKB theory is the method 
by which an optimal path (or trajectory) can be found, and the 
probability of a rare event can be evaluated. Given the properties 
of noise (e.g. its correlation function), the method gives a 
certain cost function that measures the relative probability of 
any one path. Minimizing this cost function over the functional 
space of paths gives the optimal path, and the cost function 
along the optimal path gives the dominant contribution to the 
probability of a rare event. Attempts are currently under way to 
adapt this theory to hydrodynamics (Laurie and Bouchet 2015; 
Bouchet et al. 2018), overcoming challenges imposed by the high 
dimensionality of dynamics involved. Ovaskainen and Meerson 
(2010) provide both an accessible exposition of this technique 
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and its biological applications, and a clear explanation of 
challenges of applying these ideas in complex situations.

Scaling from individual seed movements to 
population-level patterns

Both generalizing and predicting population-level patterns of 
seed dispersal from the movements of individual seeds require 
relevant advances in data, mathematics and computation. First, 
it requires a detailed understanding of the mechanisms of the 
focal system as introduced above and the natural histories of 
the relevant players. Second, it requires mathematical and 
computational advances that efficiently scale from interactions 
occurring over short time scales (on the order of minutes) and 
spatial scales (on the order of mm–cm) to patterns emerging 
over months to years across landscapes and regions. Modeling 
population-level patterns of the movement of individual seeds 
in response to the action, behaviour and movement of dispersal 
vectors can be computationally expensive and require extensive 
data for calibration. There are only a few plant species for 
which complex, mechanistic models have been developed and 
for which enough data exist to parameterize these models to 
predict population-level spatial patterns of seed dispersal from 
individual seed movements (Nathan et  al. 2011b; Cortes and 
Uriarte 2012). These models are better-developed for ballistic- 
and wind-dispersed plants than animal-dispersed plants 
(Nathan et  al. 2011b; Cortes and Uriarte 2012), in large part 
because of the complexity of animal behaviour and movement 
(Zwolak 2018). However, the field of animal movement ecology 
has advanced tremendously over the last decades with tracking 
and analytical methods constantly improving (Börger 2016). 
Collaborating more closely with animal movement researchers 
opens up new opportunities for developing improved models of 
animal-dispersed plants.

To scale from individual movements to population-level 
patterns, we can approximate complex mechanistic models 
with models that make simplifying assumptions. One multi-
scale mathematical approach is to begin with random walks of 
individuals and use various approximations to arrive at diffusion 
or transport equations that describe the collective movement 
of individuals (Turchin 1998; Codling et al. 2008). Coupled with 
functions of seed retention time (Bullock et  al. 2011), these 
approximations can describe seed dispersal by animals and 
give important insight into how variability in retention times 
(in animal guts or externally) influences LDD (Guttal et al. 2011). 
A fluid dynamics approach used by physicists, hydrologists and 
atmospheric modellers can help overcome challenges in scaling 
from the local interactions of a seed with the physical dynamics 
of wind and water to large-scale dispersal patterns. Under 
certain assumptions, the effect of wind on the dispersal kernel 
and LDD can be approximated using analytical mathematical 
results, such as the Wald analytical LDD model (e.g. Katul et al. 
2005). The empirical, analytical and numerical methods for the 
treatment of abiotic dispersal in heterogeneous landscapes 
require further development in future research (Brinkman 1949; 
Bohrer et  al. 2008; Nathan et  al. 2011b; Katul and Poggi 2012; 
Trakhtenbrot et al. 2014). Advances have been made on this front 
by Powell and Zimmermann (2004), who developed an analytical 
solution to approximate the migration of plants dispersed by 
animals based on the theory of homogenization, which could be 
extended to abiotically dispersed plants. Through this technique, 
Powell and Zimmermann (2004) incorporated caching activity by 
harvester ants for wild ginger (Asarum canadense), by Blue Jays 
(Cyanocitta cristata) for oaks (Quercus) and by Clark’s nutcrackers 
(Nucifraga columbiana) for whitebark pine (Pinus albicaulis), and 

were able to predict migration rates of trees that matched the 
paleo-record, except in the case of the Holocene migration of 
wild ginger.

Future research can advance mechanistic dispersal kernels 
and predictive seed dispersal ecology. First, dispersal kernels can 
better incorporate interactions between dispersal vectors and 
individual seeds, which tend to occur across multiple spatial and 
temporal scales. For example, different dispersal mechanisms 
can be incorporated mathematically into the dispersal kernel, 
which gives the long-term limit after all seeds land, to evaluate 
the effects of different vectors quantitatively using methods 
from applied mathematics (Rogers et al. 2019). Second, dispersal 
kernels should account for non-stationarity in driving factors 
and depend on the environment. That way, kernels can change 
with time, space and shifts in the environment, important 
for predicting dispersal in novel landscapes. Standardized 
data initiatives provide a valuable means for evaluating the 
magnitude and causes of non-stationarity across space and time. 
Third, integrating multiple dispersal vectors, non-stationary 
dispersal kernels, and improved and standardized dispersal 
vector monitoring and data collection with process-based 
models will allow predicting the spatiotemporal distribution of 
seeds of entire populations across the landscape.

Gap 2: Understanding the demographic 
consequences of seed dispersal
So far, we have discussed how to understand seed dispersal as a 
process. To understand the importance of seed dispersal for the 
dynamics of a population over multiple generations, we need 
to understand how this process interacts with stages across a 
plant’s entire life cycle, from seed production through juvenile 
and adult survival and growth. Prediction of the demographic 
consequences of seed dispersal remains a large challenge due 
to the context dependence of seed dispersal (Schupp et  al. 
2010), heterogeneity of the environment (Nathan et  al. 2011a), 
the long lifespans of many adult plants and interdependent 
processes occurring over multiple spatial and temporal scales 
(Mokany et al. 2014). A promising path forward is integrating the 
Seed Dispersal Effectiveness Framework (Schupp 1993; Schupp 
et al. 2010) with advances in mathematical and computational 
methods (e.g. Godinez-Alvarez and Jordano 2007; Cortes and 
Uriarte 2012). The Seed Dispersal Effectiveness Framework—an 
important progression in embracing the context dependence 
of seed dispersal and moving towards an ability to generalize 
across systems—provides a roadmap for evaluating the 
contribution of each dispersal vector to the production of a 
new adult by evaluating the quantity of seeds dispersed and 
quality of seed dispersal in different contexts (Schupp 1993; 
Schupp et al. 2010). This information can be incorporated into 
process-based dynamic models of populations to examine the 
influence of dispersal compared to other life-history stages on 
the growth and spread of populations over multiple generations 
as discussed below.

Local population dynamics

To evaluate the role of seed dispersal in population dynamics, 
we need to explicitly integrate over critical determinants of 
seed dispersal effectiveness (Schupp et al. 2010), including pre-
dispersal, dispersal and post-dispersal processes operating across 
different life stages. Hitherto, the Seed Dispersal Effectiveness 
Framework has mostly been applied to single species (but see 
Donoso et  al. 2016; Fricke et  al. 2018), but Aslan et  al. (2019) 
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outline an approach to generalize across functional groups. 
Such attempts at generalizing seed dispersal effectiveness 
across species and systems are necessary because empirical 
data for operationalizing the Seed Dispersal Effectiveness 
Framework are still scarce (but see Simmons et  al. 2018). For 
example, data on dispersal and its delayed consequences 
for plant survival and growth are limited in temporal scale, 
following seeds for only a few years (Clark et  al. 1999a; Howe 
and Miriti 2004), and are highly species-specific, with data 
amount and quality varying widely among plant species and 
interacting species that influence plant dispersal, growth and 
survival (Agrawal et al. 2007). Additionally, for long-lived plants 
such as trees, we are limited to collecting data on the early 
stages of recruitment. As a result, it is unclear how variation 
in dispersal and heterogeneity in the seedscape across space 
and time will influence later stages of recruitment. Population 
models constitute an alternative approach, and parameterizing 
population models with observational and experimental data 
on the effectiveness of different dispersal vectors and their 
deposition in varying seedscapes helps elucidate the role of 
dispersal in the demographic process (e.g. Brodie et al. 2009b). 
Local population dynamics can be modelled to assume a range 
of biological complexity (reviewed in Jongejans et  al. 2008). 
Such models include unstructured population models (e.g. 
exponential growth), structured population models that include 
stages or ages (e.g. matrix population models [MPMs]; Caswell 
2001), spatially explicit IBMs (e.g. Adler and Muller-Landau 2005; 
Beckman et  al. 2012) and dynamic vegetation models (DVMs; 
Snell et al. 2014).

 An extremely powerful set of analytical tools have been 
developed for both MPMs and integral projection models (IPMs) 
to predict population growth rate, stable stage distribution and 
sensitivity to small perturbations in the model parameters 
(Caswell 2001; Ellner and Rees 2006). These analytical models rely 
on the law of large numbers, and thus model mean populations 
that encounter each other in proportion to their average 
abundance (i.e. a mean-field assumption), generally assume 
homogeneous environments, and provide asymptotic results. 
Such structured population models are useful to examine 
different hypotheses of how present conditions influence 
populations by examining population projections (Caswell 2001). 
We can use these models to analyse the population growth rate 
and its sensitivity under different dispersal scenarios (e.g. no 
dispersal, one dispersal vector, a community of dispersal vectors), 
and this has improved our understanding of whether and under 
what conditions dispersal is important for a particular species 
and our ability to predict the consequences of shifting the 
community of dispersal vectors. For example, Godinez-Alvarez 
and Jordano (2007) proposed integrating the Seed Dispersal 
Effectiveness Framework with MPMs to evaluate the influence 
of dispersal vectors on the dynamics of plant populations. By 
building the projection matrix based on the quantity and quality 
of dispersal by one bat and three bird seed dispersers, Godinez-
Alvarez and Jordano (2007) found that dispersal vector identity 
influenced population growth rates of the cactus Neobuxbaumia 
tetetzo. In MPMs, plants are categorized in discrete stages by size 
or life-history stage (e.g. seed, seedling, juvenile, adult), which 
is more appropriate for plants as they can remain in the same 
stage for multiple years and/or have unknown or difficult-to-
measure ages. Integral projection models can accommodate 
both discrete and continuous descriptions of fecundity, survival 
and growth based on size and age (Easterling et al. 2000), which 
is especially important for long-lived species as individual 
variation within stages can influence population dynamics 

(Zuidema et al. 2010). The dynamics of transients, important in 
the conservation and management of populations, can also be 
analysed (Caswell 2006). For example, Elwood et al. (2018) showed 
that scatter-hoarders can have significant effects on both short- 
and long-term population dynamics of American Chestnut 
(Castanea dentata). An important advance in analysing dynamics 
of structured population models is the development of tools 
to examine consequences of random variation in vital rates 
(i.e. stochastic demography; Boyce et  al. 2006). This stochastic 
variation affects estimates of population growth, persistence 
and resilience compared to deterministic versions of structured 
population models (Boyce et  al. 2006). As anthropogenic 
pressures can increase or decrease environmental variability, 
the implications of this variation for demography should be 
carefully considered (e.g. Snell et  al. 2019). In addition, future 
research can explicitly include post-dispersal mechanisms, such 
as competition, mortality due to natural enemies and microsite 
suitability for growth (Howe and Miriti 2004) into these suite 
of population models to increase their capability of predicting 
dynamics in response to novel conditions.

To explicitly incorporate post-dispersal processes, researchers 
could use a systems approach to examine the influence of 
dispersal by animals on local plant dynamics. Cortes and Uriarte 
(2012) proposed integrating the Seed Dispersal Effectiveness 
Framework with the movement ecology paradigm developed 
by Nathan and colleagues (2008) that combines internal states, 
motion and navigation capacities of individuals with external 
factors to study movement. This could be done with IBMs 
(Grimm and Railsback 2005) or DVMs (Snell et  al. 2014). For 
example, Loayza and Knight (2010) used an IBM parameterized 
by field studies on seed dispersal movement and the quantitative 
and qualitative components of seed dispersal effectiveness for 
two bird dispersers of the tree Guettarda viburnoides in a forest-
savanna mosaic in Bolivia. Their model predicted that dispersal 
by Purplish Jays (Cyanocorax cyanomelas; pulp consumers which 
frequently dropped seeds) increased population growth due to 
a positive impact of seed handling and an increased likelihood 
of reaching suitable habitat (woody patches), whereas dispersal 
by Chestnut-eared Aracaris (Pteroglossus castanotis; ‘legitimate’ 
seed dispersers that swallow the fruit whole and pass the 
endocarp intact) decreased population growth, due to dispersal 
to unsuitable habitats (forest islands). Dynamic vegetation 
models include demographic, ecological and physiological 
processes as well as biotic interactions (i.e. competition) and 
range from models that simulate forest dynamics through 
growth and mortality of individual trees to models that simulate 
biogeochemical cycles and vegetation distributions through 
plant functional types (Snell et  al. 2014). However, only a few 
DVMs currently include seed dispersal (e.g. Sato et al. 2007; Snell 
2014; Snell and Cowling 2015; Lehsten et al. 2019), and none yet 
includes the level of detail outlined here. Dynamic vegetation 
models with more realistic seed dispersal processes can capture 
interactions in novel non-analogue environments, useful for 
predicting population dynamics when interspecific interactions 
and demographic processes shift.

Data requirements for population models can come from 
long-term observational studies, manipulative or accidental 
experiments (e.g. systems that have lost dispersers as a result 
of global change; HilleRisLambers et al. 2013), or combinations 
thereof. Data on the dispersal process as discussed above, 
including the action/activity, occurrence, abundance and 
movement patterns of dispersal vectors, inform potential 
deposition sites of different dispersal vectors. Long-term 
data from censusing give information on survival, growth 
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and recruitment through time and space (i.e. the quality of 
seed dispersal), necessary for long-lived species. Field and 
greenhouse experiments can provide detailed information on 
the suitability of deposition sites for plant recruitment. Seed 
addition experiments in different habitats can be used to 
quantify how the action/movement of different seed dispersal 
vectors influence recruitment in different microsite conditions 
(Turnbull et al. 2000; Clark et al. 2007). To evaluate the influence 
of interspecific interactions within deposition sites, controlled 
greenhouse and field studies can exclude mycorrhizal and 
nurse–plant associations to measure the effect of these changes 
on plant growth and nutrient exchange (van der Heijden 2010) 
or impose or simulate herbivory, seed predation, pathogen 
attack or parasitism to measure growth rates and other fitness 
correlates in the presence of natural enemies (e.g. Agrawal 1999). 
Accidental experiments enable researchers to functionally 
manipulate dispersal or realistically simulate its absence and 
evaluate the impact across all life-history stages, not just 
those that are most tractable for experiments (e.g. seeds, small 
seedlings). For example, Brodie et al. (2009a) predicted a decline 
in population growth rate of the canopy tree Choerospondias 
axillairs in over-hunted forests using a combination of accidental 
experiments, manipulative seed germination experiments, and 
population matrix models. How population growth rates differ 
depending on the quality of seed dispersal across different 
life-history stages and habitats can be investigated within 
population models using life table response experiment (LTRE) 
analyses (Caswell 2001). A  LTRE (term introduced by Caswell 
1989) compares vital rates under different experimental or 
observational conditions. A LTRE analysis examines differences 
in a demographic summary statistic derived from these 
vitals rates, such as population growth rate, across the study 
conditions. This is done by decomposing differences in the 
demographic summary statistic into contributions from the 
differences in vital rates across study conditions (Caswell 1989, 
2001). For example, Loayza and Knight (2010) used a LTRE analysis 
to compare population growth rates of the tree G.  viburnoides 
between two habitats in which seeds are deposited by different 
bird seed dispersers. They decomposed the difference in 
predicted population growth due to contributions from the 
differences in seedling growth, small tree growth and adult tree 
fecundity (Loayza and Knight 2010).

Population spread

Dispersal and population spread are at the centre of a 
fundamental question in global change biology and invasion 
ecology (Clark et  al. 1998; Pauchard and Shea 2006; Jongejans 
et al. 2008, 2011; Lockwood et al. 2013): if habitats change due 
to habitat destruction or climate change, will seed dispersal 
and population growth allow the plant population to track its 
suitable habitat? Or if a plant species’ seeds are transported into 
a novel habitat, will seed dispersal and population growth allow 
the species to naturalize or even become invasive? Information 
on dispersal processes and demographic transitions from 
the Seed Dispersal Effectiveness Framework can aid the 
development of models to predict the spread of populations 
invading new areas and evaluate the relative importance of 
seed dispersal. Analytical approaches used to model population 
spread include reaction-diffusion models that combine continuous 
time population models with diffusion (i.e. population-level 
approximation of random walks as discussed in Scaling from 
individual seed movements to population-level patterns), which are 
widely and successfully used in spatial ecology (Okubo and Levin 
2002; Cantrell and Cosner 2004). Their discrete time analogues, 

integrodifference equations (IDEs), offer several appealing 
features for modeling plant populations. Integrodifference 
equations can incorporate discrete stage structure (Neubert 
and Caswell 2000) and more closely represent seasonality in 
natural systems. They also offer greater flexibility in describing 
dispersal events via redistribution kernels (or probability 
density functions for seed shadows) (Kot and Schaefer 1986). 
As discussed in the previous section, systems approaches can 
also be used to model population spread rates, which assume 
discrete interacting individuals. Santini et al. (2016) found that 
IBMs predicted slower spread rates of mammals compared to 
an IDE, most likely due to the inherent stochasticity in IBMs. 
A functional perspective of seed dispersal effectiveness (Aslan 
et al. 2019) could help the incorporation of dispersal into DVMs 
to simulate range shifts of plants (Snell et  al. 2014). For an 
overview of the types of models that integrate dispersal and 
demography, see Jongejans et al. (2008).

Integrodifference equations (IDEs) have been used to 
examine the spread of invading organisms (Kot et  al. 1996; 
Hastings et al. 2005; Skarpaas and Shea 2007) and the influence 
of climate change on shifts in species ranges (Zhou and Kot 
2011; Harsch et  al. 2014). Exponentially bounded kernels 
result in constant speed of population spread/invasion in 
integrodifference equations. However, fat-tailed kernels, such 
as the bivariate version of Student’s t-distribution that fits 
many dispersal vector–plant combinations (Clark et  al. 1999b), 
may lead to accelerating invasion speeds (Kot et al. 1996). Clark 
et  al. (2001) developed an alternative approach to estimate 
finite spread rates using the expected velocity for the location 
of the furthest-forward individual. Using this method, they 
found slower spread rates than predicted by analytical models, 
and these slower rates were in line with paleorecords (Clark 
et  al. 2001). Mechanistic models for wind-dispersed species 
that incorporate dispersal and demography have been used 
to determine causes of variation and predict spread rates in 
response to climate-mediated changes in dispersal (Nathan et al. 
2011a; Bullock et al. 2012; Teller et al. 2016). Life table response 
experiment analyses (introduced in the previous section) of IDEs 
can determine the contributions of differences in demography 
and dispersal to differences in spread rates across populations 
as was done for both inter- and intraspecific bird populations 
by Caswell et  al. (2003) and different management scenarios 
of the annual herb Rhinanthus minor (Bullock et  al. 2008). By 
integrating seed dispersal effectiveness with LTRE analysis, 
researchers can examine how different dispersers influence 
population spread rates through their effects on demography 
and dispersal or how changes in vital rates and seed dispersal 
due to global change could influence population spread rates. 
Recent advances provide new opportunities to understand 
the influence of dispersal processes on population spread. 
Mathematicians have developed promising approaches to 
incorporate individual variation (spatial IPMs; Jongejans et  al. 
2011), fragmented landscapes (i.e. reaction-diffusion models: 
Maciel and Lutscher 2013; integrodifference equations: Gilbert 
et  al. 2014), stochasticity (Caswell et  al. 2011) and temporally 
variable environments (Caswell et al. 2011; Schreiber and Ryan 
2011; Ellner and Schreiber 2012). A good description of a variety 
of methods for calculating discrete-time invasion rates from 
data is available in Lewis et al. (2006).

Empirical advances to measure spread (e.g. remote sensing 
via unmanned aerial vehicles and telemetry) can be combined 
with models to elucidate important dispersal vectors. For 
example, Vellend et  al. (2006) estimated migration rates for 
Trillium grandiflorum using an IDE parameterized with data on 
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deer movements from telemetry and gut passage to describe 
dispersal and demographic transitions under different 
levels of herbivory, and these estimates were much faster 
than previous estimates based on ant dispersal. In addition, 
vehicles can disperse seeds long distances and facilitate the 
spread of invasive species that can disrupt land management 
and ecosystem function of natural plant communities. For 
example, vehicles aided the spread of cheatgrass, which has 
overtaken sagebrush in the western arid regions of the USA 
(Strickland et  al. 2015)—and this has implications for cattle 
grazing and water storage. Future research should further 
develop approaches to determine if and when it is necessary 
to consider LDD in the context of population spread (Kot et al. 
1996). For determining spread rates of populations, Neubert and 
Caswell (2000) suggested that data on the distances dispersed 
by seeds are more important than knowing the proportion of 
seeds dispersed at long distances—as long as this proportion 
is small—and that it is more feasible to measure the distance 
travelled by LDD vectors than the proportion dispersed by each 
vector that results in different dispersal kernels.

Recommendations for future research
Moving towards a mechanistic and predictive understanding of 
the movement of seeds and the demographic consequences of 
this movement requires collaboration across a large group of 
scientists working at different scales, in different bioregions, 
using a wide arsenal of tools. At present, seed dispersal research 
is carried out by researchers from an array of subdisciplines 
with diverse but poorly aligned goals and approaches. 
Disparate literature bodies investigate seed dispersal from 
ecological, mathematical, theoretical, computational, 
statistical, genetic, physical and evolutionary angles. While 
each subdiscipline can contribute insights into particular 
aspects of seed dispersal, no single disciplinary method or 
conceptual framework can independently close the loop on seed 
dispersal and its contributions to plant populations. We provide 
recommendations for future research focusing on strategies to 
accommodate diverse but potentially limited data.

Collate existing, disparate data sets

The highly context-dependent nature of empirical data and 
limited knowledge of dispersal and its consequences for plant 
fitness impede our ability to generalize and predict response 
of plants under global change. However, there is a wealth of 
available knowledge that has not yet been synthesized for 
analysis. Rich new data sets are currently emerging in ecology as 
a result of advances in remote sensing data (Kerr and Ostrovsky 
2003; Pettorelli et al. 2014), environmental sensor data (Rundel 
et  al. 2009; Wilmers et  al. 2015), long-term data from research 
sites such as Long-term Ecological Research (LTER) and Forest 
Global Earth Observatory (ForestGEO; Anderson-Teixeira et  al. 
2015), emergence of new large collaborative networks (e.g. Templ 
et al. 2018; USA National Phenology Network 2018) and globally 
distributed experiments (e.g. Nutrient Network; Borer et  al. 
2014), and increased digital availability of data. Data sources 
include publicly available data sets, including data on dispersal 
distances (e.g. Tamme et al. 2014; Bullock et al. 2017), traits (e.g. 
Kleyer et al. 2008; Kattge et al. 2011; Royal Botanic Gardens Kew 
2016), networks (e.g. Pigot et al. 2016), demography (e.g. Salguero-
Gómez et al. 2015), plant phylogenies (useful for generalization 
based on cross-species comparisons and understanding the 
evolutionary implications of seed dispersal; Zanne et al. 2013) and 

species distributions (e.g. Enquist et al. 2016), and unpublished 
data sets (seed dispersal networks, dispersal kernels, spatial 
dispersal data, movement data, etc.). There is also an abundance 
of existing data within the gray and white literature, including 
data from conservation areas and government organizations, 
in a variety of languages. Automated text analysis as used in 
the social sciences (e.g. Wilkerson and Casas 2017) can identify 
documents with relevant data in multiple languages. Currently, a 
repository for data on dispersal processes is lacking and requires 
appropriate cyberinfrastructure to assimilate large quantities of 
disparate data into models. Existing cyberinfrastructure, such 
as the National Science Foundation-funded CyVerse developed 
for the life sciences, is one option. CyVerse allows for flexible 
storage of heterogeneous data and is able to interface with 
existing repositories that house relevant data (Goff et al. 2011; 
Merchant et al. 2016). The time is ripe for creating a repository 
for dispersal data for synthesis and analysis. These data can be 
linked to existing available data sets to close the two knowledge 
gaps discussed above and improve our ability to generalize 
across systems and predict outcomes for specific systems.

Use novel statistical techniques to integrate 
disparate data with process-based models

Differences in model structure and parameterization based on 
limited data can create large uncertainties in model predictions 
(Hartig et al. 2012) and necessitates systematic examination of 
dispersal mechanisms as well as high-resolution data (Cortes 
and Uriarte 2012; Mokany et  al. 2014). We can take advantage 
of systematic reviews and statistical approaches, such as meta-
analyses (e.g. Markl et al. 2012), inverse modeling (e.g. Ribbens 
et  al. 1994) and imputation methods (e.g. Santini et  al. 2016), 
to integrate the growing body of available data with process-
based models. Systematic reviews and meta-analyses can help 
identify processes that require model development, as well as 
parameter ranges for these models. Recent statistical advances 
in merging process-based models with Bayesian or approximate 
Bayesian methods can reduce uncertainty by incorporating 
different types of data (Hartig et  al. 2011, 2012), facilitating 
identification of relevant processes by better utilizing existing 
data, a major advantage of modern statistics and computing 
that has not yet been exploited. For example, approximate 
Bayesian approaches (e.g. ABC) enable one to infer parameters 
from a variety of process-based models including stochastic 
individual-based simulation models, which cannot be informed 
by statistical theory such as maximum likelihood or Bayesian 
methods because their likelihood functions cannot be explicitly 
calculated. In addition, new methods are continuing to be 
developed to accommodate sparse data and fill gaps in trait data 
(e.g. Swenson 2014; Schrodt et al. 2015; Santini et al. 2016).

Scale from the movement of individual seeds 
to population-level patterns of dispersal and 
recruitment using analytical approximations

Using analytical models developed from empirical data, we 
can explore alternative hypotheses regarding dispersal that 
can be tested in the field, make broadly applicable predictions 
that can be evaluated across systems and explore sensitivity 
to parameters (important when data are limited; Bullock 
et  al. 2012). Results from these empirical studies enable the 
refinement of theoretical models. In cases where it would be 
infeasible or unethical to use empirical experimentation at the 
scales necessary to explore population dynamics, models can 
be used to evaluate competing hypotheses. Approximations 
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require less data for parameterization and are efficient, and thus 
can help inform pressing management issues (Travis et al. 2011). 
Finally, these approximations can be included as submodels of 
more complex simulation models to reduce their complexity 
and data requirements and predict consequences of dispersal at 
larger organization, spatial or temporal scales.

Conduct sensitivity analyses of models to determine 
sufficiency of available data

Developing process-based models can guide effective data 
collection by determining the sensitivity of models to 
variation in parameters or structure (Milner-Gulland and Shea 
2017). For example, parameters that are identified as being 
disproportionally important for determining plant responses 
will require more detailed data collection (e.g. Nathan et  al. 
2011b; Mokany et  al. 2014). We can examine whether missing 
data or poorly parameterized values influence model output 
or produce contradictory patterns. Models can guide the choice 
of empirical sampling designs and appropriate statistical 
models by evaluating the sensitivity of results to different 
sampling designs and statistical models (virtual ecologist 
approach; Skarpaas et  al. 2005; Zurell et  al. 2010). Finally, this 
process will guide the development of methods and protocols 
for standardized data collection that can be included in 
both existing and new long-term studies. Standardized data 
collection efforts informed by theory will facilitate cross-site 
comparisons in both data analysis and model outputs, can help 
evaluate model predictions and will facilitate the investigation 
of future questions in seed dispersal ecology.

Create coordinated research networks and 
standardized data collection protocols to fill 
remaining data gaps

We encourage researchers to coordinate research activities 
and utilize a variety of empirical methods (e.g. censuses, 
seed traps, genetics, radio-tracking, remote sensing, etc.) to 
study a diversity of seed dispersal vectors and plant growth 
forms (woody plants, herbaceous plants, grasses, etc.) building 
upon existing standardized data collection protocols and 
global networks (e.g. Borer et  al. 2014; Anderson-Teixeira 
et al. 2015; Saatkamp et al. 2019). A summary of data needs as 
identified by the participants of the Seed Dispersal Workshop 
is provided in Supporting Information—File S1. Empirical 
ecologists are able to generate important case study data on 
local processes occurring over short time periods that can 
serve as model systems for testing theory. We can use theory 
to examine whether and how information from case studies 
can be generalized across systems and extrapolated to larger 
organizational, spatial and temporal scales. In addition, 
coordinating and standardizing data collections can help 
overcome shortcomings in empirical studies to increase the 
number of focal species and the spatial and temporal scope. 
Often empirical ecologists are geographically scattered, and 
researchers working in tropical vs. temperate systems or 
Old World vs. New World systems are largely segregated—
publishing in different journals and attending different 
conferences. Therefore, increasing international collaborations 
and global integration across regions will be necessary to 
enable generalization to ecosystems worldwide. Based on 
participant experiences described at the Seed Dispersal 
Workshop, there seems to be little communication among 
researchers studying abiotic vs. biotic dispersal vectors or 
among researchers working on biotic dispersal vectors, that is 

researchers working on endozoochoric, epizoochoric and seed-
caching organisms. Linking these perspectives may advance 
our understanding of the importance of different dispersal 
vectors. In addition, we propose that closer collaborations 
among ecologists, mathematicians, hydrologists, atmospheric 
modellers and physicists exploring the movement of animals, 
water and wind will bring important insights to these efforts.

Predict consequences of dispersal over larger 
organization and spatiotemporal scales

System-specific forecasts will require the development and 
application of novel analytical and efficient computational 
methods for models. Computational models based on dispersal 
theory and parameterized with system-specific data hold 
promise for evaluating the importance of dispersal within 
ecosystems. Such generalizations may elucidate the qualitative 
and quantitative effects of species-specific dispersal kernels 
and disperser loss on plant populations. Collaboration and 
information sharing between empiricists, mathematicians, 
modellers and theoreticians may help address this challenge, 
by directing empirical data collection to efficiently address 
model parameter needs and by helping ecological modellers 
to incorporate relevant variables as they develop increasingly 
mechanistic models. These models can be evaluated with future 
empirical studies.

Conclusions
To tackle the complexity and context dependency of seed 
dispersal, we urge a better integration of empirical and 
theoretical approaches. This requires enhanced communication 
and collaboration across researchers in different disciplines, 
across geographic locations, and studying different aspects of 
plant life histories and environmental conditions that influence 
dispersal and demography. Existing models need to be further 
developed and refined to evaluate the role of dispersal on 
population persistence and spread; better predict extinction 
risk of species; and evaluate conservation and management 
strategies. Synthesis of data on dispersal processes, seed 
dispersal effectiveness across multiple life-history stages and 
demography represents an opportunity to develop theory for 
generalization across systems and to identify relevant processes 
that require model development and data collection for system-
specific predictions.
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